|
1 /* |
|
2 ** 2004 April 6 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** $Id: btree.cpp 1282 2008-11-13 09:31:33Z LarsPson $ |
|
13 ** |
|
14 ** This file implements a external (disk-based) database using BTrees. |
|
15 ** See the header comment on "btreeInt.h" for additional information. |
|
16 ** Including a description of file format and an overview of operation. |
|
17 */ |
|
18 #include "btreeInt.h" |
|
19 |
|
20 /* |
|
21 ** The header string that appears at the beginning of every |
|
22 ** SQLite database. |
|
23 */ |
|
24 static const char zMagicHeader[] = SQLITE_FILE_HEADER; |
|
25 |
|
26 /* |
|
27 ** Set this global variable to 1 to enable tracing using the TRACE |
|
28 ** macro. |
|
29 */ |
|
30 #if SQLITE_TEST |
|
31 int sqlite3_btree_trace=0; /* True to enable tracing */ |
|
32 #endif |
|
33 |
|
34 |
|
35 |
|
36 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
37 /* |
|
38 ** A flag to indicate whether or not shared cache is enabled. Also, |
|
39 ** a list of BtShared objects that are eligible for participation |
|
40 ** in shared cache. The variables have file scope during normal builds, |
|
41 ** but the test harness needs to access these variables so we make them |
|
42 ** global for test builds. |
|
43 */ |
|
44 #ifdef SQLITE_TEST |
|
45 BtShared *sqlite3SharedCacheList = 0; |
|
46 int sqlite3SharedCacheEnabled = 0; |
|
47 #else |
|
48 static BtShared *sqlite3SharedCacheList = 0; |
|
49 static int sqlite3SharedCacheEnabled = 0; |
|
50 #endif |
|
51 #endif /* SQLITE_OMIT_SHARED_CACHE */ |
|
52 |
|
53 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
54 /* |
|
55 ** Enable or disable the shared pager and schema features. |
|
56 ** |
|
57 ** This routine has no effect on existing database connections. |
|
58 ** The shared cache setting effects only future calls to |
|
59 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). |
|
60 */ |
|
61 EXPORT_C int sqlite3_enable_shared_cache(int enable){ |
|
62 sqlite3SharedCacheEnabled = enable; |
|
63 return SQLITE_OK; |
|
64 } |
|
65 #endif |
|
66 |
|
67 |
|
68 /* |
|
69 ** Forward declaration |
|
70 */ |
|
71 static int checkReadLocks(Btree*,Pgno,BtCursor*); |
|
72 |
|
73 |
|
74 #ifdef SQLITE_OMIT_SHARED_CACHE |
|
75 /* |
|
76 ** The functions queryTableLock(), lockTable() and unlockAllTables() |
|
77 ** manipulate entries in the BtShared.pLock linked list used to store |
|
78 ** shared-cache table level locks. If the library is compiled with the |
|
79 ** shared-cache feature disabled, then there is only ever one user |
|
80 ** of each BtShared structure and so this locking is not necessary. |
|
81 ** So define the lock related functions as no-ops. |
|
82 */ |
|
83 #define queryTableLock(a,b,c) SQLITE_OK |
|
84 #define lockTable(a,b,c) SQLITE_OK |
|
85 #define unlockAllTables(a) |
|
86 #endif |
|
87 |
|
88 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
89 /* |
|
90 ** Query to see if btree handle p may obtain a lock of type eLock |
|
91 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return |
|
92 ** SQLITE_OK if the lock may be obtained (by calling lockTable()), or |
|
93 ** SQLITE_LOCKED if not. |
|
94 */ |
|
95 static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){ |
|
96 BtShared *pBt = p->pBt; |
|
97 BtLock *pIter; |
|
98 |
|
99 assert( sqlite3BtreeHoldsMutex(p) ); |
|
100 |
|
101 /* This is a no-op if the shared-cache is not enabled */ |
|
102 if( !p->sharable ){ |
|
103 return SQLITE_OK; |
|
104 } |
|
105 |
|
106 /* This (along with lockTable()) is where the ReadUncommitted flag is |
|
107 ** dealt with. If the caller is querying for a read-lock and the flag is |
|
108 ** set, it is unconditionally granted - even if there are write-locks |
|
109 ** on the table. If a write-lock is requested, the ReadUncommitted flag |
|
110 ** is not considered. |
|
111 ** |
|
112 ** In function lockTable(), if a read-lock is demanded and the |
|
113 ** ReadUncommitted flag is set, no entry is added to the locks list |
|
114 ** (BtShared.pLock). |
|
115 ** |
|
116 ** To summarize: If the ReadUncommitted flag is set, then read cursors do |
|
117 ** not create or respect table locks. The locking procedure for a |
|
118 ** write-cursor does not change. |
|
119 */ |
|
120 if( |
|
121 !p->db || |
|
122 0==(p->db->flags&SQLITE_ReadUncommitted) || |
|
123 eLock==WRITE_LOCK || |
|
124 iTab==MASTER_ROOT |
|
125 ){ |
|
126 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
|
127 if( pIter->pBtree!=p && pIter->iTable==iTab && |
|
128 (pIter->eLock!=eLock || eLock!=READ_LOCK) ){ |
|
129 return SQLITE_LOCKED; |
|
130 } |
|
131 } |
|
132 } |
|
133 return SQLITE_OK; |
|
134 } |
|
135 #endif /* !SQLITE_OMIT_SHARED_CACHE */ |
|
136 |
|
137 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
138 /* |
|
139 ** Add a lock on the table with root-page iTable to the shared-btree used |
|
140 ** by Btree handle p. Parameter eLock must be either READ_LOCK or |
|
141 ** WRITE_LOCK. |
|
142 ** |
|
143 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and |
|
144 ** SQLITE_NOMEM may also be returned. |
|
145 */ |
|
146 static int lockTable(Btree *p, Pgno iTable, u8 eLock){ |
|
147 BtShared *pBt = p->pBt; |
|
148 BtLock *pLock = 0; |
|
149 BtLock *pIter; |
|
150 |
|
151 assert( sqlite3BtreeHoldsMutex(p) ); |
|
152 |
|
153 /* This is a no-op if the shared-cache is not enabled */ |
|
154 if( !p->sharable ){ |
|
155 return SQLITE_OK; |
|
156 } |
|
157 |
|
158 assert( SQLITE_OK==queryTableLock(p, iTable, eLock) ); |
|
159 |
|
160 /* If the read-uncommitted flag is set and a read-lock is requested, |
|
161 ** return early without adding an entry to the BtShared.pLock list. See |
|
162 ** comment in function queryTableLock() for more info on handling |
|
163 ** the ReadUncommitted flag. |
|
164 */ |
|
165 if( |
|
166 (p->db) && |
|
167 (p->db->flags&SQLITE_ReadUncommitted) && |
|
168 (eLock==READ_LOCK) && |
|
169 iTable!=MASTER_ROOT |
|
170 ){ |
|
171 return SQLITE_OK; |
|
172 } |
|
173 |
|
174 /* First search the list for an existing lock on this table. */ |
|
175 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
|
176 if( pIter->iTable==iTable && pIter->pBtree==p ){ |
|
177 pLock = pIter; |
|
178 break; |
|
179 } |
|
180 } |
|
181 |
|
182 /* If the above search did not find a BtLock struct associating Btree p |
|
183 ** with table iTable, allocate one and link it into the list. |
|
184 */ |
|
185 if( !pLock ){ |
|
186 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); |
|
187 if( !pLock ){ |
|
188 return SQLITE_NOMEM; |
|
189 } |
|
190 pLock->iTable = iTable; |
|
191 pLock->pBtree = p; |
|
192 pLock->pNext = pBt->pLock; |
|
193 pBt->pLock = pLock; |
|
194 } |
|
195 |
|
196 /* Set the BtLock.eLock variable to the maximum of the current lock |
|
197 ** and the requested lock. This means if a write-lock was already held |
|
198 ** and a read-lock requested, we don't incorrectly downgrade the lock. |
|
199 */ |
|
200 assert( WRITE_LOCK>READ_LOCK ); |
|
201 if( eLock>pLock->eLock ){ |
|
202 pLock->eLock = eLock; |
|
203 } |
|
204 |
|
205 return SQLITE_OK; |
|
206 } |
|
207 #endif /* !SQLITE_OMIT_SHARED_CACHE */ |
|
208 |
|
209 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
210 /* |
|
211 ** Release all the table locks (locks obtained via calls to the lockTable() |
|
212 ** procedure) held by Btree handle p. |
|
213 */ |
|
214 static void unlockAllTables(Btree *p){ |
|
215 BtLock **ppIter = &p->pBt->pLock; |
|
216 |
|
217 assert( sqlite3BtreeHoldsMutex(p) ); |
|
218 assert( p->sharable || 0==*ppIter ); |
|
219 |
|
220 while( *ppIter ){ |
|
221 BtLock *pLock = *ppIter; |
|
222 if( pLock->pBtree==p ){ |
|
223 *ppIter = pLock->pNext; |
|
224 sqlite3_free(pLock); |
|
225 }else{ |
|
226 ppIter = &pLock->pNext; |
|
227 } |
|
228 } |
|
229 } |
|
230 #endif /* SQLITE_OMIT_SHARED_CACHE */ |
|
231 |
|
232 static void releasePage(MemPage *pPage); /* Forward reference */ |
|
233 |
|
234 /* |
|
235 ** Verify that the cursor holds a mutex on the BtShared |
|
236 */ |
|
237 #ifndef NDEBUG |
|
238 static int cursorHoldsMutex(BtCursor *p){ |
|
239 return sqlite3_mutex_held(p->pBt->mutex); |
|
240 } |
|
241 #endif |
|
242 |
|
243 |
|
244 #ifndef SQLITE_OMIT_INCRBLOB |
|
245 /* |
|
246 ** Invalidate the overflow page-list cache for cursor pCur, if any. |
|
247 */ |
|
248 static void invalidateOverflowCache(BtCursor *pCur){ |
|
249 assert( cursorHoldsMutex(pCur) ); |
|
250 sqlite3_free(pCur->aOverflow); |
|
251 pCur->aOverflow = 0; |
|
252 } |
|
253 |
|
254 /* |
|
255 ** Invalidate the overflow page-list cache for all cursors opened |
|
256 ** on the shared btree structure pBt. |
|
257 */ |
|
258 static void invalidateAllOverflowCache(BtShared *pBt){ |
|
259 BtCursor *p; |
|
260 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
261 for(p=pBt->pCursor; p; p=p->pNext){ |
|
262 invalidateOverflowCache(p); |
|
263 } |
|
264 } |
|
265 #else |
|
266 #define invalidateOverflowCache(x) |
|
267 #define invalidateAllOverflowCache(x) |
|
268 #endif |
|
269 |
|
270 /* |
|
271 ** Save the current cursor position in the variables BtCursor.nKey |
|
272 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. |
|
273 */ |
|
274 static int saveCursorPosition(BtCursor *pCur){ |
|
275 int rc; |
|
276 |
|
277 assert( CURSOR_VALID==pCur->eState ); |
|
278 assert( 0==pCur->pKey ); |
|
279 assert( cursorHoldsMutex(pCur) ); |
|
280 |
|
281 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); |
|
282 |
|
283 /* If this is an intKey table, then the above call to BtreeKeySize() |
|
284 ** stores the integer key in pCur->nKey. In this case this value is |
|
285 ** all that is required. Otherwise, if pCur is not open on an intKey |
|
286 ** table, then malloc space for and store the pCur->nKey bytes of key |
|
287 ** data. |
|
288 */ |
|
289 if( rc==SQLITE_OK && 0==pCur->pPage->intKey){ |
|
290 void *pKey = sqlite3_malloc(pCur->nKey); |
|
291 if( pKey ){ |
|
292 rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey); |
|
293 if( rc==SQLITE_OK ){ |
|
294 pCur->pKey = pKey; |
|
295 }else{ |
|
296 sqlite3_free(pKey); |
|
297 } |
|
298 }else{ |
|
299 rc = SQLITE_NOMEM; |
|
300 } |
|
301 } |
|
302 assert( !pCur->pPage->intKey || !pCur->pKey ); |
|
303 |
|
304 if( rc==SQLITE_OK ){ |
|
305 releasePage(pCur->pPage); |
|
306 pCur->pPage = 0; |
|
307 pCur->eState = CURSOR_REQUIRESEEK; |
|
308 } |
|
309 |
|
310 invalidateOverflowCache(pCur); |
|
311 return rc; |
|
312 } |
|
313 |
|
314 /* |
|
315 ** Save the positions of all cursors except pExcept open on the table |
|
316 ** with root-page iRoot. Usually, this is called just before cursor |
|
317 ** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()). |
|
318 */ |
|
319 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ |
|
320 BtCursor *p; |
|
321 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
322 assert( pExcept==0 || pExcept->pBt==pBt ); |
|
323 for(p=pBt->pCursor; p; p=p->pNext){ |
|
324 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && |
|
325 p->eState==CURSOR_VALID ){ |
|
326 int rc = saveCursorPosition(p); |
|
327 if( SQLITE_OK!=rc ){ |
|
328 return rc; |
|
329 } |
|
330 } |
|
331 } |
|
332 return SQLITE_OK; |
|
333 } |
|
334 |
|
335 /* |
|
336 ** Clear the current cursor position. |
|
337 */ |
|
338 static void clearCursorPosition(BtCursor *pCur){ |
|
339 assert( cursorHoldsMutex(pCur) ); |
|
340 sqlite3_free(pCur->pKey); |
|
341 pCur->pKey = 0; |
|
342 pCur->eState = CURSOR_INVALID; |
|
343 } |
|
344 |
|
345 /* |
|
346 ** Restore the cursor to the position it was in (or as close to as possible) |
|
347 ** when saveCursorPosition() was called. Note that this call deletes the |
|
348 ** saved position info stored by saveCursorPosition(), so there can be |
|
349 ** at most one effective restoreOrClearCursorPosition() call after each |
|
350 ** saveCursorPosition(). |
|
351 ** |
|
352 ** If the second argument argument - doSeek - is false, then instead of |
|
353 ** returning the cursor to its saved position, any saved position is deleted |
|
354 ** and the cursor state set to CURSOR_INVALID. |
|
355 */ |
|
356 int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur){ |
|
357 int rc; |
|
358 assert( cursorHoldsMutex(pCur) ); |
|
359 assert( pCur->eState>=CURSOR_REQUIRESEEK ); |
|
360 if( pCur->eState==CURSOR_FAULT ){ |
|
361 return pCur->skip; |
|
362 } |
|
363 #ifndef SQLITE_OMIT_INCRBLOB |
|
364 if( pCur->isIncrblobHandle ){ |
|
365 return SQLITE_ABORT; |
|
366 } |
|
367 #endif |
|
368 pCur->eState = CURSOR_INVALID; |
|
369 rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip); |
|
370 if( rc==SQLITE_OK ){ |
|
371 sqlite3_free(pCur->pKey); |
|
372 pCur->pKey = 0; |
|
373 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); |
|
374 } |
|
375 return rc; |
|
376 } |
|
377 |
|
378 #define restoreOrClearCursorPosition(p) \ |
|
379 (p->eState>=CURSOR_REQUIRESEEK ? \ |
|
380 sqlite3BtreeRestoreOrClearCursorPosition(p) : \ |
|
381 SQLITE_OK) |
|
382 |
|
383 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
384 /* |
|
385 ** Given a page number of a regular database page, return the page |
|
386 ** number for the pointer-map page that contains the entry for the |
|
387 ** input page number. |
|
388 */ |
|
389 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ |
|
390 int nPagesPerMapPage, iPtrMap, ret; |
|
391 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
392 nPagesPerMapPage = (pBt->usableSize/5)+1; |
|
393 iPtrMap = (pgno-2)/nPagesPerMapPage; |
|
394 ret = (iPtrMap*nPagesPerMapPage) + 2; |
|
395 if( ret==PENDING_BYTE_PAGE(pBt) ){ |
|
396 ret++; |
|
397 } |
|
398 return ret; |
|
399 } |
|
400 |
|
401 /* |
|
402 ** Write an entry into the pointer map. |
|
403 ** |
|
404 ** This routine updates the pointer map entry for page number 'key' |
|
405 ** so that it maps to type 'eType' and parent page number 'pgno'. |
|
406 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. |
|
407 */ |
|
408 static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){ |
|
409 DbPage *pDbPage; /* The pointer map page */ |
|
410 u8 *pPtrmap; /* The pointer map data */ |
|
411 Pgno iPtrmap; /* The pointer map page number */ |
|
412 int offset; /* Offset in pointer map page */ |
|
413 int rc; |
|
414 |
|
415 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
416 /* The master-journal page number must never be used as a pointer map page */ |
|
417 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); |
|
418 |
|
419 assert( pBt->autoVacuum ); |
|
420 if( key==0 ){ |
|
421 return SQLITE_CORRUPT_BKPT; |
|
422 } |
|
423 iPtrmap = PTRMAP_PAGENO(pBt, key); |
|
424 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); |
|
425 if( rc!=SQLITE_OK ){ |
|
426 return rc; |
|
427 } |
|
428 offset = PTRMAP_PTROFFSET(pBt, key); |
|
429 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
|
430 |
|
431 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ |
|
432 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); |
|
433 rc = sqlite3PagerWrite(pDbPage); |
|
434 if( rc==SQLITE_OK ){ |
|
435 pPtrmap[offset] = eType; |
|
436 put4byte(&pPtrmap[offset+1], parent); |
|
437 } |
|
438 } |
|
439 |
|
440 sqlite3PagerUnref(pDbPage); |
|
441 return rc; |
|
442 } |
|
443 |
|
444 /* |
|
445 ** Read an entry from the pointer map. |
|
446 ** |
|
447 ** This routine retrieves the pointer map entry for page 'key', writing |
|
448 ** the type and parent page number to *pEType and *pPgno respectively. |
|
449 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. |
|
450 */ |
|
451 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ |
|
452 DbPage *pDbPage; /* The pointer map page */ |
|
453 int iPtrmap; /* Pointer map page index */ |
|
454 u8 *pPtrmap; /* Pointer map page data */ |
|
455 int offset; /* Offset of entry in pointer map */ |
|
456 int rc; |
|
457 |
|
458 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
459 |
|
460 iPtrmap = PTRMAP_PAGENO(pBt, key); |
|
461 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); |
|
462 if( rc!=0 ){ |
|
463 return rc; |
|
464 } |
|
465 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
|
466 |
|
467 offset = PTRMAP_PTROFFSET(pBt, key); |
|
468 assert( pEType!=0 ); |
|
469 *pEType = pPtrmap[offset]; |
|
470 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); |
|
471 |
|
472 sqlite3PagerUnref(pDbPage); |
|
473 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; |
|
474 return SQLITE_OK; |
|
475 } |
|
476 |
|
477 #endif /* SQLITE_OMIT_AUTOVACUUM */ |
|
478 |
|
479 /* |
|
480 ** Given a btree page and a cell index (0 means the first cell on |
|
481 ** the page, 1 means the second cell, and so forth) return a pointer |
|
482 ** to the cell content. |
|
483 ** |
|
484 ** This routine works only for pages that do not contain overflow cells. |
|
485 */ |
|
486 #define findCell(pPage, iCell) \ |
|
487 ((pPage)->aData + get2byte(&(pPage)->aData[(pPage)->cellOffset+2*(iCell)])) |
|
488 #ifdef SQLITE_TEST |
|
489 u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell){ |
|
490 assert( iCell>=0 ); |
|
491 assert( iCell<get2byte(&pPage->aData[pPage->hdrOffset+3]) ); |
|
492 return findCell(pPage, iCell); |
|
493 } |
|
494 #endif |
|
495 |
|
496 /* |
|
497 ** This a more complex version of sqlite3BtreeFindCell() that works for |
|
498 ** pages that do contain overflow cells. See insert |
|
499 */ |
|
500 static u8 *findOverflowCell(MemPage *pPage, int iCell){ |
|
501 int i; |
|
502 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
503 for(i=pPage->nOverflow-1; i>=0; i--){ |
|
504 int k; |
|
505 MemPage::_OvflCell *pOvfl; |
|
506 pOvfl = &pPage->aOvfl[i]; |
|
507 k = pOvfl->idx; |
|
508 if( k<=iCell ){ |
|
509 if( k==iCell ){ |
|
510 return pOvfl->pCell; |
|
511 } |
|
512 iCell--; |
|
513 } |
|
514 } |
|
515 return findCell(pPage, iCell); |
|
516 } |
|
517 |
|
518 /* |
|
519 ** Parse a cell content block and fill in the CellInfo structure. There |
|
520 ** are two versions of this function. sqlite3BtreeParseCell() takes a |
|
521 ** cell index as the second argument and sqlite3BtreeParseCellPtr() |
|
522 ** takes a pointer to the body of the cell as its second argument. |
|
523 ** |
|
524 ** Within this file, the parseCell() macro can be called instead of |
|
525 ** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster. |
|
526 */ |
|
527 void sqlite3BtreeParseCellPtr( |
|
528 MemPage *pPage, /* Page containing the cell */ |
|
529 u8 *pCell, /* Pointer to the cell text. */ |
|
530 CellInfo *pInfo /* Fill in this structure */ |
|
531 ){ |
|
532 int n; /* Number bytes in cell content header */ |
|
533 u32 nPayload; /* Number of bytes of cell payload */ |
|
534 |
|
535 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
536 |
|
537 pInfo->pCell = pCell; |
|
538 assert( pPage->leaf==0 || pPage->leaf==1 ); |
|
539 n = pPage->childPtrSize; |
|
540 assert( n==4-4*pPage->leaf ); |
|
541 if( pPage->hasData ){ |
|
542 n += getVarint32(&pCell[n], &nPayload); |
|
543 }else{ |
|
544 nPayload = 0; |
|
545 } |
|
546 pInfo->nData = nPayload; |
|
547 if( pPage->intKey ){ |
|
548 n += getVarint(&pCell[n], (u64 *)&pInfo->nKey); |
|
549 }else{ |
|
550 u32 x; |
|
551 n += getVarint32(&pCell[n], &x); |
|
552 pInfo->nKey = x; |
|
553 nPayload += x; |
|
554 } |
|
555 pInfo->nPayload = nPayload; |
|
556 pInfo->nHeader = n; |
|
557 if( nPayload<=pPage->maxLocal ){ |
|
558 /* This is the (easy) common case where the entire payload fits |
|
559 ** on the local page. No overflow is required. |
|
560 */ |
|
561 int nSize; /* Total size of cell content in bytes */ |
|
562 pInfo->nLocal = nPayload; |
|
563 pInfo->iOverflow = 0; |
|
564 nSize = nPayload + n; |
|
565 if( nSize<4 ){ |
|
566 nSize = 4; /* Minimum cell size is 4 */ |
|
567 } |
|
568 pInfo->nSize = nSize; |
|
569 }else{ |
|
570 /* If the payload will not fit completely on the local page, we have |
|
571 ** to decide how much to store locally and how much to spill onto |
|
572 ** overflow pages. The strategy is to minimize the amount of unused |
|
573 ** space on overflow pages while keeping the amount of local storage |
|
574 ** in between minLocal and maxLocal. |
|
575 ** |
|
576 ** Warning: changing the way overflow payload is distributed in any |
|
577 ** way will result in an incompatible file format. |
|
578 */ |
|
579 int minLocal; /* Minimum amount of payload held locally */ |
|
580 int maxLocal; /* Maximum amount of payload held locally */ |
|
581 int surplus; /* Overflow payload available for local storage */ |
|
582 |
|
583 minLocal = pPage->minLocal; |
|
584 maxLocal = pPage->maxLocal; |
|
585 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4); |
|
586 if( surplus <= maxLocal ){ |
|
587 pInfo->nLocal = surplus; |
|
588 }else{ |
|
589 pInfo->nLocal = minLocal; |
|
590 } |
|
591 pInfo->iOverflow = pInfo->nLocal + n; |
|
592 pInfo->nSize = pInfo->iOverflow + 4; |
|
593 } |
|
594 } |
|
595 #define parseCell(pPage, iCell, pInfo) \ |
|
596 sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo)) |
|
597 void sqlite3BtreeParseCell( |
|
598 MemPage *pPage, /* Page containing the cell */ |
|
599 int iCell, /* The cell index. First cell is 0 */ |
|
600 CellInfo *pInfo /* Fill in this structure */ |
|
601 ){ |
|
602 parseCell(pPage, iCell, pInfo); |
|
603 } |
|
604 |
|
605 /* |
|
606 ** Compute the total number of bytes that a Cell needs in the cell |
|
607 ** data area of the btree-page. The return number includes the cell |
|
608 ** data header and the local payload, but not any overflow page or |
|
609 ** the space used by the cell pointer. |
|
610 */ |
|
611 #ifndef NDEBUG |
|
612 static int cellSize(MemPage *pPage, int iCell){ |
|
613 CellInfo info; |
|
614 sqlite3BtreeParseCell(pPage, iCell, &info); |
|
615 return info.nSize; |
|
616 } |
|
617 #endif |
|
618 static int cellSizePtr(MemPage *pPage, u8 *pCell){ |
|
619 CellInfo info; |
|
620 sqlite3BtreeParseCellPtr(pPage, pCell, &info); |
|
621 return info.nSize; |
|
622 } |
|
623 |
|
624 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
625 /* |
|
626 ** If the cell pCell, part of page pPage contains a pointer |
|
627 ** to an overflow page, insert an entry into the pointer-map |
|
628 ** for the overflow page. |
|
629 */ |
|
630 static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){ |
|
631 if( pCell ){ |
|
632 CellInfo info; |
|
633 sqlite3BtreeParseCellPtr(pPage, pCell, &info); |
|
634 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload ); |
|
635 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){ |
|
636 Pgno ovfl = get4byte(&pCell[info.iOverflow]); |
|
637 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno); |
|
638 } |
|
639 } |
|
640 return SQLITE_OK; |
|
641 } |
|
642 /* |
|
643 ** If the cell with index iCell on page pPage contains a pointer |
|
644 ** to an overflow page, insert an entry into the pointer-map |
|
645 ** for the overflow page. |
|
646 */ |
|
647 static int ptrmapPutOvfl(MemPage *pPage, int iCell){ |
|
648 u8 *pCell; |
|
649 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
650 pCell = findOverflowCell(pPage, iCell); |
|
651 return ptrmapPutOvflPtr(pPage, pCell); |
|
652 } |
|
653 #endif |
|
654 |
|
655 |
|
656 /* |
|
657 ** Defragment the page given. All Cells are moved to the |
|
658 ** end of the page and all free space is collected into one |
|
659 ** big FreeBlk that occurs in between the header and cell |
|
660 ** pointer array and the cell content area. |
|
661 */ |
|
662 static int defragmentPage(MemPage *pPage){ |
|
663 int i; /* Loop counter */ |
|
664 int pc; /* Address of a i-th cell */ |
|
665 int addr; /* Offset of first byte after cell pointer array */ |
|
666 int hdr; /* Offset to the page header */ |
|
667 int size; /* Size of a cell */ |
|
668 int usableSize; /* Number of usable bytes on a page */ |
|
669 int cellOffset; /* Offset to the cell pointer array */ |
|
670 int brk; /* Offset to the cell content area */ |
|
671 int nCell; /* Number of cells on the page */ |
|
672 unsigned char *data; /* The page data */ |
|
673 unsigned char *temp; /* Temp area for cell content */ |
|
674 |
|
675 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
|
676 assert( pPage->pBt!=0 ); |
|
677 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); |
|
678 assert( pPage->nOverflow==0 ); |
|
679 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
680 temp = (unsigned char*)sqlite3PagerTempSpace(pPage->pBt->pPager); |
|
681 data = pPage->aData; |
|
682 hdr = pPage->hdrOffset; |
|
683 cellOffset = pPage->cellOffset; |
|
684 nCell = pPage->nCell; |
|
685 assert( nCell==get2byte(&data[hdr+3]) ); |
|
686 usableSize = pPage->pBt->usableSize; |
|
687 brk = get2byte(&data[hdr+5]); |
|
688 memcpy(&temp[brk], &data[brk], usableSize - brk); |
|
689 brk = usableSize; |
|
690 for(i=0; i<nCell; i++){ |
|
691 u8 *pAddr; /* The i-th cell pointer */ |
|
692 pAddr = &data[cellOffset + i*2]; |
|
693 pc = get2byte(pAddr); |
|
694 assert( pc<pPage->pBt->usableSize ); |
|
695 size = cellSizePtr(pPage, &temp[pc]); |
|
696 brk -= size; |
|
697 memcpy(&data[brk], &temp[pc], size); |
|
698 put2byte(pAddr, brk); |
|
699 } |
|
700 assert( brk>=cellOffset+2*nCell ); |
|
701 put2byte(&data[hdr+5], brk); |
|
702 data[hdr+1] = 0; |
|
703 data[hdr+2] = 0; |
|
704 data[hdr+7] = 0; |
|
705 addr = cellOffset+2*nCell; |
|
706 memset(&data[addr], 0, brk-addr); |
|
707 return SQLITE_OK; |
|
708 } |
|
709 |
|
710 /* |
|
711 ** Allocate nByte bytes of space on a page. |
|
712 ** |
|
713 ** Return the index into pPage->aData[] of the first byte of |
|
714 ** the new allocation. Or return 0 if there is not enough free |
|
715 ** space on the page to satisfy the allocation request. |
|
716 ** |
|
717 ** If the page contains nBytes of free space but does not contain |
|
718 ** nBytes of contiguous free space, then this routine automatically |
|
719 ** calls defragementPage() to consolidate all free space before |
|
720 ** allocating the new chunk. |
|
721 */ |
|
722 static int allocateSpace(MemPage *pPage, int nByte){ |
|
723 int addr, pc, hdr; |
|
724 int size; |
|
725 int nFrag; |
|
726 int top; |
|
727 int nCell; |
|
728 int cellOffset; |
|
729 unsigned char *data; |
|
730 |
|
731 data = pPage->aData; |
|
732 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
|
733 assert( pPage->pBt ); |
|
734 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
735 if( nByte<4 ) nByte = 4; |
|
736 if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0; |
|
737 pPage->nFree -= nByte; |
|
738 hdr = pPage->hdrOffset; |
|
739 |
|
740 nFrag = data[hdr+7]; |
|
741 if( nFrag<60 ){ |
|
742 /* Search the freelist looking for a slot big enough to satisfy the |
|
743 ** space request. */ |
|
744 addr = hdr+1; |
|
745 while( (pc = get2byte(&data[addr]))>0 ){ |
|
746 size = get2byte(&data[pc+2]); |
|
747 if( size>=nByte ){ |
|
748 if( size<nByte+4 ){ |
|
749 memcpy(&data[addr], &data[pc], 2); |
|
750 data[hdr+7] = nFrag + size - nByte; |
|
751 return pc; |
|
752 }else{ |
|
753 put2byte(&data[pc+2], size-nByte); |
|
754 return pc + size - nByte; |
|
755 } |
|
756 } |
|
757 addr = pc; |
|
758 } |
|
759 } |
|
760 |
|
761 /* Allocate memory from the gap in between the cell pointer array |
|
762 ** and the cell content area. |
|
763 */ |
|
764 top = get2byte(&data[hdr+5]); |
|
765 nCell = get2byte(&data[hdr+3]); |
|
766 cellOffset = pPage->cellOffset; |
|
767 if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){ |
|
768 if( defragmentPage(pPage) ) return 0; |
|
769 top = get2byte(&data[hdr+5]); |
|
770 } |
|
771 top -= nByte; |
|
772 assert( cellOffset + 2*nCell <= top ); |
|
773 put2byte(&data[hdr+5], top); |
|
774 return top; |
|
775 } |
|
776 |
|
777 /* |
|
778 ** Return a section of the pPage->aData to the freelist. |
|
779 ** The first byte of the new free block is pPage->aDisk[start] |
|
780 ** and the size of the block is "size" bytes. |
|
781 ** |
|
782 ** Most of the effort here is involved in coalesing adjacent |
|
783 ** free blocks into a single big free block. |
|
784 */ |
|
785 static void freeSpace(MemPage *pPage, int start, int size){ |
|
786 int addr, pbegin, hdr; |
|
787 unsigned char *data = pPage->aData; |
|
788 |
|
789 assert( pPage->pBt!=0 ); |
|
790 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
|
791 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) ); |
|
792 assert( (start + size)<=pPage->pBt->usableSize ); |
|
793 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
794 if( size<4 ) size = 4; |
|
795 |
|
796 #ifdef SQLITE_SECURE_DELETE |
|
797 /* Overwrite deleted information with zeros when the SECURE_DELETE |
|
798 ** option is enabled at compile-time */ |
|
799 memset(&data[start], 0, size); |
|
800 #endif |
|
801 |
|
802 /* Add the space back into the linked list of freeblocks */ |
|
803 hdr = pPage->hdrOffset; |
|
804 addr = hdr + 1; |
|
805 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){ |
|
806 assert( pbegin<=pPage->pBt->usableSize-4 ); |
|
807 assert( pbegin>addr ); |
|
808 addr = pbegin; |
|
809 } |
|
810 assert( pbegin<=pPage->pBt->usableSize-4 ); |
|
811 assert( pbegin>addr || pbegin==0 ); |
|
812 put2byte(&data[addr], start); |
|
813 put2byte(&data[start], pbegin); |
|
814 put2byte(&data[start+2], size); |
|
815 pPage->nFree += size; |
|
816 |
|
817 /* Coalesce adjacent free blocks */ |
|
818 addr = pPage->hdrOffset + 1; |
|
819 while( (pbegin = get2byte(&data[addr]))>0 ){ |
|
820 int pnext, psize; |
|
821 assert( pbegin>addr ); |
|
822 assert( pbegin<=pPage->pBt->usableSize-4 ); |
|
823 pnext = get2byte(&data[pbegin]); |
|
824 psize = get2byte(&data[pbegin+2]); |
|
825 if( pbegin + psize + 3 >= pnext && pnext>0 ){ |
|
826 int frag = pnext - (pbegin+psize); |
|
827 assert( frag<=data[pPage->hdrOffset+7] ); |
|
828 data[pPage->hdrOffset+7] -= frag; |
|
829 put2byte(&data[pbegin], get2byte(&data[pnext])); |
|
830 put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin); |
|
831 }else{ |
|
832 addr = pbegin; |
|
833 } |
|
834 } |
|
835 |
|
836 /* If the cell content area begins with a freeblock, remove it. */ |
|
837 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){ |
|
838 int top; |
|
839 pbegin = get2byte(&data[hdr+1]); |
|
840 memcpy(&data[hdr+1], &data[pbegin], 2); |
|
841 top = get2byte(&data[hdr+5]); |
|
842 put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2])); |
|
843 } |
|
844 } |
|
845 |
|
846 /* |
|
847 ** Decode the flags byte (the first byte of the header) for a page |
|
848 ** and initialize fields of the MemPage structure accordingly. |
|
849 */ |
|
850 static void decodeFlags(MemPage *pPage, int flagByte){ |
|
851 BtShared *pBt; /* A copy of pPage->pBt */ |
|
852 |
|
853 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); |
|
854 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
855 pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0; |
|
856 pPage->zeroData = (flagByte & PTF_ZERODATA)!=0; |
|
857 pPage->leaf = (flagByte & PTF_LEAF)!=0; |
|
858 pPage->childPtrSize = 4*(pPage->leaf==0); |
|
859 pBt = pPage->pBt; |
|
860 if( flagByte & PTF_LEAFDATA ){ |
|
861 pPage->leafData = 1; |
|
862 pPage->maxLocal = pBt->maxLeaf; |
|
863 pPage->minLocal = pBt->minLeaf; |
|
864 }else{ |
|
865 pPage->leafData = 0; |
|
866 pPage->maxLocal = pBt->maxLocal; |
|
867 pPage->minLocal = pBt->minLocal; |
|
868 } |
|
869 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); |
|
870 } |
|
871 |
|
872 /* |
|
873 ** Initialize the auxiliary information for a disk block. |
|
874 ** |
|
875 ** The pParent parameter must be a pointer to the MemPage which |
|
876 ** is the parent of the page being initialized. The root of a |
|
877 ** BTree has no parent and so for that page, pParent==NULL. |
|
878 ** |
|
879 ** Return SQLITE_OK on success. If we see that the page does |
|
