2
|
1 |
/*
|
|
2 |
** 2005 July 8
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** This file contains code associated with the ANALYZE command.
|
|
13 |
**
|
|
14 |
** @(#) $Id: analyze.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
15 |
*/
|
|
16 |
#ifndef SQLITE_OMIT_ANALYZE
|
|
17 |
#include "sqliteInt.h"
|
|
18 |
|
|
19 |
/*
|
|
20 |
** This routine generates code that opens the sqlite_stat1 table on cursor
|
|
21 |
** iStatCur.
|
|
22 |
**
|
|
23 |
** If the sqlite_stat1 tables does not previously exist, it is created.
|
|
24 |
** If it does previously exist, all entires associated with table zWhere
|
|
25 |
** are removed. If zWhere==0 then all entries are removed.
|
|
26 |
*/
|
|
27 |
static void openStatTable(
|
|
28 |
Parse *pParse, /* Parsing context */
|
|
29 |
int iDb, /* The database we are looking in */
|
|
30 |
int iStatCur, /* Open the sqlite_stat1 table on this cursor */
|
|
31 |
const char *zWhere /* Delete entries associated with this table */
|
|
32 |
){
|
|
33 |
sqlite3 *db = pParse->db;
|
|
34 |
Db *pDb;
|
|
35 |
int iRootPage;
|
|
36 |
Table *pStat;
|
|
37 |
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
38 |
|
|
39 |
if( v==0 ) return;
|
|
40 |
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
|
41 |
assert( sqlite3VdbeDb(v)==db );
|
|
42 |
pDb = &db->aDb[iDb];
|
|
43 |
if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
|
|
44 |
/* The sqlite_stat1 tables does not exist. Create it.
|
|
45 |
** Note that a side-effect of the CREATE TABLE statement is to leave
|
|
46 |
** the rootpage of the new table on the top of the stack. This is
|
|
47 |
** important because the OpenWrite opcode below will be needing it. */
|
|
48 |
sqlite3NestedParse(pParse,
|
|
49 |
"CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
|
|
50 |
pDb->zName
|
|
51 |
);
|
|
52 |
iRootPage = 0; /* Cause rootpage to be taken from top of stack */
|
|
53 |
}else if( zWhere ){
|
|
54 |
/* The sqlite_stat1 table exists. Delete all entries associated with
|
|
55 |
** the table zWhere. */
|
|
56 |
sqlite3NestedParse(pParse,
|
|
57 |
"DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
|
|
58 |
pDb->zName, zWhere
|
|
59 |
);
|
|
60 |
iRootPage = pStat->tnum;
|
|
61 |
}else{
|
|
62 |
/* The sqlite_stat1 table already exists. Delete all rows. */
|
|
63 |
iRootPage = pStat->tnum;
|
|
64 |
sqlite3VdbeAddOp(v, OP_Clear, pStat->tnum, iDb);
|
|
65 |
}
|
|
66 |
|
|
67 |
/* Open the sqlite_stat1 table for writing. Unless it was created
|
|
68 |
** by this vdbe program, lock it for writing at the shared-cache level.
|
|
69 |
** If this vdbe did create the sqlite_stat1 table, then it must have
|
|
70 |
** already obtained a schema-lock, making the write-lock redundant.
|
|
71 |
*/
|
|
72 |
if( iRootPage>0 ){
|
|
73 |
sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
|
|
74 |
}
|
|
75 |
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
|
76 |
sqlite3VdbeAddOp(v, OP_OpenWrite, iStatCur, iRootPage);
|
|
77 |
sqlite3VdbeAddOp(v, OP_SetNumColumns, iStatCur, 3);
