diff -r ffa851df0825 -r 2fb8b9db1c86 symbian-qemu-0.9.1-12/python-2.6.1/Modules/shamodule.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/symbian-qemu-0.9.1-12/python-2.6.1/Modules/shamodule.c Fri Jul 31 15:01:17 2009 +0100 @@ -0,0 +1,592 @@ +/* SHA module */ + +/* This module provides an interface to NIST's Secure Hash Algorithm */ + +/* See below for information about the original code this module was + based upon. Additional work performed by: + + Andrew Kuchling (amk@amk.ca) + Greg Stein (gstein@lyra.org) + + Copyright (C) 2005 Gregory P. Smith (greg@krypto.org) + Licensed to PSF under a Contributor Agreement. + +*/ + +/* SHA objects */ + +#include "Python.h" +#include "structmember.h" + + +/* Endianness testing and definitions */ +#define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\ + if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;} + +#define PCT_LITTLE_ENDIAN 1 +#define PCT_BIG_ENDIAN 0 + +/* Some useful types */ + +typedef unsigned char SHA_BYTE; + +#if SIZEOF_INT == 4 +typedef unsigned int SHA_INT32; /* 32-bit integer */ +#else +/* not defined. compilation will die. */ +#endif + +/* The SHA block size and message digest sizes, in bytes */ + +#define SHA_BLOCKSIZE 64 +#define SHA_DIGESTSIZE 20 + +/* The structure for storing SHS info */ + +typedef struct { + PyObject_HEAD + SHA_INT32 digest[5]; /* Message digest */ + SHA_INT32 count_lo, count_hi; /* 64-bit bit count */ + SHA_BYTE data[SHA_BLOCKSIZE]; /* SHA data buffer */ + int Endianness; + int local; /* unprocessed amount in data */ +} SHAobject; + +/* When run on a little-endian CPU we need to perform byte reversal on an + array of longwords. */ + +static void longReverse(SHA_INT32 *buffer, int byteCount, int Endianness) +{ + SHA_INT32 value; + + if ( Endianness == PCT_BIG_ENDIAN ) + return; + + byteCount /= sizeof(*buffer); + while (byteCount--) { + value = *buffer; + value = ( ( value & 0xFF00FF00L ) >> 8 ) | \ + ( ( value & 0x00FF00FFL ) << 8 ); + *buffer++ = ( value << 16 ) | ( value >> 16 ); + } +} + +static void SHAcopy(SHAobject *src, SHAobject *dest) +{ + dest->Endianness = src->Endianness; + dest->local = src->local; + dest->count_lo = src->count_lo; + dest->count_hi = src->count_hi; + memcpy(dest->digest, src->digest, sizeof(src->digest)); + memcpy(dest->data, src->data, sizeof(src->data)); +} + + +/* ------------------------------------------------------------------------ + * + * This code for the SHA algorithm was noted as public domain. The original + * headers are pasted below. + * + * Several changes have been made to make it more compatible with the + * Python environment and desired interface. + * + */ + +/* NIST Secure Hash Algorithm */ +/* heavily modified by Uwe Hollerbach */ +/* from Peter C. Gutmann's implementation as found in */ +/* Applied Cryptography by Bruce Schneier */ +/* Further modifications to include the "UNRAVEL" stuff, below */ + +/* This code is in the public domain */ + +/* UNRAVEL should be fastest & biggest */ +/* UNROLL_LOOPS should be just as big, but slightly slower */ +/* both undefined should be smallest and slowest */ + +#define UNRAVEL +/* #define UNROLL_LOOPS */ + +/* The SHA f()-functions. The f1 and f3 functions can be optimized to + save one boolean operation each - thanks to Rich Schroeppel, + rcs@cs.arizona.edu for discovering this */ + +/*#define f1(x,y,z) ((x & y) | (~x & z)) // Rounds 0-19 */ +#define f1(x,y,z) (z ^ (x & (y ^ z))) /* Rounds 0-19 */ +#define f2(x,y,z) (x ^ y ^ z) /* Rounds 20-39 */ +/*#define f3(x,y,z) ((x & y) | (x & z) | (y & z)) // Rounds 40-59 */ +#define f3(x,y,z) ((x & y) | (z & (x | y))) /* Rounds 40-59 */ +#define f4(x,y,z) (x ^ y ^ z) /* Rounds 60-79 */ + +/* SHA constants */ + +#define CONST1 0x5a827999L /* Rounds 0-19 */ +#define CONST2 0x6ed9eba1L /* Rounds 20-39 */ +#define CONST3 0x8f1bbcdcL /* Rounds 40-59 */ +#define CONST4 0xca62c1d6L /* Rounds 60-79 */ + +/* 32-bit rotate */ + +#define R32(x,n) ((x << n) | (x >> (32 - n))) + +/* the generic case, for when the overall rotation is not unraveled */ + +#define FG(n) \ + T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; \ + E = D; D = C; C = R32(B,30); B = A; A = T + +/* specific cases, for when the overall rotation is unraveled */ + +#define FA(n) \ + T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; B = R32(B,30) + +#define FB(n) \ + E = R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n; A = R32(A,30) + +#define FC(n) \ + D = R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n; T = R32(T,30) + +#define FD(n) \ + C = R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n; E = R32(E,30) + +#define FE(n) \ + B = R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n; D = R32(D,30) + +#define FT(n) \ + A = R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n; C = R32(C,30) + +/* do SHA transformation */ + +static void +sha_transform(SHAobject *sha_info) +{ + int i; + SHA_INT32 T, A, B, C, D, E, W[80], *WP; + + memcpy(W, sha_info->data, sizeof(sha_info->data)); + longReverse(W, (int)sizeof(sha_info->data), sha_info->Endianness); + + for (i = 16; i < 80; ++i) { + W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16]; + + /* extra rotation fix */ + W[i] = R32(W[i], 1); + } + A = sha_info->digest[0]; + B = sha_info->digest[1]; + C = sha_info->digest[2]; + D = sha_info->digest[3]; + E = sha_info->digest[4]; + WP = W; +#ifdef UNRAVEL + FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); + FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); + FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); + FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); + FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); + FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); + FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); + FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); + sha_info->digest[0] += E; + sha_info->digest[1] += T; + sha_info->digest[2] += A; + sha_info->digest[3] += B; + sha_info->digest[4] += C; +#else /* !UNRAVEL */ +#ifdef UNROLL_LOOPS + FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); + FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); + FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); + FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); + FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); + FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); + FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); + FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); +#else /* !UNROLL_LOOPS */ + for (i = 0; i < 20; ++i) { FG(1); } + for (i = 20; i < 40; ++i) { FG(2); } + for (i = 40; i < 60; ++i) { FG(3); } + for (i = 60; i < 80; ++i) { FG(4); } +#endif /* !UNROLL_LOOPS */ + sha_info->digest[0] += A; + sha_info->digest[1] += B; + sha_info->digest[2] += C; + sha_info->digest[3] += D; + sha_info->digest[4] += E; +#endif /* !UNRAVEL */ +} + +/* initialize the SHA digest */ + +static void +sha_init(SHAobject *sha_info) +{ + TestEndianness(sha_info->Endianness) + + sha_info->digest[0] = 0x67452301L; + sha_info->digest[1] = 0xefcdab89L; + sha_info->digest[2] = 0x98badcfeL; + sha_info->digest[3] = 0x10325476L; + sha_info->digest[4] = 0xc3d2e1f0L; + sha_info->count_lo = 0L; + sha_info->count_hi = 0L; + sha_info->local = 0; +} + +/* update the SHA digest */ + +static void +sha_update(SHAobject *sha_info, SHA_BYTE *buffer, int count) +{ + int i; + SHA_INT32 clo; + + clo = sha_info->count_lo + ((SHA_INT32) count << 3); + if (clo < sha_info->count_lo) { + ++sha_info->count_hi; + } + sha_info->count_lo = clo; + sha_info->count_hi += (SHA_INT32) count >> 29; + if (sha_info->local) { + i = SHA_BLOCKSIZE - sha_info->local; + if (i > count) { + i = count; + } + memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i); + count -= i; + buffer += i; + sha_info->local += i; + if (sha_info->local == SHA_BLOCKSIZE) { + sha_transform(sha_info); + } + else { + return; + } + } + while (count >= SHA_BLOCKSIZE) { + memcpy(sha_info->data, buffer, SHA_BLOCKSIZE); + buffer += SHA_BLOCKSIZE; + count -= SHA_BLOCKSIZE; + sha_transform(sha_info); + } + memcpy(sha_info->data, buffer, count); + sha_info->local = count; +} + +/* finish computing the SHA digest */ + +static void +sha_final(unsigned char digest[20], SHAobject *sha_info) +{ + int count; + SHA_INT32 lo_bit_count, hi_bit_count; + + lo_bit_count = sha_info->count_lo; + hi_bit_count = sha_info->count_hi; + count = (int) ((lo_bit_count >> 3) & 0x3f); + ((SHA_BYTE *) sha_info->data)[count++] = 0x80; + if (count > SHA_BLOCKSIZE - 8) { + memset(((SHA_BYTE *) sha_info->data) + count, 0, + SHA_BLOCKSIZE - count); + sha_transform(sha_info); + memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8); + } + else { + memset(((SHA_BYTE *) sha_info->data) + count, 0, + SHA_BLOCKSIZE - 8 - count); + } + + /* GJS: note that we add the hi/lo in big-endian. sha_transform will + swap these values into host-order. */ + sha_info->data[56] = (hi_bit_count >> 24) & 0xff; + sha_info->data[57] = (hi_bit_count >> 16) & 0xff; + sha_info->data[58] = (hi_bit_count >> 8) & 0xff; + sha_info->data[59] = (hi_bit_count >> 0) & 0xff; + sha_info->data[60] = (lo_bit_count >> 24) & 0xff; + sha_info->data[61] = (lo_bit_count >> 16) & 0xff; + sha_info->data[62] = (lo_bit_count >> 8) & 0xff; + sha_info->data[63] = (lo_bit_count >> 0) & 0xff; + sha_transform(sha_info); + digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff); + digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff); + digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff); + digest[ 3] = (unsigned char) ((sha_info->digest[0] ) & 0xff); + digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff); + digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff); + digest[ 6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff); + digest[ 7] = (unsigned char) ((sha_info->digest[1] ) & 0xff); + digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff); + digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff); + digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff); + digest[11] = (unsigned char) ((sha_info->digest[2] ) & 0xff); + digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff); + digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff); + digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff); + digest[15] = (unsigned char) ((sha_info->digest[3] ) & 0xff); + digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff); + digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff); + digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff); + digest[19] = (unsigned char) ((sha_info->digest[4] ) & 0xff); +} + +/* + * End of copied SHA code. + * + * ------------------------------------------------------------------------ + */ + +static PyTypeObject SHAtype; + + +static SHAobject * +newSHAobject(void) +{ + return (SHAobject *)PyObject_New(SHAobject, &SHAtype); +} + +/* Internal methods for a hashing object */ + +static void +SHA_dealloc(PyObject *ptr) +{ + PyObject_Del(ptr); +} + + +/* External methods for a hashing object */ + +PyDoc_STRVAR(SHA_copy__doc__, "Return a copy of the hashing object."); + +static PyObject * +SHA_copy(SHAobject *self, PyObject *unused) +{ + SHAobject *newobj; + + if ( (newobj = newSHAobject())==NULL) + return NULL; + + SHAcopy(self, newobj); + return (PyObject *)newobj; +} + +PyDoc_STRVAR(SHA_digest__doc__, +"Return the digest value as a string of binary data."); + +static PyObject * +SHA_digest(SHAobject *self, PyObject *unused) +{ + unsigned char digest[SHA_DIGESTSIZE]; + SHAobject temp; + + SHAcopy(self, &temp); + sha_final(digest, &temp); + return PyString_FromStringAndSize((const char *)digest, sizeof(digest)); +} + +PyDoc_STRVAR(SHA_hexdigest__doc__, +"Return the digest value as a string of hexadecimal digits."); + +static PyObject * +SHA_hexdigest(SHAobject *self, PyObject *unused) +{ + unsigned char digest[SHA_DIGESTSIZE]; + SHAobject temp; + PyObject *retval; + char *hex_digest; + int i, j; + + /* Get the raw (binary) digest value */ + SHAcopy(self, &temp); + sha_final(digest, &temp); + + /* Create a new string */ + retval = PyString_FromStringAndSize(NULL, sizeof(digest) * 2); + if (!retval) + return NULL; + hex_digest = PyString_AsString(retval); + if (!hex_digest) { + Py_DECREF(retval); + return NULL; + } + + /* Make hex version of the digest */ + for(i=j=0; i> 4) & 0xf; + c = (c>9) ? c+'a'-10 : c + '0'; + hex_digest[j++] = c; + c = (digest[i] & 0xf); + c = (c>9) ? c+'a'-10 : c + '0'; + hex_digest[j++] = c; + } + return retval; +} + +PyDoc_STRVAR(SHA_update__doc__, +"Update this hashing object's state with the provided string."); + +static PyObject * +SHA_update(SHAobject *self, PyObject *args) +{ + unsigned char *cp; + int len; + + if (!PyArg_ParseTuple(args, "s#:update", &cp, &len)) + return NULL; + + sha_update(self, cp, len); + + Py_INCREF(Py_None); + return Py_None; +} + +static PyMethodDef SHA_methods[] = { + {"copy", (PyCFunction)SHA_copy, METH_NOARGS, SHA_copy__doc__}, + {"digest", (PyCFunction)SHA_digest, METH_NOARGS, SHA_digest__doc__}, + {"hexdigest", (PyCFunction)SHA_hexdigest, METH_NOARGS, SHA_hexdigest__doc__}, + {"update", (PyCFunction)SHA_update, METH_VARARGS, SHA_update__doc__}, + {NULL, NULL} /* sentinel */ +}; + +static PyObject * +SHA_get_block_size(PyObject *self, void *closure) +{ + return PyInt_FromLong(SHA_BLOCKSIZE); +} + +static PyObject * +SHA_get_digest_size(PyObject *self, void *closure) +{ + return PyInt_FromLong(SHA_DIGESTSIZE); +} + +static PyObject * +SHA_get_name(PyObject *self, void *closure) +{ + return PyString_FromStringAndSize("SHA1", 4); +} + +static PyGetSetDef SHA_getseters[] = { + {"digest_size", + (getter)SHA_get_digest_size, NULL, + NULL, + NULL}, + {"block_size", + (getter)SHA_get_block_size, NULL, + NULL, + NULL}, + {"name", + (getter)SHA_get_name, NULL, + NULL, + NULL}, + /* the old md5 and sha modules support 'digest_size' as in PEP 247. + * the old sha module also supported 'digestsize'. ugh. */ + {"digestsize", + (getter)SHA_get_digest_size, NULL, + NULL, + NULL}, + {NULL} /* Sentinel */ +}; + +static PyTypeObject SHAtype = { + PyVarObject_HEAD_INIT(NULL, 0) + "_sha.sha", /*tp_name*/ + sizeof(SHAobject), /*tp_size*/ + 0, /*tp_itemsize*/ + /* methods */ + SHA_dealloc, /*tp_dealloc*/ + 0, /*tp_print*/ + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + 0, /*tp_compare*/ + 0, /*tp_repr*/ + 0, /*tp_as_number*/ + 0, /*tp_as_sequence*/ + 0, /*tp_as_mapping*/ + 0, /*tp_hash*/ + 0, /*tp_call*/ + 0, /*tp_str*/ + 0, /*tp_getattro*/ + 0, /*tp_setattro*/ + 0, /*tp_as_buffer*/ + Py_TPFLAGS_DEFAULT, /*tp_flags*/ + 0, /*tp_doc*/ + 0, /*tp_traverse*/ + 0, /*tp_clear*/ + 0, /*tp_richcompare*/ + 0, /*tp_weaklistoffset*/ + 0, /*tp_iter*/ + 0, /*tp_iternext*/ + SHA_methods, /* tp_methods */ + 0, /* tp_members */ + SHA_getseters, /* tp_getset */ +}; + + +/* The single module-level function: new() */ + +PyDoc_STRVAR(SHA_new__doc__, +"Return a new SHA hashing object. An optional string argument\n\ +may be provided; if present, this string will be automatically\n\ +hashed."); + +static PyObject * +SHA_new(PyObject *self, PyObject *args, PyObject *kwdict) +{ + static char *kwlist[] = {"string", NULL}; + SHAobject *new; + unsigned char *cp = NULL; + int len; + + if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#:new", kwlist, + &cp, &len)) { + return NULL; + } + + if ((new = newSHAobject()) == NULL) + return NULL; + + sha_init(new); + + if (PyErr_Occurred()) { + Py_DECREF(new); + return NULL; + } + if (cp) + sha_update(new, cp, len); + + return (PyObject *)new; +} + + +/* List of functions exported by this module */ + +static struct PyMethodDef SHA_functions[] = { + {"new", (PyCFunction)SHA_new, METH_VARARGS|METH_KEYWORDS, SHA_new__doc__}, + {NULL, NULL} /* Sentinel */ +}; + + +/* Initialize this module. */ + +#define insint(n,v) { PyModule_AddIntConstant(m,n,v); } + +PyMODINIT_FUNC +init_sha(void) +{ + PyObject *m; + + Py_TYPE(&SHAtype) = &PyType_Type; + if (PyType_Ready(&SHAtype) < 0) + return; + m = Py_InitModule("_sha", SHA_functions); + if (m == NULL) + return; + + /* Add some symbolic constants to the module */ + insint("blocksize", 1); /* For future use, in case some hash + functions require an integral number of + blocks */ + insint("digestsize", 20); + insint("digest_size", 20); +}