880 ** not contain a well-formed database page, then return |
|
881 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not |
|
882 ** guarantee that the page is well-formed. It only shows that |
|
883 ** we failed to detect any corruption. |
|
884 */ |
|
885 int sqlite3BtreeInitPage( |
|
886 MemPage *pPage, /* The page to be initialized */ |
|
887 MemPage *pParent /* The parent. Might be NULL */ |
|
888 ){ |
|
889 int pc; /* Address of a freeblock within pPage->aData[] */ |
|
890 int hdr; /* Offset to beginning of page header */ |
|
891 u8 *data; /* Equal to pPage->aData */ |
|
892 BtShared *pBt; /* The main btree structure */ |
|
893 int usableSize; /* Amount of usable space on each page */ |
|
894 int cellOffset; /* Offset from start of page to first cell pointer */ |
|
895 int nFree; /* Number of unused bytes on the page */ |
|
896 int top; /* First byte of the cell content area */ |
|
897 |
|
898 pBt = pPage->pBt; |
|
899 assert( pBt!=0 ); |
|
900 assert( pParent==0 || pParent->pBt==pBt ); |
|
901 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
902 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); |
|
903 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); |
|
904 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); |
|
905 if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){ |
|
906 /* The parent page should never change unless the file is corrupt */ |
|
907 return SQLITE_CORRUPT_BKPT; |
|
908 } |
|
909 if( pPage->isInit ) return SQLITE_OK; |
|
910 if( pPage->pParent==0 && pParent!=0 ){ |
|
911 pPage->pParent = pParent; |
|
912 sqlite3PagerRef(pParent->pDbPage); |
|
913 } |
|
914 hdr = pPage->hdrOffset; |
|
915 data = pPage->aData; |
|
916 decodeFlags(pPage, data[hdr]); |
|
917 pPage->nOverflow = 0; |
|
918 pPage->idxShift = 0; |
|
919 usableSize = pBt->usableSize; |
|
920 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; |
|
921 top = get2byte(&data[hdr+5]); |
|
922 pPage->nCell = get2byte(&data[hdr+3]); |
|
923 if( pPage->nCell>MX_CELL(pBt) ){ |
|
924 /* To many cells for a single page. The page must be corrupt */ |
|
925 return SQLITE_CORRUPT_BKPT; |
|
926 } |
|
927 if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){ |
|
928 /* All pages must have at least one cell, except for root pages */ |
|
929 return SQLITE_CORRUPT_BKPT; |
|
930 } |
|
931 |
|
932 /* Compute the total free space on the page */ |
|
933 pc = get2byte(&data[hdr+1]); |
|
934 nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell); |
|
935 while( pc>0 ){ |
|
936 int next, size; |
|
937 if( pc>usableSize-4 ){ |
|
938 /* Free block is off the page */ |
|
939 return SQLITE_CORRUPT_BKPT; |
|
940 } |
|
941 next = get2byte(&data[pc]); |
|
942 size = get2byte(&data[pc+2]); |
|
943 if( next>0 && next<=pc+size+3 ){ |
|
944 /* Free blocks must be in accending order */ |
|
945 return SQLITE_CORRUPT_BKPT; |
|
946 } |
|
947 nFree += size; |
|
948 pc = next; |
|
949 } |
|
950 pPage->nFree = nFree; |
|
951 if( nFree>=usableSize ){ |
|
952 /* Free space cannot exceed total page size */ |
|
953 return SQLITE_CORRUPT_BKPT; |
|
954 } |
|
955 |
|
956 pPage->isInit = 1; |
|
957 return SQLITE_OK; |
|
958 } |
|
959 |
|
960 /* |
|
961 ** Set up a raw page so that it looks like a database page holding |
|
962 ** no entries. |
|
963 */ |
|
964 static void zeroPage(MemPage *pPage, int flags){ |
|
965 unsigned char *data = pPage->aData; |
|
966 BtShared *pBt = pPage->pBt; |
|
967 int hdr = pPage->hdrOffset; |
|
968 int first; |
|
969 |
|
970 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); |
|
971 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
|
972 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); |
|
973 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
|
974 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
975 memset(&data[hdr], 0, pBt->usableSize - hdr); |
|
976 data[hdr] = flags; |
|
977 first = hdr + 8 + 4*((flags&PTF_LEAF)==0); |
|
978 memset(&data[hdr+1], 0, 4); |
|
979 data[hdr+7] = 0; |
|
980 put2byte(&data[hdr+5], pBt->usableSize); |
|
981 pPage->nFree = pBt->usableSize - first; |
|
982 decodeFlags(pPage, flags); |
|
983 pPage->hdrOffset = hdr; |
|
984 pPage->cellOffset = first; |
|
985 pPage->nOverflow = 0; |
|
986 pPage->idxShift = 0; |
|
987 pPage->nCell = 0; |
|
988 pPage->isInit = 1; |
|
989 } |
|
990 |
|
991 /* |
|
992 ** Get a page from the pager. Initialize the MemPage.pBt and |
|
993 ** MemPage.aData elements if needed. |
|
994 ** |
|
995 ** If the noContent flag is set, it means that we do not care about |
|
996 ** the content of the page at this time. So do not go to the disk |
|
997 ** to fetch the content. Just fill in the content with zeros for now. |
|
998 ** If in the future we call sqlite3PagerWrite() on this page, that |
|
999 ** means we have started to be concerned about content and the disk |
|
1000 ** read should occur at that point. |
|
1001 */ |
|
1002 int sqlite3BtreeGetPage( |
|
1003 BtShared *pBt, /* The btree */ |
|
1004 Pgno pgno, /* Number of the page to fetch */ |
|
1005 MemPage **ppPage, /* Return the page in this parameter */ |
|
1006 int noContent /* Do not load page content if true */ |
|
1007 ){ |
|
1008 int rc; |
|
1009 MemPage *pPage; |
|
1010 DbPage *pDbPage; |
|
1011 |
|
1012 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
1013 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent); |
|
1014 if( rc ) return rc; |
|
1015 pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage); |
|
1016 pPage->aData = (u8*)sqlite3PagerGetData(pDbPage); |
|
1017 pPage->pDbPage = pDbPage; |
|
1018 pPage->pBt = pBt; |
|
1019 pPage->pgno = pgno; |
|
1020 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0; |
|
1021 *ppPage = pPage; |
|
1022 return SQLITE_OK; |
|
1023 } |
|
1024 |
|
1025 /* |
|
1026 ** Get a page from the pager and initialize it. This routine |
|
1027 ** is just a convenience wrapper around separate calls to |
|
1028 ** sqlite3BtreeGetPage() and sqlite3BtreeInitPage(). |
|
1029 */ |
|
1030 static int getAndInitPage( |
|
1031 BtShared *pBt, /* The database file */ |
|
1032 Pgno pgno, /* Number of the page to get */ |
|
1033 MemPage **ppPage, /* Write the page pointer here */ |
|
1034 MemPage *pParent /* Parent of the page */ |
|
1035 ){ |
|
1036 int rc; |
|
1037 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
1038 if( pgno==0 ){ |
|
1039 return SQLITE_CORRUPT_BKPT; |
|
1040 } |
|
1041 rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0); |
|
1042 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){ |
|
1043 rc = sqlite3BtreeInitPage(*ppPage, pParent); |
|
1044 } |
|
1045 return rc; |
|
1046 } |
|
1047 |
|
1048 /* |
|
1049 ** Release a MemPage. This should be called once for each prior |
|
1050 ** call to sqlite3BtreeGetPage. |
|
1051 */ |
|
1052 static void releasePage(MemPage *pPage){ |
|
1053 if( pPage ){ |
|
1054 assert( pPage->aData ); |
|
1055 assert( pPage->pBt ); |
|
1056 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
|
1057 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); |
|
1058 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
1059 sqlite3PagerUnref(pPage->pDbPage); |
|
1060 } |
|
1061 } |
|
1062 |
|
1063 /* |
|
1064 ** This routine is called when the reference count for a page |
|
1065 ** reaches zero. We need to unref the pParent pointer when that |
|
1066 ** happens. |
|
1067 */ |
|
1068 static void pageDestructor(DbPage *pData, int pageSize){ |
|
1069 MemPage *pPage; |
|
1070 assert( (pageSize & 7)==0 ); |
|
1071 pPage = (MemPage *)sqlite3PagerGetExtra(pData); |
|
1072 assert( pPage->isInit==0 || sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
1073 if( pPage->pParent ){ |
|
1074 MemPage *pParent = pPage->pParent; |
|
1075 assert( pParent->pBt==pPage->pBt ); |
|
1076 pPage->pParent = 0; |
|
1077 releasePage(pParent); |
|
1078 } |
|
1079 pPage->isInit = 0; |
|
1080 } |
|
1081 |
|
1082 /* |
|
1083 ** During a rollback, when the pager reloads information into the cache |
|
1084 ** so that the cache is restored to its original state at the start of |
|
1085 ** the transaction, for each page restored this routine is called. |
|
1086 ** |
|
1087 ** This routine needs to reset the extra data section at the end of the |
|
1088 ** page to agree with the restored data. |
|
1089 */ |
|
1090 static void pageReinit(DbPage *pData, int pageSize){ |
|
1091 MemPage *pPage; |
|
1092 assert( (pageSize & 7)==0 ); |
|
1093 pPage = (MemPage *)sqlite3PagerGetExtra(pData); |
|
1094 if( pPage->isInit ){ |
|
1095 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
1096 pPage->isInit = 0; |
|
1097 sqlite3BtreeInitPage(pPage, pPage->pParent); |
|
1098 } |
|
1099 } |
|
1100 |
|
1101 /* |
|
1102 ** Invoke the busy handler for a btree. |
|
1103 */ |
|
1104 static int sqlite3BtreeInvokeBusyHandler(void *pArg, int n){ |
|
1105 BtShared *pBt = (BtShared*)pArg; |
|
1106 assert( pBt->db ); |
|
1107 assert( sqlite3_mutex_held(pBt->db->mutex) ); |
|
1108 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); |
|
1109 } |
|
1110 |
|
1111 /* |
|
1112 ** Open a database file. |
|
1113 ** |
|
1114 ** zFilename is the name of the database file. If zFilename is NULL |
|
1115 ** a new database with a random name is created. This randomly named |
|
1116 ** database file will be deleted when sqlite3BtreeClose() is called. |
|
1117 ** If zFilename is ":memory:" then an in-memory database is created |
|
1118 ** that is automatically destroyed when it is closed. |
|
1119 */ |
|
1120 int sqlite3BtreeOpen( |
|
1121 const char *zFilename, /* Name of the file containing the BTree database */ |
|
1122 sqlite3 *db, /* Associated database handle */ |
|
1123 Btree **ppBtree, /* Pointer to new Btree object written here */ |
|
1124 int flags, /* Options */ |
|
1125 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ |
|
1126 ){ |
|
1127 sqlite3_vfs *pVfs; /* The VFS to use for this btree */ |
|
1128 BtShared *pBt = 0; /* Shared part of btree structure */ |
|
1129 Btree *p; /* Handle to return */ |
|
1130 int rc = SQLITE_OK; |
|
1131 int nReserve; |
|
1132 unsigned char zDbHeader[100]; |
|
1133 |
|
1134 /* Set the variable isMemdb to true for an in-memory database, or |
|
1135 ** false for a file-based database. This symbol is only required if |
|
1136 ** either of the shared-data or autovacuum features are compiled |
|
1137 ** into the library. |
|
1138 */ |
|
1139 #if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM) |
|
1140 #ifdef SQLITE_OMIT_MEMORYDB |
|
1141 const int isMemdb = 0; |
|
1142 #else |
|
1143 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:"); |
|
1144 #endif |
|
1145 #endif |
|
1146 |
|
1147 assert( db!=0 ); |
|
1148 assert( sqlite3_mutex_held(db->mutex) ); |
|
1149 |
|
1150 pVfs = db->pVfs; |
|
1151 p = (Btree*)sqlite3MallocZero(sizeof(Btree)); |
|
1152 if( !p ){ |
|
1153 return SQLITE_NOMEM; |
|
1154 } |
|
1155 p->inTrans = TRANS_NONE; |
|
1156 p->db = db; |
|
1157 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
|
1158 /* |
|
1159 ** If this Btree is a candidate for shared cache, try to find an |
|
1160 ** existing BtShared object that we can share with |
|
1161 */ |
|
1162 |
|
1163 if( (flags & BTREE_PRIVATE)==0 |
|
1164 && isMemdb==0 |
|
1165 && (db->flags & SQLITE_Vtab)==0 |
|
1166 && zFilename && zFilename[0] |
|
1167 ){ |
|
1168 if( sqlite3SharedCacheEnabled ){ |
|
1169 int nFullPathname = pVfs->mxPathname+1; |
|
1170 |
|
1171 char *zFullPathname = (char *)sqlite3_malloc(nFullPathname); |
|
1172 |
|
1173 sqlite3_mutex *mutexShared; |
|
1174 p->sharable = 1; |
|
1175 if( db ){ |
|
1176 db->flags |= SQLITE_SharedCache; |
|
1177 } |
|
1178 if( !zFullPathname ){ |
|
1179 sqlite3_free(p); |
|
1180 return SQLITE_NOMEM; |
|
1181 } |
|
1182 |
|
1183 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname); |
|
1184 mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); |
|
1185 sqlite3_mutex_enter(mutexShared); |
|
1186 for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){ |
|
1187 assert( pBt->nRef>0 ); |
|
1188 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager)) |
|
1189 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ |
|
1190 p->pBt = pBt; |
|
1191 pBt->nRef++; |
|
1192 break; |
|
1193 } |
|
1194 } |
|
1195 sqlite3_mutex_leave(mutexShared); |
|
1196 sqlite3_free(zFullPathname); |
|
1197 } |
|
1198 #ifdef SQLITE_DEBUG |
|
1199 else{ |
|
1200 /* In debug mode, we mark all persistent databases as sharable |
|
1201 ** even when they are not. This exercises the locking code and |
|
1202 ** gives more opportunity for asserts(sqlite3_mutex_held()) |
|
1203 ** statements to find locking problems. |
|
1204 */ |
|
1205 p->sharable = 1; |
|
1206 } |
|
1207 #endif |
|
1208 } |
|
1209 #endif |
|
1210 |
|
1211 if( pBt==0 ){ |
|
1212 |
|
1213 /* |
|
1214 ** The following asserts make sure that structures used by the btree are |
|
1215 ** the right size. This is to guard against size changes that result |
|
1216 ** when compiling on a different architecture. |
|
1217 */ |
|
1218 assert( sizeof(i64)==8 || sizeof(i64)==4 ); |
|
1219 assert( sizeof(u64)==8 || sizeof(u64)==4 ); |
|
1220 assert( sizeof(u32)==4 ); |
|
1221 assert( sizeof(u16)==2 ); |
|
1222 assert( sizeof(Pgno)==4 ); |
|
1223 |
|
1224 pBt = (BtShared*)sqlite3MallocZero( sizeof(*pBt) ); |
|
1225 if( pBt==0 ){ |
|
1226 rc = SQLITE_NOMEM; |
|
1227 goto btree_open_out; |
|
1228 } |
|
1229 pBt->busyHdr.xFunc = sqlite3BtreeInvokeBusyHandler; |
|
1230 pBt->busyHdr.pArg = pBt; |
|
1231 |
|
1232 |
|
1233 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, |
|
1234 EXTRA_SIZE, flags, vfsFlags); |
|
1235 if( rc==SQLITE_OK ){ |
|
1236 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); |
|
1237 } |
|
1238 if( rc!=SQLITE_OK ){ |
|
1239 goto btree_open_out; |
|
1240 } |
|
1241 |
|
1242 sqlite3PagerSetBusyhandler(pBt->pPager, &pBt->busyHdr); |
|
1243 p->pBt = pBt; |
|
1244 |
|
1245 sqlite3PagerSetDestructor(pBt->pPager, pageDestructor); |
|
1246 sqlite3PagerSetReiniter(pBt->pPager, pageReinit); |
|
1247 pBt->pCursor = 0; |
|
1248 pBt->pPage1 = 0; |
|
1249 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager); |
|
1250 pBt->pageSize = get2byte(&zDbHeader[16]); |
|
1251 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE |
|
1252 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ |
|
1253 pBt->pageSize = 0; |
|
1254 sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize); |
|
1255 pBt->maxEmbedFrac = 64; /* 25% */ |
|
1256 pBt->minEmbedFrac = 32; /* 12.5% */ |
|
1257 pBt->minLeafFrac = 32; /* 12.5% */ |
|
1258 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
1259 /* If the magic name ":memory:" will create an in-memory database, then |
|
1260 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if |
|
1261 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if |
|
1262 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a |
|
1263 ** regular file-name. In this case the auto-vacuum applies as per normal. |
|
1264 */ |
|
1265 if( zFilename && !isMemdb ){ |
|
1266 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); |
|
1267 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); |
|
1268 } |
|
1269 #endif |
|
1270 nReserve = 0; |
|
1271 }else{ |
|
1272 nReserve = zDbHeader[20]; |
|
1273 pBt->maxEmbedFrac = zDbHeader[21]; |
|
1274 pBt->minEmbedFrac = zDbHeader[22]; |
|
1275 pBt->minLeafFrac = zDbHeader[23]; |
|
1276 pBt->pageSizeFixed = 1; |
|
1277 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
1278 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); |
|
1279 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); |
|
1280 #endif |
|
1281 } |
|
1282 pBt->usableSize = pBt->pageSize - nReserve; |
|
1283 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ |
|
1284 sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize); |
|
1285 |
|
1286 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
|
1287 /* Add the new BtShared object to the linked list sharable BtShareds. |
|
1288 */ |
|
1289 if( p->sharable ){ |
|
1290 sqlite3_mutex *mutexShared; |
|
1291 pBt->nRef = 1; |
|
1292 mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); |
|
1293 if( SQLITE_THREADSAFE ){ |
|
1294 pBt->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); |
|
1295 if( pBt->mutex==0 ){ |
|
1296 rc = SQLITE_NOMEM; |
|
1297 db->mallocFailed = 0; |
|
1298 goto btree_open_out; |
|
1299 } |
|
1300 } |
|
1301 sqlite3_mutex_enter(mutexShared); |
|
1302 pBt->pNext = sqlite3SharedCacheList; |
|
1303 sqlite3SharedCacheList = pBt; |
|
1304 sqlite3_mutex_leave(mutexShared); |
|
1305 } |
|
1306 #endif |
|
1307 } |
|
1308 |
|
1309 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
|
1310 /* If the new Btree uses a sharable pBtShared, then link the new |
|
1311 ** Btree into the list of all sharable Btrees for the same connection. |
|
1312 ** The list is kept in ascending order by pBt address. |
|
1313 */ |
|
1314 if( p->sharable ){ |
|
1315 int i; |
|
1316 Btree *pSib; |
|
1317 for(i=0; i<db->nDb; i++){ |
|
1318 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ |
|
1319 while( pSib->pPrev ){ pSib = pSib->pPrev; } |
|
1320 if( p->pBt<pSib->pBt ){ |
|
1321 p->pNext = pSib; |
|
1322 p->pPrev = 0; |
|
1323 pSib->pPrev = p; |
|
1324 }else{ |
|
1325 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){ |
|
1326 pSib = pSib->pNext; |
|
1327 } |
|
1328 p->pNext = pSib->pNext; |
|
1329 p->pPrev = pSib; |
|
1330 if( p->pNext ){ |
|
1331 p->pNext->pPrev = p; |
|
1332 } |
|
1333 pSib->pNext = p; |
|
1334 } |
|
1335 break; |
|
1336 } |
|
1337 } |
|
1338 } |
|
1339 #endif |
|
1340 *ppBtree = p; |
|
1341 |
|
1342 btree_open_out: |
|
1343 if( rc!=SQLITE_OK ){ |
|
1344 if( pBt && pBt->pPager ){ |
|
1345 sqlite3PagerClose(pBt->pPager); |
|
1346 } |
|
1347 sqlite3_free(pBt); |
|
1348 sqlite3_free(p); |
|
1349 *ppBtree = 0; |
|
1350 } |
|
1351 return rc; |
|
1352 } |
|
1353 |
|
1354 /* |
|
1355 ** Decrement the BtShared.nRef counter. When it reaches zero, |
|
1356 ** remove the BtShared structure from the sharing list. Return |
|
1357 ** true if the BtShared.nRef counter reaches zero and return |
|
1358 ** false if it is still positive. |
|
1359 */ |
|
1360 static int removeFromSharingList(BtShared *pBt){ |
|
1361 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
1362 sqlite3_mutex *pMaster; |
|
1363 BtShared *pList; |
|
1364 int removed = 0; |
|
1365 |
|
1366 assert( sqlite3_mutex_notheld(pBt->mutex) ); |
|
1367 pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); |
|
1368 sqlite3_mutex_enter(pMaster); |
|
1369 pBt->nRef--; |
|
1370 if( pBt->nRef<=0 ){ |
|
1371 if( sqlite3SharedCacheList==pBt ){ |
|
1372 sqlite3SharedCacheList = pBt->pNext; |
|
1373 }else{ |
|
1374 pList = sqlite3SharedCacheList; |
|
1375 while( pList && pList->pNext!=pBt ){ |
|
1376 pList=pList->pNext; |
|
1377 } |
|
1378 if( pList ){ |
|
1379 pList->pNext = pBt->pNext; |
|
1380 } |
|
1381 } |
|
1382 if( SQLITE_THREADSAFE ){ |
|
1383 sqlite3_mutex_free(pBt->mutex); |
|
1384 } |
|
1385 removed = 1; |
|
1386 } |
|
1387 sqlite3_mutex_leave(pMaster); |
|
1388 return removed; |
|
1389 #else |
|
1390 return 1; |
|
1391 #endif |
|
1392 } |
|
1393 |
|
1394 /* |
|
1395 ** Close an open database and invalidate all cursors. |
|
1396 */ |
|
1397 int sqlite3BtreeClose(Btree *p){ |
|
1398 BtShared *pBt = p->pBt; |
|
1399 BtCursor *pCur; |
|
1400 |
|
1401 /* Close all cursors opened via this handle. */ |
|
1402 assert( sqlite3_mutex_held(p->db->mutex) ); |
|
1403 sqlite3BtreeEnter(p); |
|
1404 pBt->db = p->db; |
|
1405 pCur = pBt->pCursor; |
|
1406 while( pCur ){ |
|
1407 BtCursor *pTmp = pCur; |
|
1408 pCur = pCur->pNext; |
|
1409 if( pTmp->pBtree==p ){ |
|
1410 sqlite3BtreeCloseCursor(pTmp); |
|
1411 } |
|
1412 } |
|
1413 |
|
1414 /* Rollback any active transaction and free the handle structure. |
|
1415 ** The call to sqlite3BtreeRollback() drops any table-locks held by |
|
1416 ** this handle. |
|
1417 */ |
|
1418 sqlite3BtreeRollback(p); |
|
1419 sqlite3BtreeLeave(p); |
|
1420 |
|
1421 /* If there are still other outstanding references to the shared-btree |
|
1422 ** structure, return now. The remainder of this procedure cleans |
|
1423 ** up the shared-btree. |
|
1424 */ |
|
1425 assert( p->wantToLock==0 && p->locked==0 ); |
|
1426 if( !p->sharable || removeFromSharingList(pBt) ){ |
|
1427 /* The pBt is no longer on the sharing list, so we can access |
|
1428 ** it without having to hold the mutex. |
|
1429 ** |
|
1430 ** Clean out and delete the BtShared object. |
|
1431 */ |
|
1432 assert( !pBt->pCursor ); |
|
1433 sqlite3PagerClose(pBt->pPager); |
|
1434 if( pBt->xFreeSchema && pBt->pSchema ){ |
|
1435 pBt->xFreeSchema(pBt->pSchema); |
|
1436 } |
|
1437 sqlite3_free(pBt->pSchema); |
|
1438 sqlite3_free(pBt); |
|
1439 } |
|
1440 |
|
1441 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
1442 assert( p->wantToLock==0 ); |
|
1443 assert( p->locked==0 ); |
|
1444 if( p->pPrev ) p->pPrev->pNext = p->pNext; |
|
1445 if( p->pNext ) p->pNext->pPrev = p->pPrev; |
|
1446 #endif |
|
1447 |
|
1448 sqlite3_free(p); |
|
1449 return SQLITE_OK; |
|
1450 } |
|
1451 |
|
1452 /* |
|
1453 ** Change the limit on the number of pages allowed in the cache. |
|
1454 ** |
|
1455 ** The maximum number of cache pages is set to the absolute |
|
1456 ** value of mxPage. If mxPage is negative, the pager will |
|
1457 ** operate asynchronously - it will not stop to do fsync()s |
|
1458 ** to insure data is written to the disk surface before |
|
1459 ** continuing. Transactions still work if synchronous is off, |
|
1460 ** and the database cannot be corrupted if this program |
|
1461 ** crashes. But if the operating system crashes or there is |
|
1462 ** an abrupt power failure when synchronous is off, the database |
|
1463 ** could be left in an inconsistent and unrecoverable state. |
|
1464 ** Synchronous is on by default so database corruption is not |
|
1465 ** normally a worry. |
|
1466 */ |
|
1467 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ |
|
1468 BtShared *pBt = p->pBt; |
|
1469 assert( sqlite3_mutex_held(p->db->mutex) ); |
|
1470 sqlite3BtreeEnter(p); |
|
1471 sqlite3PagerSetCachesize(pBt->pPager, mxPage); |
|
1472 sqlite3BtreeLeave(p); |
|
1473 return SQLITE_OK; |
|
1474 } |
|
1475 |
|
1476 /* |
|
1477 ** Change the way data is synced to disk in order to increase or decrease |
|
1478 ** how well the database resists damage due to OS crashes and power |
|
1479 ** failures. Level 1 is the same as asynchronous (no syncs() occur and |
|
1480 ** there is a high probability of damage) Level 2 is the default. There |
|
1481 ** is a very low but non-zero probability of damage. Level 3 reduces the |
|
1482 ** probability of damage to near zero but with a write performance reduction. |
|
1483 */ |
|
1484 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
|
1485 int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){ |
|
1486 BtShared *pBt = p->pBt; |
|
1487 assert( sqlite3_mutex_held(p->db->mutex) ); |
|
1488 sqlite3BtreeEnter(p); |
|
1489 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync); |
|
1490 sqlite3BtreeLeave(p); |
|
1491 return SQLITE_OK; |
|
1492 } |
|
1493 #endif |
|
1494 |
|
1495 /* |
|
1496 ** Return TRUE if the given btree is set to safety level 1. In other |
|
1497 ** words, return TRUE if no sync() occurs on the disk files. |
|
1498 */ |
|
1499 int sqlite3BtreeSyncDisabled(Btree *p){ |
|
1500 BtShared *pBt = p->pBt; |
|
1501 int rc; |
|
1502 assert( sqlite3_mutex_held(p->db->mutex) ); |
|
1503 sqlite3BtreeEnter(p); |
|
1504 assert( pBt && pBt->pPager ); |
|
1505 rc = sqlite3PagerNosync(pBt->pPager); |
|
1506 sqlite3BtreeLeave(p); |
|
1507 return rc; |
|
1508 } |
|
1509 |
|
1510 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) |
|
1511 /* |
|
1512 ** Change the default pages size and the number of reserved bytes per page. |
|
1513 ** |
|
1514 ** The page size must be a power of 2 between 512 and 65536. If the page |
|
1515 ** size supplied does not meet this constraint then the page size is not |
|
1516 ** changed. |
|
1517 ** |
|
1518 ** Page sizes are constrained to be a power of two so that the region |
|
1519 ** of the database file used for locking (beginning at PENDING_BYTE, |
|
1520 ** the first byte past the 1GB boundary, 0x40000000) needs to occur |
|
1521 ** at the beginning of a page. |
|
1522 ** |
|
1523 ** If parameter nReserve is less than zero, then the number of reserved |
|
1524 ** bytes per page is left unchanged. |
|
1525 */ |
|
1526 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){ |
|
1527 int rc = SQLITE_OK; |
|
1528 BtShared *pBt = p->pBt; |
|
1529 sqlite3BtreeEnter(p); |
|
1530 if( pBt->pageSizeFixed ){ |
|
1531 sqlite3BtreeLeave(p); |
|
1532 return SQLITE_READONLY; |
|
1533 } |
|
1534 if( nReserve<0 ){ |
|
1535 nReserve = pBt->pageSize - pBt->usableSize; |
|
1536 } |
|
1537 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && |
|
1538 ((pageSize-1)&pageSize)==0 ){ |
|
1539 assert( (pageSize & 7)==0 ); |
|
1540 assert( !pBt->pPage1 && !pBt->pCursor ); |
|
1541 pBt->pageSize = pageSize; |
|
1542 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize); |
|
1543 } |
|
1544 pBt->usableSize = pBt->pageSize - nReserve; |
|
1545 sqlite3BtreeLeave(p); |
|
1546 return rc; |
|
1547 } |
|
1548 |
|
1549 /* |
|
1550 ** Return the currently defined page size |
|
1551 */ |
|
1552 int sqlite3BtreeGetPageSize(Btree *p){ |
|
1553 return p->pBt->pageSize; |
|
1554 } |
|
1555 int sqlite3BtreeGetReserve(Btree *p){ |
|
1556 int n; |
|
1557 sqlite3BtreeEnter(p); |
|
1558 n = p->pBt->pageSize - p->pBt->usableSize; |
|
1559 sqlite3BtreeLeave(p); |
|
1560 return n; |
|
1561 } |
|
1562 |
|
1563 /* |
|
1564 ** Set the maximum page count for a database if mxPage is positive. |
|
1565 ** No changes are made if mxPage is 0 or negative. |
|
1566 ** Regardless of the value of mxPage, return the maximum page count. |
|
1567 */ |
|
1568 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ |
|
1569 int n; |
|
1570 sqlite3BtreeEnter(p); |
|
1571 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); |
|
1572 sqlite3BtreeLeave(p); |
|
1573 return n; |
|
1574 } |
|
1575 #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */ |
|
1576 |
|
1577 /* |
|
1578 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' |
|
1579 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it |
|
1580 ** is disabled. The default value for the auto-vacuum property is |
|
1581 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. |
|
1582 */ |
|
1583 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ |
|
1584 #ifdef SQLITE_OMIT_AUTOVACUUM |
|
1585 return SQLITE_READONLY; |
|
1586 #else |
|
1587 BtShared *pBt = p->pBt; |
|
1588 int rc = SQLITE_OK; |
|
1589 int av = (autoVacuum?1:0); |
|
1590 |
|
1591 sqlite3BtreeEnter(p); |
|
1592 if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){ |
|
1593 rc = SQLITE_READONLY; |
|
1594 }else{ |
|
1595 pBt->autoVacuum = av; |
|
1596 } |
|
1597 sqlite3BtreeLeave(p); |
|
1598 return rc; |
|
1599 #endif |
|
1600 } |
|
1601 |
|
1602 /* |
|
1603 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is |
|
1604 ** enabled 1 is returned. Otherwise 0. |
|
1605 */ |
|
1606 int sqlite3BtreeGetAutoVacuum(Btree *p){ |
|
1607 #ifdef SQLITE_OMIT_AUTOVACUUM |
|
1608 return BTREE_AUTOVACUUM_NONE; |
|
1609 #else |
|
1610 int rc; |
|
1611 sqlite3BtreeEnter(p); |
|
1612 rc = ( |
|
1613 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: |
|
1614 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: |
|
1615 BTREE_AUTOVACUUM_INCR |
|
1616 ); |
|
1617 sqlite3BtreeLeave(p); |
|
1618 return rc; |
|
1619 #endif |
|
1620 } |
|
1621 |
|
1622 |
|
1623 /* |
|
1624 ** Get a reference to pPage1 of the database file. This will |
|
1625 ** also acquire a readlock on that file. |
|
1626 ** |
|
1627 ** SQLITE_OK is returned on success. If the file is not a |
|
1628 ** well-formed database file, then SQLITE_CORRUPT is returned. |
|
1629 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM |
|
1630 ** is returned if we run out of memory. |
|
1631 */ |
|
1632 static int lockBtree(BtShared *pBt){ |
|
1633 int rc, pageSize; |
|
1634 MemPage *pPage1; |
|
1635 |
|
1636 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
1637 if( pBt->pPage1 ) return SQLITE_OK; |
|
1638 rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0); |
|
1639 if( rc!=SQLITE_OK ) return rc; |
|
1640 |
|
1641 |
|
1642 /* Do some checking to help insure the file we opened really is |
|
1643 ** a valid database file. |
|
1644 */ |
|
1645 rc = SQLITE_NOTADB; |
|
1646 if( sqlite3PagerPagecount(pBt->pPager)>0 ){ |
|
1647 u8 *page1 = pPage1->aData; |
|
1648 if( memcmp(page1, zMagicHeader, 16)!=0 ){ |
|
1649 goto page1_init_failed; |
|
1650 } |
|
1651 if( page1[18]>1 ){ |
|
1652 pBt->readOnly = 1; |
|
1653 } |
|
1654 if( page1[19]>1 ){ |
|
1655 goto page1_init_failed; |
|
1656 } |
|
1657 pageSize = get2byte(&page1[16]); |
|
1658 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 || |
|
1659 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE) |
|
1660 ){ |
|
1661 goto page1_init_failed; |
|
1662 } |
|
1663 assert( (pageSize & 7)==0 ); |
|
1664 pBt->pageSize = pageSize; |
|
1665 pBt->usableSize = pageSize - page1[20]; |
|
1666 if( pBt->usableSize<500 ){ |
|
1667 goto page1_init_failed; |
|
1668 } |
|
1669 pBt->maxEmbedFrac = page1[21]; |
|
1670 pBt->minEmbedFrac = page1[22]; |
|
1671 pBt->minLeafFrac = page1[23]; |
|
1672 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
1673 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); |
|
1674 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); |
|
1675 #endif |
|
1676 } |
|
1677 |
|
1678 /* maxLocal is the maximum amount of payload to store locally for |
|
1679 ** a cell. Make sure it is small enough so that at least minFanout |
|
1680 ** cells can will fit on one page. We assume a 10-byte page header. |
|
1681 ** Besides the payload, the cell must store: |
|
1682 ** 2-byte pointer to the cell |
|
1683 ** 4-byte child pointer |
|
1684 ** 9-byte nKey value |
|
1685 ** 4-byte nData value |
|
1686 ** 4-byte overflow page pointer |
|
1687 ** So a cell consists of a 2-byte poiner, a header which is as much as |
|
1688 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow |
|
1689 ** page pointer. |
|
1690 */ |
|
1691 pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23; |
|
1692 pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23; |
|
1693 pBt->maxLeaf = pBt->usableSize - 35; |
|
1694 pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23; |
|
1695 if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){ |
|
1696 goto page1_init_failed; |
|
1697 } |
|
1698 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); |
|
1699 pBt->pPage1 = pPage1; |
|
1700 return SQLITE_OK; |
|
1701 |
|
1702 page1_init_failed: |
|
1703 releasePage(pPage1); |
|
1704 pBt->pPage1 = 0; |
|
1705 return rc; |
|
1706 } |
|
1707 |
|
1708 /* |
|
1709 ** This routine works like lockBtree() except that it also invokes the |
|
1710 ** busy callback if there is lock contention. |
|
1711 */ |
|
1712 static int lockBtreeWithRetry(Btree *pRef){ |
|
1713 int rc = SQLITE_OK; |
|
1714 |
|
1715 assert( sqlite3BtreeHoldsMutex(pRef) ); |
|
1716 if( pRef->inTrans==TRANS_NONE ){ |
|
1717 u8 inTransaction = pRef->pBt->inTransaction; |
|
1718 btreeIntegrity(pRef); |
|
1719 rc = sqlite3BtreeBeginTrans(pRef, 0); |
|
1720 pRef->pBt->inTransaction = inTransaction; |
|
1721 pRef->inTrans = TRANS_NONE; |
|
1722 if( rc==SQLITE_OK ){ |
|
1723 pRef->pBt->nTransaction--; |
|
1724 } |
|
1725 btreeIntegrity(pRef); |
|
1726 } |
|
1727 return rc; |
|
1728 } |
|
1729 |
|
1730 |
|
1731 /* |
|
1732 ** If there are no outstanding cursors and we are not in the middle |
|