|
|
78 |
}
|
|
79 |
|
|
80 |
/*
|
|
81 |
** Generate code to do an analysis of all indices associated with
|
|
82 |
** a single table.
|
|
83 |
*/
|
|
84 |
static void analyzeOneTable(
|
|
85 |
Parse *pParse, /* Parser context */
|
|
86 |
Table *pTab, /* Table whose indices are to be analyzed */
|
|
87 |
int iStatCur, /* Cursor that writes to the sqlite_stat1 table */
|
|
88 |
int iMem /* Available memory locations begin here */
|
|
89 |
){
|
|
90 |
Index *pIdx; /* An index to being analyzed */
|
|
91 |
int iIdxCur; /* Cursor number for index being analyzed */
|
|
92 |
int nCol; /* Number of columns in the index */
|
|
93 |
Vdbe *v; /* The virtual machine being built up */
|
|
94 |
int i; /* Loop counter */
|
|
95 |
int topOfLoop; /* The top of the loop */
|
|
96 |
int endOfLoop; /* The end of the loop */
|
|
97 |
int addr; /* The address of an instruction */
|
|
98 |
int iDb; /* Index of database containing pTab */
|
|
99 |
|
|
100 |
v = sqlite3GetVdbe(pParse);
|
|
101 |
if( v==0 || pTab==0 || pTab->pIndex==0 ){
|
|
102 |
/* Do no analysis for tables that have no indices */
|
|
103 |
return;
|
|
104 |
}
|
|
105 |
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
106 |
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
107 |
assert( iDb>=0 );
|
|
108 |
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
109 |
if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
|
|
110 |
pParse->db->aDb[iDb].zName ) ){
|
|
111 |
return;
|
|
112 |
}
|
|
113 |
#endif
|
|
114 |
|
|
115 |
/* Establish a read-lock on the table at the shared-cache level. */
|
|
116 |
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
|
117 |
|
|
118 |
iIdxCur = pParse->nTab;
|
|
119 |
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
120 |
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
|
121 |
|
|
122 |
/* Open a cursor to the index to be analyzed
|
|
123 |
*/
|
|
124 |
assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
|
|
125 |
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
|
126 |
VdbeComment((v, "# %s", pIdx->zName));
|
|
127 |
sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum,
|
|
128 |
(char *)pKey, P3_KEYINFO_HANDOFF);
|
|
129 |
nCol = pIdx->nColumn;
|
|
130 |
if( iMem+nCol*2>=pParse->nMem ){
|
|
131 |
pParse->nMem = iMem+nCol*2+1;
|
|
132 |
}
|
|
133 |
sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, nCol+1);
|
|
134 |
|
|
135 |
/* Memory cells are used as follows:
|
|
136 |
**
|
|
137 |
** mem[iMem]: The total number of rows in the table.
|
|
138 |
** mem[iMem+1]: Number of distinct values in column 1
|
|
139 |
** ...
|
|
140 |
** mem[iMem+nCol]: Number of distinct values in column N
|
|
141 |
** mem[iMem+nCol+1] Last observed value of column 1
|
|
142 |
** ...
|
|
143 |
** mem[iMem+nCol+nCol]: Last observed value of column N
|
|
144 |
**
|
|
145 |
** Cells iMem through iMem+nCol are initialized to 0. The others
|
|
146 |
** are initialized to NULL.
|
|
147 |
*/
|
|
148 |
for(i=0; i<=nCol; i++){
|
|
149 |
sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem+i);
|
|
150 |
}
|
|
151 |
for(i=0; i<nCol; i++){
|
|
152 |
sqlite3VdbeAddOp(v, OP_MemNull, iMem+nCol+i+1, 0);
|
|
153 |
}
|
|
154 |
|
|
155 |
/* Do the analysis.