1733 ** of a transaction but there is a read lock on the database, then |
|
1734 ** this routine unrefs the first page of the database file which |
|
1735 ** has the effect of releasing the read lock. |
|
1736 ** |
|
1737 ** If there are any outstanding cursors, this routine is a no-op. |
|
1738 ** |
|
1739 ** If there is a transaction in progress, this routine is a no-op. |
|
1740 */ |
|
1741 static void unlockBtreeIfUnused(BtShared *pBt){ |
|
1742 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
1743 if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){ |
|
1744 if( sqlite3PagerRefcount(pBt->pPager)>=1 ){ |
|
1745 if( pBt->pPage1->aData==0 ){ |
|
1746 MemPage *pPage = pBt->pPage1; |
|
1747 pPage->aData = (u8*)sqlite3PagerGetData(pPage->pDbPage); |
|
1748 pPage->pBt = pBt; |
|
1749 pPage->pgno = 1; |
|
1750 } |
|
1751 releasePage(pBt->pPage1); |
|
1752 } |
|
1753 pBt->pPage1 = 0; |
|
1754 pBt->inStmt = 0; |
|
1755 } |
|
1756 } |
|
1757 |
|
1758 /* |
|
1759 ** Create a new database by initializing the first page of the |
|
1760 ** file. |
|
1761 */ |
|
1762 static int newDatabase(BtShared *pBt){ |
|
1763 MemPage *pP1; |
|
1764 unsigned char *data; |
|
1765 int rc; |
|
1766 |
|
1767 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
1768 if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK; |
|
1769 pP1 = pBt->pPage1; |
|
1770 assert( pP1!=0 ); |
|
1771 data = pP1->aData; |
|
1772 rc = sqlite3PagerWrite(pP1->pDbPage); |
|
1773 if( rc ) return rc; |
|
1774 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); |
|
1775 assert( sizeof(zMagicHeader)==16 ); |
|
1776 put2byte(&data[16], pBt->pageSize); |
|
1777 data[18] = 1; |
|
1778 data[19] = 1; |
|
1779 data[20] = pBt->pageSize - pBt->usableSize; |
|
1780 data[21] = pBt->maxEmbedFrac; |
|
1781 data[22] = pBt->minEmbedFrac; |
|
1782 data[23] = pBt->minLeafFrac; |
|
1783 memset(&data[24], 0, 100-24); |
|
1784 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); |
|
1785 pBt->pageSizeFixed = 1; |
|
1786 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
1787 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); |
|
1788 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); |
|
1789 put4byte(&data[36 + 4*4], pBt->autoVacuum); |
|
1790 put4byte(&data[36 + 7*4], pBt->incrVacuum); |
|
1791 #endif |
|
1792 return SQLITE_OK; |
|
1793 } |
|
1794 |
|
1795 /* |
|
1796 ** Attempt to start a new transaction. A write-transaction |
|
1797 ** is started if the second argument is nonzero, otherwise a read- |
|
1798 ** transaction. If the second argument is 2 or more and exclusive |
|
1799 ** transaction is started, meaning that no other process is allowed |
|
1800 ** to access the database. A preexisting transaction may not be |
|
1801 ** upgraded to exclusive by calling this routine a second time - the |
|
1802 ** exclusivity flag only works for a new transaction. |
|
1803 ** |
|
1804 ** A write-transaction must be started before attempting any |
|
1805 ** changes to the database. None of the following routines |
|
1806 ** will work unless a transaction is started first: |
|
1807 ** |
|
1808 ** sqlite3BtreeCreateTable() |
|
1809 ** sqlite3BtreeCreateIndex() |
|
1810 ** sqlite3BtreeClearTable() |
|
1811 ** sqlite3BtreeDropTable() |
|
1812 ** sqlite3BtreeInsert() |
|
1813 ** sqlite3BtreeDelete() |
|
1814 ** sqlite3BtreeUpdateMeta() |
|
1815 ** |
|
1816 ** If an initial attempt to acquire the lock fails because of lock contention |
|
1817 ** and the database was previously unlocked, then invoke the busy handler |
|
1818 ** if there is one. But if there was previously a read-lock, do not |
|
1819 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is |
|
1820 ** returned when there is already a read-lock in order to avoid a deadlock. |
|
1821 ** |
|
1822 ** Suppose there are two processes A and B. A has a read lock and B has |
|
1823 ** a reserved lock. B tries to promote to exclusive but is blocked because |
|
1824 ** of A's read lock. A tries to promote to reserved but is blocked by B. |
|
1825 ** One or the other of the two processes must give way or there can be |
|
1826 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback |
|
1827 ** when A already has a read lock, we encourage A to give up and let B |
|
1828 ** proceed. |
|
1829 */ |
|
1830 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ |
|
1831 BtShared *pBt = p->pBt; |
|
1832 int rc = SQLITE_OK; |
|
1833 |
|
1834 sqlite3BtreeEnter(p); |
|
1835 pBt->db = p->db; |
|
1836 btreeIntegrity(p); |
|
1837 |
|
1838 /* If the btree is already in a write-transaction, or it |
|
1839 ** is already in a read-transaction and a read-transaction |
|
1840 ** is requested, this is a no-op. |
|
1841 */ |
|
1842 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ |
|
1843 goto trans_begun; |
|
1844 } |
|
1845 |
|
1846 /* Write transactions are not possible on a read-only database */ |
|
1847 if( pBt->readOnly && wrflag ){ |
|
1848 rc = SQLITE_READONLY; |
|
1849 goto trans_begun; |
|
1850 } |
|
1851 |
|
1852 /* If another database handle has already opened a write transaction |
|
1853 ** on this shared-btree structure and a second write transaction is |
|
1854 ** requested, return SQLITE_BUSY. |
|
1855 */ |
|
1856 if( pBt->inTransaction==TRANS_WRITE && wrflag ){ |
|
1857 rc = SQLITE_BUSY; |
|
1858 goto trans_begun; |
|
1859 } |
|
1860 |
|
1861 do { |
|
1862 if( pBt->pPage1==0 ){ |
|
1863 rc = lockBtree(pBt); |
|
1864 } |
|
1865 |
|
1866 if( rc==SQLITE_OK && wrflag ){ |
|
1867 if( pBt->readOnly ){ |
|
1868 rc = SQLITE_READONLY; |
|
1869 }else{ |
|
1870 rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1); |
|
1871 if( rc==SQLITE_OK ){ |
|
1872 rc = newDatabase(pBt); |
|
1873 } |
|
1874 } |
|
1875 } |
|
1876 |
|
1877 if( rc==SQLITE_OK ){ |
|
1878 if( wrflag ) pBt->inStmt = 0; |
|
1879 }else{ |
|
1880 unlockBtreeIfUnused(pBt); |
|
1881 } |
|
1882 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && |
|
1883 sqlite3BtreeInvokeBusyHandler(pBt, 0) ); |
|
1884 |
|
1885 if( rc==SQLITE_OK ){ |
|
1886 if( p->inTrans==TRANS_NONE ){ |
|
1887 pBt->nTransaction++; |
|
1888 } |
|
1889 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); |
|
1890 if( p->inTrans>pBt->inTransaction ){ |
|
1891 pBt->inTransaction = p->inTrans; |
|
1892 } |
|
1893 } |
|
1894 |
|
1895 |
|
1896 trans_begun: |
|
1897 btreeIntegrity(p); |
|
1898 sqlite3BtreeLeave(p); |
|
1899 return rc; |
|
1900 } |
|
1901 |
|
1902 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
1903 |
|
1904 /* |
|
1905 ** Set the pointer-map entries for all children of page pPage. Also, if |
|
1906 ** pPage contains cells that point to overflow pages, set the pointer |
|
1907 ** map entries for the overflow pages as well. |
|
1908 */ |
|
1909 static int setChildPtrmaps(MemPage *pPage){ |
|
1910 int i; /* Counter variable */ |
|
1911 int nCell; /* Number of cells in page pPage */ |
|
1912 int rc; /* Return code */ |
|
1913 BtShared *pBt = pPage->pBt; |
|
1914 int isInitOrig = pPage->isInit; |
|
1915 Pgno pgno = pPage->pgno; |
|
1916 |
|
1917 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
1918 rc = sqlite3BtreeInitPage(pPage, pPage->pParent); |
|
1919 if( rc!=SQLITE_OK ){ |
|
1920 goto set_child_ptrmaps_out; |
|
1921 } |
|
1922 nCell = pPage->nCell; |
|
1923 |
|
1924 for(i=0; i<nCell; i++){ |
|
1925 u8 *pCell = findCell(pPage, i); |
|
1926 |
|
1927 rc = ptrmapPutOvflPtr(pPage, pCell); |
|
1928 if( rc!=SQLITE_OK ){ |
|
1929 goto set_child_ptrmaps_out; |
|
1930 } |
|
1931 |
|
1932 if( !pPage->leaf ){ |
|
1933 Pgno childPgno = get4byte(pCell); |
|
1934 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno); |
|
1935 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out; |
|
1936 } |
|
1937 } |
|
1938 |
|
1939 if( !pPage->leaf ){ |
|
1940 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
|
1941 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno); |
|
1942 } |
|
1943 |
|
1944 set_child_ptrmaps_out: |
|
1945 pPage->isInit = isInitOrig; |
|
1946 return rc; |
|
1947 } |
|
1948 |
|
1949 /* |
|
1950 ** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow |
|
1951 ** page, is a pointer to page iFrom. Modify this pointer so that it points to |
|
1952 ** iTo. Parameter eType describes the type of pointer to be modified, as |
|
1953 ** follows: |
|
1954 ** |
|
1955 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child |
|
1956 ** page of pPage. |
|
1957 ** |
|
1958 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow |
|
1959 ** page pointed to by one of the cells on pPage. |
|
1960 ** |
|
1961 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next |
|
1962 ** overflow page in the list. |
|
1963 */ |
|
1964 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ |
|
1965 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
1966 if( eType==PTRMAP_OVERFLOW2 ){ |
|
1967 /* The pointer is always the first 4 bytes of the page in this case. */ |
|
1968 if( get4byte(pPage->aData)!=iFrom ){ |
|
1969 return SQLITE_CORRUPT_BKPT; |
|
1970 } |
|
1971 put4byte(pPage->aData, iTo); |
|
1972 }else{ |
|
1973 int isInitOrig = pPage->isInit; |
|
1974 int i; |
|
1975 int nCell; |
|
1976 |
|
1977 sqlite3BtreeInitPage(pPage, 0); |
|
1978 nCell = pPage->nCell; |
|
1979 |
|
1980 for(i=0; i<nCell; i++){ |
|
1981 u8 *pCell = findCell(pPage, i); |
|
1982 if( eType==PTRMAP_OVERFLOW1 ){ |
|
1983 CellInfo info; |
|
1984 sqlite3BtreeParseCellPtr(pPage, pCell, &info); |
|
1985 if( info.iOverflow ){ |
|
1986 if( iFrom==get4byte(&pCell[info.iOverflow]) ){ |
|
1987 put4byte(&pCell[info.iOverflow], iTo); |
|
1988 break; |
|
1989 } |
|
1990 } |
|
1991 }else{ |
|
1992 if( get4byte(pCell)==iFrom ){ |
|
1993 put4byte(pCell, iTo); |
|
1994 break; |
|
1995 } |
|
1996 } |
|
1997 } |
|
1998 |
|
1999 if( i==nCell ){ |
|
2000 if( eType!=PTRMAP_BTREE || |
|
2001 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ |
|
2002 return SQLITE_CORRUPT_BKPT; |
|
2003 } |
|
2004 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); |
|
2005 } |
|
2006 |
|
2007 pPage->isInit = isInitOrig; |
|
2008 } |
|
2009 return SQLITE_OK; |
|
2010 } |
|
2011 |
|
2012 |
|
2013 /* |
|
2014 ** Move the open database page pDbPage to location iFreePage in the |
|
2015 ** database. The pDbPage reference remains valid. |
|
2016 */ |
|
2017 static int relocatePage( |
|
2018 BtShared *pBt, /* Btree */ |
|
2019 MemPage *pDbPage, /* Open page to move */ |
|
2020 u8 eType, /* Pointer map 'type' entry for pDbPage */ |
|
2021 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ |
|
2022 Pgno iFreePage /* The location to move pDbPage to */ |
|
2023 ){ |
|
2024 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ |
|
2025 Pgno iDbPage = pDbPage->pgno; |
|
2026 Pager *pPager = pBt->pPager; |
|
2027 int rc; |
|
2028 |
|
2029 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || |
|
2030 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); |
|
2031 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
2032 assert( pDbPage->pBt==pBt ); |
|
2033 |
|
2034 /* Move page iDbPage from its current location to page number iFreePage */ |
|
2035 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", |
|
2036 iDbPage, iFreePage, iPtrPage, eType)); |
|
2037 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage); |
|
2038 if( rc!=SQLITE_OK ){ |
|
2039 return rc; |
|
2040 } |
|
2041 pDbPage->pgno = iFreePage; |
|
2042 |
|
2043 /* If pDbPage was a btree-page, then it may have child pages and/or cells |
|
2044 ** that point to overflow pages. The pointer map entries for all these |
|
2045 ** pages need to be changed. |
|
2046 ** |
|
2047 ** If pDbPage is an overflow page, then the first 4 bytes may store a |
|
2048 ** pointer to a subsequent overflow page. If this is the case, then |
|
2049 ** the pointer map needs to be updated for the subsequent overflow page. |
|
2050 */ |
|
2051 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ |
|
2052 rc = setChildPtrmaps(pDbPage); |
|
2053 if( rc!=SQLITE_OK ){ |
|
2054 return rc; |
|
2055 } |
|
2056 }else{ |
|
2057 Pgno nextOvfl = get4byte(pDbPage->aData); |
|
2058 if( nextOvfl!=0 ){ |
|
2059 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage); |
|
2060 if( rc!=SQLITE_OK ){ |
|
2061 return rc; |
|
2062 } |
|
2063 } |
|
2064 } |
|
2065 |
|
2066 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so |
|
2067 ** that it points at iFreePage. Also fix the pointer map entry for |
|
2068 ** iPtrPage. |
|
2069 */ |
|
2070 if( eType!=PTRMAP_ROOTPAGE ){ |
|
2071 rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0); |
|
2072 if( rc!=SQLITE_OK ){ |
|
2073 return rc; |
|
2074 } |
|
2075 rc = sqlite3PagerWrite(pPtrPage->pDbPage); |
|
2076 if( rc!=SQLITE_OK ){ |
|
2077 releasePage(pPtrPage); |
|
2078 return rc; |
|
2079 } |
|
2080 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); |
|
2081 releasePage(pPtrPage); |
|
2082 if( rc==SQLITE_OK ){ |
|
2083 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage); |
|
2084 } |
|
2085 } |
|
2086 return rc; |
|
2087 } |
|
2088 |
|
2089 /* Forward declaration required by incrVacuumStep(). */ |
|
2090 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); |
|
2091 |
|
2092 /* |
|
2093 ** Perform a single step of an incremental-vacuum. If successful, |
|
2094 ** return SQLITE_OK. If there is no work to do (and therefore no |
|
2095 ** point in calling this function again), return SQLITE_DONE. |
|
2096 ** |
|
2097 ** More specificly, this function attempts to re-organize the |
|
2098 ** database so that the last page of the file currently in use |
|
2099 ** is no longer in use. |
|
2100 ** |
|
2101 ** If the nFin parameter is non-zero, the implementation assumes |
|
2102 ** that the caller will keep calling incrVacuumStep() until |
|
2103 ** it returns SQLITE_DONE or an error, and that nFin is the |
|
2104 ** number of pages the database file will contain after this |
|
2105 ** process is complete. |
|
2106 */ |
|
2107 static int incrVacuumStep(BtShared *pBt, Pgno nFin){ |
|
2108 Pgno iLastPg; /* Last page in the database */ |
|
2109 Pgno nFreeList; /* Number of pages still on the free-list */ |
|
2110 |
|
2111 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
2112 iLastPg = pBt->nTrunc; |
|
2113 if( iLastPg==0 ){ |
|
2114 iLastPg = sqlite3PagerPagecount(pBt->pPager); |
|
2115 } |
|
2116 |
|
2117 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ |
|
2118 int rc; |
|
2119 u8 eType; |
|
2120 Pgno iPtrPage; |
|
2121 |
|
2122 nFreeList = get4byte(&pBt->pPage1->aData[36]); |
|
2123 if( nFreeList==0 || nFin==iLastPg ){ |
|
2124 return SQLITE_DONE; |
|
2125 } |
|
2126 |
|
2127 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); |
|
2128 if( rc!=SQLITE_OK ){ |
|
2129 return rc; |
|
2130 } |
|
2131 if( eType==PTRMAP_ROOTPAGE ){ |
|
2132 return SQLITE_CORRUPT_BKPT; |
|
2133 } |
|
2134 |
|
2135 if( eType==PTRMAP_FREEPAGE ){ |
|
2136 if( nFin==0 ){ |
|
2137 /* Remove the page from the files free-list. This is not required |
|
2138 ** if nFin is non-zero. In that case, the free-list will be |
|
2139 ** truncated to zero after this function returns, so it doesn't |
|
2140 ** matter if it still contains some garbage entries. |
|
2141 */ |
|
2142 Pgno iFreePg; |
|
2143 MemPage *pFreePg; |
|
2144 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1); |
|
2145 if( rc!=SQLITE_OK ){ |
|
2146 return rc; |
|
2147 } |
|
2148 assert( iFreePg==iLastPg ); |
|
2149 releasePage(pFreePg); |
|
2150 } |
|
2151 } else { |
|
2152 Pgno iFreePg; /* Index of free page to move pLastPg to */ |
|
2153 MemPage *pLastPg; |
|
2154 |
|
2155 rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0); |
|
2156 if( rc!=SQLITE_OK ){ |
|
2157 return rc; |
|
2158 } |
|
2159 |
|
2160 /* If nFin is zero, this loop runs exactly once and page pLastPg |
|
2161 ** is swapped with the first free page pulled off the free list. |
|
2162 ** |
|
2163 ** On the other hand, if nFin is greater than zero, then keep |
|
2164 ** looping until a free-page located within the first nFin pages |
|
2165 ** of the file is found. |
|
2166 */ |
|
2167 do { |
|
2168 MemPage *pFreePg; |
|
2169 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0); |
|
2170 if( rc!=SQLITE_OK ){ |
|
2171 releasePage(pLastPg); |
|
2172 return rc; |
|
2173 } |
|
2174 releasePage(pFreePg); |
|
2175 }while( nFin!=0 && iFreePg>nFin ); |
|
2176 assert( iFreePg<iLastPg ); |
|
2177 |
|
2178 rc = sqlite3PagerWrite(pLastPg->pDbPage); |
|
2179 if( rc==SQLITE_OK ){ |
|
2180 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg); |
|
2181 } |
|
2182 releasePage(pLastPg); |
|
2183 if( rc!=SQLITE_OK ){ |
|
2184 return rc; |
|
2185 } |
|
2186 } |
|
2187 } |
|
2188 |
|
2189 pBt->nTrunc = iLastPg - 1; |
|
2190 while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){ |
|
2191 pBt->nTrunc--; |
|
2192 } |
|
2193 return SQLITE_OK; |
|
2194 } |
|
2195 |
|
2196 /* |
|
2197 ** A write-transaction must be opened before calling this function. |
|
2198 ** It performs a single unit of work towards an incremental vacuum. |
|
2199 ** |
|
2200 ** If the incremental vacuum is finished after this function has run, |
|
2201 ** SQLITE_DONE is returned. If it is not finished, but no error occured, |
|
2202 ** SQLITE_OK is returned. Otherwise an SQLite error code. |
|
2203 */ |
|
2204 int sqlite3BtreeIncrVacuum(Btree *p){ |
|
2205 int rc; |
|
2206 BtShared *pBt = p->pBt; |
|
2207 |
|
2208 sqlite3BtreeEnter(p); |
|
2209 pBt->db = p->db; |
|
2210 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); |
|
2211 if( !pBt->autoVacuum ){ |
|
2212 rc = SQLITE_DONE; |
|
2213 }else{ |
|
2214 invalidateAllOverflowCache(pBt); |
|
2215 rc = incrVacuumStep(pBt, 0); |
|
2216 } |
|
2217 sqlite3BtreeLeave(p); |
|
2218 return rc; |
|
2219 } |
|
2220 |
|
2221 /* |
|
2222 ** This routine is called prior to sqlite3PagerCommit when a transaction |
|
2223 ** is commited for an auto-vacuum database. |
|
2224 ** |
|
2225 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages |
|
2226 ** the database file should be truncated to during the commit process. |
|
2227 ** i.e. the database has been reorganized so that only the first *pnTrunc |
|
2228 ** pages are in use. |
|
2229 */ |
|
2230 static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){ |
|
2231 int rc = SQLITE_OK; |
|
2232 Pager *pPager = pBt->pPager; |
|
2233 #ifndef NDEBUG |
|
2234 int nRef = sqlite3PagerRefcount(pPager); |
|
2235 #endif |
|
2236 |
|
2237 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
2238 invalidateAllOverflowCache(pBt); |
|
2239 assert(pBt->autoVacuum); |
|
2240 if( !pBt->incrVacuum ){ |
|
2241 Pgno nFin = 0; |
|
2242 |
|
2243 if( pBt->nTrunc==0 ){ |
|
2244 Pgno nFree; |
|
2245 Pgno nPtrmap; |
|
2246 const int pgsz = pBt->pageSize; |
|
2247 Pgno nOrig = sqlite3PagerPagecount(pBt->pPager); |
|
2248 |
|
2249 if( PTRMAP_ISPAGE(pBt, nOrig) ){ |
|
2250 return SQLITE_CORRUPT_BKPT; |
|
2251 } |
|
2252 if( nOrig==PENDING_BYTE_PAGE(pBt) ){ |
|
2253 nOrig--; |
|
2254 } |
|
2255 nFree = get4byte(&pBt->pPage1->aData[36]); |
|
2256 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5); |
|
2257 nFin = nOrig - nFree - nPtrmap; |
|
2258 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){ |
|
2259 nFin--; |
|
2260 } |
|
2261 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ |
|
2262 nFin--; |
|
2263 } |
|
2264 } |
|
2265 |
|
2266 while( rc==SQLITE_OK ){ |
|
2267 rc = incrVacuumStep(pBt, nFin); |
|
2268 } |
|
2269 if( rc==SQLITE_DONE ){ |
|
2270 assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc); |
|
2271 rc = SQLITE_OK; |
|
2272 if( pBt->nTrunc ){ |
|
2273 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
|
2274 put4byte(&pBt->pPage1->aData[32], 0); |
|
2275 put4byte(&pBt->pPage1->aData[36], 0); |
|
2276 pBt->nTrunc = nFin; |
|
2277 } |
|
2278 } |
|
2279 if( rc!=SQLITE_OK ){ |
|
2280 sqlite3PagerRollback(pPager); |
|
2281 } |
|
2282 } |
|
2283 |
|
2284 if( rc==SQLITE_OK ){ |
|
2285 *pnTrunc = pBt->nTrunc; |
|
2286 pBt->nTrunc = 0; |
|
2287 } |
|
2288 assert( nRef==sqlite3PagerRefcount(pPager) ); |
|
2289 return rc; |
|
2290 } |
|
2291 |
|
2292 #endif |
|
2293 |
|
2294 /* |
|
2295 ** This routine does the first phase of a two-phase commit. This routine |
|
2296 ** causes a rollback journal to be created (if it does not already exist) |
|
2297 ** and populated with enough information so that if a power loss occurs |
|
2298 ** the database can be restored to its original state by playing back |
|
2299 ** the journal. Then the contents of the journal are flushed out to |
|
2300 ** the disk. After the journal is safely on oxide, the changes to the |
|
2301 ** database are written into the database file and flushed to oxide. |
|
2302 ** At the end of this call, the rollback journal still exists on the |
|
2303 ** disk and we are still holding all locks, so the transaction has not |
|
2304 ** committed. See sqlite3BtreeCommit() for the second phase of the |
|
2305 ** commit process. |
|
2306 ** |
|
2307 ** This call is a no-op if no write-transaction is currently active on pBt. |
|
2308 ** |
|
2309 ** Otherwise, sync the database file for the btree pBt. zMaster points to |
|
2310 ** the name of a master journal file that should be written into the |
|
2311 ** individual journal file, or is NULL, indicating no master journal file |
|
2312 ** (single database transaction). |
|
2313 ** |
|
2314 ** When this is called, the master journal should already have been |
|
2315 ** created, populated with this journal pointer and synced to disk. |
|
2316 ** |
|
2317 ** Once this is routine has returned, the only thing required to commit |
|
2318 ** the write-transaction for this database file is to delete the journal. |
|
2319 */ |
|
2320 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ |
|
2321 int rc = SQLITE_OK; |
|
2322 if( p->inTrans==TRANS_WRITE ){ |
|
2323 BtShared *pBt = p->pBt; |
|
2324 Pgno nTrunc = 0; |
|
2325 sqlite3BtreeEnter(p); |
|
2326 pBt->db = p->db; |
|
2327 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
2328 if( pBt->autoVacuum ){ |
|
2329 rc = autoVacuumCommit(pBt, &nTrunc); |
|
2330 if( rc!=SQLITE_OK ){ |
|
2331 sqlite3BtreeLeave(p); |
|
2332 return rc; |
|
2333 } |
|
2334 } |
|
2335 #endif |
|
2336 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc); |
|
2337 sqlite3BtreeLeave(p); |
|
2338 } |
|
2339 return rc; |
|
2340 } |
|
2341 |
|
2342 /* |
|
2343 ** Commit the transaction currently in progress. |
|
2344 ** |
|
2345 ** This routine implements the second phase of a 2-phase commit. The |
|
2346 ** sqlite3BtreeSync() routine does the first phase and should be invoked |
|
2347 ** prior to calling this routine. The sqlite3BtreeSync() routine did |
|
2348 ** all the work of writing information out to disk and flushing the |
|
2349 ** contents so that they are written onto the disk platter. All this |
|
2350 ** routine has to do is delete or truncate the rollback journal |
|
2351 ** (which causes the transaction to commit) and drop locks. |
|
2352 ** |
|
2353 ** This will release the write lock on the database file. If there |
|
2354 ** are no active cursors, it also releases the read lock. |
|
2355 */ |
|
2356 int sqlite3BtreeCommitPhaseTwo(Btree *p){ |
|
2357 BtShared *pBt = p->pBt; |
|
2358 |
|
2359 sqlite3BtreeEnter(p); |
|
2360 pBt->db = p->db; |
|
2361 btreeIntegrity(p); |
|
2362 |
|
2363 /* If the handle has a write-transaction open, commit the shared-btrees |
|
2364 ** transaction and set the shared state to TRANS_READ. |
|
2365 */ |
|
2366 if( p->inTrans==TRANS_WRITE ){ |
|
2367 int rc; |
|
2368 assert( pBt->inTransaction==TRANS_WRITE ); |
|
2369 assert( pBt->nTransaction>0 ); |
|
2370 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); |
|
2371 if( rc!=SQLITE_OK ){ |
|
2372 sqlite3BtreeLeave(p); |
|
2373 return rc; |
|
2374 } |
|
2375 pBt->inTransaction = TRANS_READ; |
|
2376 pBt->inStmt = 0; |
|
2377 } |
|
2378 unlockAllTables(p); |
|
2379 |
|
2380 /* If the handle has any kind of transaction open, decrement the transaction |
|
2381 ** count of the shared btree. If the transaction count reaches 0, set |
|
2382 ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below |
|
2383 ** will unlock the pager. |
|
2384 */ |
|
2385 if( p->inTrans!=TRANS_NONE ){ |
|
2386 pBt->nTransaction--; |
|
2387 if( 0==pBt->nTransaction ){ |
|
2388 pBt->inTransaction = TRANS_NONE; |
|
2389 } |
|
2390 } |
|
2391 |
|
2392 /* Set the handles current transaction state to TRANS_NONE and unlock |
|
2393 ** the pager if this call closed the only read or write transaction. |
|
2394 */ |
|
2395 p->inTrans = TRANS_NONE; |
|
2396 unlockBtreeIfUnused(pBt); |
|
2397 |
|
2398 btreeIntegrity(p); |
|
2399 sqlite3BtreeLeave(p); |
|
2400 return SQLITE_OK; |
|
2401 } |
|
2402 |
|
2403 /* |
|
2404 ** Do both phases of a commit. |
|
2405 */ |
|
2406 int sqlite3BtreeCommit(Btree *p){ |
|
2407 int rc; |
|
2408 sqlite3BtreeEnter(p); |
|
2409 rc = sqlite3BtreeCommitPhaseOne(p, 0); |
|
2410 if( rc==SQLITE_OK ){ |
|
2411 rc = sqlite3BtreeCommitPhaseTwo(p); |
|
2412 } |
|
2413 sqlite3BtreeLeave(p); |
|
2414 return rc; |
|
2415 } |
|
2416 |
|
2417 #ifndef NDEBUG |
|
2418 /* |
|
2419 ** Return the number of write-cursors open on this handle. This is for use |
|
2420 ** in assert() expressions, so it is only compiled if NDEBUG is not |
|
2421 ** defined. |
|
2422 ** |
|
2423 ** For the purposes of this routine, a write-cursor is any cursor that |
|
2424 ** is capable of writing to the databse. That means the cursor was |
|
2425 ** originally opened for writing and the cursor has not be disabled |
|
2426 ** by having its state changed to CURSOR_FAULT. |
|
2427 */ |
|
2428 static int countWriteCursors(BtShared *pBt){ |
|
2429 BtCursor *pCur; |
|
2430 int r = 0; |
|
2431 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
|
2432 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++; |
|
2433 } |
|
2434 return r; |
|
2435 } |
|
2436 #endif |
|
2437 |
|
2438 /* |
|
2439 ** This routine sets the state to CURSOR_FAULT and the error |
|
2440 ** code to errCode for every cursor on BtShared that pBtree |
|
2441 ** references. |
|
2442 ** |
|
2443 ** Every cursor is tripped, including cursors that belong |
|
2444 ** to other database connections that happen to be sharing |
|
2445 ** the cache with pBtree. |
|
2446 ** |
|
2447 ** This routine gets called when a rollback occurs. |
|
2448 ** All cursors using the same cache must be tripped |
|
2449 ** to prevent them from trying to use the btree after |
|
2450 ** the rollback. The rollback may have deleted tables |
|
2451 ** or moved root pages, so it is not sufficient to |
|
2452 ** save the state of the cursor. The cursor must be |
|
2453 ** invalidated. |
|
2454 */ |
|
2455 void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){ |
|
2456 BtCursor *p; |
|
2457 sqlite3BtreeEnter(pBtree); |
|
2458 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
|
2459 clearCursorPosition(p); |
|
2460 p->eState = CURSOR_FAULT; |
|
2461 p->skip = errCode; |
|
2462 } |
|
2463 sqlite3BtreeLeave(pBtree); |
|
2464 } |
|
2465 |
|
2466 /* |
|
2467 ** Rollback the transaction in progress. All cursors will be |
|
2468 ** invalided by this operation. Any attempt to use a cursor |
|
2469 ** that was open at the beginning of this operation will result |
|
2470 ** in an error. |
|
2471 ** |
|
2472 ** This will release the write lock on the database file. If there |
|
2473 ** are no active cursors, it also releases the read lock. |
|
2474 */ |
|
2475 int sqlite3BtreeRollback(Btree *p){ |
|
2476 int rc; |
|
2477 BtShared *pBt = p->pBt; |
|
2478 MemPage *pPage1; |
|
2479 |
|
2480 sqlite3BtreeEnter(p); |
|
2481 pBt->db = p->db; |
|
2482 rc = saveAllCursors(pBt, 0, 0); |
|
2483 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
2484 if( rc!=SQLITE_OK ){ |
|
2485 /* This is a horrible situation. An IO or malloc() error occured whilst |
|
2486 ** trying to save cursor positions. If this is an automatic rollback (as |
|
2487 ** the result of a constraint, malloc() failure or IO error) then |
|
2488 ** the cache may be internally inconsistent (not contain valid trees) so |
|
2489 ** we cannot simply return the error to the caller. Instead, abort |
|
2490 ** all queries that may be using any of the cursors that failed to save. |
|
2491 */ |
|
2492 sqlite3BtreeTripAllCursors(p, rc); |
|
2493 } |
|
2494 #endif |
|
2495 btreeIntegrity(p); |
|
2496 unlockAllTables(p); |
|
2497 |
|
2498 if( p->inTrans==TRANS_WRITE ){ |
|
2499 int rc2; |
|
2500 |
|
2501 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
2502 pBt->nTrunc = 0; |
|
2503 #endif |
|
2504 |
|
2505 assert( TRANS_WRITE==pBt->inTransaction ); |
|
2506 rc2 = sqlite3PagerRollback(pBt->pPager); |
|
2507 if( rc2!=SQLITE_OK ){ |
|
2508 rc = rc2; |
|
2509 } |
|
2510 |
|
2511 /* The rollback may have destroyed the pPage1->aData value. So |
|
2512 ** call sqlite3BtreeGetPage() on page 1 again to make |
|
2513 ** sure pPage1->aData is set correctly. */ |
|
2514 if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ |
|
2515 releasePage(pPage1); |
|
2516 } |
|
2517 assert( countWriteCursors(pBt)==0 ); |
|
2518 pBt->inTransaction = TRANS_READ; |
|
2519 } |
|
2520 |
|
2521 if( p->inTrans!=TRANS_NONE ){ |
|
2522 assert( pBt->nTransaction>0 ); |
|
2523 pBt->nTransaction--; |
|
2524 if( 0==pBt->nTransaction ){ |
|
2525 pBt->inTransaction = TRANS_NONE; |
|
2526 } |
|
2527 } |
|
2528 |
|
2529 p->inTrans = TRANS_NONE; |
|
2530 pBt->inStmt = 0; |
|
2531 unlockBtreeIfUnused(pBt); |
|
2532 |
|
2533 btreeIntegrity(p); |
|
2534 sqlite3BtreeLeave(p); |
|
2535 return rc; |
|
2536 } |
|
2537 |
|
2538 /* |
|
2539 ** Start a statement subtransaction. The subtransaction can |
|
2540 ** can be rolled back independently of the main transaction. |
|
2541 ** You must start a transaction before starting a subtransaction. |
|
2542 ** The subtransaction is ended automatically if the main transaction |
|
2543 ** commits or rolls back. |
|
2544 ** |
|
2545 ** Only one subtransaction may be active at a time. It is an error to try |
|
2546 ** to start a new subtransaction if another subtransaction is already active. |
|
2547 ** |
|
2548 ** Statement subtransactions are used around individual SQL statements |
|
2549 ** that are contained within a BEGIN...COMMIT block. If a constraint |
|
2550 ** error occurs within the statement, the effect of that one statement |
|
2551 ** can be rolled back without having to rollback the entire transaction. |
|
2552 */ |
|
2553 int sqlite3BtreeBeginStmt(Btree *p){ |
|
2554 int rc; |
|
2555 BtShared *pBt = p->pBt; |
|
2556 sqlite3BtreeEnter(p); |
|
2557 pBt->db = p->db; |
|
2558 if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){ |
|
2559 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
2560 }else{ |
|
2561 assert( pBt->inTransaction==TRANS_WRITE ); |
|
2562 rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager); |
|
2563 pBt->inStmt = 1; |
|
2564 } |
|
2565 sqlite3BtreeLeave(p); |
|
2566 return rc; |
|
2567 } |
|
2568 |
|
2569 |
|
2570 /* |
|
2571 ** Commit the statment subtransaction currently in progress. If no |
|
2572 ** subtransaction is active, this is a no-op. |
|
2573 */ |
|
2574 int sqlite3BtreeCommitStmt(Btree *p){ |
|
2575 int rc; |
|
2576 BtShared *pBt = p->pBt; |
|
2577 sqlite3BtreeEnter(p); |
|
2578 pBt->db = p->db; |
|
2579 if( pBt->inStmt && !pBt->readOnly ){ |
|
2580 rc = sqlite3PagerStmtCommit(pBt->pPager); |
|
2581 }else{ |
|
2582 rc = SQLITE_OK; |
|
2583 } |
|
2584 pBt->inStmt = 0; |
|
2585 sqlite3BtreeLeave(p); |
|
2586 return rc; |
|
2587 } |
|
2588 |
|
2589 /* |
|
2590 ** Rollback the active statement subtransaction. If no subtransaction |
|
2591 ** is active this routine is a no-op. |
|
2592 ** |
|
2593 ** All cursors will be invalidated by this operation. Any attempt |
|
2594 ** to use a cursor that was open at the beginning of this operation |
|
2595 ** will result in an error. |
|
2596 */ |
|
2597 int sqlite3BtreeRollbackStmt(Btree *p){ |
|
2598 int rc = SQLITE_OK; |
|
2599 BtShared *pBt = p->pBt; |
|
2600 sqlite3BtreeEnter(p); |
|
2601 pBt->db = p->db; |
|
2602 if( pBt->inStmt && !pBt->readOnly ){ |
|
2603 rc = sqlite3PagerStmtRollback(pBt->pPager); |
|
2604 assert( countWriteCursors(pBt)==0 ); |
|
2605 pBt->inStmt = 0; |
|
2606 } |
|
2607 sqlite3BtreeLeave(p); |
|
2608 return rc; |
|
2609 } |
|
2610 |
|
2611 /* |
|
2612 ** Default key comparison function to be used if no comparison function |
|
2613 ** is specified on the sqlite3BtreeCursor() call. |
|
2614 */ |
|
2615 static int dfltCompare( |
|
2616 void *NotUsed, /* User data is not used */ |
|
2617 int n1, const void *p1, /* First key to compare */ |
|
2618 int n2, const void *p2 /* Second key to compare */ |
|
2619 ){ |
|
2620 int c; |
|
2621 c = memcmp(p1, p2, n1<n2 ? n1 : n2); |
|
2622 if( c==0 ){ |
|
2623 c = n1 - n2; |
|
2624 } |
|
2625 return c; |
|
2626 } |
|
2627 |
|
2628 /* |
|
2629 ** Create a new cursor for the BTree whose root is on the page |
|
2630 ** iTable. The act of acquiring a cursor gets a read lock on |
|
2631 ** the database file. |
|
2632 ** |
|
2633 ** If wrFlag==0, then the cursor can only be used for reading. |
|
2634 ** If wrFlag==1, then the cursor can be used for reading or for |
|
2635 ** writing if other conditions for writing are also met. These |
|
2636 ** are the conditions that must be met in order for writing to |
|
2637 ** be allowed: |
|
2638 ** |
|
2639 ** 1: The cursor must have been opened with wrFlag==1 |
|
2640 ** |
|
2641 ** 2: Other database connections that share the same pager cache |
|
2642 ** but which are not in the READ_UNCOMMITTED state may not have |
|
2643 ** cursors open with wrFlag==0 on the same table. Otherwise |
|
2644 ** the changes made by this write cursor would be visible to |
|
2645 ** the read cursors in the other database connection. |
|
2646 ** |
|
2647 ** 3: The database must be writable (not on read-only media) |
|
2648 ** |
|
2649 ** 4: There must be an active transaction. |
|
2650 ** |
|
2651 ** No checking is done to make sure that page iTable really is the |
|
2652 ** root page of a b-tree. If it is not, then the cursor acquired |
|
2653 ** will not work correctly. |
|
2654 ** |
|
2655 ** The comparison function must be logically the same for every cursor |
|
2656 ** on a particular table. Changing the comparison function will result |
|
2657 ** in incorrect operations. If the comparison function is NULL, a |
|
2658 ** default comparison function is used. The comparison function is |
|
2659 ** always ignored for INTKEY tables. |
|
2660 */ |
|
2661 static int btreeCursor( |
|
2662 Btree *p, /* The btree */ |
|
2663 int iTable, /* Root page of table to open */ |
|
2664 int wrFlag, /* 1 to write. 0 read-only */ |
|
2665 int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */ |
|
2666 void *pArg, /* First arg to xCompare() */ |
|
2667 BtCursor **ppCur /* Write new cursor here */ |
|
2668 ){ |
|
2669 int rc; |
|
2670 BtCursor *pCur; |
|
2671 BtShared *pBt = p->pBt; |
|
2672 |
|
2673 assert( sqlite3BtreeHoldsMutex(p) ); |
|
2674 *ppCur = 0; |
|
2675 if( wrFlag ){ |
|
2676 if( pBt->readOnly ){ |
|
2677 return SQLITE_READONLY; |
|
2678 } |
|
2679 if( checkReadLocks(p, iTable, 0) ){ |
|
2680 return SQLITE_LOCKED; |
|
2681 } |
|
2682 } |
|
2683 |
|
2684 if( pBt->pPage1==0 ){ |
|
2685 rc = lockBtreeWithRetry(p); |
|
2686 if( rc!=SQLITE_OK ){ |
|
2687 return rc; |
|
2688 } |
|
2689 if( pBt->readOnly && wrFlag ){ |
|
2690 return SQLITE_READONLY; |
|
2691 } |
|
2692 } |
|
2693 pCur = (BtCursor*)sqlite3MallocZero( sizeof(*pCur) ); |
|
2694 if( pCur==0 ){ |
|
2695 rc = SQLITE_NOMEM; |
|
2696 goto create_cursor_exception; |
|
2697 } |
|
2698 pCur->pgnoRoot = (Pgno)iTable; |
|
2699 if( iTable==1 && sqlite3PagerPagecount(pBt->pPager)==0 ){ |
|
2700 rc = SQLITE_EMPTY; |
|
2701 goto create_cursor_exception; |
|
2702 } |
|
2703 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0); |
|
2704 if( rc!=SQLITE_OK ){ |
|
2705 goto create_cursor_exception; |
|
2706 } |
|
2707 |
|
2708 /* Now that no other errors can occur, finish filling in the BtCursor |
|
2709 ** variables, link the cursor into the BtShared list and set *ppCur (the |
|
2710 ** output argument to this function). |
|
2711 */ |
|
2712 pCur->xCompare = xCmp ? xCmp : dfltCompare; |
|
2713 pCur->pArg = pArg; |
|
2714 pCur->pBtree = p; |
|
2715 pCur->pBt = pBt; |
|
2716 pCur->wrFlag = wrFlag; |
|
2717 pCur->pNext = pBt->pCursor; |
|
2718 if( pCur->pNext ){ |
|
2719 pCur->pNext->pPrev = pCur; |
|
2720 } |
|
2721 pBt->pCursor = pCur; |
|
2722 pCur->eState = CURSOR_INVALID; |
|
2723 *ppCur = pCur; |
|
2724 |
|
2725 return SQLITE_OK; |
|
2726 |
|
2727 create_cursor_exception: |
|
2728 if( pCur ){ |
|
2729 releasePage(pCur->pPage); |
|
2730 sqlite3_free(pCur); |
|
2731 } |
|
2732 unlockBtreeIfUnused(pBt); |
|
2733 return rc; |
|
2734 } |
|
2735 int sqlite3BtreeCursor( |
|
2736 Btree *p, /* The btree */ |
|
2737 int iTable, /* Root page of table to open */ |
|
2738 int wrFlag, /* 1 to write. 0 read-only */ |
|
2739 int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */ |
|
2740 void *pArg, /* First arg to xCompare() */ |
|
2741 BtCursor **ppCur /* Write new cursor here */ |
|
2742 ){ |
|
2743 int rc; |
|
2744 sqlite3BtreeEnter(p); |
|
2745 p->pBt->db = p->db; |
|
2746 rc = btreeCursor(p, iTable, wrFlag, xCmp, pArg, ppCur); |
|
2747 sqlite3BtreeLeave(p); |
|
2748 return rc; |
|
2749 } |
|
2750 |
|
2751 |
|
2752 /* |
|
2753 ** Close a cursor. The read lock on the database file is released |
|
2754 ** when the last cursor is closed. |
|
2755 */ |
|
2756 int sqlite3BtreeCloseCursor(BtCursor *pCur){ |
|
2757 BtShared *pBt = pCur->pBt; |
|
2758 Btree *pBtree = pCur->pBtree; |
|
2759 |
|
2760 sqlite3BtreeEnter(pBtree); |
|
2761 pBt->db = pBtree->db; |
|
2762 clearCursorPosition(pCur); |
|
2763 if( pCur->pPrev ){ |
|
2764 pCur->pPrev->pNext = pCur->pNext; |
|
2765 }else{ |
|
2766 pBt->pCursor = pCur->pNext; |
|
2767 } |
|
2768 if( pCur->pNext ){ |
|
2769 pCur->pNext->pPrev = pCur->pPrev; |
|
2770 } |
|
2771 releasePage(pCur->pPage); |
|
2772 unlockBtreeIfUnused(pBt); |
|
2773 invalidateOverflowCache(pCur); |
|
2774 sqlite3_free(pCur); |
|
2775 sqlite3BtreeLeave(pBtree); |
|
2776 return SQLITE_OK; |
|
2777 } |
|
2778 |
|
2779 /* |
|
2780 ** Make a temporary cursor by filling in the fields of pTempCur. |
|
2781 ** The temporary cursor is not on the cursor list for the Btree. |
|
2782 */ |
|
2783 void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){ |
|
2784 assert( cursorHoldsMutex(pCur) ); |
|
2785 memcpy(pTempCur, pCur, sizeof(*pCur)); |
|
2786 pTempCur->pNext = 0; |
|
2787 pTempCur->pPrev = 0; |
|
2788 if( pTempCur->pPage ){ |
|
2789 sqlite3PagerRef(pTempCur->pPage->pDbPage); |
|
2790 } |
|
2791 } |
|
2792 |
|
2793 /* |
|
2794 ** Delete a temporary cursor such as was made by the CreateTemporaryCursor() |
|
2795 ** function above. |
|
2796 */ |
|
2797 void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){ |
|
2798 assert( cursorHoldsMutex(pCur) ); |
|
2799 if( pCur->pPage ){ |
|
2800 sqlite3PagerUnref(pCur->pPage->pDbPage); |
|
2801 } |
|
2802 } |
|
2803 |
|
2804 /* |
|
2805 ** Make sure the BtCursor* given in the argument has a valid |
|
2806 ** BtCursor.info structure. If it is not already valid, call |
|
2807 ** sqlite3BtreeParseCell() to fill it in. |
|
2808 ** |
|
2809 ** BtCursor.info is a cache of the information in the current cell. |
|
2810 ** Using this cache reduces the number of calls to sqlite3BtreeParseCell(). |
|
2811 ** |
|
2812 ** 2007-06-25: There is a bug in some versions of MSVC that cause the |
|
2813 ** compiler to crash when getCellInfo() is implemented as a macro. |
|
2814 ** But there is a measureable speed advantage to using the macro on gcc |
|
2815 ** (when less compiler optimizations like -Os or -O0 are used and the |
|
2816 ** compiler is not doing agressive inlining.) So we use a real function |
|
2817 ** for MSVC and a macro for everything else. Ticket #2457. |
|
2818 */ |
|
2819 #ifndef NDEBUG |
|
2820 static void assertCellInfo(BtCursor *pCur){ |
|
2821 CellInfo info; |
|
2822 memset(&info, 0, sizeof(info)); |
|
2823 sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info); |
|
2824 assert( memcmp(&info, &pCur->info, sizeof(info))==0 ); |
|
2825 } |
|
2826 #else |
|
2827 #define assertCellInfo(x) |
|
2828 #endif |
|
2829 #ifdef _MSC_VER |
|
2830 /* Use a real function in MSVC to work around bugs in that compiler. */ |
|
2831 static void getCellInfo(BtCursor *pCur){ |
|
2832 if( pCur->info.nSize==0 ){ |
|
2833 sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info); |
|
2834 }else{ |
|
2835 assertCellInfo(pCur); |
|
2836 } |
|
2837 } |
|
2838 #else /* if not _MSC_VER */ |
|
2839 /* Use a macro in all other compilers so that the function is inlined */ |
|
2840 #define getCellInfo(pCur) \ |
|
2841 if( pCur->info.nSize==0 ){ \ |
|
2842 sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info); \ |
|
2843 }else{ \ |
|
2844 assertCellInfo(pCur); \ |
|
2845 } |
|
2846 #endif /* _MSC_VER */ |
|
2847 |
|
2848 /* |
|
2849 ** Set *pSize to the size of the buffer needed to hold the value of |
|
2850 ** the key for the current entry. If the cursor is not pointing |
|
2851 ** to a valid entry, *pSize is set to 0. |
|
2852 ** |
|
2853 ** For a table with the INTKEY flag set, this routine returns the key |
|
2854 ** itself, not the number of bytes in the key. |
|
2855 */ |
|
2856 int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ |
|
2857 int rc; |
|
2858 |
|
2859 assert( cursorHoldsMutex(pCur) ); |
|
2860 rc = restoreOrClearCursorPosition(pCur); |
|
2861 if( rc==SQLITE_OK ){ |
|
2862 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); |
|
2863 if( pCur->eState==CURSOR_INVALID ){ |
|
2864 *pSize = 0; |
|
2865 }else{ |
|
2866 getCellInfo(pCur); |
|
2867 *pSize = pCur->info.nKey; |
|
2868 } |
|
2869 } |
|
2870 return rc; |
|
2871 } |
|
2872 |
|
2873 /* |
|
2874 ** Set *pSize to the number of bytes of data in the entry the |
|
2875 ** cursor currently points to. Always return SQLITE_OK. |
|
2876 ** Failure is not possible. If the cursor is not currently |
|
2877 ** pointing to an entry (which can happen, for example, if |
|
2878 ** the database is empty) then *pSize is set to 0. |
|
2879 */ |
|
2880 int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ |
|
2881 int rc; |
|
2882 |
|
2883 assert( cursorHoldsMutex(pCur) ); |
|
2884 rc = restoreOrClearCursorPosition(pCur); |
|
2885 if( rc==SQLITE_OK ){ |
|
2886 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); |
|
2887 if( pCur->eState==CURSOR_INVALID ){ |
|
2888 /* Not pointing at a valid entry - set *pSize to 0. */ |
|
2889 *pSize = 0; |
|
2890 }else{ |
|
2891 getCellInfo(pCur); |
|
2892 *pSize = pCur->info.nData; |
|
2893 } |
|
2894 } |
|
2895 return rc; |
|
2896 } |
|
2897 |
|
2898 /* |
|
2899 ** Given the page number of an overflow page in the database (parameter |
|
2900 ** ovfl), this function finds the page number of the next page in the |
|
2901 ** linked list of overflow pages. If possible, it uses the auto-vacuum |
|
2902 ** pointer-map data instead of reading the content of page ovfl to do so. |
|
2903 ** |
|
2904 ** If an error occurs an SQLite error code is returned. Otherwise: |
|
2905 ** |
|
2906 ** Unless pPgnoNext is NULL, the page number of the next overflow |
|
2907 ** page in the linked list is written to *pPgnoNext. If page ovfl |
|
2908 ** is the last page in its linked list, *pPgnoNext is set to zero. |
|
2909 ** |
|
2910 ** If ppPage is not NULL, *ppPage is set to the MemPage* handle |
|
2911 ** for page ovfl. The underlying pager page may have been requested |
|
2912 ** with the noContent flag set, so the page data accessable via |
|
2913 ** this handle may not be trusted. |
|
2914 */ |
|
2915 static int getOverflowPage( |
|
2916 BtShared *pBt, |
|
2917 Pgno ovfl, /* Overflow page */ |
|
2918 MemPage **ppPage, /* OUT: MemPage handle */ |
|
2919 Pgno *pPgnoNext /* OUT: Next overflow page number */ |
|
2920 ){ |
|
2921 Pgno next = 0; |
|
2922 int rc; |
|
2923 |
|
2924 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
2925 /* One of these must not be NULL. Otherwise, why call this function? */ |
|
2926 assert(ppPage || pPgnoNext); |
|
2927 |
|
2928 /* If pPgnoNext is NULL, then this function is being called to obtain |
|
2929 ** a MemPage* reference only. No page-data is required in this case. |
|
2930 */ |
|
2931 if( !pPgnoNext ){ |
|
2932 return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1); |
|
2933 } |
|
2934 |
|
2935 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
2936 /* Try to find the next page in the overflow list using the |
|
2937 ** autovacuum pointer-map pages. Guess that the next page in |
|
2938 ** the overflow list is page number (ovfl+1). If that guess turns |
|
2939 ** out to be wrong, fall back to loading the data of page |
|
2940 ** number ovfl to determine the next page number. |
|
2941 */ |
|
2942 if( pBt->autoVacuum ){ |
|
2943 Pgno pgno; |
|
2944 Pgno iGuess = ovfl+1; |
|
2945 u8 eType; |
|
2946 |
|
2947 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ |
|
2948 iGuess++; |
|
2949 } |
|
2950 |
|
2951 if( iGuess<=sqlite3PagerPagecount(pBt->pPager) ){ |
|
2952 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); |
|
2953 if( rc!=SQLITE_OK ){ |
|
2954 return rc; |
|
2955 } |
|
2956 if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ |
|
2957 next = iGuess; |
|
2958 } |
|
2959 } |
|
2960 } |
|
2961 #endif |
|
2962 |
|
2963 if( next==0 || ppPage ){ |
|
2964 MemPage *pPage = 0; |
|
2965 |
|
2966 rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0); |
|
2967 assert(rc==SQLITE_OK || pPage==0); |
|
2968 if( next==0 && rc==SQLITE_OK ){ |
|
2969 next = get4byte(pPage->aData); |
|
2970 } |
|
2971 |
|
2972 if( ppPage ){ |
|
2973 *ppPage = pPage; |
|
2974 }else{ |
|
2975 releasePage(pPage); |
|
2976 } |
|
2977 } |
|
2978 *pPgnoNext = next; |
|
2979 |
|
2980 return rc; |
|
2981 } |
|
2982 |
|
2983 /* |
|
2984 ** Copy data from a buffer to a page, or from a page to a buffer. |
|
2985 ** |
|
2986 ** pPayload is a pointer to data stored on database page pDbPage. |
|
2987 ** If argument eOp is false, then nByte bytes of data are copied |
|
2988 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, |
|
2989 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes |
|
2990 ** of data are copied from the buffer pBuf to pPayload. |
|
2991 ** |
|
2992 ** SQLITE_OK is returned on success, otherwise an error code. |
|
2993 */ |
|
2994 static int copyPayload( |
|
2995 void *pPayload, /* Pointer to page data */ |
|
2996 void *pBuf, /* Pointer to buffer */ |
|
2997 int nByte, /* Number of bytes to copy */ |
|
2998 int eOp, /* 0 -> copy from page, 1 -> copy to page */ |
|
2999 DbPage *pDbPage /* Page containing pPayload */ |
|
3000 ){ |
|
3001 if( eOp ){ |
|
3002 /* Copy data from buffer to page (a write operation) */ |
|
3003 int rc = sqlite3PagerWrite(pDbPage); |
|
3004 if( rc!=SQLITE_OK ){ |
|
3005 return rc; |
|
3006 } |
|
3007 memcpy(pPayload, pBuf, nByte); |
|
3008 }else{ |
|
3009 /* Copy data from page to buffer (a read operation) */ |
|
3010 memcpy(pBuf, pPayload, nByte); |
|
3011 } |
|
3012 return SQLITE_OK; |
|
3013 } |
|
3014 |
|
3015 /* |
|
3016 ** This function is used to read or overwrite payload information |
|
3017 ** for the entry that the pCur cursor is pointing to. If the eOp |
|
3018 ** parameter is 0, this is a read operation (data copied into |
|
3019 ** buffer pBuf). If it is non-zero, a write (data copied from |
|
3020 ** buffer pBuf). |
|
3021 ** |
|
3022 ** A total of "amt" bytes are read or written beginning at "offset". |
|
3023 ** Data is read to or from the buffer pBuf. |
|
3024 ** |
|
3025 ** This routine does not make a distinction between key and data. |
|
3026 ** It just reads or writes bytes from the payload area. Data might |
|
3027 ** appear on the main page or be scattered out on multiple overflow |
|
3028 ** pages. |
|
3029 ** |
|
3030 ** If the BtCursor.isIncrblobHandle flag is set, and the current |
|
3031 ** cursor entry uses one or more overflow pages, this function |
|
3032 ** allocates space for and lazily popluates the overflow page-list |
|
3033 ** cache array (BtCursor.aOverflow). Subsequent calls use this |
|
3034 ** cache to make seeking to the supplied offset more efficient. |
|
3035 ** |
|
3036 ** Once an overflow page-list cache has been allocated, it may be |
|
3037 ** invalidated if some other cursor writes to the same table, or if |
|
3038 ** the cursor is moved to a different row. Additionally, in auto-vacuum |
|
3039 ** mode, the following events may invalidate an overflow page-list cache. |
|
3040 ** |
|
3041 ** * An incremental vacuum, |
|
3042 ** * A commit in auto_vacuum="full" mode, |
|
3043 ** * Creating a table (may require moving an overflow page). |
|
3044 */ |
|
3045 static int accessPayload( |
|
3046 BtCursor *pCur, /* Cursor pointing to entry to read from */ |
|
3047 int offset, /* Begin reading this far into payload */ |
|
3048 int amt, /* Read this many bytes */ |
|
3049 unsigned char *pBuf, /* Write the bytes into this buffer */ |
|
3050 int skipKey, /* offset begins at data if this is true */ |
|
3051 int eOp /* zero to read. non-zero to write. */ |
|
3052 ){ |
|
3053 unsigned char *aPayload; |
|
3054 int rc = SQLITE_OK; |
|
3055 u32 nKey; |
|
3056 int iIdx = 0; |
|
3057 MemPage *pPage = pCur->pPage; /* Btree page of current cursor entry */ |
|
3058 BtShared *pBt; /* Btree this cursor belongs to */ |
|
3059 |
|
3060 assert( pPage ); |
|
3061 assert( pCur->eState==CURSOR_VALID ); |
|
3062 assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); |
|
3063 assert( offset>=0 ); |
|
3064 assert( cursorHoldsMutex(pCur) ); |
|
3065 |
|
3066 getCellInfo(pCur); |
|
3067 aPayload = pCur->info.pCell + pCur->info.nHeader; |
|
3068 nKey = (pPage->intKey ? 0 : pCur->info.nKey); |
|
3069 |
|
3070 if( skipKey ){ |
|
3071 offset += nKey; |
|
3072 } |
|
3073 if( offset+amt > nKey+pCur->info.nData ){ |
|
3074 /* Trying to read or write past the end of the data is an error */ |
|
3075 return SQLITE_ERROR; |
|
3076 } |
|
3077 |
|
3078 /* Check if data must be read/written to/from the btree page itself. */ |
|
3079 if( offset<pCur->info.nLocal ){ |
|
3080 int a = amt; |
|
3081 if( a+offset>pCur->info.nLocal ){ |
|
3082 a = pCur->info.nLocal - offset; |
|
3083 } |
|
3084 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); |
|
3085 offset = 0; |
|
3086 pBuf += a; |
|
3087 amt -= a; |
|
3088 }else{ |
|
3089 offset -= pCur->info.nLocal; |
|
3090 } |
|
3091 |
|
3092 pBt = pCur->pBt; |
|
3093 if( rc==SQLITE_OK && amt>0 ){ |
|
3094 const int ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ |
|
3095 Pgno nextPage; |
|
3096 |
|
3097 nextPage = get4byte(&aPayload[pCur->info.nLocal]); |
|
3098 |
|
3099 #ifndef SQLITE_OMIT_INCRBLOB |
|
3100 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[] |
|
3101 ** has not been allocated, allocate it now. The array is sized at |
|
3102 ** one entry for each overflow page in the overflow chain. The |
|
3103 ** page number of the first overflow page is stored in aOverflow[0], |
|
3104 ** etc. A value of 0 in the aOverflow[] array means "not yet known" |
|
3105 ** (the cache is lazily populated). |
|
3106 */ |
|
3107 if( pCur->isIncrblobHandle && !pCur->aOverflow ){ |
|
3108 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; |
|
3109 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl); |
|
3110 if( nOvfl && !pCur->aOverflow ){ |
|
3111 rc = SQLITE_NOMEM; |
|
3112 } |
|
3113 } |
|
3114 |
|
3115 /* If the overflow page-list cache has been allocated and the |
|
3116 ** entry for the first required overflow page is valid, skip |
|
3117 ** directly to it. |
|
3118 */ |
|
3119 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){ |
|
3120 iIdx = (offset/ovflSize); |
|
3121 nextPage = pCur->aOverflow[iIdx]; |
|
3122 offset = (offset%ovflSize); |
|
3123 } |
|
3124 #endif |
|
3125 |
|
3126 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){ |
|
3127 |
|
3128 #ifndef SQLITE_OMIT_INCRBLOB |
|
3129 /* If required, populate the overflow page-list cache. */ |
|
3130 if( pCur->aOverflow ){ |
|
3131 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage); |
|
3132 pCur->aOverflow[iIdx] = nextPage; |
|
3133 } |
|
3134 #endif |
|
3135 |
|
3136 if( offset>=ovflSize ){ |
|
3137 /* The only reason to read this page is to obtain the page |
|
3138 ** number for the next page in the overflow chain. The page |
|
3139 ** data is not required. So first try to lookup the overflow |
|
3140 ** page-list cache, if any, then fall back to the getOverflowPage() |
|
3141 ** function. |
|
3142 */ |
|
3143 #ifndef SQLITE_OMIT_INCRBLOB |
|
3144 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){ |
|
3145 nextPage = pCur->aOverflow[iIdx+1]; |
|
3146 } else |
|
3147 #endif |
|
3148 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); |
|
3149 offset -= ovflSize; |
|
3150 }else{ |
|
3151 /* Need to read this page properly. It contains some of the |
|
3152 ** range of data that is being read (eOp==0) or written (eOp!=0). |
|
3153 */ |
|
3154 DbPage *pDbPage; |
|
3155 int a = amt; |
|
3156 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage); |
|
3157 if( rc==SQLITE_OK ){ |
|
3158 aPayload = (unsigned char*)sqlite3PagerGetData(pDbPage); |
|
3159 nextPage = get4byte(aPayload); |
|
3160 if( a + offset > ovflSize ){ |
|
3161 a = ovflSize - offset; |
|
3162 } |
|
3163 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); |
|
3164 sqlite3PagerUnref(pDbPage); |
|
3165 offset = 0; |
|
3166 amt -= a; |
|
3167 pBuf += a; |
|
3168 } |
|
3169 } |
|
3170 } |
|
3171 } |
|
3172 |
|
3173 if( rc==SQLITE_OK && amt>0 ){ |
|
3174 return SQLITE_CORRUPT_BKPT; |
|
3175 } |
|
3176 return rc; |
|
3177 } |
|
3178 |
|
3179 /* |
|
3180 ** Read part of the key associated with cursor pCur. Exactly |
|
3181 ** "amt" bytes will be transfered into pBuf[]. The transfer |
|
3182 ** begins at "offset". |
|
3183 ** |
|
3184 ** Return SQLITE_OK on success or an error code if anything goes |
|
3185 ** wrong. An error is returned if "offset+amt" is larger than |
|
3186 ** the available payload. |
|
3187 */ |
|
3188 int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
|
3189 int rc; |
|
3190 |
|
3191 assert( cursorHoldsMutex(pCur) ); |
|
3192 rc = restoreOrClearCursorPosition(pCur); |
|
3193 if( rc==SQLITE_OK ){ |
|
3194 assert( pCur->eState==CURSOR_VALID ); |
|
3195 assert( pCur->pPage!=0 ); |
|
3196 if( pCur->pPage->intKey ){ |
|
3197 return SQLITE_CORRUPT_BKPT; |
|
3198 } |
|
3199 assert( pCur->pPage->intKey==0 ); |
|
3200 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); |
|
3201 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0); |
|
3202 } |
|
3203 return rc; |
|
3204 } |
|
3205 |
|
3206 /* |
|
3207 ** Read part of the data associated with cursor pCur. Exactly |
|
3208 ** "amt" bytes will be transfered into pBuf[]. The transfer |
|
3209 ** begins at "offset". |
|
3210 ** |
|
3211 ** Return SQLITE_OK on success or an error code if anything goes |
|
3212 ** wrong. An error is returned if "offset+amt" is larger than |
|
3213 ** the available payload. |
|
3214 */ |
|
3215 int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
|
3216 int rc; |
|
3217 |
|
3218 assert( cursorHoldsMutex(pCur) ); |
|
3219 rc = restoreOrClearCursorPosition(pCur); |
|
3220 if( rc==SQLITE_OK ){ |
|
3221 assert( pCur->eState==CURSOR_VALID ); |
|
3222 assert( pCur->pPage!=0 ); |
|
3223 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); |
|
3224 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 1, 0); |
|
3225 } |
|
3226 return rc; |
|
3227 } |
|
3228 |
|
3229 /* |
|
3230 ** Return a pointer to payload information from the entry that the |
|
3231 ** pCur cursor is pointing to. The pointer is to the beginning of |
|
3232 ** the key if skipKey==0 and it points to the beginning of data if |
|
3233 ** skipKey==1. The number of bytes of available key/data is written |
|
3234 ** into *pAmt. If *pAmt==0, then the value returned will not be |
|
3235 ** a valid pointer. |
|
3236 ** |
|
3237 ** This routine is an optimization. It is common for the entire key |
|
3238 ** and data to fit on the local page and for there to be no overflow |
|
3239 ** pages. When that is so, this routine can be used to access the |
|
3240 ** key and data without making a copy. If the key and/or data spills |
|
3241 ** onto overflow pages, then accessPayload() must be used to reassembly |
|
3242 ** the key/data and copy it into a preallocated buffer. |
|
3243 ** |
|
3244 ** The pointer returned by this routine looks directly into the cached |
|
3245 ** page of the database. The data might change or move the next time |
|
3246 ** any btree routine is called. |
|
3247 */ |
|
3248 static const unsigned char *fetchPayload( |
|
3249 BtCursor *pCur, /* Cursor pointing to entry to read from */ |
|
3250 int *pAmt, /* Write the number of available bytes here */ |
|
3251 int skipKey /* read beginning at data if this is true */ |
|
3252 ){ |
|
3253 unsigned char *aPayload; |
|
3254 MemPage *pPage; |
|
3255 u32 nKey; |
|
3256 int nLocal; |
|
3257 |
|
3258 assert( pCur!=0 && pCur->pPage!=0 ); |
|
3259 assert( pCur->eState==CURSOR_VALID ); |
|
3260 assert( cursorHoldsMutex(pCur) ); |
|
3261 pPage = pCur->pPage; |
|
3262 assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); |
|
3263 getCellInfo(pCur); |
|
3264 aPayload = pCur->info.pCell; |
|
3265 aPayload += pCur->info.nHeader; |
|
3266 if( pPage->intKey ){ |
|
3267 nKey = 0; |
|
3268 }else{ |
|
3269 nKey = pCur->info.nKey; |
|
3270 } |
|
3271 if( skipKey ){ |
|
3272 aPayload += nKey; |
|
3273 nLocal = pCur->info.nLocal - nKey; |
|
3274 }else{ |
|
3275 nLocal = pCur->info.nLocal; |
|
3276 if( nLocal>nKey ){ |
|
3277 nLocal = nKey; |
|
3278 } |
|
3279 } |
|
3280 *pAmt = nLocal; |
|
3281 return aPayload; |
|
3282 } |
|
3283 |
|
3284 |
|
3285 /* |
|
3286 ** For the entry that cursor pCur is point to, return as |
|
3287 ** many bytes of the key or data as are available on the local |
|
3288 ** b-tree page. Write the number of available bytes into *pAmt. |
|
3289 ** |
|
3290 ** The pointer returned is ephemeral. The key/data may move |
|
3291 ** or be destroyed on the next call to any Btree routine, |
|
3292 ** including calls from other threads against the same cache. |
|
3293 ** Hence, a mutex on the BtShared should be held prior to calling |
|
3294 ** this routine. |
|
3295 ** |
|
3296 ** These routines is used to get quick access to key and data |
|
3297 ** in the common case where no overflow pages are used. |
|
3298 */ |
|
3299 const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){ |
|
3300 assert( cursorHoldsMutex(pCur) ); |
|
3301 if( pCur->eState==CURSOR_VALID ){ |
|
3302 return (const void*)fetchPayload(pCur, pAmt, 0); |
|
3303 } |
|
3304 return 0; |
|
3305 } |
|
3306 const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){ |
|
3307 assert( cursorHoldsMutex(pCur) ); |
|
3308 if( pCur->eState==CURSOR_VALID ){ |
|
3309 return (const void*)fetchPayload(pCur, pAmt, 1); |
|
3310 } |
|
3311 return 0; |
|
3312 } |
|
3313 |
|
3314 |
|
3315 /* |
|
3316 ** Move the cursor down to a new child page. The newPgno argument is the |
|
3317 ** page number of the child page to move to. |
|
3318 */ |
|
3319 static int moveToChild(BtCursor *pCur, u32 newPgno){ |
|
3320 int rc; |
|
3321 MemPage *pNewPage; |
|
3322 MemPage *pOldPage; |
|
3323 BtShared *pBt = pCur->pBt; |
|
3324 |
|
3325 assert( cursorHoldsMutex(pCur) ); |
|
3326 assert( pCur->eState==CURSOR_VALID ); |
|
3327 rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage); |
|
3328 if( rc ) return rc; |
|
3329 pNewPage->idxParent = pCur->idx; |
|
3330 pOldPage = pCur->pPage; |
|
3331 pOldPage->idxShift = 0; |
|
3332 releasePage(pOldPage); |
|
3333 pCur->pPage = pNewPage; |
|
3334 pCur->idx = 0; |
|
3335 pCur->info.nSize = 0; |
|
3336 if( pNewPage->nCell<1 ){ |
|
3337 return SQLITE_CORRUPT_BKPT; |
|
3338 } |
|
3339 return SQLITE_OK; |
|
3340 } |
|
3341 |
|
3342 /* |
|
3343 ** Return true if the page is the virtual root of its table. |
|
3344 ** |
|
3345 ** The virtual root page is the root page for most tables. But |
|
3346 ** for the table rooted on page 1, sometime the real root page |
|
3347 ** is empty except for the right-pointer. In such cases the |
|
3348 ** virtual root page is the page that the right-pointer of page |
|
3349 ** 1 is pointing to. |
|
3350 */ |
|
3351 int sqlite3BtreeIsRootPage(MemPage *pPage){ |
|
3352 MemPage *pParent; |
|
3353 |
|
3354 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
3355 pParent = pPage->pParent; |
|
3356 if( pParent==0 ) return 1; |
|
3357 if( pParent->pgno>1 ) return 0; |
|
3358 if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1; |
|
3359 return 0; |
|
3360 } |
|
3361 |
|
3362 /* |
|
3363 ** Move the cursor up to the parent page. |
|
3364 ** |
|
3365 ** pCur->idx is set to the cell index that contains the pointer |
|
3366 ** to the page we are coming from. If we are coming from the |
|
3367 ** right-most child page then pCur->idx is set to one more than |
|
3368 ** the largest cell index. |
|
3369 */ |
|
3370 void sqlite3BtreeMoveToParent(BtCursor *pCur){ |
|
3371 MemPage *pParent; |
|
3372 MemPage *pPage; |
|
3373 int idxParent; |
|
3374 |
|
3375 assert( cursorHoldsMutex(pCur) ); |
|
3376 assert( pCur->eState==CURSOR_VALID ); |
|
3377 pPage = pCur->pPage; |
|
3378 assert( pPage!=0 ); |
|
3379 assert( !sqlite3BtreeIsRootPage(pPage) ); |
|
3380 pParent = pPage->pParent; |
|
3381 assert( pParent!=0 ); |
|
3382 idxParent = pPage->idxParent; |
|
3383 sqlite3PagerRef(pParent->pDbPage); |
|
3384 releasePage(pPage); |
|
3385 pCur->pPage = pParent; |
|
3386 pCur->info.nSize = 0; |
|
3387 assert( pParent->idxShift==0 ); |
|
3388 pCur->idx = idxParent; |
|
3389 } |
|
3390 |
|
3391 /* |
|
3392 ** Move the cursor to the root page |
|
3393 */ |
|
3394 static int moveToRoot(BtCursor *pCur){ |
|
3395 MemPage *pRoot; |
|
3396 int rc = SQLITE_OK; |
|
3397 Btree *p = pCur->pBtree; |
|
3398 BtShared *pBt = p->pBt; |
|
3399 |
|
3400 assert( cursorHoldsMutex(pCur) ); |
|
3401 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); |
|
3402 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); |
|
3403 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); |
|
3404 if( pCur->eState>=CURSOR_REQUIRESEEK ){ |
|
3405 if( pCur->eState==CURSOR_FAULT ){ |
|
3406 return pCur->skip; |
|
3407 } |
|
3408 clearCursorPosition(pCur); |
|
3409 } |
|
3410 pRoot = pCur->pPage; |
|
3411 if( pRoot && pRoot->pgno==pCur->pgnoRoot ){ |
|
3412 assert( pRoot->isInit ); |
|
3413 }else{ |
|
3414 if( |
|
3415 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0)) |
|
3416 ){ |
|
3417 pCur->eState = CURSOR_INVALID; |
|
3418 return rc; |
|
3419 } |
|
3420 releasePage(pCur->pPage); |
|
3421 pCur->pPage = pRoot; |
|
3422 } |
|
3423 pCur->idx = 0; |
|
3424 pCur->info.nSize = 0; |
|
3425 if( pRoot->nCell==0 && !pRoot->leaf ){ |
|
3426 Pgno subpage; |
|
3427 assert( pRoot->pgno==1 ); |
|
3428 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); |
|
3429 assert( subpage>0 ); |
|
3430 pCur->eState = CURSOR_VALID; |
|
3431 rc = moveToChild(pCur, subpage); |
|
3432 } |
|
3433 pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID); |
|
3434 return rc; |
|
3435 } |
|
3436 |
|
3437 /* |
|
3438 ** Move the cursor down to the left-most leaf entry beneath the |
|
3439 ** entry to which it is currently pointing. |
|
3440 ** |