|
|
156 |
*/
|
|
157 |
endOfLoop = sqlite3VdbeMakeLabel(v);
|
|
158 |
sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, endOfLoop);
|
|
159 |
topOfLoop = sqlite3VdbeCurrentAddr(v);
|
|
160 |
sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem);
|
|
161 |
for(i=0; i<nCol; i++){
|
|
162 |
sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
|
|
163 |
sqlite3VdbeAddOp(v, OP_MemLoad, iMem+nCol+i+1, 0);
|
|
164 |
sqlite3VdbeAddOp(v, OP_Ne, 0x100, 0);
|
|
165 |
}
|
|
166 |
sqlite3VdbeAddOp(v, OP_Goto, 0, endOfLoop);
|
|
167 |
for(i=0; i<nCol; i++){
|
|
168 |
addr = sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem+i+1);
|
|
169 |
sqlite3VdbeChangeP2(v, topOfLoop + 3*i + 3, addr);
|
|
170 |
sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
|
|
171 |
sqlite3VdbeAddOp(v, OP_MemStore, iMem+nCol+i+1, 1);
|
|
172 |
}
|
|
173 |
sqlite3VdbeResolveLabel(v, endOfLoop);
|
|
174 |
sqlite3VdbeAddOp(v, OP_Next, iIdxCur, topOfLoop);
|
|
175 |
sqlite3VdbeAddOp(v, OP_Close, iIdxCur, 0);
|
|
176 |
|
|
177 |
/* Store the results.
|
|
178 |
**
|
|
179 |
** The result is a single row of the sqlite_stat1 table. The first
|
|
180 |
** two columns are the names of the table and index. The third column
|
|
181 |
** is a string composed of a list of integer statistics about the
|
|
182 |
** index. The first integer in the list is the total number of entires
|
|
183 |
** in the index. There is one additional integer in the list for each
|
|
184 |
** column of the table. This additional integer is a guess of how many
|
|
185 |
** rows of the table the index will select. If D is the count of distinct
|
|
186 |
** values and K is the total number of rows, then the integer is computed
|
|
187 |
** as:
|
|
188 |
**
|
|
189 |
** I = (K+D-1)/D
|
|
190 |
**
|
|
191 |
** If K==0 then no entry is made into the sqlite_stat1 table.
|
|
192 |
** If K>0 then it is always the case the D>0 so division by zero
|
|
193 |
** is never possible.
|
|
194 |
*/
|
|
195 |
sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
|
|
196 |
addr = sqlite3VdbeAddOp(v, OP_IfNot, 0, 0);
|
|
197 |
sqlite3VdbeAddOp(v, OP_NewRowid, iStatCur, 0);
|
|
198 |
sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
|
|
199 |
sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0);
|
|
200 |
sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
|
|
201 |
sqlite3VdbeOp3(v, OP_String8, 0, 0, " ", 0);
|
|
202 |
for(i=0; i<nCol; i++){
|
|
203 |
sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
|
|
204 |
sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
|
|
205 |
sqlite3VdbeAddOp(v, OP_Add, 0, 0);
|
|
206 |
sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
|
|
207 |
sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
|
|
208 |
sqlite3VdbeAddOp(v, OP_Divide, 0, 0);
|
|
209 |
sqlite3VdbeAddOp(v, OP_ToInt, 0, 0);
|
|
210 |
if( i==nCol-1 ){
|
|
211 |
sqlite3VdbeAddOp(v, OP_Concat, nCol*2-1, 0);
|
|
212 |
}else{
|
|
213 |
sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
|
|
214 |
}
|
|
215 |
}
|
|
216 |
sqlite3VdbeOp3(v, OP_MakeRecord, 3, 0, "aaa", 0);
|
|
217 |
sqlite3VdbeAddOp(v, OP_Insert, iStatCur, OPFLAG_APPEND);
|
|
218 |
sqlite3VdbeJumpHere(v, addr);