|
3441 ** The left-most leaf is the one with the smallest key - the first |
|
3442 ** in ascending order. |
|
3443 */ |
|
3444 static int moveToLeftmost(BtCursor *pCur){ |
|
3445 Pgno pgno; |
|
3446 int rc = SQLITE_OK; |
|
3447 MemPage *pPage; |
|
3448 |
|
3449 assert( cursorHoldsMutex(pCur) ); |
|
3450 assert( pCur->eState==CURSOR_VALID ); |
|
3451 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ |
|
3452 assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); |
|
3453 pgno = get4byte(findCell(pPage, pCur->idx)); |
|
3454 rc = moveToChild(pCur, pgno); |
|
3455 } |
|
3456 return rc; |
|
3457 } |
|
3458 |
|
3459 /* |
|
3460 ** Move the cursor down to the right-most leaf entry beneath the |
|
3461 ** page to which it is currently pointing. Notice the difference |
|
3462 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() |
|
3463 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() |
|
3464 ** finds the right-most entry beneath the *page*. |
|
3465 ** |
|
3466 ** The right-most entry is the one with the largest key - the last |
|
3467 ** key in ascending order. |
|
3468 */ |
|
3469 static int moveToRightmost(BtCursor *pCur){ |
|
3470 Pgno pgno; |
|
3471 int rc = SQLITE_OK; |
|
3472 MemPage *pPage; |
|
3473 |
|
3474 assert( cursorHoldsMutex(pCur) ); |
|
3475 assert( pCur->eState==CURSOR_VALID ); |
|
3476 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ |
|
3477 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
|
3478 pCur->idx = pPage->nCell; |
|
3479 rc = moveToChild(pCur, pgno); |
|
3480 } |
|
3481 if( rc==SQLITE_OK ){ |
|
3482 pCur->idx = pPage->nCell - 1; |
|
3483 pCur->info.nSize = 0; |
|
3484 } |
|
3485 return SQLITE_OK; |
|
3486 } |
|
3487 |
|
3488 /* Move the cursor to the first entry in the table. Return SQLITE_OK |
|
3489 ** on success. Set *pRes to 0 if the cursor actually points to something |
|
3490 ** or set *pRes to 1 if the table is empty. |
|
3491 */ |
|
3492 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ |
|
3493 int rc; |
|
3494 |
|
3495 assert( cursorHoldsMutex(pCur) ); |
|
3496 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
|
3497 rc = moveToRoot(pCur); |
|
3498 if( rc==SQLITE_OK ){ |
|
3499 if( pCur->eState==CURSOR_INVALID ){ |
|
3500 assert( pCur->pPage->nCell==0 ); |
|
3501 *pRes = 1; |
|
3502 rc = SQLITE_OK; |
|
3503 }else{ |
|
3504 assert( pCur->pPage->nCell>0 ); |
|
3505 *pRes = 0; |
|
3506 rc = moveToLeftmost(pCur); |
|
3507 } |
|
3508 } |
|
3509 return rc; |
|
3510 } |
|
3511 |
|
3512 /* Move the cursor to the last entry in the table. Return SQLITE_OK |
|
3513 ** on success. Set *pRes to 0 if the cursor actually points to something |
|
3514 ** or set *pRes to 1 if the table is empty. |
|
3515 */ |
|
3516 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ |
|
3517 int rc; |
|
3518 |
|
3519 assert( cursorHoldsMutex(pCur) ); |
|
3520 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
|
3521 rc = moveToRoot(pCur); |
|
3522 if( rc==SQLITE_OK ){ |
|
3523 if( CURSOR_INVALID==pCur->eState ){ |
|
3524 assert( pCur->pPage->nCell==0 ); |
|
3525 *pRes = 1; |
|
3526 }else{ |
|
3527 assert( pCur->eState==CURSOR_VALID ); |
|
3528 *pRes = 0; |
|
3529 rc = moveToRightmost(pCur); |
|
3530 } |
|
3531 } |
|
3532 return rc; |
|
3533 } |
|
3534 |
|
3535 /* Move the cursor so that it points to an entry near pKey/nKey. |
|
3536 ** Return a success code. |
|
3537 ** |
|
3538 ** For INTKEY tables, only the nKey parameter is used. pKey is |
|
3539 ** ignored. For other tables, nKey is the number of bytes of data |
|
3540 ** in pKey. The comparison function specified when the cursor was |
|
3541 ** created is used to compare keys. |
|
3542 ** |
|
3543 ** If an exact match is not found, then the cursor is always |
|
3544 ** left pointing at a leaf page which would hold the entry if it |
|
3545 ** were present. The cursor might point to an entry that comes |
|
3546 ** before or after the key. |
|
3547 ** |
|
3548 ** The result of comparing the key with the entry to which the |
|
3549 ** cursor is written to *pRes if pRes!=NULL. The meaning of |
|
3550 ** this value is as follows: |
|
3551 ** |
|
3552 ** *pRes<0 The cursor is left pointing at an entry that |
|
3553 ** is smaller than pKey or if the table is empty |
|
3554 ** and the cursor is therefore left point to nothing. |
|
3555 ** |
|
3556 ** *pRes==0 The cursor is left pointing at an entry that |
|
3557 ** exactly matches pKey. |
|
3558 ** |
|
3559 ** *pRes>0 The cursor is left pointing at an entry that |
|
3560 ** is larger than pKey. |
|
3561 ** |
|
3562 */ |
|
3563 int sqlite3BtreeMoveto( |
|
3564 BtCursor *pCur, /* The cursor to be moved */ |
|
3565 const void *pKey, /* The key content for indices. Not used by tables */ |
|
3566 i64 nKey, /* Size of pKey. Or the key for tables */ |
|
3567 int biasRight, /* If true, bias the search to the high end */ |
|
3568 int *pRes /* Search result flag */ |
|
3569 ){ |
|
3570 int rc; |
|
3571 |
|
3572 assert( cursorHoldsMutex(pCur) ); |
|
3573 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
|
3574 rc = moveToRoot(pCur); |
|
3575 if( rc ){ |
|
3576 return rc; |
|
3577 } |
|
3578 assert( pCur->pPage ); |
|
3579 assert( pCur->pPage->isInit ); |
|
3580 if( pCur->eState==CURSOR_INVALID ){ |
|
3581 *pRes = -1; |
|
3582 assert( pCur->pPage->nCell==0 ); |
|
3583 return SQLITE_OK; |
|
3584 } |
|
3585 for(;;){ |
|
3586 int lwr, upr; |
|
3587 Pgno chldPg; |
|
3588 MemPage *pPage = pCur->pPage; |
|
3589 int c = -1; /* pRes return if table is empty must be -1 */ |
|
3590 lwr = 0; |
|
3591 upr = pPage->nCell-1; |
|
3592 if( !pPage->intKey && pKey==0 ){ |
|
3593 return SQLITE_CORRUPT_BKPT; |
|
3594 } |
|
3595 if( biasRight ){ |
|
3596 pCur->idx = upr; |
|
3597 }else{ |
|
3598 pCur->idx = (upr+lwr)/2; |
|
3599 } |
|
3600 if( lwr<=upr ) for(;;){ |
|
3601 void *pCellKey; |
|
3602 i64 nCellKey; |
|
3603 pCur->info.nSize = 0; |
|
3604 if( pPage->intKey ){ |
|
3605 u8 *pCell; |
|
3606 pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize; |
|
3607 if( pPage->hasData ){ |
|
3608 u32 dummy; |
|
3609 pCell += getVarint32(pCell, &dummy); |
|
3610 } |
|
3611 getVarint(pCell, (u64 *)&nCellKey); |
|
3612 if( nCellKey<nKey ){ |
|
3613 c = -1; |
|
3614 }else if( nCellKey>nKey ){ |
|
3615 c = +1; |
|
3616 }else{ |
|
3617 c = 0; |
|
3618 } |
|
3619 }else{ |
|
3620 int available; |
|
3621 pCellKey = (void *)fetchPayload(pCur, &available, 0); |
|
3622 nCellKey = pCur->info.nKey; |
|
3623 if( available>=nCellKey ){ |
|
3624 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey); |
|
3625 }else{ |
|
3626 pCellKey = sqlite3_malloc( nCellKey ); |
|
3627 if( pCellKey==0 ) return SQLITE_NOMEM; |
|
3628 rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey); |
|
3629 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey); |
|
3630 sqlite3_free(pCellKey); |
|
3631 if( rc ){ |
|
3632 return rc; |
|
3633 } |
|
3634 } |
|
3635 } |
|
3636 if( c==0 ){ |
|
3637 if( pPage->leafData && !pPage->leaf ){ |
|
3638 lwr = pCur->idx; |
|
3639 upr = lwr - 1; |
|
3640 break; |
|
3641 }else{ |
|
3642 if( pRes ) *pRes = 0; |
|
3643 return SQLITE_OK; |
|
3644 } |
|
3645 } |
|
3646 if( c<0 ){ |
|
3647 lwr = pCur->idx+1; |
|
3648 }else{ |
|
3649 upr = pCur->idx-1; |
|
3650 } |
|
3651 if( lwr>upr ){ |
|
3652 break; |
|
3653 } |
|
3654 pCur->idx = (lwr+upr)/2; |
|
3655 } |
|
3656 assert( lwr==upr+1 ); |
|
3657 assert( pPage->isInit ); |
|
3658 if( pPage->leaf ){ |
|
3659 chldPg = 0; |
|
3660 }else if( lwr>=pPage->nCell ){ |
|
3661 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
|
3662 }else{ |
|
3663 chldPg = get4byte(findCell(pPage, lwr)); |
|
3664 } |
|
3665 if( chldPg==0 ){ |
|
3666 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); |
|
3667 if( pRes ) *pRes = c; |
|
3668 return SQLITE_OK; |
|
3669 } |
|
3670 pCur->idx = lwr; |
|
3671 pCur->info.nSize = 0; |
|
3672 rc = moveToChild(pCur, chldPg); |
|
3673 if( rc ){ |
|
3674 return rc; |
|
3675 } |
|
3676 } |
|
3677 /* NOT REACHED */ |
|
3678 } |
|
3679 |
|
3680 |
|
3681 /* |
|
3682 ** Return TRUE if the cursor is not pointing at an entry of the table. |
|
3683 ** |
|
3684 ** TRUE will be returned after a call to sqlite3BtreeNext() moves |
|
3685 ** past the last entry in the table or sqlite3BtreePrev() moves past |
|
3686 ** the first entry. TRUE is also returned if the table is empty. |
|
3687 */ |
|
3688 int sqlite3BtreeEof(BtCursor *pCur){ |
|
3689 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries |
|
3690 ** have been deleted? This API will need to change to return an error code |
|
3691 ** as well as the boolean result value. |
|
3692 */ |
|
3693 return (CURSOR_VALID!=pCur->eState); |
|
3694 } |
|
3695 |
|
3696 /* |
|
3697 ** Return the database connection handle for a cursor. |
|
3698 */ |
|
3699 sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){ |
|
3700 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
|
3701 return pCur->pBtree->db; |
|
3702 } |
|
3703 |
|
3704 /* |
|
3705 ** Advance the cursor to the next entry in the database. If |
|
3706 ** successful then set *pRes=0. If the cursor |
|
3707 ** was already pointing to the last entry in the database before |
|
3708 ** this routine was called, then set *pRes=1. |
|
3709 */ |
|
3710 static int btreeNext(BtCursor *pCur, int *pRes){ |
|
3711 int rc; |
|
3712 MemPage *pPage; |
|
3713 |
|
3714 assert( cursorHoldsMutex(pCur) ); |
|
3715 rc = restoreOrClearCursorPosition(pCur); |
|
3716 if( rc!=SQLITE_OK ){ |
|
3717 return rc; |
|
3718 } |
|
3719 assert( pRes!=0 ); |
|
3720 pPage = pCur->pPage; |
|
3721 if( CURSOR_INVALID==pCur->eState ){ |
|
3722 *pRes = 1; |
|
3723 return SQLITE_OK; |
|
3724 } |
|
3725 if( pCur->skip>0 ){ |
|
3726 pCur->skip = 0; |
|
3727 *pRes = 0; |
|
3728 return SQLITE_OK; |
|
3729 } |
|
3730 pCur->skip = 0; |
|
3731 |
|
3732 assert( pPage->isInit ); |
|
3733 assert( pCur->idx<pPage->nCell ); |
|
3734 |
|
3735 pCur->idx++; |
|
3736 pCur->info.nSize = 0; |
|
3737 if( pCur->idx>=pPage->nCell ){ |
|
3738 if( !pPage->leaf ){ |
|
3739 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
|
3740 if( rc ) return rc; |
|
3741 rc = moveToLeftmost(pCur); |
|
3742 *pRes = 0; |
|
3743 return rc; |
|
3744 } |
|
3745 do{ |
|
3746 if( sqlite3BtreeIsRootPage(pPage) ){ |
|
3747 *pRes = 1; |
|
3748 pCur->eState = CURSOR_INVALID; |
|
3749 return SQLITE_OK; |
|
3750 } |
|
3751 sqlite3BtreeMoveToParent(pCur); |
|
3752 pPage = pCur->pPage; |
|
3753 }while( pCur->idx>=pPage->nCell ); |
|
3754 *pRes = 0; |
|
3755 if( pPage->leafData ){ |
|
3756 rc = sqlite3BtreeNext(pCur, pRes); |
|
3757 }else{ |
|
3758 rc = SQLITE_OK; |
|
3759 } |
|
3760 return rc; |
|
3761 } |
|
3762 *pRes = 0; |
|
3763 if( pPage->leaf ){ |
|
3764 return SQLITE_OK; |
|
3765 } |
|
3766 rc = moveToLeftmost(pCur); |
|
3767 return rc; |
|
3768 } |
|
3769 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ |
|
3770 int rc; |
|
3771 assert( cursorHoldsMutex(pCur) ); |
|
3772 rc = btreeNext(pCur, pRes); |
|
3773 return rc; |
|
3774 } |
|
3775 |
|
3776 |
|
3777 /* |
|
3778 ** Step the cursor to the back to the previous entry in the database. If |
|
3779 ** successful then set *pRes=0. If the cursor |
|
3780 ** was already pointing to the first entry in the database before |
|
3781 ** this routine was called, then set *pRes=1. |
|
3782 */ |
|
3783 static int btreePrevious(BtCursor *pCur, int *pRes){ |
|
3784 int rc; |
|
3785 Pgno pgno; |
|
3786 MemPage *pPage; |
|
3787 |
|
3788 assert( cursorHoldsMutex(pCur) ); |
|
3789 rc = restoreOrClearCursorPosition(pCur); |
|
3790 if( rc!=SQLITE_OK ){ |
|
3791 return rc; |
|
3792 } |
|
3793 if( CURSOR_INVALID==pCur->eState ){ |
|
3794 *pRes = 1; |
|
3795 return SQLITE_OK; |
|
3796 } |
|
3797 if( pCur->skip<0 ){ |
|
3798 pCur->skip = 0; |
|
3799 *pRes = 0; |
|
3800 return SQLITE_OK; |
|
3801 } |
|
3802 pCur->skip = 0; |
|
3803 |
|
3804 pPage = pCur->pPage; |
|
3805 assert( pPage->isInit ); |
|
3806 assert( pCur->idx>=0 ); |
|
3807 if( !pPage->leaf ){ |
|
3808 pgno = get4byte( findCell(pPage, pCur->idx) ); |
|
3809 rc = moveToChild(pCur, pgno); |
|
3810 if( rc ){ |
|
3811 return rc; |
|
3812 } |
|
3813 rc = moveToRightmost(pCur); |
|
3814 }else{ |
|
3815 while( pCur->idx==0 ){ |
|
3816 if( sqlite3BtreeIsRootPage(pPage) ){ |
|
3817 pCur->eState = CURSOR_INVALID; |
|
3818 *pRes = 1; |
|
3819 return SQLITE_OK; |
|
3820 } |
|
3821 sqlite3BtreeMoveToParent(pCur); |
|
3822 pPage = pCur->pPage; |
|
3823 } |
|
3824 pCur->idx--; |
|
3825 pCur->info.nSize = 0; |
|
3826 if( pPage->leafData && !pPage->leaf ){ |
|
3827 rc = sqlite3BtreePrevious(pCur, pRes); |
|
3828 }else{ |
|
3829 rc = SQLITE_OK; |
|
3830 } |
|
3831 } |
|
3832 *pRes = 0; |
|
3833 return rc; |
|
3834 } |
|
3835 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ |
|
3836 int rc; |
|
3837 assert( cursorHoldsMutex(pCur) ); |
|
3838 rc = btreePrevious(pCur, pRes); |
|
3839 return rc; |
|
3840 } |
|
3841 |
|
3842 /* |
|
3843 ** Allocate a new page from the database file. |
|
3844 ** |
|
3845 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() |
|
3846 ** has already been called on the new page.) The new page has also |
|
3847 ** been referenced and the calling routine is responsible for calling |
|
3848 ** sqlite3PagerUnref() on the new page when it is done. |
|
3849 ** |
|
3850 ** SQLITE_OK is returned on success. Any other return value indicates |
|
3851 ** an error. *ppPage and *pPgno are undefined in the event of an error. |
|
3852 ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned. |
|
3853 ** |
|
3854 ** If the "nearby" parameter is not 0, then a (feeble) effort is made to |
|
3855 ** locate a page close to the page number "nearby". This can be used in an |
|
3856 ** attempt to keep related pages close to each other in the database file, |
|
3857 ** which in turn can make database access faster. |
|
3858 ** |
|
3859 ** If the "exact" parameter is not 0, and the page-number nearby exists |
|
3860 ** anywhere on the free-list, then it is guarenteed to be returned. This |
|
3861 ** is only used by auto-vacuum databases when allocating a new table. |
|
3862 */ |
|
3863 static int allocateBtreePage( |
|
3864 BtShared *pBt, |
|
3865 MemPage **ppPage, |
|
3866 Pgno *pPgno, |
|
3867 Pgno nearby, |
|
3868 u8 exact |
|
3869 ){ |
|
3870 MemPage *pPage1; |
|
3871 int rc; |
|
3872 int n; /* Number of pages on the freelist */ |
|
3873 int k; /* Number of leaves on the trunk of the freelist */ |
|
3874 MemPage *pTrunk = 0; |
|
3875 MemPage *pPrevTrunk = 0; |
|
3876 |
|
3877 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
3878 pPage1 = pBt->pPage1; |
|
3879 n = get4byte(&pPage1->aData[36]); |
|
3880 if( n>0 ){ |
|
3881 /* There are pages on the freelist. Reuse one of those pages. */ |
|
3882 Pgno iTrunk; |
|
3883 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ |
|
3884 |
|
3885 /* If the 'exact' parameter was true and a query of the pointer-map |
|
3886 ** shows that the page 'nearby' is somewhere on the free-list, then |
|
3887 ** the entire-list will be searched for that page. |
|
3888 */ |
|
3889 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
3890 if( exact && nearby<=sqlite3PagerPagecount(pBt->pPager) ){ |
|
3891 u8 eType; |
|
3892 assert( nearby>0 ); |
|
3893 assert( pBt->autoVacuum ); |
|
3894 rc = ptrmapGet(pBt, nearby, &eType, 0); |
|
3895 if( rc ) return rc; |
|
3896 if( eType==PTRMAP_FREEPAGE ){ |
|
3897 searchList = 1; |
|
3898 } |
|
3899 *pPgno = nearby; |
|
3900 } |
|
3901 #endif |
|
3902 |
|
3903 /* Decrement the free-list count by 1. Set iTrunk to the index of the |
|
3904 ** first free-list trunk page. iPrevTrunk is initially 1. |
|
3905 */ |
|
3906 rc = sqlite3PagerWrite(pPage1->pDbPage); |
|
3907 if( rc ) return rc; |
|
3908 put4byte(&pPage1->aData[36], n-1); |
|
3909 |
|
3910 /* The code within this loop is run only once if the 'searchList' variable |
|
3911 ** is not true. Otherwise, it runs once for each trunk-page on the |
|
3912 ** free-list until the page 'nearby' is located. |
|
3913 */ |
|
3914 do { |
|
3915 pPrevTrunk = pTrunk; |
|
3916 if( pPrevTrunk ){ |
|
3917 iTrunk = get4byte(&pPrevTrunk->aData[0]); |
|
3918 }else{ |
|
3919 iTrunk = get4byte(&pPage1->aData[32]); |
|
3920 } |
|
3921 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0); |
|
3922 if( rc ){ |
|
3923 pTrunk = 0; |
|
3924 goto end_allocate_page; |
|
3925 } |
|
3926 |
|
3927 k = get4byte(&pTrunk->aData[4]); |
|
3928 if( k==0 && !searchList ){ |
|
3929 /* The trunk has no leaves and the list is not being searched. |
|
3930 ** So extract the trunk page itself and use it as the newly |
|
3931 ** allocated page */ |
|
3932 assert( pPrevTrunk==0 ); |
|
3933 rc = sqlite3PagerWrite(pTrunk->pDbPage); |
|
3934 if( rc ){ |
|
3935 goto end_allocate_page; |
|
3936 } |
|
3937 *pPgno = iTrunk; |
|
3938 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
|
3939 *ppPage = pTrunk; |
|
3940 pTrunk = 0; |
|
3941 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
|
3942 }else if( k>pBt->usableSize/4 - 8 ){ |
|
3943 /* Value of k is out of range. Database corruption */ |
|
3944 rc = SQLITE_CORRUPT_BKPT; |
|
3945 goto end_allocate_page; |
|
3946 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
3947 }else if( searchList && nearby==iTrunk ){ |
|
3948 /* The list is being searched and this trunk page is the page |
|
3949 ** to allocate, regardless of whether it has leaves. |
|
3950 */ |
|
3951 assert( *pPgno==iTrunk ); |
|
3952 *ppPage = pTrunk; |
|
3953 searchList = 0; |
|
3954 rc = sqlite3PagerWrite(pTrunk->pDbPage); |
|
3955 if( rc ){ |
|
3956 goto end_allocate_page; |
|
3957 } |
|
3958 if( k==0 ){ |
|
3959 if( !pPrevTrunk ){ |
|
3960 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
|
3961 }else{ |
|
3962 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); |
|
3963 } |
|
3964 }else{ |
|
3965 /* The trunk page is required by the caller but it contains |
|
3966 ** pointers to free-list leaves. The first leaf becomes a trunk |
|
3967 ** page in this case. |
|
3968 */ |
|
3969 MemPage *pNewTrunk; |
|
3970 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); |
|
3971 rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0); |
|
3972 if( rc!=SQLITE_OK ){ |
|
3973 goto end_allocate_page; |
|
3974 } |
|
3975 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); |
|
3976 if( rc!=SQLITE_OK ){ |
|
3977 releasePage(pNewTrunk); |
|
3978 goto end_allocate_page; |
|
3979 } |
|
3980 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); |
|
3981 put4byte(&pNewTrunk->aData[4], k-1); |
|
3982 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); |
|
3983 releasePage(pNewTrunk); |
|
3984 if( !pPrevTrunk ){ |
|
3985 put4byte(&pPage1->aData[32], iNewTrunk); |
|
3986 }else{ |
|
3987 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); |
|
3988 if( rc ){ |
|
3989 goto end_allocate_page; |
|
3990 } |
|
3991 put4byte(&pPrevTrunk->aData[0], iNewTrunk); |
|
3992 } |
|
3993 } |
|
3994 pTrunk = 0; |
|
3995 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
|
3996 #endif |
|
3997 }else{ |
|
3998 /* Extract a leaf from the trunk */ |
|
3999 int closest; |
|
4000 Pgno iPage; |
|
4001 unsigned char *aData = pTrunk->aData; |
|
4002 rc = sqlite3PagerWrite(pTrunk->pDbPage); |
|
4003 if( rc ){ |
|
4004 goto end_allocate_page; |
|
4005 } |
|
4006 if( nearby>0 ){ |
|
4007 int i, dist; |
|
4008 closest = 0; |
|
4009 dist = get4byte(&aData[8]) - nearby; |
|
4010 if( dist<0 ) dist = -dist; |
|
4011 for(i=1; i<k; i++){ |
|
4012 int d2 = get4byte(&aData[8+i*4]) - nearby; |
|
4013 if( d2<0 ) d2 = -d2; |
|
4014 if( d2<dist ){ |
|
4015 closest = i; |
|
4016 dist = d2; |
|
4017 } |
|
4018 } |
|
4019 }else{ |
|
4020 closest = 0; |
|
4021 } |
|
4022 |
|
4023 iPage = get4byte(&aData[8+closest*4]); |
|
4024 if( !searchList || iPage==nearby ){ |
|
4025 *pPgno = iPage; |
|
4026 if( *pPgno>sqlite3PagerPagecount(pBt->pPager) ){ |
|
4027 /* Free page off the end of the file */ |
|
4028 return SQLITE_CORRUPT_BKPT; |
|
4029 } |
|
4030 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" |
|
4031 ": %d more free pages\n", |
|
4032 *pPgno, closest+1, k, pTrunk->pgno, n-1)); |
|
4033 if( closest<k-1 ){ |
|
4034 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); |
|
4035 } |
|
4036 put4byte(&aData[4], k-1); |
|
4037 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1); |
|
4038 if( rc==SQLITE_OK ){ |
|
4039 sqlite3PagerDontRollback((*ppPage)->pDbPage); |
|
4040 rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
|
4041 if( rc!=SQLITE_OK ){ |
|
4042 releasePage(*ppPage); |
|
4043 } |
|
4044 } |
|
4045 searchList = 0; |
|
4046 } |
|
4047 } |
|
4048 releasePage(pPrevTrunk); |
|
4049 pPrevTrunk = 0; |
|
4050 }while( searchList ); |
|
4051 }else{ |
|
4052 /* There are no pages on the freelist, so create a new page at the |
|
4053 ** end of the file */ |
|
4054 *pPgno = sqlite3PagerPagecount(pBt->pPager) + 1; |
|
4055 |
|
4056 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4057 if( pBt->nTrunc ){ |
|
4058 /* An incr-vacuum has already run within this transaction. So the |
|
4059 ** page to allocate is not from the physical end of the file, but |
|
4060 ** at pBt->nTrunc. |
|
4061 */ |
|
4062 *pPgno = pBt->nTrunc+1; |
|
4063 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ |
|
4064 (*pPgno)++; |
|
4065 } |
|
4066 } |
|
4067 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){ |
|
4068 /* If *pPgno refers to a pointer-map page, allocate two new pages |
|
4069 ** at the end of the file instead of one. The first allocated page |
|
4070 ** becomes a new pointer-map page, the second is used by the caller. |
|
4071 */ |
|
4072 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno)); |
|
4073 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
|
4074 (*pPgno)++; |
|
4075 } |
|
4076 if( pBt->nTrunc ){ |
|
4077 pBt->nTrunc = *pPgno; |
|
4078 } |
|
4079 #endif |
|
4080 |
|
4081 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
|
4082 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0); |
|
4083 if( rc ) return rc; |
|
4084 rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
|
4085 if( rc!=SQLITE_OK ){ |
|
4086 releasePage(*ppPage); |
|
4087 } |
|
4088 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); |
|
4089 } |
|
4090 |
|
4091 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
|
4092 |
|
4093 end_allocate_page: |
|
4094 releasePage(pTrunk); |
|
4095 releasePage(pPrevTrunk); |
|
4096 return rc; |
|
4097 } |
|
4098 |
|
4099 /* |
|
4100 ** Add a page of the database file to the freelist. |
|
4101 ** |
|
4102 ** sqlite3PagerUnref() is NOT called for pPage. |
|
4103 */ |
|
4104 static int freePage(MemPage *pPage){ |
|
4105 BtShared *pBt = pPage->pBt; |
|
4106 MemPage *pPage1 = pBt->pPage1; |
|
4107 int rc, n, k; |
|
4108 |
|
4109 /* Prepare the page for freeing */ |
|
4110 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
4111 assert( pPage->pgno>1 ); |
|
4112 pPage->isInit = 0; |
|
4113 releasePage(pPage->pParent); |
|
4114 pPage->pParent = 0; |
|
4115 |
|
4116 /* Increment the free page count on pPage1 */ |
|
4117 rc = sqlite3PagerWrite(pPage1->pDbPage); |
|
4118 if( rc ) return rc; |
|
4119 n = get4byte(&pPage1->aData[36]); |
|
4120 put4byte(&pPage1->aData[36], n+1); |
|
4121 |
|
4122 #ifdef SQLITE_SECURE_DELETE |
|
4123 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then |
|
4124 ** always fully overwrite deleted information with zeros. |
|
4125 */ |
|
4126 rc = sqlite3PagerWrite(pPage->pDbPage); |
|
4127 if( rc ) return rc; |
|
4128 memset(pPage->aData, 0, pPage->pBt->pageSize); |
|
4129 #endif |
|
4130 |
|
4131 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4132 /* If the database supports auto-vacuum, write an entry in the pointer-map |
|
4133 ** to indicate that the page is free. |
|
4134 */ |
|
4135 if( pBt->autoVacuum ){ |
|
4136 rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0); |
|
4137 if( rc ) return rc; |
|
4138 } |
|
4139 #endif |
|
4140 |
|
4141 if( n==0 ){ |
|
4142 /* This is the first free page */ |
|
4143 rc = sqlite3PagerWrite(pPage->pDbPage); |
|
4144 if( rc ) return rc; |
|
4145 memset(pPage->aData, 0, 8); |
|
4146 put4byte(&pPage1->aData[32], pPage->pgno); |
|
4147 TRACE(("FREE-PAGE: %d first\n", pPage->pgno)); |
|
4148 }else{ |
|
4149 /* Other free pages already exist. Retrive the first trunk page |
|
4150 ** of the freelist and find out how many leaves it has. */ |
|
4151 MemPage *pTrunk; |
|
4152 rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0); |
|
4153 if( rc ) return rc; |
|
4154 k = get4byte(&pTrunk->aData[4]); |
|
4155 if( k>=pBt->usableSize/4 - 8 ){ |
|
4156 /* The trunk is full. Turn the page being freed into a new |
|
4157 ** trunk page with no leaves. */ |
|
4158 rc = sqlite3PagerWrite(pPage->pDbPage); |
|
4159 if( rc==SQLITE_OK ){ |
|
4160 put4byte(pPage->aData, pTrunk->pgno); |
|
4161 put4byte(&pPage->aData[4], 0); |
|
4162 put4byte(&pPage1->aData[32], pPage->pgno); |
|
4163 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", |
|
4164 pPage->pgno, pTrunk->pgno)); |
|
4165 } |
|
4166 }else if( k<0 ){ |
|
4167 rc = SQLITE_CORRUPT; |
|
4168 }else{ |
|
4169 /* Add the newly freed page as a leaf on the current trunk */ |
|
4170 rc = sqlite3PagerWrite(pTrunk->pDbPage); |
|
4171 if( rc==SQLITE_OK ){ |
|
4172 put4byte(&pTrunk->aData[4], k+1); |
|
4173 put4byte(&pTrunk->aData[8+k*4], pPage->pgno); |
|
4174 #ifndef SQLITE_SECURE_DELETE |
|
4175 sqlite3PagerDontWrite(pPage->pDbPage); |
|
4176 #endif |
|
4177 } |
|
4178 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); |
|
4179 } |
|
4180 releasePage(pTrunk); |
|
4181 } |
|
4182 return rc; |
|
4183 } |
|
4184 |
|
4185 /* |
|
4186 ** Free any overflow pages associated with the given Cell. |
|
4187 */ |
|
4188 static int clearCell(MemPage *pPage, unsigned char *pCell){ |
|
4189 BtShared *pBt = pPage->pBt; |
|
4190 CellInfo info; |
|
4191 Pgno ovflPgno; |
|
4192 int rc; |
|
4193 int nOvfl; |
|
4194 int ovflPageSize; |
|
4195 |
|
4196 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
4197 sqlite3BtreeParseCellPtr(pPage, pCell, &info); |
|
4198 if( info.iOverflow==0 ){ |
|
4199 return SQLITE_OK; /* No overflow pages. Return without doing anything */ |
|
4200 } |
|
4201 ovflPgno = get4byte(&pCell[info.iOverflow]); |
|
4202 ovflPageSize = pBt->usableSize - 4; |
|
4203 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize; |
|
4204 assert( ovflPgno==0 || nOvfl>0 ); |
|
4205 while( nOvfl-- ){ |
|
4206 MemPage *pOvfl; |
|
4207 if( ovflPgno==0 || ovflPgno>sqlite3PagerPagecount(pBt->pPager) ){ |
|
4208 return SQLITE_CORRUPT_BKPT; |
|
4209 } |
|
4210 |
|
4211 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno); |
|
4212 if( rc ) return rc; |
|
4213 rc = freePage(pOvfl); |
|
4214 sqlite3PagerUnref(pOvfl->pDbPage); |
|
4215 if( rc ) return rc; |
|
4216 } |
|
4217 return SQLITE_OK; |
|
4218 } |
|
4219 |
|
4220 /* |
|
4221 ** Create the byte sequence used to represent a cell on page pPage |
|
4222 ** and write that byte sequence into pCell[]. Overflow pages are |
|
4223 ** allocated and filled in as necessary. The calling procedure |
|
4224 ** is responsible for making sure sufficient space has been allocated |
|
4225 ** for pCell[]. |
|
4226 ** |
|
4227 ** Note that pCell does not necessary need to point to the pPage->aData |
|
4228 ** area. pCell might point to some temporary storage. The cell will |
|
4229 ** be constructed in this temporary area then copied into pPage->aData |
|
4230 ** later. |
|
4231 */ |
|
4232 static int fillInCell( |
|
4233 MemPage *pPage, /* The page that contains the cell */ |
|
4234 unsigned char *pCell, /* Complete text of the cell */ |
|
4235 const void *pKey, i64 nKey, /* The key */ |
|
4236 const void *pData,int nData, /* The data */ |
|
4237 int nZero, /* Extra zero bytes to append to pData */ |
|
4238 int *pnSize /* Write cell size here */ |
|
4239 ){ |
|
4240 int nPayload; |
|
4241 const u8 *pSrc; |
|
4242 int nSrc, n, rc; |
|
4243 int spaceLeft; |
|
4244 MemPage *pOvfl = 0; |
|
4245 MemPage *pToRelease = 0; |
|
4246 unsigned char *pPrior; |
|
4247 unsigned char *pPayload; |
|
4248 BtShared *pBt = pPage->pBt; |
|
4249 Pgno pgnoOvfl = 0; |
|
4250 int nHeader; |
|
4251 CellInfo info; |
|
4252 |
|
4253 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
4254 |
|
4255 /* Fill in the header. */ |
|
4256 nHeader = 0; |
|
4257 if( !pPage->leaf ){ |
|
4258 nHeader += 4; |
|
4259 } |
|
4260 if( pPage->hasData ){ |
|
4261 nHeader += putVarint(&pCell[nHeader], nData+nZero); |
|
4262 }else{ |
|
4263 nData = nZero = 0; |
|
4264 } |
|
4265 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); |
|
4266 sqlite3BtreeParseCellPtr(pPage, pCell, &info); |
|
4267 assert( info.nHeader==nHeader ); |
|
4268 assert( info.nKey==nKey ); |
|
4269 assert( info.nData==nData+nZero ); |
|
4270 |
|
4271 /* Fill in the payload */ |
|
4272 nPayload = nData + nZero; |
|
4273 if( pPage->intKey ){ |
|
4274 pSrc = (const u8*)pData; |
|
4275 nSrc = nData; |
|
4276 nData = 0; |
|
4277 }else{ |
|
4278 nPayload += nKey; |
|
4279 pSrc = (const u8*)pKey; |
|
4280 nSrc = nKey; |
|
4281 } |
|
4282 *pnSize = info.nSize; |
|
4283 spaceLeft = info.nLocal; |
|
4284 pPayload = &pCell[nHeader]; |
|
4285 pPrior = &pCell[info.iOverflow]; |
|
4286 |
|
4287 while( nPayload>0 ){ |
|
4288 if( spaceLeft==0 ){ |
|
4289 int isExact = 0; |
|
4290 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4291 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ |
|
4292 if( pBt->autoVacuum ){ |
|
4293 do{ |
|
4294 pgnoOvfl++; |
|
4295 } while( |
|
4296 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) |
|
4297 ); |
|
4298 if( pgnoOvfl>1 ){ |
|
4299 /* isExact = 1; */ |
|
4300 } |
|
4301 } |
|
4302 #endif |
|
4303 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact); |
|
4304 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4305 /* If the database supports auto-vacuum, and the second or subsequent |
|
4306 ** overflow page is being allocated, add an entry to the pointer-map |
|
4307 ** for that page now. |
|
4308 ** |
|
4309 ** If this is the first overflow page, then write a partial entry |
|
4310 ** to the pointer-map. If we write nothing to this pointer-map slot, |
|
4311 ** then the optimistic overflow chain processing in clearCell() |
|
4312 ** may misinterpret the uninitialised values and delete the |
|
4313 ** wrong pages from the database. |
|
4314 */ |
|
4315 if( pBt->autoVacuum && rc==SQLITE_OK ){ |
|
4316 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); |
|
4317 rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap); |
|
4318 if( rc ){ |
|
4319 releasePage(pOvfl); |
|
4320 } |
|
4321 } |
|
4322 #endif |
|
4323 if( rc ){ |
|
4324 releasePage(pToRelease); |
|
4325 return rc; |
|
4326 } |
|
4327 put4byte(pPrior, pgnoOvfl); |
|
4328 releasePage(pToRelease); |
|
4329 pToRelease = pOvfl; |
|
4330 pPrior = pOvfl->aData; |
|
4331 put4byte(pPrior, 0); |
|
4332 pPayload = &pOvfl->aData[4]; |
|
4333 spaceLeft = pBt->usableSize - 4; |
|
4334 } |
|
4335 n = nPayload; |
|
4336 if( n>spaceLeft ) n = spaceLeft; |
|
4337 if( nSrc>0 ){ |
|
4338 if( n>nSrc ) n = nSrc; |
|
4339 assert( pSrc ); |
|
4340 memcpy(pPayload, pSrc, n); |
|
4341 }else{ |
|
4342 memset(pPayload, 0, n); |
|
4343 } |
|
4344 nPayload -= n; |
|
4345 pPayload += n; |
|
4346 pSrc += n; |
|
4347 nSrc -= n; |
|
4348 spaceLeft -= n; |
|
4349 if( nSrc==0 ){ |
|
4350 nSrc = nData; |
|
4351 pSrc = (u8*)pData; |
|
4352 } |
|
4353 } |
|
4354 releasePage(pToRelease); |
|
4355 return SQLITE_OK; |
|
4356 } |
|
4357 |
|
4358 /* |
|
4359 ** Change the MemPage.pParent pointer on the page whose number is |
|
4360 ** given in the second argument so that MemPage.pParent holds the |
|
4361 ** pointer in the third argument. |
|
4362 */ |
|
4363 static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){ |
|
4364 MemPage *pThis; |
|
4365 DbPage *pDbPage; |
|
4366 |
|
4367 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
4368 assert( pNewParent!=0 ); |
|
4369 if( pgno==0 ) return SQLITE_OK; |
|
4370 assert( pBt->pPager!=0 ); |
|
4371 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); |
|
4372 if( pDbPage ){ |
|
4373 pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage); |
|
4374 if( pThis->isInit ){ |
|
4375 assert( pThis->aData==sqlite3PagerGetData(pDbPage) ); |
|
4376 if( pThis->pParent!=pNewParent ){ |
|
4377 if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage); |
|
4378 pThis->pParent = pNewParent; |
|
4379 sqlite3PagerRef(pNewParent->pDbPage); |
|
4380 } |
|
4381 pThis->idxParent = idx; |
|
4382 } |
|
4383 sqlite3PagerUnref(pDbPage); |
|
4384 } |
|
4385 |
|
4386 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4387 if( pBt->autoVacuum ){ |
|
4388 return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno); |
|
4389 } |
|
4390 #endif |
|
4391 return SQLITE_OK; |
|
4392 } |
|
4393 |
|
4394 |
|
4395 |
|
4396 /* |
|
4397 ** Change the pParent pointer of all children of pPage to point back |
|
4398 ** to pPage. |
|
4399 ** |
|
4400 ** In other words, for every child of pPage, invoke reparentPage() |
|
4401 ** to make sure that each child knows that pPage is its parent. |
|
4402 ** |
|
4403 ** This routine gets called after you memcpy() one page into |
|
4404 ** another. |
|
4405 */ |
|
4406 static int reparentChildPages(MemPage *pPage){ |
|
4407 int i; |
|
4408 BtShared *pBt = pPage->pBt; |
|
4409 int rc = SQLITE_OK; |
|
4410 |
|
4411 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
4412 if( pPage->leaf ) return SQLITE_OK; |
|
4413 |
|
4414 for(i=0; i<pPage->nCell; i++){ |
|
4415 u8 *pCell = findCell(pPage, i); |
|
4416 if( !pPage->leaf ){ |
|
4417 rc = reparentPage(pBt, get4byte(pCell), pPage, i); |
|
4418 if( rc!=SQLITE_OK ) return rc; |
|
4419 } |
|
4420 } |
|
4421 if( !pPage->leaf ){ |
|
4422 rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]), |
|
4423 pPage, i); |
|
4424 pPage->idxShift = 0; |
|
4425 } |
|
4426 return rc; |
|
4427 } |
|
4428 |
|
4429 /* |
|
4430 ** Remove the i-th cell from pPage. This routine effects pPage only. |
|
4431 ** The cell content is not freed or deallocated. It is assumed that |
|
4432 ** the cell content has been copied someplace else. This routine just |
|
4433 ** removes the reference to the cell from pPage. |
|
4434 ** |
|
4435 ** "sz" must be the number of bytes in the cell. |
|
4436 */ |
|
4437 static void dropCell(MemPage *pPage, int idx, int sz){ |
|
4438 int i; /* Loop counter */ |
|
4439 int pc; /* Offset to cell content of cell being deleted */ |
|
4440 u8 *data; /* pPage->aData */ |
|
4441 u8 *ptr; /* Used to move bytes around within data[] */ |
|
4442 |
|
4443 assert( idx>=0 && idx<pPage->nCell ); |
|
4444 assert( sz==cellSize(pPage, idx) ); |
|
4445 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
|
4446 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
4447 data = pPage->aData; |
|
4448 ptr = &data[pPage->cellOffset + 2*idx]; |
|
4449 pc = get2byte(ptr); |
|
4450 assert( pc>10 && pc+sz<=pPage->pBt->usableSize ); |
|
4451 freeSpace(pPage, pc, sz); |
|
4452 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){ |
|
4453 ptr[0] = ptr[2]; |
|
4454 ptr[1] = ptr[3]; |
|
4455 } |
|
4456 pPage->nCell--; |
|
4457 put2byte(&data[pPage->hdrOffset+3], pPage->nCell); |
|
4458 pPage->nFree += 2; |
|
4459 pPage->idxShift = 1; |
|
4460 } |
|
4461 |
|
4462 /* |
|
4463 ** Insert a new cell on pPage at cell index "i". pCell points to the |
|
4464 ** content of the cell. |
|
4465 ** |
|
4466 ** If the cell content will fit on the page, then put it there. If it |
|
4467 ** will not fit, then make a copy of the cell content into pTemp if |
|
4468 ** pTemp is not null. Regardless of pTemp, allocate a new entry |
|
4469 ** in pPage->aOvfl[] and make it point to the cell content (either |
|
4470 ** in pTemp or the original pCell) and also record its index. |
|
4471 ** Allocating a new entry in pPage->aCell[] implies that |
|
4472 ** pPage->nOverflow is incremented. |
|
4473 ** |
|
4474 ** If nSkip is non-zero, then do not copy the first nSkip bytes of the |
|
4475 ** cell. The caller will overwrite them after this function returns. If |
|
4476 ** nSkip is non-zero, then pCell may not point to an invalid memory location |
|
4477 ** (but pCell+nSkip is always valid). |
|
4478 */ |
|
4479 static int insertCell( |
|
4480 MemPage *pPage, /* Page into which we are copying */ |
|
4481 int i, /* New cell becomes the i-th cell of the page */ |
|
4482 u8 *pCell, /* Content of the new cell */ |
|
4483 int sz, /* Bytes of content in pCell */ |
|
4484 u8 *pTemp, /* Temp storage space for pCell, if needed */ |
|
4485 u8 nSkip /* Do not write the first nSkip bytes of the cell */ |
|
4486 ){ |
|
4487 int idx; /* Where to write new cell content in data[] */ |
|
4488 int j; /* Loop counter */ |
|
4489 int top; /* First byte of content for any cell in data[] */ |
|
4490 int end; /* First byte past the last cell pointer in data[] */ |
|
4491 int ins; /* Index in data[] where new cell pointer is inserted */ |
|
4492 int hdr; /* Offset into data[] of the page header */ |
|
4493 int cellOffset; /* Address of first cell pointer in data[] */ |
|
4494 u8 *data; /* The content of the whole page */ |
|
4495 u8 *ptr; /* Used for moving information around in data[] */ |
|
4496 |
|
4497 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); |
|
4498 assert( sz==cellSizePtr(pPage, pCell) ); |
|
4499 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
4500 if( pPage->nOverflow || sz+2>pPage->nFree ){ |
|
4501 if( pTemp ){ |
|
4502 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip); |
|
4503 pCell = pTemp; |
|
4504 } |
|
4505 j = pPage->nOverflow++; |
|
4506 assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) ); |
|
4507 pPage->aOvfl[j].pCell = pCell; |
|
4508 pPage->aOvfl[j].idx = i; |
|
4509 pPage->nFree = 0; |
|
4510 }else{ |
|
4511 int rc = sqlite3PagerWrite(pPage->pDbPage); |
|
4512 if( rc!=SQLITE_OK ){ |
|
4513 return rc; |
|
4514 } |
|
4515 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
|
4516 data = pPage->aData; |
|
4517 hdr = pPage->hdrOffset; |
|
4518 top = get2byte(&data[hdr+5]); |
|
4519 cellOffset = pPage->cellOffset; |
|
4520 end = cellOffset + 2*pPage->nCell + 2; |
|
4521 ins = cellOffset + 2*i; |
|
4522 if( end > top - sz ){ |
|
4523 rc = defragmentPage(pPage); |
|
4524 if( rc!=SQLITE_OK ) return rc; |
|
4525 top = get2byte(&data[hdr+5]); |
|
4526 assert( end + sz <= top ); |
|
4527 } |
|
4528 idx = allocateSpace(pPage, sz); |
|
4529 assert( idx>0 ); |
|
4530 assert( end <= get2byte(&data[hdr+5]) ); |
|
4531 pPage->nCell++; |
|
4532 pPage->nFree -= 2; |
|
4533 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip); |
|
4534 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){ |
|
4535 ptr[0] = ptr[-2]; |
|
4536 ptr[1] = ptr[-1]; |
|
4537 } |
|
4538 put2byte(&data[ins], idx); |
|
4539 put2byte(&data[hdr+3], pPage->nCell); |
|
4540 pPage->idxShift = 1; |
|
4541 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4542 if( pPage->pBt->autoVacuum ){ |
|
4543 /* The cell may contain a pointer to an overflow page. If so, write |
|
4544 ** the entry for the overflow page into the pointer map. |
|
4545 */ |
|
4546 CellInfo info; |
|
4547 sqlite3BtreeParseCellPtr(pPage, pCell, &info); |
|
4548 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload ); |
|
4549 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){ |
|
4550 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); |
|
4551 rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno); |
|
4552 if( rc!=SQLITE_OK ) return rc; |
|
4553 } |
|
4554 } |
|
4555 #endif |
|
4556 } |
|
4557 |
|
4558 return SQLITE_OK; |
|
4559 } |
|
4560 |
|
4561 /* |
|
4562 ** Add a list of cells to a page. The page should be initially empty. |
|
4563 ** The cells are guaranteed to fit on the page. |
|
4564 */ |
|
4565 static void assemblePage( |
|
4566 MemPage *pPage, /* The page to be assemblied */ |
|
4567 int nCell, /* The number of cells to add to this page */ |
|
4568 u8 **apCell, /* Pointers to cell bodies */ |
|
4569 int *aSize /* Sizes of the cells */ |
|
4570 ){ |
|
4571 int i; /* Loop counter */ |
|
4572 int totalSize; /* Total size of all cells */ |
|
4573 int hdr; /* Index of page header */ |
|
4574 int cellptr; /* Address of next cell pointer */ |
|
4575 int cellbody; /* Address of next cell body */ |
|
4576 u8 *data; /* Data for the page */ |
|
4577 |
|
4578 assert( pPage->nOverflow==0 ); |
|
4579 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
4580 totalSize = 0; |
|
4581 for(i=0; i<nCell; i++){ |
|
4582 totalSize += aSize[i]; |
|
4583 } |
|
4584 assert( totalSize+2*nCell<=pPage->nFree ); |
|
4585 assert( pPage->nCell==0 ); |
|
4586 cellptr = pPage->cellOffset; |
|
4587 data = pPage->aData; |
|
4588 hdr = pPage->hdrOffset; |
|
4589 put2byte(&data[hdr+3], nCell); |
|
4590 if( nCell ){ |
|
4591 cellbody = allocateSpace(pPage, totalSize); |
|
4592 assert( cellbody>0 ); |
|
4593 assert( pPage->nFree >= 2*nCell ); |
|
4594 pPage->nFree -= 2*nCell; |
|
4595 for(i=0; i<nCell; i++){ |
|
4596 put2byte(&data[cellptr], cellbody); |
|
4597 memcpy(&data[cellbody], apCell[i], aSize[i]); |
|
4598 cellptr += 2; |
|
4599 cellbody += aSize[i]; |
|
4600 } |
|
4601 assert( cellbody==pPage->pBt->usableSize ); |
|
4602 } |
|
4603 pPage->nCell = nCell; |
|
4604 } |
|
4605 |
|
4606 /* |
|
4607 ** The following parameters determine how many adjacent pages get involved |
|
4608 ** in a balancing operation. NN is the number of neighbors on either side |
|
4609 ** of the page that participate in the balancing operation. NB is the |
|
4610 ** total number of pages that participate, including the target page and |
|
4611 ** NN neighbors on either side. |
|
4612 ** |
|
4613 ** The minimum value of NN is 1 (of course). Increasing NN above 1 |
|
4614 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance |
|
4615 ** in exchange for a larger degradation in INSERT and UPDATE performance. |
|
4616 ** The value of NN appears to give the best results overall. |
|
4617 */ |
|
4618 #define NN 1 /* Number of neighbors on either side of pPage */ |
|
4619 #define NB (NN*2+1) /* Total pages involved in the balance */ |
|
4620 |
|
4621 /* Forward reference */ |
|
4622 static int balance(MemPage*, int); |
|
4623 |
|
4624 #ifndef SQLITE_OMIT_QUICKBALANCE |
|
4625 /* |
|
4626 ** This version of balance() handles the common special case where |
|
4627 ** a new entry is being inserted on the extreme right-end of the |
|
4628 ** tree, in other words, when the new entry will become the largest |
|
4629 ** entry in the tree. |
|
4630 ** |
|
4631 ** Instead of trying balance the 3 right-most leaf pages, just add |
|
4632 ** a new page to the right-hand side and put the one new entry in |
|
4633 ** that page. This leaves the right side of the tree somewhat |
|
4634 ** unbalanced. But odds are that we will be inserting new entries |
|
4635 ** at the end soon afterwards so the nearly empty page will quickly |
|
4636 ** fill up. On average. |
|
4637 ** |
|
4638 ** pPage is the leaf page which is the right-most page in the tree. |
|
4639 ** pParent is its parent. pPage must have a single overflow entry |
|
4640 ** which is also the right-most entry on the page. |
|
4641 */ |
|
4642 static int balance_quick(MemPage *pPage, MemPage *pParent){ |
|
4643 int rc; |
|
4644 MemPage *pNew; |
|
4645 Pgno pgnoNew; |
|
4646 u8 *pCell; |
|
4647 int szCell; |
|
4648 CellInfo info; |
|
4649 BtShared *pBt = pPage->pBt; |
|
4650 int parentIdx = pParent->nCell; /* pParent new divider cell index */ |
|
4651 int parentSize; /* Size of new divider cell */ |
|
4652 u8 parentCell[64]; /* Space for the new divider cell */ |
|
4653 |
|
4654 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
4655 |
|
4656 /* Allocate a new page. Insert the overflow cell from pPage |
|
4657 ** into it. Then remove the overflow cell from pPage. |
|
4658 */ |
|
4659 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); |
|
4660 if( rc!=SQLITE_OK ){ |
|
4661 return rc; |
|
4662 } |
|
4663 pCell = pPage->aOvfl[0].pCell; |
|
4664 szCell = cellSizePtr(pPage, pCell); |
|
4665 zeroPage(pNew, pPage->aData[0]); |
|
4666 assemblePage(pNew, 1, &pCell, &szCell); |
|
4667 pPage->nOverflow = 0; |
|
4668 |
|
4669 /* Set the parent of the newly allocated page to pParent. */ |
|
4670 pNew->pParent = pParent; |
|
4671 sqlite3PagerRef(pParent->pDbPage); |
|
4672 |
|
4673 /* pPage is currently the right-child of pParent. Change this |
|
4674 ** so that the right-child is the new page allocated above and |
|
4675 ** pPage is the next-to-right child. |
|
4676 */ |
|
4677 assert( pPage->nCell>0 ); |
|
4678 pCell = findCell(pPage, pPage->nCell-1); |
|
4679 sqlite3BtreeParseCellPtr(pPage, pCell, &info); |
|
4680 rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize); |
|
4681 if( rc!=SQLITE_OK ){ |
|
4682 return rc; |
|
4683 } |
|
4684 assert( parentSize<64 ); |
|
4685 rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4); |
|
4686 if( rc!=SQLITE_OK ){ |
|
4687 return rc; |
|
4688 } |
|
4689 put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno); |
|
4690 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); |
|
4691 |
|
4692 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4693 /* If this is an auto-vacuum database, update the pointer map |
|
4694 ** with entries for the new page, and any pointer from the |
|
4695 ** cell on the page to an overflow page. |
|
4696 */ |
|
4697 if( pBt->autoVacuum ){ |
|
4698 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno); |
|
4699 if( rc==SQLITE_OK ){ |
|
4700 rc = ptrmapPutOvfl(pNew, 0); |
|
4701 } |
|
4702 if( rc!=SQLITE_OK ){ |
|
4703 releasePage(pNew); |
|
4704 return rc; |
|
4705 } |
|
4706 } |
|
4707 #endif |
|
4708 |
|
4709 /* Release the reference to the new page and balance the parent page, |
|
4710 ** in case the divider cell inserted caused it to become overfull. |
|
4711 */ |
|
4712 releasePage(pNew); |
|
4713 return balance(pParent, 0); |
|
4714 } |
|
4715 #endif /* SQLITE_OMIT_QUICKBALANCE */ |
|
4716 |
|
4717 /* |
|
4718 ** This routine redistributes Cells on pPage and up to NN*2 siblings |
|
4719 ** of pPage so that all pages have about the same amount of free space. |
|
4720 ** Usually NN siblings on either side of pPage is used in the balancing, |
|
4721 ** though more siblings might come from one side if pPage is the first |
|
4722 ** or last child of its parent. If pPage has fewer than 2*NN siblings |
|
4723 ** (something which can only happen if pPage is the root page or a |
|
4724 ** child of root) then all available siblings participate in the balancing. |
|
4725 ** |
|
4726 ** The number of siblings of pPage might be increased or decreased by one or |
|
4727 ** two in an effort to keep pages nearly full but not over full. The root page |
|
4728 ** is special and is allowed to be nearly empty. If pPage is |
|
4729 ** the root page, then the depth of the tree might be increased |
|
4730 ** or decreased by one, as necessary, to keep the root page from being |
|
4731 ** overfull or completely empty. |
|
4732 ** |
|
4733 ** Note that when this routine is called, some of the Cells on pPage |
|
4734 ** might not actually be stored in pPage->aData[]. This can happen |
|
4735 ** if the page is overfull. Part of the job of this routine is to |
|
4736 ** make sure all Cells for pPage once again fit in pPage->aData[]. |
|
4737 ** |
|
4738 ** In the course of balancing the siblings of pPage, the parent of pPage |
|
4739 ** might become overfull or underfull. If that happens, then this routine |
|
4740 ** is called recursively on the parent. |
|
4741 ** |
|
4742 ** If this routine fails for any reason, it might leave the database |
|
4743 ** in a corrupted state. So if this routine fails, the database should |
|
4744 ** be rolled back. |
|
4745 */ |
|
4746 static int balance_nonroot(MemPage *pPage){ |
|
4747 MemPage *pParent; /* The parent of pPage */ |
|
4748 BtShared *pBt; /* The whole database */ |
|
4749 int nCell = 0; /* Number of cells in apCell[] */ |
|
4750 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ |
|
4751 int nOld; /* Number of pages in apOld[] */ |
|
4752 int nNew; /* Number of pages in apNew[] */ |
|
4753 int nDiv; /* Number of cells in apDiv[] */ |
|
4754 int i, j, k; /* Loop counters */ |
|
4755 int idx; /* Index of pPage in pParent->aCell[] */ |
|
4756 int nxDiv; /* Next divider slot in pParent->aCell[] */ |
|
4757 int rc; /* The return code */ |
|
4758 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */ |
|
4759 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ |
|
4760 int usableSpace; /* Bytes in pPage beyond the header */ |
|
4761 int pageFlags; /* Value of pPage->aData[0] */ |
|
4762 int subtotal; /* Subtotal of bytes in cells on one page */ |
|
4763 int iSpace = 0; /* First unused byte of aSpace[] */ |
|
4764 MemPage *apOld[NB]; /* pPage and up to two siblings */ |
|
4765 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */ |
|
4766 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */ |
|
4767 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ |
|
4768 Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */ |
|
4769 u8 *apDiv[NB]; /* Divider cells in pParent */ |
|
4770 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */ |
|
4771 int szNew[NB+2]; /* Combined size of cells place on i-th page */ |
|
4772 u8 **apCell = 0; /* All cells begin balanced */ |
|
4773 int *szCell; /* Local size of all cells in apCell[] */ |
|
4774 u8 *aCopy[NB]; /* Space for holding data of apCopy[] */ |
|
4775 u8 *aSpace; /* Space to hold copies of dividers cells */ |
|
4776 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4777 u8 *aFrom = 0; |
|
4778 #endif |
|
4779 |
|
4780 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
4781 |
|
4782 /* |
|
4783 ** Find the parent page. |
|
4784 */ |
|
4785 assert( pPage->isInit ); |
|
4786 assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 ); |
|
4787 pBt = pPage->pBt; |
|
4788 pParent = pPage->pParent; |
|
4789 assert( pParent ); |
|
4790 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){ |
|
4791 return rc; |
|
4792 } |
|
4793 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); |
|
4794 |
|
4795 #ifndef SQLITE_OMIT_QUICKBALANCE |
|
4796 /* |
|
4797 ** A special case: If a new entry has just been inserted into a |
|
4798 ** table (that is, a btree with integer keys and all data at the leaves) |
|
4799 ** and the new entry is the right-most entry in the tree (it has the |
|
4800 ** largest key) then use the special balance_quick() routine for |
|
4801 ** balancing. balance_quick() is much faster and results in a tighter |
|
4802 ** packing of data in the common case. |
|
4803 */ |
|
4804 if( pPage->leaf && |
|
4805 pPage->intKey && |
|
4806 pPage->leafData && |
|
4807 pPage->nOverflow==1 && |
|
4808 pPage->aOvfl[0].idx==pPage->nCell && |
|
4809 pPage->pParent->pgno!=1 && |
|
4810 get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno |
|
4811 ){ |
|
4812 /* |
|
4813 ** TODO: Check the siblings to the left of pPage. It may be that |
|
4814 ** they are not full and no new page is required. |
|
4815 */ |
|
4816 return balance_quick(pPage, pParent); |
|
4817 } |
|
4818 #endif |
|
4819 |
|
4820 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){ |
|
4821 return rc; |
|
4822 } |
|
4823 |
|
4824 /* |
|
4825 ** Find the cell in the parent page whose left child points back |
|
4826 ** to pPage. The "idx" variable is the index of that cell. If pPage |
|
4827 ** is the rightmost child of pParent then set idx to pParent->nCell |
|
4828 */ |
|
4829 if( pParent->idxShift ){ |
|
4830 Pgno pgno; |
|
4831 pgno = pPage->pgno; |
|
4832 assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); |
|
4833 for(idx=0; idx<pParent->nCell; idx++){ |
|
4834 if( get4byte(findCell(pParent, idx))==pgno ){ |
|
4835 break; |
|
4836 } |
|
4837 } |
|
4838 assert( idx<pParent->nCell |
|
4839 || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno ); |
|
4840 }else{ |
|
4841 idx = pPage->idxParent; |
|
4842 } |
|
4843 |
|
4844 /* |
|
4845 ** Initialize variables so that it will be safe to jump |
|
4846 ** directly to balance_cleanup at any moment. |
|
4847 */ |
|
4848 nOld = nNew = 0; |
|
4849 sqlite3PagerRef(pParent->pDbPage); |
|
4850 |
|
4851 /* |
|
4852 ** Find sibling pages to pPage and the cells in pParent that divide |
|
4853 ** the siblings. An attempt is made to find NN siblings on either |
|
4854 ** side of pPage. More siblings are taken from one side, however, if |
|
4855 ** pPage there are fewer than NN siblings on the other side. If pParent |
|
4856 ** has NB or fewer children then all children of pParent are taken. |
|
4857 */ |
|
4858 nxDiv = idx - NN; |
|
4859 if( nxDiv + NB > pParent->nCell ){ |
|
4860 nxDiv = pParent->nCell - NB + 1; |
|
4861 } |
|
4862 if( nxDiv<0 ){ |
|
4863 nxDiv = 0; |
|
4864 } |
|
4865 nDiv = 0; |
|
4866 for(i=0, k=nxDiv; i<NB; i++, k++){ |
|
4867 if( k<pParent->nCell ){ |
|
4868 apDiv[i] = findCell(pParent, k); |
|
4869 nDiv++; |
|
4870 assert( !pParent->leaf ); |
|
4871 pgnoOld[i] = get4byte(apDiv[i]); |
|
4872 }else if( k==pParent->nCell ){ |
|
4873 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]); |
|
4874 }else{ |
|
4875 break; |
|
4876 } |
|
4877 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent); |
|
4878 if( rc ) goto balance_cleanup; |
|
4879 apOld[i]->idxParent = k; |
|
4880 apCopy[i] = 0; |
|
4881 assert( i==nOld ); |
|
4882 nOld++; |
|
4883 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; |
|
4884 } |
|
4885 |
|
4886 /* Make nMaxCells a multiple of 2 in order to preserve 8-byte |
|
4887 ** alignment */ |
|
4888 nMaxCells = (nMaxCells + 1)&~1; |
|
4889 |
|
4890 /* |
|
4891 ** Allocate space for memory structures |
|
4892 */ |
|
4893 apCell = (u8**)sqlite3_malloc( |
|
4894 nMaxCells*sizeof(u8*) /* apCell */ |
|
4895 + nMaxCells*sizeof(int) /* szCell */ |
|
4896 + ROUND8(sizeof(MemPage))*NB /* aCopy */ |
|
4897 + pBt->pageSize*(5+NB) /* aSpace */ |
|
4898 + (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */ |
|
4899 ); |
|
4900 if( apCell==0 ){ |
|
4901 rc = SQLITE_NOMEM; |
|
4902 goto balance_cleanup; |
|
4903 } |
|
4904 szCell = (int*)&apCell[nMaxCells]; |
|
4905 aCopy[0] = (u8*)&szCell[nMaxCells]; |
|
4906 assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ |
|
4907 for(i=1; i<NB; i++){ |
|
4908 aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))]; |
|
4909 assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ |
|
4910 } |
|
4911 aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))]; |
|
4912 assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ |
|
4913 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4914 if( pBt->autoVacuum ){ |
|
4915 aFrom = &aSpace[5*pBt->pageSize]; |
|
4916 } |
|
4917 #endif |
|
4918 |
|
4919 /* |
|
4920 ** Make copies of the content of pPage and its siblings into aOld[]. |
|
4921 ** The rest of this function will use data from the copies rather |
|
4922 ** that the original pages since the original pages will be in the |
|
4923 ** process of being overwritten. |
|
4924 */ |
|
4925 for(i=0; i<nOld; i++){ |
|
4926 MemPage *p = apCopy[i] = (MemPage*)aCopy[i]; |
|
4927 memcpy(p, apOld[i], sizeof(MemPage)); |
|
4928 p->aData = (u8*)(void*)&p[1]; |
|
4929 memcpy(p->aData, apOld[i]->aData, pBt->pageSize); |
|
4930 } |
|
4931 |
|
4932 /* |
|
4933 ** Load pointers to all cells on sibling pages and the divider cells |
|
4934 ** into the local apCell[] array. Make copies of the divider cells |
|
4935 ** into space obtained form aSpace[] and remove the the divider Cells |
|
4936 ** from pParent. |
|
4937 ** |
|
4938 ** If the siblings are on leaf pages, then the child pointers of the |
|
4939 ** divider cells are stripped from the cells before they are copied |
|
4940 ** into aSpace[]. In this way, all cells in apCell[] are without |
|
4941 ** child pointers. If siblings are not leaves, then all cell in |
|
4942 ** apCell[] include child pointers. Either way, all cells in apCell[] |
|
4943 ** are alike. |
|
4944 ** |
|
4945 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. |
|
4946 ** leafData: 1 if pPage holds key+data and pParent holds only keys. |
|
4947 */ |
|
4948 nCell = 0; |
|
4949 leafCorrection = pPage->leaf*4; |
|
4950 leafData = pPage->leafData && pPage->leaf; |
|
4951 for(i=0; i<nOld; i++){ |
|
4952 MemPage *pOld = apCopy[i]; |
|
4953 int limit = pOld->nCell+pOld->nOverflow; |
|
4954 for(j=0; j<limit; j++){ |
|
4955 assert( nCell<nMaxCells ); |
|
4956 apCell[nCell] = findOverflowCell(pOld, j); |
|
4957 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); |
|
4958 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4959 if( pBt->autoVacuum ){ |
|
4960 int a; |
|
4961 aFrom[nCell] = i; |
|
4962 for(a=0; a<pOld->nOverflow; a++){ |
|
4963 if( pOld->aOvfl[a].pCell==apCell[nCell] ){ |
|
4964 aFrom[nCell] = 0xFF; |
|
4965 break; |
|
4966 } |
|
4967 } |
|
4968 } |
|
4969 #endif |
|
4970 nCell++; |
|
4971 } |
|
4972 if( i<nOld-1 ){ |
|
4973 int sz = cellSizePtr(pParent, apDiv[i]); |
|
4974 if( leafData ){ |
|
4975 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that |
|
4976 ** are duplicates of keys on the child pages. We need to remove |
|
4977 ** the divider cells from pParent, but the dividers cells are not |
|
4978 ** added to apCell[] because they are duplicates of child cells. |
|
4979 */ |
|
4980 dropCell(pParent, nxDiv, sz); |
|
4981 }else{ |
|
4982 u8 *pTemp; |
|
4983 assert( nCell<nMaxCells ); |
|
4984 szCell[nCell] = sz; |
|
4985 pTemp = &aSpace[iSpace]; |
|
4986 iSpace += sz; |
|
4987 assert( iSpace<=pBt->pageSize*5 ); |
|
4988 memcpy(pTemp, apDiv[i], sz); |
|
4989 apCell[nCell] = pTemp+leafCorrection; |
|
4990 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4991 if( pBt->autoVacuum ){ |
|
4992 aFrom[nCell] = 0xFF; |
|
4993 } |
|
4994 #endif |
|
4995 dropCell(pParent, nxDiv, sz); |
|
4996 szCell[nCell] -= leafCorrection; |
|
4997 assert( get4byte(pTemp)==pgnoOld[i] ); |
|
4998 if( !pOld->leaf ){ |
|
4999 assert( leafCorrection==0 ); |
|
5000 /* The right pointer of the child page pOld becomes the left |
|
5001 ** pointer of the divider cell */ |
|
5002 memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4); |
|
5003 }else{ |
|
5004 assert( leafCorrection==4 ); |
|
5005 if( szCell[nCell]<4 ){ |
|
5006 /* Do not allow any cells smaller than 4 bytes. */ |
|
5007 szCell[nCell] = 4; |
|
5008 } |
|
5009 } |
|
5010 nCell++; |
|
5011 } |
|
5012 } |
|
5013 } |
|
5014 |
|
5015 /* |
|
5016 ** Figure out the number of pages needed to hold all nCell cells. |
|
5017 ** Store this number in "k". Also compute szNew[] which is the total |
|
5018 ** size of all cells on the i-th page and cntNew[] which is the index |
|
5019 ** in apCell[] of the cell that divides page i from page i+1. |
|
5020 ** cntNew[k] should equal nCell. |
|
5021 ** |
|
5022 ** Values computed by this block: |
|
5023 ** |
|
5024 ** k: The total number of sibling pages |
|
5025 ** szNew[i]: Spaced used on the i-th sibling page. |
|
5026 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to |
|
5027 ** the right of the i-th sibling page. |
|
5028 ** usableSpace: Number of bytes of space available on each sibling. |
|
5029 ** |
|
5030 */ |
|
5031 usableSpace = pBt->usableSize - 12 + leafCorrection; |
|
5032 for(subtotal=k=i=0; i<nCell; i++){ |
|
5033 assert( i<nMaxCells ); |
|
5034 subtotal += szCell[i] + 2; |
|
5035 if( subtotal > usableSpace ){ |
|
5036 szNew[k] = subtotal - szCell[i]; |
|
5037 cntNew[k] = i; |
|
5038 if( leafData ){ i--; } |
|
5039 subtotal = 0; |
|
5040 k++; |
|
5041 } |
|
5042 } |
|
5043 szNew[k] = subtotal; |
|
5044 cntNew[k] = nCell; |
|
5045 k++; |
|
5046 |
|
5047 /* |
|
5048 ** The packing computed by the previous block is biased toward the siblings |
|
5049 ** on the left side. The left siblings are always nearly full, while the |
|
5050 ** right-most sibling might be nearly empty. This block of code attempts |
|
5051 ** to adjust the packing of siblings to get a better balance. |
|
5052 ** |
|
5053 ** This adjustment is more than an optimization. The packing above might |
|
5054 ** be so out of balance as to be illegal. For example, the right-most |
|
5055 ** sibling might be completely empty. This adjustment is not optional. |
|
5056 */ |
|
5057 for(i=k-1; i>0; i--){ |
|
5058 int szRight = szNew[i]; /* Size of sibling on the right */ |
|
5059 int szLeft = szNew[i-1]; /* Size of sibling on the left */ |
|
5060 int r; /* Index of right-most cell in left sibling */ |
|
5061 int d; /* Index of first cell to the left of right sibling */ |
|
5062 |
|
5063 r = cntNew[i-1] - 1; |
|
5064 d = r + 1 - leafData; |
|
5065 assert( d<nMaxCells ); |
|
5066 assert( r<nMaxCells ); |
|
5067 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){ |
|
5068 szRight += szCell[d] + 2; |
|
5069 szLeft -= szCell[r] + 2; |
|
5070 cntNew[i-1]--; |
|
5071 r = cntNew[i-1] - 1; |
|
5072 d = r + 1 - leafData; |
|
5073 } |
|
5074 szNew[i] = szRight; |
|
5075 szNew[i-1] = szLeft; |
|
5076 } |
|
5077 |
|
5078 /* Either we found one or more cells (cntnew[0])>0) or we are the |
|
5079 ** a virtual root page. A virtual root page is when the real root |
|
5080 ** page is page 1 and we are the only child of that page. |
|
5081 */ |
|
5082 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) ); |
|
5083 |
|
5084 /* |
|
5085 ** Allocate k new pages. Reuse old pages where possible. |
|
5086 */ |
|
5087 assert( pPage->pgno>1 ); |
|
5088 pageFlags = pPage->aData[0]; |
|
5089 for(i=0; i<k; i++){ |
|
5090 MemPage *pNew; |
|
5091 if( i<nOld ){ |
|
5092 pNew = apNew[i] = apOld[i]; |
|
5093 pgnoNew[i] = pgnoOld[i]; |
|
5094 apOld[i] = 0; |
|
5095 rc = sqlite3PagerWrite(pNew->pDbPage); |
|
5096 nNew++; |
|
5097 if( rc ) goto balance_cleanup; |
|
5098 }else{ |
|
5099 assert( i>0 ); |
|
5100 rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0); |
|
5101 if( rc ) goto balance_cleanup; |
|
5102 apNew[i] = pNew; |
|
5103 nNew++; |
|
5104 } |
|
5105 zeroPage(pNew, pageFlags); |
|
5106 } |
|
5107 |
|
5108 /* Free any old pages that were not reused as new pages. |
|
5109 */ |
|
5110 while( i<nOld ){ |
|
5111 rc = freePage(apOld[i]); |
|
5112 if( rc ) goto balance_cleanup; |
|
5113 releasePage(apOld[i]); |
|
5114 apOld[i] = 0; |
|
5115 i++; |
|
5116 } |
|
5117 |
|
5118 /* |
|
5119 ** Put the new pages in accending order. This helps to |
|
5120 ** keep entries in the disk file in order so that a scan |
|
5121 ** of the table is a linear scan through the file. That |
|
5122 ** in turn helps the operating system to deliver pages |
|
5123 ** from the disk more rapidly. |
|
5124 ** |
|
5125 ** An O(n^2) insertion sort algorithm is used, but since |
|
5126 ** n is never more than NB (a small constant), that should |
|
5127 ** not be a problem. |
|
5128 ** |
|
5129 ** When NB==3, this one optimization makes the database |
|
5130 ** about 25% faster for large insertions and deletions. |
|
5131 */ |
|
5132 for(i=0; i<k-1; i++){ |
|
5133 int minV = pgnoNew[i]; |
|
5134 int minI = i; |
|
5135 for(j=i+1; j<k; j++){ |
|
5136 if( pgnoNew[j]<(unsigned)minV ){ |
|
5137 minI = j; |
|
5138 minV = pgnoNew[j]; |
|
5139 } |
|
5140 } |
|
5141 if( minI>i ){ |
|
5142 int t; |
|
5143 MemPage *pT; |
|
5144 t = pgnoNew[i]; |
|
5145 pT = apNew[i]; |
|
5146 pgnoNew[i] = pgnoNew[minI]; |
|
5147 apNew[i] = apNew[minI]; |
|
5148 pgnoNew[minI] = t; |
|
5149 apNew[minI] = pT; |
|
5150 } |
|
5151 } |
|