|
|
219 |
}
|
|
220 |
}
|
|
221 |
|
|
222 |
/*
|
|
223 |
** Generate code that will cause the most recent index analysis to
|
|
224 |
** be laoded into internal hash tables where is can be used.
|
|
225 |
*/
|
|
226 |
static void loadAnalysis(Parse *pParse, int iDb){
|
|
227 |
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
228 |
if( v ){
|
|
229 |
sqlite3VdbeAddOp(v, OP_LoadAnalysis, iDb, 0);
|
|
230 |
}
|
|
231 |
}
|
|
232 |
|
|
233 |
/*
|
|
234 |
** Generate code that will do an analysis of an entire database
|
|
235 |
*/
|
|
236 |
static void analyzeDatabase(Parse *pParse, int iDb){
|
|
237 |
sqlite3 *db = pParse->db;
|
|
238 |
Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
|
|
239 |
HashElem *k;
|
|
240 |
int iStatCur;
|
|
241 |
int iMem;
|
|
242 |
|
|
243 |
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
244 |
iStatCur = pParse->nTab++;
|
|
245 |
openStatTable(pParse, iDb, iStatCur, 0);
|
|
246 |
iMem = pParse->nMem;
|
|
247 |
for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
|
|
248 |
Table *pTab = (Table*)sqliteHashData(k);
|
|
249 |
analyzeOneTable(pParse, pTab, iStatCur, iMem);
|
|
250 |
}
|
|
251 |
loadAnalysis(pParse, iDb);
|
|
252 |
}
|
|
253 |
|
|
254 |
/*
|
|
255 |
** Generate code that will do an analysis of a single table in
|
|
256 |
** a database.
|
|
257 |
*/
|
|
258 |
static void analyzeTable(Parse *pParse, Table *pTab){
|
|
259 |
int iDb;
|
|
260 |
int iStatCur;
|
|
261 |
|
|
262 |
assert( pTab!=0 );
|
|
263 |
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
264 |
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
265 |
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
266 |
iStatCur = pParse->nTab++;
|
|
267 |
openStatTable(pParse, iDb, iStatCur, pTab->zName);
|
|
268 |
analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem);
|
|
269 |
loadAnalysis(pParse, iDb);
|
|
270 |
}
|
|
271 |
|
|
272 |
/*
|
|
273 |
** Generate code for the ANALYZE command. The parser calls this routine
|
|
274 |
** when it recognizes an ANALYZE command.
|
|
275 |
**
|
|
276 |
** ANALYZE -- 1
|
|
277 |
** ANALYZE <database> -- 2
|
|
278 |
** ANALYZE ?<database>.?<tablename> -- 3
|
|
279 |
**
|
|
280 |
** Form 1 causes all indices in all attached databases to be analyzed.
|
|
281 |
** Form 2 analyzes all indices the single database named.
|
|
282 |
** Form 3 analyzes all indices associated with the named table.
|
|
283 |
*/
|
|
284 |
void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
|
|
285 |
sqlite3 *db = pParse->db;
|
|
286 |
int iDb;
|
|
287 |
int i;
|
|
288 |
char *z, *zDb;
|
|
289 |
Table *pTab;
|
|
290 |
Token *pTableName;
|
|
291 |
|
|
292 |
/* Read the database schema. If an error occurs, leave an error message
|
|
293 |
** and code in pParse and return NULL. */
|
|
294 |
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
295 |
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
296 |
return;
|
|
297 |
}
|
|
298 |
|
|
299 |
if( pName1==0 ){
|
|
300 |
/* Form 1: Analyze everything */
|
|
301 |
for(i=0; i<db->nDb; i++){
|
|
302 |
if( i==1 ) continue; /* Do not analyze the TEMP database */
|
|
303 |
analyzeDatabase(pParse, i);
|
|
304 |
}
|
|
305 |
}else if( pName2==0 || pName2->n==0 ){
|
|
306 |
/* Form 2: Analyze the database or table named */
|
|
307 |
iDb = sqlite3FindDb(db, pName1);
|
|
308 |
if( iDb>=0 ){
|
|
309 |
analyzeDatabase(pParse, iDb);
|
|
310 |
}else{
|
|
311 |
z = sqlite3NameFromToken(db, pName1);
|
|
312 |
if( z ){
|
|
313 |
pTab = sqlite3LocateTable(pParse, z, 0);
|
|
314 |
sqlite3_free(z);
|
|
315 |
if( pTab ){
|
|
316 |
analyzeTable(pParse, pTab);
|
|
317 |
}
|
|
318 |
}
|
|
319 |
}
|
|
320 |
}else{
|
|
321 |
/* Form 3: Analyze the fully qualified table name */
|
|
322 |
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
|
|
323 |
if( iDb>=0 ){
|
|
324 |
zDb = db->aDb[iDb].zName;
|
|
325 |
z = sqlite3NameFromToken(db, pTableName);
|
|
326 |
if( z ){
|
|
327 |
pTab = sqlite3LocateTable(pParse, z, zDb);
|
|
328 |
sqlite3_free(z);
|
|
329 |
if( pTab ){
|
|
330 |
analyzeTable(pParse, pTab);