5152 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n", |
|
5153 pgnoOld[0], |
|
5154 nOld>=2 ? pgnoOld[1] : 0, |
|
5155 nOld>=3 ? pgnoOld[2] : 0, |
|
5156 pgnoNew[0], szNew[0], |
|
5157 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0, |
|
5158 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0, |
|
5159 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0, |
|
5160 nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0)); |
|
5161 |
|
5162 /* |
|
5163 ** Evenly distribute the data in apCell[] across the new pages. |
|
5164 ** Insert divider cells into pParent as necessary. |
|
5165 */ |
|
5166 j = 0; |
|
5167 for(i=0; i<nNew; i++){ |
|
5168 /* Assemble the new sibling page. */ |
|
5169 MemPage *pNew = apNew[i]; |
|
5170 assert( j<nMaxCells ); |
|
5171 assert( pNew->pgno==pgnoNew[i] ); |
|
5172 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]); |
|
5173 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) ); |
|
5174 assert( pNew->nOverflow==0 ); |
|
5175 |
|
5176 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
5177 /* If this is an auto-vacuum database, update the pointer map entries |
|
5178 ** that point to the siblings that were rearranged. These can be: left |
|
5179 ** children of cells, the right-child of the page, or overflow pages |
|
5180 ** pointed to by cells. |
|
5181 */ |
|
5182 if( pBt->autoVacuum ){ |
|
5183 for(k=j; k<cntNew[i]; k++){ |
|
5184 assert( k<nMaxCells ); |
|
5185 if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){ |
|
5186 rc = ptrmapPutOvfl(pNew, k-j); |
|
5187 if( rc!=SQLITE_OK ){ |
|
5188 goto balance_cleanup; |
|
5189 } |
|
5190 } |
|
5191 } |
|
5192 } |
|
5193 #endif |
|
5194 |
|
5195 j = cntNew[i]; |
|
5196 |
|
5197 /* If the sibling page assembled above was not the right-most sibling, |
|
5198 ** insert a divider cell into the parent page. |
|
5199 */ |
|
5200 if( i<nNew-1 && j<nCell ){ |
|
5201 u8 *pCell; |
|
5202 u8 *pTemp; |
|
5203 int sz; |
|
5204 |
|
5205 assert( j<nMaxCells ); |
|
5206 pCell = apCell[j]; |
|
5207 sz = szCell[j] + leafCorrection; |
|
5208 if( !pNew->leaf ){ |
|
5209 memcpy(&pNew->aData[8], pCell, 4); |
|
5210 pTemp = 0; |
|
5211 }else if( leafData ){ |
|
5212 /* If the tree is a leaf-data tree, and the siblings are leaves, |
|
5213 ** then there is no divider cell in apCell[]. Instead, the divider |
|
5214 ** cell consists of the integer key for the right-most cell of |
|
5215 ** the sibling-page assembled above only. |
|
5216 */ |
|
5217 CellInfo info; |
|
5218 j--; |
|
5219 sqlite3BtreeParseCellPtr(pNew, apCell[j], &info); |
|
5220 pCell = &aSpace[iSpace]; |
|
5221 fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz); |
|
5222 iSpace += sz; |
|
5223 assert( iSpace<=pBt->pageSize*5 ); |
|
5224 pTemp = 0; |
|
5225 }else{ |
|
5226 pCell -= 4; |
|
5227 pTemp = &aSpace[iSpace]; |
|
5228 iSpace += sz; |
|
5229 assert( iSpace<=pBt->pageSize*5 ); |
|
5230 /* Obscure case for non-leaf-data trees: If the cell at pCell was |
|
5231 ** previously stored on a leaf node, and its reported size was 4 |
|
5232 ** bytes, then it may actually be smaller than this |
|
5233 ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of |
|
5234 ** any cell). But it is important to pass the correct size to |
|
5235 ** insertCell(), so reparse the cell now. |
|
5236 ** |
|
5237 ** Note that this can never happen in an SQLite data file, as all |
|
5238 ** cells are at least 4 bytes. It only happens in b-trees used |
|
5239 ** to evaluate "IN (SELECT ...)" and similar clauses. |
|
5240 */ |
|
5241 if( szCell[j]==4 ){ |
|
5242 assert(leafCorrection==4); |
|
5243 sz = cellSizePtr(pParent, pCell); |
|
5244 } |
|
5245 } |
|
5246 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4); |
|
5247 if( rc!=SQLITE_OK ) goto balance_cleanup; |
|
5248 put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno); |
|
5249 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
5250 /* If this is an auto-vacuum database, and not a leaf-data tree, |
|
5251 ** then update the pointer map with an entry for the overflow page |
|
5252 ** that the cell just inserted points to (if any). |
|
5253 */ |
|
5254 if( pBt->autoVacuum && !leafData ){ |
|
5255 rc = ptrmapPutOvfl(pParent, nxDiv); |
|
5256 if( rc!=SQLITE_OK ){ |
|
5257 goto balance_cleanup; |
|
5258 } |
|
5259 } |
|
5260 #endif |
|
5261 j++; |
|
5262 nxDiv++; |
|
5263 } |
|
5264 } |
|
5265 assert( j==nCell ); |
|
5266 assert( nOld>0 ); |
|
5267 assert( nNew>0 ); |
|
5268 if( (pageFlags & PTF_LEAF)==0 ){ |
|
5269 memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4); |
|
5270 } |
|
5271 if( nxDiv==pParent->nCell+pParent->nOverflow ){ |
|
5272 /* Right-most sibling is the right-most child of pParent */ |
|
5273 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]); |
|
5274 }else{ |
|
5275 /* Right-most sibling is the left child of the first entry in pParent |
|
5276 ** past the right-most divider entry */ |
|
5277 put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]); |
|
5278 } |
|
5279 |
|
5280 /* |
|
5281 ** Reparent children of all cells. |
|
5282 */ |
|
5283 for(i=0; i<nNew; i++){ |
|
5284 rc = reparentChildPages(apNew[i]); |
|
5285 if( rc!=SQLITE_OK ) goto balance_cleanup; |
|
5286 } |
|
5287 rc = reparentChildPages(pParent); |
|
5288 if( rc!=SQLITE_OK ) goto balance_cleanup; |
|
5289 |
|
5290 /* |
|
5291 ** Balance the parent page. Note that the current page (pPage) might |
|
5292 ** have been added to the freelist so it might no longer be initialized. |
|
5293 ** But the parent page will always be initialized. |
|
5294 */ |
|
5295 assert( pParent->isInit ); |
|
5296 rc = balance(pParent, 0); |
|
5297 |
|
5298 /* |
|
5299 ** Cleanup before returning. |
|
5300 */ |
|
5301 balance_cleanup: |
|
5302 sqlite3_free(apCell); |
|
5303 for(i=0; i<nOld; i++){ |
|
5304 releasePage(apOld[i]); |
|
5305 } |
|
5306 for(i=0; i<nNew; i++){ |
|
5307 releasePage(apNew[i]); |
|
5308 } |
|
5309 releasePage(pParent); |
|
5310 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n", |
|
5311 pPage->pgno, nOld, nNew, nCell)); |
|
5312 return rc; |
|
5313 } |
|
5314 |
|
5315 /* |
|
5316 ** This routine is called for the root page of a btree when the root |
|
5317 ** page contains no cells. This is an opportunity to make the tree |
|
5318 ** shallower by one level. |
|
5319 */ |
|
5320 static int balance_shallower(MemPage *pPage){ |
|
5321 MemPage *pChild; /* The only child page of pPage */ |
|
5322 Pgno pgnoChild; /* Page number for pChild */ |
|
5323 int rc = SQLITE_OK; /* Return code from subprocedures */ |
|
5324 BtShared *pBt; /* The main BTree structure */ |
|
5325 int mxCellPerPage; /* Maximum number of cells per page */ |
|
5326 u8 **apCell; /* All cells from pages being balanced */ |
|
5327 int *szCell; /* Local size of all cells */ |
|
5328 |
|
5329 assert( pPage->pParent==0 ); |
|
5330 assert( pPage->nCell==0 ); |
|
5331 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
5332 pBt = pPage->pBt; |
|
5333 mxCellPerPage = MX_CELL(pBt); |
|
5334 apCell = (u8**)sqlite3_malloc( mxCellPerPage*(sizeof(u8*)+sizeof(int)) ); |
|
5335 if( apCell==0 ) return SQLITE_NOMEM; |
|
5336 szCell = (int*)&apCell[mxCellPerPage]; |
|
5337 if( pPage->leaf ){ |
|
5338 /* The table is completely empty */ |
|
5339 TRACE(("BALANCE: empty table %d\n", pPage->pgno)); |
|
5340 }else{ |
|
5341 /* The root page is empty but has one child. Transfer the |
|
5342 ** information from that one child into the root page if it |
|
5343 ** will fit. This reduces the depth of the tree by one. |
|
5344 ** |
|
5345 ** If the root page is page 1, it has less space available than |
|
5346 ** its child (due to the 100 byte header that occurs at the beginning |
|
5347 ** of the database fle), so it might not be able to hold all of the |
|
5348 ** information currently contained in the child. If this is the |
|
5349 ** case, then do not do the transfer. Leave page 1 empty except |
|
5350 ** for the right-pointer to the child page. The child page becomes |
|
5351 ** the virtual root of the tree. |
|
5352 */ |
|
5353 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
|
5354 assert( pgnoChild>0 ); |
|
5355 assert( pgnoChild<=sqlite3PagerPagecount(pPage->pBt->pPager) ); |
|
5356 rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0); |
|
5357 if( rc ) goto end_shallow_balance; |
|
5358 if( pPage->pgno==1 ){ |
|
5359 rc = sqlite3BtreeInitPage(pChild, pPage); |
|
5360 if( rc ) goto end_shallow_balance; |
|
5361 assert( pChild->nOverflow==0 ); |
|
5362 if( pChild->nFree>=100 ){ |
|
5363 /* The child information will fit on the root page, so do the |
|
5364 ** copy */ |
|
5365 int i; |
|
5366 zeroPage(pPage, pChild->aData[0]); |
|
5367 for(i=0; i<pChild->nCell; i++){ |
|
5368 apCell[i] = findCell(pChild,i); |
|
5369 szCell[i] = cellSizePtr(pChild, apCell[i]); |
|
5370 } |
|
5371 assemblePage(pPage, pChild->nCell, apCell, szCell); |
|
5372 /* Copy the right-pointer of the child to the parent. */ |
|
5373 put4byte(&pPage->aData[pPage->hdrOffset+8], |
|
5374 get4byte(&pChild->aData[pChild->hdrOffset+8])); |
|
5375 freePage(pChild); |
|
5376 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno)); |
|
5377 }else{ |
|
5378 /* The child has more information that will fit on the root. |
|
5379 ** The tree is already balanced. Do nothing. */ |
|
5380 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno)); |
|
5381 } |
|
5382 }else{ |
|
5383 memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize); |
|
5384 pPage->isInit = 0; |
|
5385 pPage->pParent = 0; |
|
5386 rc = sqlite3BtreeInitPage(pPage, 0); |
|
5387 assert( rc==SQLITE_OK ); |
|
5388 freePage(pChild); |
|
5389 TRACE(("BALANCE: transfer child %d into root %d\n", |
|
5390 pChild->pgno, pPage->pgno)); |
|
5391 } |
|
5392 rc = reparentChildPages(pPage); |
|
5393 assert( pPage->nOverflow==0 ); |
|
5394 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
5395 if( pBt->autoVacuum ){ |
|
5396 int i; |
|
5397 for(i=0; i<pPage->nCell; i++){ |
|
5398 rc = ptrmapPutOvfl(pPage, i); |
|
5399 if( rc!=SQLITE_OK ){ |
|
5400 goto end_shallow_balance; |
|
5401 } |
|
5402 } |
|
5403 } |
|
5404 #endif |
|
5405 releasePage(pChild); |
|
5406 } |
|
5407 end_shallow_balance: |
|
5408 sqlite3_free(apCell); |
|
5409 return rc; |
|
5410 } |
|
5411 |
|
5412 |
|
5413 /* |
|
5414 ** The root page is overfull |
|
5415 ** |
|
5416 ** When this happens, Create a new child page and copy the |
|
5417 ** contents of the root into the child. Then make the root |
|
5418 ** page an empty page with rightChild pointing to the new |
|
5419 ** child. Finally, call balance_internal() on the new child |
|
5420 ** to cause it to split. |
|
5421 */ |
|
5422 static int balance_deeper(MemPage *pPage){ |
|
5423 int rc; /* Return value from subprocedures */ |
|
5424 MemPage *pChild; /* Pointer to a new child page */ |
|
5425 Pgno pgnoChild; /* Page number of the new child page */ |
|
5426 BtShared *pBt; /* The BTree */ |
|
5427 int usableSize; /* Total usable size of a page */ |
|
5428 u8 *data; /* Content of the parent page */ |
|
5429 u8 *cdata; /* Content of the child page */ |
|
5430 int hdr; /* Offset to page header in parent */ |
|
5431 int brk; /* Offset to content of first cell in parent */ |
|
5432 |
|
5433 assert( pPage->pParent==0 ); |
|
5434 assert( pPage->nOverflow>0 ); |
|
5435 pBt = pPage->pBt; |
|
5436 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
5437 rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0); |
|
5438 if( rc ) return rc; |
|
5439 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); |
|
5440 usableSize = pBt->usableSize; |
|
5441 data = pPage->aData; |
|
5442 hdr = pPage->hdrOffset; |
|
5443 brk = get2byte(&data[hdr+5]); |
|
5444 cdata = pChild->aData; |
|
5445 memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr); |
|
5446 memcpy(&cdata[brk], &data[brk], usableSize-brk); |
|
5447 assert( pChild->isInit==0 ); |
|
5448 rc = sqlite3BtreeInitPage(pChild, pPage); |
|
5449 if( rc ) goto balancedeeper_out; |
|
5450 memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0])); |
|
5451 pChild->nOverflow = pPage->nOverflow; |
|
5452 if( pChild->nOverflow ){ |
|
5453 pChild->nFree = 0; |
|
5454 } |
|
5455 assert( pChild->nCell==pPage->nCell ); |
|
5456 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF); |
|
5457 put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild); |
|
5458 TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno)); |
|
5459 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
5460 if( pBt->autoVacuum ){ |
|
5461 int i; |
|
5462 rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno); |
|
5463 if( rc ) goto balancedeeper_out; |
|
5464 for(i=0; i<pChild->nCell; i++){ |
|
5465 rc = ptrmapPutOvfl(pChild, i); |
|
5466 if( rc!=SQLITE_OK ){ |
|
5467 return rc; |
|
5468 } |
|
5469 } |
|
5470 } |
|
5471 #endif |
|
5472 rc = balance_nonroot(pChild); |
|
5473 |
|
5474 balancedeeper_out: |
|
5475 releasePage(pChild); |
|
5476 return rc; |
|
5477 } |
|
5478 |
|
5479 /* |
|
5480 ** Decide if the page pPage needs to be balanced. If balancing is |
|
5481 ** required, call the appropriate balancing routine. |
|
5482 */ |
|
5483 static int balance(MemPage *pPage, int insert){ |
|
5484 int rc = SQLITE_OK; |
|
5485 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
|
5486 if( pPage->pParent==0 ){ |
|
5487 rc = sqlite3PagerWrite(pPage->pDbPage); |
|
5488 if( rc==SQLITE_OK && pPage->nOverflow>0 ){ |
|
5489 rc = balance_deeper(pPage); |
|
5490 } |
|
5491 if( rc==SQLITE_OK && pPage->nCell==0 ){ |
|
5492 rc = balance_shallower(pPage); |
|
5493 } |
|
5494 }else{ |
|
5495 if( pPage->nOverflow>0 || |
|
5496 (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){ |
|
5497 rc = balance_nonroot(pPage); |
|
5498 } |
|
5499 } |
|
5500 return rc; |
|
5501 } |
|
5502 |
|
5503 /* |
|
5504 ** This routine checks all cursors that point to table pgnoRoot. |
|
5505 ** If any of those cursors were opened with wrFlag==0 in a different |
|
5506 ** database connection (a database connection that shares the pager |
|
5507 ** cache with the current connection) and that other connection |
|
5508 ** is not in the ReadUncommmitted state, then this routine returns |
|
5509 ** SQLITE_LOCKED. |
|
5510 ** |
|
5511 ** In addition to checking for read-locks (where a read-lock |
|
5512 ** means a cursor opened with wrFlag==0) this routine also moves |
|
5513 ** all write cursors so that they are pointing to the |
|
5514 ** first Cell on the root page. This is necessary because an insert |
|
5515 ** or delete might change the number of cells on a page or delete |
|
5516 ** a page entirely and we do not want to leave any cursors |
|
5517 ** pointing to non-existant pages or cells. |
|
5518 */ |
|
5519 static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){ |
|
5520 BtCursor *p; |
|
5521 BtShared *pBt = pBtree->pBt; |
|
5522 sqlite3 *db = pBtree->db; |
|
5523 assert( sqlite3BtreeHoldsMutex(pBtree) ); |
|
5524 for(p=pBt->pCursor; p; p=p->pNext){ |
|
5525 if( p==pExclude ) continue; |
|
5526 if( p->eState!=CURSOR_VALID ) continue; |
|
5527 if( p->pgnoRoot!=pgnoRoot ) continue; |
|
5528 if( p->wrFlag==0 ){ |
|
5529 sqlite3 *dbOther = p->pBtree->db; |
|
5530 if( dbOther==0 || |
|
5531 (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){ |
|
5532 return SQLITE_LOCKED; |
|
5533 } |
|
5534 }else if( p->pPage->pgno!=p->pgnoRoot ){ |
|
5535 moveToRoot(p); |
|
5536 } |
|
5537 } |
|
5538 return SQLITE_OK; |
|
5539 } |
|
5540 |
|
5541 /* |
|
5542 ** Insert a new record into the BTree. The key is given by (pKey,nKey) |
|
5543 ** and the data is given by (pData,nData). The cursor is used only to |
|
5544 ** define what table the record should be inserted into. The cursor |
|
5545 ** is left pointing at a random location. |
|
5546 ** |
|
5547 ** For an INTKEY table, only the nKey value of the key is used. pKey is |
|
5548 ** ignored. For a ZERODATA table, the pData and nData are both ignored. |
|
5549 */ |
|
5550 int sqlite3BtreeInsert( |
|
5551 BtCursor *pCur, /* Insert data into the table of this cursor */ |
|
5552 const void *pKey, i64 nKey, /* The key of the new record */ |
|
5553 const void *pData, int nData, /* The data of the new record */ |
|
5554 int nZero, /* Number of extra 0 bytes to append to data */ |
|
5555 int appendBias /* True if this is likely an append */ |
|
5556 ){ |
|
5557 int rc; |
|
5558 int loc; |
|
5559 int szNew; |
|
5560 MemPage *pPage; |
|
5561 Btree *p = pCur->pBtree; |
|
5562 BtShared *pBt = p->pBt; |
|
5563 unsigned char *oldCell; |
|
5564 unsigned char *newCell = 0; |
|
5565 |
|
5566 assert( cursorHoldsMutex(pCur) ); |
|
5567 if( pBt->inTransaction!=TRANS_WRITE ){ |
|
5568 /* Must start a transaction before doing an insert */ |
|
5569 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
5570 return rc; |
|
5571 } |
|
5572 assert( !pBt->readOnly ); |
|
5573 if( !pCur->wrFlag ){ |
|
5574 return SQLITE_PERM; /* Cursor not open for writing */ |
|
5575 } |
|
5576 if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){ |
|
5577 return SQLITE_LOCKED; /* The table pCur points to has a read lock */ |
|
5578 } |
|
5579 if( pCur->eState==CURSOR_FAULT ){ |
|
5580 return pCur->skip; |
|
5581 } |
|
5582 |
|
5583 /* Save the positions of any other cursors open on this table */ |
|
5584 clearCursorPosition(pCur); |
|
5585 if( |
|
5586 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || |
|
5587 SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc)) |
|
5588 ){ |
|
5589 return rc; |
|
5590 } |
|
5591 |
|
5592 pPage = pCur->pPage; |
|
5593 assert( pPage->intKey || nKey>=0 ); |
|
5594 assert( pPage->leaf || !pPage->leafData ); |
|
5595 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", |
|
5596 pCur->pgnoRoot, nKey, nData, pPage->pgno, |
|
5597 loc==0 ? "overwrite" : "new entry")); |
|
5598 assert( pPage->isInit ); |
|
5599 newCell = (unsigned char*)sqlite3_malloc( MX_CELL_SIZE(pBt) ); |
|
5600 if( newCell==0 ) return SQLITE_NOMEM; |
|
5601 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew); |
|
5602 if( rc ) goto end_insert; |
|
5603 assert( szNew==cellSizePtr(pPage, newCell) ); |
|
5604 assert( szNew<=MX_CELL_SIZE(pBt) ); |
|
5605 if( loc==0 && CURSOR_VALID==pCur->eState ){ |
|
5606 int szOld; |
|
5607 assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); |
|
5608 rc = sqlite3PagerWrite(pPage->pDbPage); |
|
5609 if( rc ){ |
|
5610 goto end_insert; |
|
5611 } |
|
5612 oldCell = findCell(pPage, pCur->idx); |
|
5613 if( !pPage->leaf ){ |
|
5614 memcpy(newCell, oldCell, 4); |
|
5615 } |
|
5616 szOld = cellSizePtr(pPage, oldCell); |
|
5617 rc = clearCell(pPage, oldCell); |
|
5618 if( rc ) goto end_insert; |
|
5619 dropCell(pPage, pCur->idx, szOld); |
|
5620 }else if( loc<0 && pPage->nCell>0 ){ |
|
5621 assert( pPage->leaf ); |
|
5622 pCur->idx++; |
|
5623 pCur->info.nSize = 0; |
|
5624 }else{ |
|
5625 assert( pPage->leaf ); |
|
5626 } |
|
5627 rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0); |
|
5628 if( rc!=SQLITE_OK ) goto end_insert; |
|
5629 rc = balance(pPage, 1); |
|
5630 /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */ |
|
5631 /* fflush(stdout); */ |
|
5632 if( rc==SQLITE_OK ){ |
|
5633 moveToRoot(pCur); |
|
5634 } |
|
5635 end_insert: |
|
5636 sqlite3_free(newCell); |
|
5637 return rc; |
|
5638 } |
|
5639 |
|
5640 /* |
|
5641 ** Delete the entry that the cursor is pointing to. The cursor |
|
5642 ** is left pointing at a random location. |
|
5643 */ |
|
5644 int sqlite3BtreeDelete(BtCursor *pCur){ |
|
5645 MemPage *pPage = pCur->pPage; |
|
5646 unsigned char *pCell; |
|
5647 int rc; |
|
5648 Pgno pgnoChild = 0; |
|
5649 Btree *p = pCur->pBtree; |
|
5650 BtShared *pBt = p->pBt; |
|
5651 |
|
5652 assert( cursorHoldsMutex(pCur) ); |
|
5653 assert( pPage->isInit ); |
|
5654 if( pBt->inTransaction!=TRANS_WRITE ){ |
|
5655 /* Must start a transaction before doing a delete */ |
|
5656 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
5657 return rc; |
|
5658 } |
|
5659 assert( !pBt->readOnly ); |
|
5660 if( pCur->eState==CURSOR_FAULT ){ |
|
5661 return pCur->skip; |
|
5662 } |
|
5663 if( pCur->idx >= pPage->nCell ){ |
|
5664 return SQLITE_ERROR; /* The cursor is not pointing to anything */ |
|
5665 } |
|
5666 if( !pCur->wrFlag ){ |
|
5667 return SQLITE_PERM; /* Did not open this cursor for writing */ |
|
5668 } |
|
5669 if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){ |
|
5670 return SQLITE_LOCKED; /* The table pCur points to has a read lock */ |
|
5671 } |
|
5672 |
|
5673 /* Restore the current cursor position (a no-op if the cursor is not in |
|
5674 ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors |
|
5675 ** open on the same table. Then call sqlite3PagerWrite() on the page |
|
5676 ** that the entry will be deleted from. |
|
5677 */ |
|
5678 if( |
|
5679 (rc = restoreOrClearCursorPosition(pCur))!=0 || |
|
5680 (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 || |
|
5681 (rc = sqlite3PagerWrite(pPage->pDbPage))!=0 |
|
5682 ){ |
|
5683 return rc; |
|
5684 } |
|
5685 |
|
5686 /* Locate the cell within its page and leave pCell pointing to the |
|
5687 ** data. The clearCell() call frees any overflow pages associated with the |
|
5688 ** cell. The cell itself is still intact. |
|
5689 */ |
|
5690 pCell = findCell(pPage, pCur->idx); |
|
5691 if( !pPage->leaf ){ |
|
5692 pgnoChild = get4byte(pCell); |
|
5693 } |
|
5694 rc = clearCell(pPage, pCell); |
|
5695 if( rc ){ |
|
5696 return rc; |
|
5697 } |
|
5698 |
|
5699 if( !pPage->leaf ){ |
|
5700 /* |
|
5701 ** The entry we are about to delete is not a leaf so if we do not |
|
5702 ** do something we will leave a hole on an internal page. |
|
5703 ** We have to fill the hole by moving in a cell from a leaf. The |
|
5704 ** next Cell after the one to be deleted is guaranteed to exist and |
|
5705 ** to be a leaf so we can use it. |
|
5706 */ |
|
5707 BtCursor leafCur; |
|
5708 unsigned char *pNext; |
|
5709 int szNext; /* The compiler warning is wrong: szNext is always |
|
5710 ** initialized before use. Adding an extra initialization |
|
5711 ** to silence the compiler slows down the code. */ |
|
5712 int notUsed; |
|
5713 unsigned char *tempCell = 0; |
|
5714 assert( !pPage->leafData ); |
|
5715 sqlite3BtreeGetTempCursor(pCur, &leafCur); |
|
5716 rc = sqlite3BtreeNext(&leafCur, ¬Used); |
|
5717 if( rc==SQLITE_OK ){ |
|
5718 rc = sqlite3PagerWrite(leafCur.pPage->pDbPage); |
|
5719 } |
|
5720 if( rc==SQLITE_OK ){ |
|
5721 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n", |
|
5722 pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno)); |
|
5723 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); |
|
5724 pNext = findCell(leafCur.pPage, leafCur.idx); |
|
5725 szNext = cellSizePtr(leafCur.pPage, pNext); |
|
5726 assert( MX_CELL_SIZE(pBt)>=szNext+4 ); |
|
5727 tempCell = (unsigned char*)sqlite3_malloc( MX_CELL_SIZE(pBt) ); |
|
5728 if( tempCell==0 ){ |
|
5729 rc = SQLITE_NOMEM; |
|
5730 } |
|
5731 } |
|
5732 if( rc==SQLITE_OK ){ |
|
5733 rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0); |
|
5734 } |
|
5735 if( rc==SQLITE_OK ){ |
|
5736 put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild); |
|
5737 rc = balance(pPage, 0); |
|
5738 } |
|
5739 if( rc==SQLITE_OK ){ |
|
5740 dropCell(leafCur.pPage, leafCur.idx, szNext); |
|
5741 rc = balance(leafCur.pPage, 0); |
|
5742 } |
|
5743 sqlite3_free(tempCell); |
|
5744 sqlite3BtreeReleaseTempCursor(&leafCur); |
|
5745 }else{ |
|
5746 TRACE(("DELETE: table=%d delete from leaf %d\n", |
|
5747 pCur->pgnoRoot, pPage->pgno)); |
|
5748 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); |
|
5749 rc = balance(pPage, 0); |
|
5750 } |
|
5751 if( rc==SQLITE_OK ){ |
|
5752 moveToRoot(pCur); |
|
5753 } |
|
5754 return rc; |
|
5755 } |
|
5756 |
|
5757 /* |
|
5758 ** Create a new BTree table. Write into *piTable the page |
|
5759 ** number for the root page of the new table. |
|
5760 ** |
|
5761 ** The type of type is determined by the flags parameter. Only the |
|
5762 ** following values of flags are currently in use. Other values for |
|
5763 ** flags might not work: |
|
5764 ** |
|
5765 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys |
|
5766 ** BTREE_ZERODATA Used for SQL indices |
|
5767 */ |
|
5768 static int btreeCreateTable(Btree *p, int *piTable, int flags){ |
|
5769 BtShared *pBt = p->pBt; |
|
5770 MemPage *pRoot; |
|
5771 Pgno pgnoRoot; |
|
5772 int rc; |
|
5773 |
|
5774 assert( sqlite3BtreeHoldsMutex(p) ); |
|
5775 if( pBt->inTransaction!=TRANS_WRITE ){ |
|
5776 /* Must start a transaction first */ |
|
5777 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
5778 return rc; |
|
5779 } |
|
5780 assert( !pBt->readOnly ); |
|
5781 |
|
5782 #ifdef SQLITE_OMIT_AUTOVACUUM |
|
5783 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
|
5784 if( rc ){ |
|
5785 return rc; |
|
5786 } |
|
5787 #else |
|
5788 if( pBt->autoVacuum ){ |
|
5789 Pgno pgnoMove; /* Move a page here to make room for the root-page */ |
|
5790 MemPage *pPageMove; /* The page to move to. */ |
|
5791 |
|
5792 /* Creating a new table may probably require moving an existing database |
|
5793 ** to make room for the new tables root page. In case this page turns |
|
5794 ** out to be an overflow page, delete all overflow page-map caches |
|
5795 ** held by open cursors. |
|
5796 */ |
|
5797 invalidateAllOverflowCache(pBt); |
|
5798 |
|
5799 /* Read the value of meta[3] from the database to determine where the |
|
5800 ** root page of the new table should go. meta[3] is the largest root-page |
|
5801 ** created so far, so the new root-page is (meta[3]+1). |
|
5802 */ |
|
5803 rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot); |
|
5804 if( rc!=SQLITE_OK ){ |
|
5805 return rc; |
|
5806 } |
|
5807 pgnoRoot++; |
|
5808 |
|
5809 /* The new root-page may not be allocated on a pointer-map page, or the |
|
5810 ** PENDING_BYTE page. |
|
5811 */ |
|
5812 if( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || |
|
5813 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ |
|
5814 pgnoRoot++; |
|
5815 } |
|
5816 assert( pgnoRoot>=3 ); |
|
5817 |
|
5818 /* Allocate a page. The page that currently resides at pgnoRoot will |
|
5819 ** be moved to the allocated page (unless the allocated page happens |
|
5820 ** to reside at pgnoRoot). |
|
5821 */ |
|
5822 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1); |
|
5823 if( rc!=SQLITE_OK ){ |
|
5824 return rc; |
|
5825 } |
|
5826 |
|
5827 if( pgnoMove!=pgnoRoot ){ |
|
5828 /* pgnoRoot is the page that will be used for the root-page of |
|
5829 ** the new table (assuming an error did not occur). But we were |
|
5830 ** allocated pgnoMove. If required (i.e. if it was not allocated |
|
5831 ** by extending the file), the current page at position pgnoMove |
|
5832 ** is already journaled. |
|
5833 */ |
|
5834 u8 eType; |
|
5835 Pgno iPtrPage; |
|
5836 |
|
5837 releasePage(pPageMove); |
|
5838 |
|
5839 /* Move the page currently at pgnoRoot to pgnoMove. */ |
|
5840 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
|
5841 if( rc!=SQLITE_OK ){ |
|
5842 return rc; |
|
5843 } |
|
5844 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); |
|
5845 if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ |
|
5846 releasePage(pRoot); |
|
5847 return rc; |
|
5848 } |
|
5849 assert( eType!=PTRMAP_ROOTPAGE ); |
|
5850 assert( eType!=PTRMAP_FREEPAGE ); |
|
5851 rc = sqlite3PagerWrite(pRoot->pDbPage); |
|
5852 if( rc!=SQLITE_OK ){ |
|
5853 releasePage(pRoot); |
|
5854 return rc; |
|
5855 } |
|
5856 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove); |
|
5857 releasePage(pRoot); |
|
5858 |
|
5859 /* Obtain the page at pgnoRoot */ |
|
5860 if( rc!=SQLITE_OK ){ |
|
5861 return rc; |
|
5862 } |
|
5863 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
|
5864 if( rc!=SQLITE_OK ){ |
|
5865 return rc; |
|
5866 } |
|
5867 rc = sqlite3PagerWrite(pRoot->pDbPage); |
|
5868 if( rc!=SQLITE_OK ){ |
|
5869 releasePage(pRoot); |
|
5870 return rc; |
|
5871 } |
|
5872 }else{ |
|
5873 pRoot = pPageMove; |
|
5874 } |
|
5875 |
|
5876 /* Update the pointer-map and meta-data with the new root-page number. */ |
|
5877 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0); |
|
5878 if( rc ){ |
|
5879 releasePage(pRoot); |
|
5880 return rc; |
|
5881 } |
|
5882 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); |
|
5883 if( rc ){ |
|
5884 releasePage(pRoot); |
|
5885 return rc; |
|
5886 } |
|
5887 |
|
5888 }else{ |
|
5889 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
|
5890 if( rc ) return rc; |
|
5891 } |
|
5892 #endif |
|
5893 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); |
|
5894 zeroPage(pRoot, flags | PTF_LEAF); |
|
5895 sqlite3PagerUnref(pRoot->pDbPage); |
|
5896 *piTable = (int)pgnoRoot; |
|
5897 return SQLITE_OK; |
|
5898 } |
|
5899 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ |
|
5900 int rc; |
|
5901 sqlite3BtreeEnter(p); |
|
5902 p->pBt->db = p->db; |
|
5903 rc = btreeCreateTable(p, piTable, flags); |
|
5904 sqlite3BtreeLeave(p); |
|
5905 return rc; |
|
5906 } |
|
5907 |
|
5908 /* |
|
5909 ** Erase the given database page and all its children. Return |
|
5910 ** the page to the freelist. |
|
5911 */ |
|
5912 static int clearDatabasePage( |
|
5913 BtShared *pBt, /* The BTree that contains the table */ |
|
5914 Pgno pgno, /* Page number to clear */ |
|
5915 MemPage *pParent, /* Parent page. NULL for the root */ |
|
5916 int freePageFlag /* Deallocate page if true */ |
|
5917 ){ |
|
5918 MemPage *pPage = 0; |
|
5919 int rc; |
|
5920 unsigned char *pCell; |
|
5921 int i; |
|
5922 |
|
5923 assert( sqlite3_mutex_held(pBt->mutex) ); |
|
5924 if( pgno>sqlite3PagerPagecount(pBt->pPager) ){ |
|
5925 return SQLITE_CORRUPT_BKPT; |
|
5926 } |
|
5927 |
|
5928 rc = getAndInitPage(pBt, pgno, &pPage, pParent); |
|
5929 if( rc ) goto cleardatabasepage_out; |
|
5930 for(i=0; i<pPage->nCell; i++){ |
|
5931 pCell = findCell(pPage, i); |
|
5932 if( !pPage->leaf ){ |
|
5933 rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1); |
|
5934 if( rc ) goto cleardatabasepage_out; |
|
5935 } |
|
5936 rc = clearCell(pPage, pCell); |
|
5937 if( rc ) goto cleardatabasepage_out; |
|
5938 } |
|
5939 if( !pPage->leaf ){ |
|
5940 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1); |
|
5941 if( rc ) goto cleardatabasepage_out; |
|
5942 } |
|
5943 if( freePageFlag ){ |
|
5944 rc = freePage(pPage); |
|
5945 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ |
|
5946 zeroPage(pPage, pPage->aData[0] | PTF_LEAF); |
|
5947 } |
|
5948 |
|
5949 cleardatabasepage_out: |
|
5950 releasePage(pPage); |
|
5951 return rc; |
|
5952 } |
|
5953 |
|
5954 /* |
|
5955 ** Delete all information from a single table in the database. iTable is |
|
5956 ** the page number of the root of the table. After this routine returns, |
|
5957 ** the root page is empty, but still exists. |
|
5958 ** |
|
5959 ** This routine will fail with SQLITE_LOCKED if there are any open |
|
5960 ** read cursors on the table. Open write cursors are moved to the |
|
5961 ** root of the table. |
|
5962 */ |
|
5963 int sqlite3BtreeClearTable(Btree *p, int iTable){ |
|
5964 int rc; |
|
5965 BtShared *pBt = p->pBt; |
|
5966 sqlite3BtreeEnter(p); |
|
5967 pBt->db = p->db; |
|
5968 if( p->inTrans!=TRANS_WRITE ){ |
|
5969 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
5970 }else if( (rc = checkReadLocks(p, iTable, 0))!=SQLITE_OK ){ |
|
5971 /* nothing to do */ |
|
5972 }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){ |
|
5973 /* nothing to do */ |
|
5974 }else{ |
|
5975 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0); |
|
5976 } |
|
5977 sqlite3BtreeLeave(p); |
|
5978 return rc; |
|
5979 } |
|
5980 |
|
5981 /* |
|