|
|
331 |
}
|
|
332 |
}
|
|
333 |
}
|
|
334 |
}
|
|
335 |
}
|
|
336 |
|
|
337 |
/*
|
|
338 |
** Used to pass information from the analyzer reader through to the
|
|
339 |
** callback routine.
|
|
340 |
*/
|
|
341 |
typedef struct analysisInfo analysisInfo;
|
|
342 |
struct analysisInfo {
|
|
343 |
sqlite3 *db;
|
|
344 |
const char *zDatabase;
|
|
345 |
};
|
|
346 |
|
|
347 |
/*
|
|
348 |
** This callback is invoked once for each index when reading the
|
|
349 |
** sqlite_stat1 table.
|
|
350 |
**
|
|
351 |
** argv[0] = name of the index
|
|
352 |
** argv[1] = results of analysis - on integer for each column
|
|
353 |
*/
|
|
354 |
static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){
|
|
355 |
analysisInfo *pInfo = (analysisInfo*)pData;
|
|
356 |
Index *pIndex;
|
|
357 |
int i, c;
|
|
358 |
unsigned int v;
|
|
359 |
const char *z;
|
|
360 |
|
|
361 |
assert( argc==2 );
|
|
362 |
if( argv==0 || argv[0]==0 || argv[1]==0 ){
|
|
363 |
return 0;
|
|
364 |
}
|
|
365 |
pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase);
|
|
366 |
if( pIndex==0 ){
|
|
367 |
return 0;
|
|
368 |
}
|
|
369 |
z = argv[1];
|
|
370 |
for(i=0; *z && i<=pIndex->nColumn; i++){
|
|
371 |
v = 0;
|
|
372 |
while( (c=z[0])>='0' && c<='9' ){
|
|
373 |
v = v*10 + c - '0';
|
|
374 |
z++;
|
|
375 |
}
|
|
376 |
pIndex->aiRowEst[i] = v;
|
|
377 |
if( *z==' ' ) z++;
|
|
378 |
}
|
|
379 |
return 0;
|
|
380 |
}
|
|
381 |
|
|
382 |
/*
|
|
383 |
** Load the content of the sqlite_stat1 table into the index hash tables.
|
|
384 |
*/
|
|
385 |
int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
|
|
386 |
analysisInfo sInfo;
|
|
387 |
HashElem *i;
|
|
388 |
char *zSql;
|
|
389 |
int rc;
|
|
390 |
|
|
391 |
assert( iDb>=0 && iDb<db->nDb );
|
|
392 |
assert( db->aDb[iDb].pBt!=0 );
|
|
393 |
assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
|
|
394 |
|
|
395 |
/* Clear any prior statistics */
|
|
396 |
for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
|
|
397 |
Index *pIdx = (Index *)sqliteHashData(i);
|
|
398 |
sqlite3DefaultRowEst(pIdx);
|
|
399 |
}
|
|
400 |
|
|
401 |
/* Check to make sure the sqlite_stat1 table existss */
|
|
402 |
sInfo.db = db;
|
|
403 |
sInfo.zDatabase = db->aDb[iDb].zName;
|
|
404 |
if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
|
|
405 |
return SQLITE_ERROR;
|
|
406 |
}
|
|
407 |
|
|
408 |
|
|
409 |
/* Load new statistics out of the sqlite_stat1 table */
|
|
410 |
zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1",
|
|
411 |
sInfo.zDatabase);
|
|
412 |
sqlite3SafetyOff(db);
|
|
413 |
rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
|
|
414 |
sqlite3SafetyOn(db);
|
|
415 |
sqlite3_free(zSql);
|
|
416 |
return rc;
|
|
417 |
}
|
|
418 |
|
|
419 |
|
|
420 |
#endif /* SQLITE_OMIT_ANALYZE */
|