5982 ** Erase all information in a table and add the root of the table to |
|
5983 ** the freelist. Except, the root of the principle table (the one on |
|
5984 ** page 1) is never added to the freelist. |
|
5985 ** |
|
5986 ** This routine will fail with SQLITE_LOCKED if there are any open |
|
5987 ** cursors on the table. |
|
5988 ** |
|
5989 ** If AUTOVACUUM is enabled and the page at iTable is not the last |
|
5990 ** root page in the database file, then the last root page |
|
5991 ** in the database file is moved into the slot formerly occupied by |
|
5992 ** iTable and that last slot formerly occupied by the last root page |
|
5993 ** is added to the freelist instead of iTable. In this say, all |
|
5994 ** root pages are kept at the beginning of the database file, which |
|
5995 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the |
|
5996 ** page number that used to be the last root page in the file before |
|
5997 ** the move. If no page gets moved, *piMoved is set to 0. |
|
5998 ** The last root page is recorded in meta[3] and the value of |
|
5999 ** meta[3] is updated by this procedure. |
|
6000 */ |
|
6001 static int btreeDropTable(Btree *p, int iTable, int *piMoved){ |
|
6002 int rc; |
|
6003 MemPage *pPage = 0; |
|
6004 BtShared *pBt = p->pBt; |
|
6005 |
|
6006 assert( sqlite3BtreeHoldsMutex(p) ); |
|
6007 if( p->inTrans!=TRANS_WRITE ){ |
|
6008 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
6009 } |
|
6010 |
|
6011 /* It is illegal to drop a table if any cursors are open on the |
|
6012 ** database. This is because in auto-vacuum mode the backend may |
|
6013 ** need to move another root-page to fill a gap left by the deleted |
|
6014 ** root page. If an open cursor was using this page a problem would |
|
6015 ** occur. |
|
6016 */ |
|
6017 if( pBt->pCursor ){ |
|
6018 return SQLITE_LOCKED; |
|
6019 } |
|
6020 |
|
6021 rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0); |
|
6022 if( rc ) return rc; |
|
6023 rc = sqlite3BtreeClearTable(p, iTable); |
|
6024 if( rc ){ |
|
6025 releasePage(pPage); |
|
6026 return rc; |
|
6027 } |
|
6028 |
|
6029 *piMoved = 0; |
|
6030 |
|
6031 if( iTable>1 ){ |
|
6032 #ifdef SQLITE_OMIT_AUTOVACUUM |
|
6033 rc = freePage(pPage); |
|
6034 releasePage(pPage); |
|
6035 #else |
|
6036 if( pBt->autoVacuum ){ |
|
6037 Pgno maxRootPgno; |
|
6038 rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno); |
|
6039 if( rc!=SQLITE_OK ){ |
|
6040 releasePage(pPage); |
|
6041 return rc; |
|
6042 } |
|
6043 |
|
6044 if( iTable==maxRootPgno ){ |
|
6045 /* If the table being dropped is the table with the largest root-page |
|
6046 ** number in the database, put the root page on the free list. |
|
6047 */ |
|
6048 rc = freePage(pPage); |
|
6049 releasePage(pPage); |
|
6050 if( rc!=SQLITE_OK ){ |
|
6051 return rc; |
|
6052 } |
|
6053 }else{ |
|
6054 /* The table being dropped does not have the largest root-page |
|
6055 ** number in the database. So move the page that does into the |
|
6056 ** gap left by the deleted root-page. |
|
6057 */ |
|
6058 MemPage *pMove; |
|
6059 releasePage(pPage); |
|
6060 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0); |
|
6061 if( rc!=SQLITE_OK ){ |
|
6062 return rc; |
|
6063 } |
|
6064 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable); |
|
6065 releasePage(pMove); |
|
6066 if( rc!=SQLITE_OK ){ |
|
6067 return rc; |
|
6068 } |
|
6069 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0); |
|
6070 if( rc!=SQLITE_OK ){ |
|
6071 return rc; |
|
6072 } |
|
6073 rc = freePage(pMove); |
|
6074 releasePage(pMove); |
|
6075 if( rc!=SQLITE_OK ){ |
|
6076 return rc; |
|
6077 } |
|
6078 *piMoved = maxRootPgno; |
|
6079 } |
|
6080 |
|
6081 /* Set the new 'max-root-page' value in the database header. This |
|
6082 ** is the old value less one, less one more if that happens to |
|
6083 ** be a root-page number, less one again if that is the |
|
6084 ** PENDING_BYTE_PAGE. |
|
6085 */ |
|
6086 maxRootPgno--; |
|
6087 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){ |
|
6088 maxRootPgno--; |
|
6089 } |
|
6090 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){ |
|
6091 maxRootPgno--; |
|
6092 } |
|
6093 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); |
|
6094 |
|
6095 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); |
|
6096 }else{ |
|
6097 rc = freePage(pPage); |
|
6098 releasePage(pPage); |
|
6099 } |
|
6100 #endif |
|
6101 }else{ |
|
6102 /* If sqlite3BtreeDropTable was called on page 1. */ |
|
6103 zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); |
|
6104 releasePage(pPage); |
|
6105 } |
|
6106 return rc; |
|
6107 } |
|
6108 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ |
|
6109 int rc; |
|
6110 sqlite3BtreeEnter(p); |
|
6111 p->pBt->db = p->db; |
|
6112 rc = btreeDropTable(p, iTable, piMoved); |
|
6113 sqlite3BtreeLeave(p); |
|
6114 return rc; |
|
6115 } |
|
6116 |
|
6117 |
|
6118 /* |
|
6119 ** Read the meta-information out of a database file. Meta[0] |
|
6120 ** is the number of free pages currently in the database. Meta[1] |
|
6121 ** through meta[15] are available for use by higher layers. Meta[0] |
|
6122 ** is read-only, the others are read/write. |
|
6123 ** |
|
6124 ** The schema layer numbers meta values differently. At the schema |
|
6125 ** layer (and the SetCookie and ReadCookie opcodes) the number of |
|
6126 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. |
|
6127 */ |
|
6128 int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ |
|
6129 DbPage *pDbPage; |
|
6130 int rc; |
|
6131 unsigned char *pP1; |
|
6132 BtShared *pBt = p->pBt; |
|
6133 |
|
6134 sqlite3BtreeEnter(p); |
|
6135 pBt->db = p->db; |
|
6136 |
|
6137 /* Reading a meta-data value requires a read-lock on page 1 (and hence |
|
6138 ** the sqlite_master table. We grab this lock regardless of whether or |
|
6139 ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page |
|
6140 ** 1 is treated as a special case by queryTableLock() and lockTable()). |
|
6141 */ |
|
6142 rc = queryTableLock(p, 1, READ_LOCK); |
|
6143 if( rc!=SQLITE_OK ){ |
|
6144 sqlite3BtreeLeave(p); |
|
6145 return rc; |
|
6146 } |
|
6147 |
|
6148 assert( idx>=0 && idx<=15 ); |
|
6149 rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage); |
|
6150 if( rc ){ |
|
6151 sqlite3BtreeLeave(p); |
|
6152 return rc; |
|
6153 } |
|
6154 pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage); |
|
6155 *pMeta = get4byte(&pP1[36 + idx*4]); |
|
6156 sqlite3PagerUnref(pDbPage); |
|
6157 |
|
6158 /* If autovacuumed is disabled in this build but we are trying to |
|
6159 ** access an autovacuumed database, then make the database readonly. |
|
6160 */ |
|
6161 #ifdef SQLITE_OMIT_AUTOVACUUM |
|
6162 if( idx==4 && *pMeta>0 ) pBt->readOnly = 1; |
|
6163 #endif |
|
6164 |
|
6165 /* Grab the read-lock on page 1. */ |
|
6166 rc = lockTable(p, 1, READ_LOCK); |
|
6167 sqlite3BtreeLeave(p); |
|
6168 return rc; |
|
6169 } |
|
6170 |
|
6171 /* |
|
6172 ** Write meta-information back into the database. Meta[0] is |
|
6173 ** read-only and may not be written. |
|
6174 */ |
|
6175 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ |
|
6176 BtShared *pBt = p->pBt; |
|
6177 unsigned char *pP1; |
|
6178 int rc; |
|
6179 assert( idx>=1 && idx<=15 ); |
|
6180 sqlite3BtreeEnter(p); |
|
6181 pBt->db = p->db; |
|
6182 if( p->inTrans!=TRANS_WRITE ){ |
|
6183 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
6184 }else{ |
|
6185 assert( pBt->pPage1!=0 ); |
|
6186 pP1 = pBt->pPage1->aData; |
|
6187 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
|
6188 if( rc==SQLITE_OK ){ |
|
6189 put4byte(&pP1[36 + idx*4], iMeta); |
|
6190 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6191 if( idx==7 ){ |
|
6192 assert( pBt->autoVacuum || iMeta==0 ); |
|
6193 assert( iMeta==0 || iMeta==1 ); |
|
6194 pBt->incrVacuum = iMeta; |
|
6195 } |
|
6196 #endif |
|
6197 } |
|
6198 } |
|
6199 sqlite3BtreeLeave(p); |
|
6200 return rc; |
|
6201 } |
|
6202 |
|
6203 /* |
|
6204 ** Return the flag byte at the beginning of the page that the cursor |
|
6205 ** is currently pointing to. |
|
6206 */ |
|
6207 int sqlite3BtreeFlags(BtCursor *pCur){ |
|
6208 /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call |
|
6209 ** restoreOrClearCursorPosition() here. |
|
6210 */ |
|
6211 MemPage *pPage = pCur->pPage; |
|
6212 assert( cursorHoldsMutex(pCur) ); |
|
6213 assert( pPage->pBt==pCur->pBt ); |
|
6214 return pPage ? pPage->aData[pPage->hdrOffset] : 0; |
|
6215 } |
|
6216 |
|
6217 |
|
6218 /* |
|
6219 ** Return the pager associated with a BTree. This routine is used for |
|
6220 ** testing and debugging only. |
|
6221 */ |
|
6222 Pager *sqlite3BtreePager(Btree *p){ |
|
6223 return p->pBt->pPager; |
|
6224 } |
|
6225 |
|
6226 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
|
6227 /* |
|
6228 ** Append a message to the error message string. |
|
6229 */ |
|
6230 static void checkAppendMsg( |
|
6231 IntegrityCk *pCheck, |
|
6232 char *zMsg1, |
|
6233 const char *zFormat, |
|
6234 ... |
|
6235 ){ |
|
6236 va_list ap; |
|
6237 char *zMsg2; |
|
6238 if( !pCheck->mxErr ) return; |
|
6239 pCheck->mxErr--; |
|
6240 pCheck->nErr++; |
|
6241 va_start(ap, zFormat); |
|
6242 zMsg2 = sqlite3VMPrintf(0, zFormat, ap); |
|
6243 va_end(ap); |
|
6244 if( zMsg1==0 ) zMsg1 = ""; |
|
6245 if( pCheck->zErrMsg ){ |
|
6246 char *zOld = pCheck->zErrMsg; |
|
6247 pCheck->zErrMsg = 0; |
|
6248 sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0); |
|
6249 sqlite3_free(zOld); |
|
6250 }else{ |
|
6251 sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0); |
|
6252 } |
|
6253 sqlite3_free(zMsg2); |
|
6254 } |
|
6255 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
|
6256 |
|
6257 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
|
6258 /* |
|
6259 ** Add 1 to the reference count for page iPage. If this is the second |
|
6260 ** reference to the page, add an error message to pCheck->zErrMsg. |
|
6261 ** Return 1 if there are 2 ore more references to the page and 0 if |
|
6262 ** if this is the first reference to the page. |
|
6263 ** |
|
6264 ** Also check that the page number is in bounds. |
|
6265 */ |
|
6266 static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){ |
|
6267 if( iPage==0 ) return 1; |
|
6268 if( iPage>pCheck->nPage || iPage<0 ){ |
|
6269 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage); |
|
6270 return 1; |
|
6271 } |
|
6272 if( pCheck->anRef[iPage]==1 ){ |
|
6273 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage); |
|
6274 return 1; |
|
6275 } |
|
6276 return (pCheck->anRef[iPage]++)>1; |
|
6277 } |
|
6278 |
|
6279 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6280 /* |
|
6281 ** Check that the entry in the pointer-map for page iChild maps to |
|
6282 ** page iParent, pointer type ptrType. If not, append an error message |
|
6283 ** to pCheck. |
|
6284 */ |
|
6285 static void checkPtrmap( |
|
6286 IntegrityCk *pCheck, /* Integrity check context */ |
|
6287 Pgno iChild, /* Child page number */ |
|
6288 u8 eType, /* Expected pointer map type */ |
|
6289 Pgno iParent, /* Expected pointer map parent page number */ |
|
6290 char *zContext /* Context description (used for error msg) */ |
|
6291 ){ |
|
6292 int rc; |
|
6293 u8 ePtrmapType; |
|
6294 Pgno iPtrmapParent; |
|
6295 |
|
6296 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); |
|
6297 if( rc!=SQLITE_OK ){ |
|
6298 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild); |
|
6299 return; |
|
6300 } |
|
6301 |
|
6302 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ |
|
6303 checkAppendMsg(pCheck, zContext, |
|
6304 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", |
|
6305 iChild, eType, iParent, ePtrmapType, iPtrmapParent); |
|
6306 } |
|
6307 } |
|
6308 #endif |
|
6309 |
|
6310 /* |
|
6311 ** Check the integrity of the freelist or of an overflow page list. |
|
6312 ** Verify that the number of pages on the list is N. |
|
6313 */ |
|
6314 static void checkList( |
|
6315 IntegrityCk *pCheck, /* Integrity checking context */ |
|
6316 int isFreeList, /* True for a freelist. False for overflow page list */ |
|
6317 int iPage, /* Page number for first page in the list */ |
|
6318 int N, /* Expected number of pages in the list */ |
|
6319 char *zContext /* Context for error messages */ |
|
6320 ){ |
|
6321 int i; |
|
6322 int expected = N; |
|
6323 int iFirst = iPage; |
|
6324 while( N-- > 0 && pCheck->mxErr ){ |
|
6325 DbPage *pOvflPage; |
|
6326 unsigned char *pOvflData; |
|
6327 if( iPage<1 ){ |
|
6328 checkAppendMsg(pCheck, zContext, |
|
6329 "%d of %d pages missing from overflow list starting at %d", |
|
6330 N+1, expected, iFirst); |
|
6331 break; |
|
6332 } |
|
6333 if( checkRef(pCheck, iPage, zContext) ) break; |
|
6334 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){ |
|
6335 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage); |
|
6336 break; |
|
6337 } |
|
6338 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); |
|
6339 if( isFreeList ){ |
|
6340 int n = get4byte(&pOvflData[4]); |
|
6341 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6342 if( pCheck->pBt->autoVacuum ){ |
|
6343 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext); |
|
6344 } |
|
6345 #endif |
|
6346 if( n>pCheck->pBt->usableSize/4-8 ){ |
|
6347 checkAppendMsg(pCheck, zContext, |
|
6348 "freelist leaf count too big on page %d", iPage); |
|
6349 N--; |
|
6350 }else{ |
|
6351 for(i=0; i<n; i++){ |
|
6352 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); |
|
6353 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6354 if( pCheck->pBt->autoVacuum ){ |
|
6355 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext); |
|
6356 } |
|
6357 #endif |
|
6358 checkRef(pCheck, iFreePage, zContext); |
|
6359 } |
|
6360 N -= n; |
|
6361 } |
|
6362 } |
|
6363 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6364 else{ |
|
6365 /* If this database supports auto-vacuum and iPage is not the last |
|
6366 ** page in this overflow list, check that the pointer-map entry for |
|
6367 ** the following page matches iPage. |
|
6368 */ |
|
6369 if( pCheck->pBt->autoVacuum && N>0 ){ |
|
6370 i = get4byte(pOvflData); |
|
6371 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext); |
|
6372 } |
|
6373 } |
|
6374 #endif |
|
6375 iPage = get4byte(pOvflData); |
|
6376 sqlite3PagerUnref(pOvflPage); |
|
6377 } |
|
6378 } |
|
6379 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
|
6380 |
|
6381 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
|
6382 /* |
|
6383 ** Do various sanity checks on a single page of a tree. Return |
|
6384 ** the tree depth. Root pages return 0. Parents of root pages |
|
6385 ** return 1, and so forth. |
|
6386 ** |
|
6387 ** These checks are done: |
|
6388 ** |
|
6389 ** 1. Make sure that cells and freeblocks do not overlap |
|
6390 ** but combine to completely cover the page. |
|
6391 ** NO 2. Make sure cell keys are in order. |
|
6392 ** NO 3. Make sure no key is less than or equal to zLowerBound. |
|
6393 ** NO 4. Make sure no key is greater than or equal to zUpperBound. |
|
6394 ** 5. Check the integrity of overflow pages. |
|
6395 ** 6. Recursively call checkTreePage on all children. |
|
6396 ** 7. Verify that the depth of all children is the same. |
|
6397 ** 8. Make sure this page is at least 33% full or else it is |
|
6398 ** the root of the tree. |
|
6399 */ |
|
6400 static int checkTreePage( |
|
6401 IntegrityCk *pCheck, /* Context for the sanity check */ |
|
6402 int iPage, /* Page number of the page to check */ |
|
6403 MemPage *pParent, /* Parent page */ |
|
6404 char *zParentContext /* Parent context */ |
|
6405 ){ |
|
6406 MemPage *pPage; |
|
6407 int i, rc, depth, d2, pgno, cnt; |
|
6408 int hdr, cellStart; |
|
6409 int nCell; |
|
6410 u8 *data; |
|
6411 BtShared *pBt; |
|
6412 int usableSize; |
|
6413 char zContext[100]; |
|
6414 char *hit; |
|
6415 |
|
6416 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage); |
|
6417 |
|
6418 /* Check that the page exists |
|
6419 */ |
|
6420 pBt = pCheck->pBt; |
|
6421 usableSize = pBt->usableSize; |
|
6422 if( iPage==0 ) return 0; |
|
6423 if( checkRef(pCheck, iPage, zParentContext) ) return 0; |
|
6424 if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ |
|
6425 checkAppendMsg(pCheck, zContext, |
|
6426 "unable to get the page. error code=%d", rc); |
|
6427 return 0; |
|
6428 } |
|
6429 if( (rc = sqlite3BtreeInitPage(pPage, pParent))!=0 ){ |
|
6430 checkAppendMsg(pCheck, zContext, |
|
6431 "sqlite3BtreeInitPage() returns error code %d", rc); |
|
6432 releasePage(pPage); |
|
6433 return 0; |
|
6434 } |
|
6435 |
|
6436 /* Check out all the cells. |
|
6437 */ |
|
6438 depth = 0; |
|
6439 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){ |
|
6440 u8 *pCell; |
|
6441 int sz; |
|
6442 CellInfo info; |
|
6443 |
|
6444 /* Check payload overflow pages |
|
6445 */ |
|
6446 sqlite3_snprintf(sizeof(zContext), zContext, |
|
6447 "On tree page %d cell %d: ", iPage, i); |
|
6448 pCell = findCell(pPage,i); |
|
6449 sqlite3BtreeParseCellPtr(pPage, pCell, &info); |
|
6450 sz = info.nData; |
|
6451 if( !pPage->intKey ) sz += info.nKey; |
|
6452 assert( sz==info.nPayload ); |
|
6453 if( sz>info.nLocal ){ |
|
6454 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); |
|
6455 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); |
|
6456 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6457 if( pBt->autoVacuum ){ |
|
6458 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext); |
|
6459 } |
|
6460 #endif |
|
6461 checkList(pCheck, 0, pgnoOvfl, nPage, zContext); |
|
6462 } |
|
6463 |
|
6464 /* Check sanity of left child page. |
|
6465 */ |
|
6466 if( !pPage->leaf ){ |
|
6467 pgno = get4byte(pCell); |
|
6468 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6469 if( pBt->autoVacuum ){ |
|
6470 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); |
|
6471 } |
|
6472 #endif |
|
6473 d2 = checkTreePage(pCheck,pgno,pPage,zContext); |
|
6474 if( i>0 && d2!=depth ){ |
|
6475 checkAppendMsg(pCheck, zContext, "Child page depth differs"); |
|
6476 } |
|
6477 depth = d2; |
|
6478 } |
|
6479 } |
|
6480 if( !pPage->leaf ){ |
|
6481 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
|
6482 sqlite3_snprintf(sizeof(zContext), zContext, |
|
6483 "On page %d at right child: ", iPage); |
|
6484 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6485 if( pBt->autoVacuum ){ |
|
6486 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0); |
|
6487 } |
|
6488 #endif |
|
6489 checkTreePage(pCheck, pgno, pPage, zContext); |
|
6490 } |
|
6491 |
|
6492 /* Check for complete coverage of the page |
|
6493 */ |
|
6494 data = pPage->aData; |
|
6495 hdr = pPage->hdrOffset; |
|
6496 hit = (char*)sqlite3MallocZero( usableSize ); |
|
6497 if( hit ){ |
|
6498 memset(hit, 1, get2byte(&data[hdr+5])); |
|
6499 nCell = get2byte(&data[hdr+3]); |
|
6500 cellStart = hdr + 12 - 4*pPage->leaf; |
|
6501 for(i=0; i<nCell; i++){ |
|
6502 int pc = get2byte(&data[cellStart+i*2]); |
|
6503 int size = cellSizePtr(pPage, &data[pc]); |
|
6504 int j; |
|
6505 if( (pc+size-1)>=usableSize || pc<0 ){ |
|
6506 checkAppendMsg(pCheck, 0, |
|
6507 "Corruption detected in cell %d on page %d",i,iPage,0); |
|
6508 }else{ |
|
6509 for(j=pc+size-1; j>=pc; j--) hit[j]++; |
|
6510 } |
|
6511 } |
|
6512 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; |
|
6513 cnt++){ |
|
6514 int size = get2byte(&data[i+2]); |
|
6515 int j; |
|
6516 if( (i+size-1)>=usableSize || i<0 ){ |
|
6517 checkAppendMsg(pCheck, 0, |
|
6518 "Corruption detected in cell %d on page %d",i,iPage,0); |
|
6519 }else{ |
|
6520 for(j=i+size-1; j>=i; j--) hit[j]++; |
|
6521 } |
|
6522 i = get2byte(&data[i]); |
|
6523 } |
|
6524 for(i=cnt=0; i<usableSize; i++){ |
|
6525 if( hit[i]==0 ){ |
|
6526 cnt++; |
|
6527 }else if( hit[i]>1 ){ |
|
6528 checkAppendMsg(pCheck, 0, |
|
6529 "Multiple uses for byte %d of page %d", i, iPage); |
|
6530 break; |
|
6531 } |
|
6532 } |
|
6533 if( cnt!=data[hdr+7] ){ |
|
6534 checkAppendMsg(pCheck, 0, |
|
6535 "Fragmented space is %d byte reported as %d on page %d", |
|
6536 cnt, data[hdr+7], iPage); |
|
6537 } |
|
6538 } |
|
6539 sqlite3_free(hit); |
|
6540 |
|
6541 releasePage(pPage); |
|
6542 return depth+1; |
|
6543 } |
|
6544 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
|
6545 |
|
6546 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
|
6547 /* |
|
6548 ** This routine does a complete check of the given BTree file. aRoot[] is |
|
6549 ** an array of pages numbers were each page number is the root page of |
|
6550 ** a table. nRoot is the number of entries in aRoot. |
|
6551 ** |
|
6552 ** If everything checks out, this routine returns NULL. If something is |
|
6553 ** amiss, an error message is written into memory obtained from malloc() |
|
6554 ** and a pointer to that error message is returned. The calling function |
|
6555 ** is responsible for freeing the error message when it is done. |
|
6556 */ |
|
6557 char *sqlite3BtreeIntegrityCheck( |
|
6558 Btree *p, /* The btree to be checked */ |
|
6559 int *aRoot, /* An array of root pages numbers for individual trees */ |
|
6560 int nRoot, /* Number of entries in aRoot[] */ |
|
6561 int mxErr, /* Stop reporting errors after this many */ |
|
6562 int *pnErr /* Write number of errors seen to this variable */ |
|
6563 ){ |
|
6564 int i; |
|
6565 int nRef; |
|
6566 IntegrityCk sCheck; |
|
6567 BtShared *pBt = p->pBt; |
|
6568 |
|
6569 sqlite3BtreeEnter(p); |
|
6570 pBt->db = p->db; |
|
6571 nRef = sqlite3PagerRefcount(pBt->pPager); |
|
6572 if( lockBtreeWithRetry(p)!=SQLITE_OK ){ |
|
6573 sqlite3BtreeLeave(p); |
|
6574 return sqlite3StrDup("Unable to acquire a read lock on the database"); |
|
6575 } |
|
6576 sCheck.pBt = pBt; |
|
6577 sCheck.pPager = pBt->pPager; |
|
6578 sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager); |
|
6579 sCheck.mxErr = mxErr; |
|
6580 sCheck.nErr = 0; |
|
6581 *pnErr = 0; |
|
6582 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6583 if( pBt->nTrunc!=0 ){ |
|
6584 sCheck.nPage = pBt->nTrunc; |
|
6585 } |
|
6586 #endif |
|
6587 if( sCheck.nPage==0 ){ |
|
6588 unlockBtreeIfUnused(pBt); |
|
6589 sqlite3BtreeLeave(p); |
|
6590 return 0; |
|
6591 } |
|
6592 sCheck.anRef = (int*)sqlite3_malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) ); |
|
6593 if( !sCheck.anRef ){ |
|
6594 unlockBtreeIfUnused(pBt); |
|
6595 *pnErr = 1; |
|
6596 sqlite3BtreeLeave(p); |
|
6597 return sqlite3MPrintf(p->db, "Unable to malloc %d bytes", |
|
6598 (sCheck.nPage+1)*sizeof(sCheck.anRef[0])); |
|
6599 } |
|
6600 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } |
|
6601 i = PENDING_BYTE_PAGE(pBt); |
|
6602 if( i<=sCheck.nPage ){ |
|
6603 sCheck.anRef[i] = 1; |
|
6604 } |
|
6605 sCheck.zErrMsg = 0; |
|
6606 |
|
6607 /* Check the integrity of the freelist |
|
6608 */ |
|
6609 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), |
|
6610 get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); |
|
6611 |
|
6612 /* Check all the tables. |
|
6613 */ |
|
6614 for(i=0; i<nRoot && sCheck.mxErr; i++){ |
|
6615 if( aRoot[i]==0 ) continue; |
|
6616 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6617 if( pBt->autoVacuum && aRoot[i]>1 ){ |
|
6618 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0); |
|
6619 } |
|
6620 #endif |
|
6621 checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: "); |
|
6622 } |
|
6623 |
|
6624 /* Make sure every page in the file is referenced |
|
6625 */ |
|
6626 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ |
|
6627 #ifdef SQLITE_OMIT_AUTOVACUUM |
|
6628 if( sCheck.anRef[i]==0 ){ |
|
6629 checkAppendMsg(&sCheck, 0, "Page %d is never used", i); |
|
6630 } |
|
6631 #else |
|
6632 /* If the database supports auto-vacuum, make sure no tables contain |
|
6633 ** references to pointer-map pages. |
|
6634 */ |
|
6635 if( sCheck.anRef[i]==0 && |
|
6636 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ |
|
6637 checkAppendMsg(&sCheck, 0, "Page %d is never used", i); |
|
6638 } |
|
6639 if( sCheck.anRef[i]!=0 && |
|
6640 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ |
|
6641 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i); |
|
6642 } |
|
6643 #endif |
|
6644 } |
|
6645 |
|
6646 /* Make sure this analysis did not leave any unref() pages |
|
6647 */ |
|
6648 unlockBtreeIfUnused(pBt); |
|
6649 if( nRef != sqlite3PagerRefcount(pBt->pPager) ){ |
|
6650 checkAppendMsg(&sCheck, 0, |
|
6651 "Outstanding page count goes from %d to %d during this analysis", |
|
6652 nRef, sqlite3PagerRefcount(pBt->pPager) |
|
6653 ); |
|
6654 } |
|
6655 |
|
6656 /* Clean up and report errors. |
|
6657 */ |
|
6658 sqlite3BtreeLeave(p); |
|
6659 sqlite3_free(sCheck.anRef); |
|
6660 *pnErr = sCheck.nErr; |
|
6661 return sCheck.zErrMsg; |
|
6662 } |
|
6663 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
|
6664 |
|
6665 /* |
|
6666 ** Return the full pathname of the underlying database file. |
|
6667 ** |
|
6668 ** The pager filename is invariant as long as the pager is |
|
6669 ** open so it is safe to access without the BtShared mutex. |
|
6670 */ |
|
6671 const char *sqlite3BtreeGetFilename(Btree *p){ |
|
6672 assert( p->pBt->pPager!=0 ); |
|
6673 return sqlite3PagerFilename(p->pBt->pPager); |
|
6674 } |
|
6675 |
|
6676 /* |
|
6677 ** Return the pathname of the directory that contains the database file. |
|
6678 ** |
|
6679 ** The pager directory name is invariant as long as the pager is |
|
6680 ** open so it is safe to access without the BtShared mutex. |
|
6681 */ |
|
6682 const char *sqlite3BtreeGetDirname(Btree *p){ |
|
6683 assert( p->pBt->pPager!=0 ); |
|
6684 return sqlite3PagerDirname(p->pBt->pPager); |
|
6685 } |
|
6686 |
|
6687 /* |
|
6688 ** Return the pathname of the journal file for this database. The return |
|
6689 ** value of this routine is the same regardless of whether the journal file |
|
6690 ** has been created or not. |
|
6691 ** |
|
6692 ** The pager journal filename is invariant as long as the pager is |
|
6693 ** open so it is safe to access without the BtShared mutex. |
|
6694 */ |
|
6695 const char *sqlite3BtreeGetJournalname(Btree *p){ |
|
6696 assert( p->pBt->pPager!=0 ); |
|
6697 return sqlite3PagerJournalname(p->pBt->pPager); |
|
6698 } |
|
6699 |
|
6700 #ifndef SQLITE_OMIT_VACUUM |
|
6701 /* |
|
6702 ** Copy the complete content of pBtFrom into pBtTo. A transaction |
|
6703 ** must be active for both files. |
|
6704 ** |
|
6705 ** The size of file pBtFrom may be reduced by this operation. |
|
6706 ** If anything goes wrong, the transaction on pBtFrom is rolled back. |
|
6707 */ |
|
6708 static int btreeCopyFile(Btree *pTo, Btree *pFrom){ |
|
6709 int rc = SQLITE_OK; |
|
6710 Pgno i, nPage, nToPage, iSkip; |
|
6711 |
|
6712 BtShared *pBtTo = pTo->pBt; |
|
6713 BtShared *pBtFrom = pFrom->pBt; |
|
6714 pBtTo->db = pTo->db; |
|
6715 pBtFrom->db = pFrom->db; |
|
6716 |
|
6717 |
|
6718 if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){ |
|
6719 return SQLITE_ERROR; |
|
6720 } |
|
6721 if( pBtTo->pCursor ) return SQLITE_BUSY; |
|
6722 nToPage = sqlite3PagerPagecount(pBtTo->pPager); |
|
6723 nPage = sqlite3PagerPagecount(pBtFrom->pPager); |
|
6724 iSkip = PENDING_BYTE_PAGE(pBtTo); |
|
6725 for(i=1; rc==SQLITE_OK && i<=nPage; i++){ |
|
6726 DbPage *pDbPage; |
|
6727 if( i==iSkip ) continue; |
|
6728 rc = sqlite3PagerGet(pBtFrom->pPager, i, &pDbPage); |
|
6729 if( rc ) break; |
|
6730 rc = sqlite3PagerOverwrite(pBtTo->pPager, i, sqlite3PagerGetData(pDbPage)); |
|
6731 sqlite3PagerUnref(pDbPage); |
|
6732 } |
|
6733 |
|
6734 /* If the file is shrinking, journal the pages that are being truncated |
|
6735 ** so that they can be rolled back if the commit fails. |
|
6736 */ |
|
6737 for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){ |
|
6738 DbPage *pDbPage; |
|
6739 if( i==iSkip ) continue; |
|
6740 rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage); |
|
6741 if( rc ) break; |
|
6742 rc = sqlite3PagerWrite(pDbPage); |
|
6743 sqlite3PagerDontWrite(pDbPage); |
|
6744 /* Yeah. It seems wierd to call DontWrite() right after Write(). But |
|
6745 ** that is because the names of those procedures do not exactly |
|
6746 ** represent what they do. Write() really means "put this page in the |
|
6747 ** rollback journal and mark it as dirty so that it will be written |
|
6748 ** to the database file later." DontWrite() undoes the second part of |
|
6749 ** that and prevents the page from being written to the database. The |
|
6750 ** page is still on the rollback journal, though. And that is the whole |
|
6751 ** point of this loop: to put pages on the rollback journal. */ |
|
6752 sqlite3PagerUnref(pDbPage); |
|
6753 } |
|
6754 if( !rc && nPage<nToPage ){ |
|
6755 rc = sqlite3PagerTruncate(pBtTo->pPager, nPage); |
|
6756 } |
|
6757 |
|
6758 if( rc ){ |
|
6759 sqlite3BtreeRollback(pTo); |
|
6760 } |
|
6761 return rc; |
|
6762 } |
|
6763 int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){ |
|
6764 int rc; |
|
6765 sqlite3BtreeEnter(pTo); |
|
6766 sqlite3BtreeEnter(pFrom); |
|
6767 rc = btreeCopyFile(pTo, pFrom); |
|
6768 sqlite3BtreeLeave(pFrom); |
|
6769 sqlite3BtreeLeave(pTo); |
|
6770 return rc; |
|
6771 } |
|
6772 |
|
6773 #endif /* SQLITE_OMIT_VACUUM */ |
|
6774 |
|
6775 /* |
|
6776 ** Return non-zero if a transaction is active. |
|
6777 */ |
|
6778 int sqlite3BtreeIsInTrans(Btree *p){ |
|
6779 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); |
|
6780 return (p && (p->inTrans==TRANS_WRITE)); |
|
6781 } |
|
6782 |
|
6783 /* |
|
6784 ** Return non-zero if a statement transaction is active. |
|
6785 */ |
|
6786 int sqlite3BtreeIsInStmt(Btree *p){ |
|
6787 assert( sqlite3BtreeHoldsMutex(p) ); |
|
6788 return (p->pBt && p->pBt->inStmt); |
|
6789 } |
|
6790 |
|
6791 /* |
|
6792 ** Return non-zero if a read (or write) transaction is active. |
|
6793 */ |
|
6794 int sqlite3BtreeIsInReadTrans(Btree *p){ |
|
6795 assert( sqlite3_mutex_held(p->db->mutex) ); |
|
6796 return (p && (p->inTrans!=TRANS_NONE)); |
|
6797 } |
|
6798 |
|
6799 /* |
|
6800 ** This function returns a pointer to a blob of memory associated with |
|
6801 ** a single shared-btree. The memory is used by client code for its own |
|
6802 ** purposes (for example, to store a high-level schema associated with |
|
6803 ** the shared-btree). The btree layer manages reference counting issues. |
|
6804 ** |
|
6805 ** The first time this is called on a shared-btree, nBytes bytes of memory |
|
6806 ** are allocated, zeroed, and returned to the caller. For each subsequent |
|
6807 ** call the nBytes parameter is ignored and a pointer to the same blob |
|
6808 ** of memory returned. |
|
6809 ** |
|
6810 ** Just before the shared-btree is closed, the function passed as the |
|
6811 ** xFree argument when the memory allocation was made is invoked on the |
|
6812 ** blob of allocated memory. This function should not call sqlite3_free() |
|
6813 ** on the memory, the btree layer does that. |
|
6814 */ |
|
6815 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ |
|
6816 BtShared *pBt = p->pBt; |
|
6817 sqlite3BtreeEnter(p); |
|
6818 if( !pBt->pSchema ){ |
|
6819 pBt->pSchema = sqlite3MallocZero(nBytes); |
|
6820 pBt->xFreeSchema = xFree; |
|
6821 } |
|
6822 sqlite3BtreeLeave(p); |
|
6823 return pBt->pSchema; |
|
6824 } |
|
6825 |
|
6826 /* |
|
6827 ** Return true if another user of the same shared btree as the argument |
|
6828 ** handle holds an exclusive lock on the sqlite_master table. |
|
6829 */ |
|
6830 int sqlite3BtreeSchemaLocked(Btree *p){ |
|
6831 int rc; |
|
6832 assert( sqlite3_mutex_held(p->db->mutex) ); |
|
6833 sqlite3BtreeEnter(p); |
|
6834 rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK); |
|
6835 sqlite3BtreeLeave(p); |
|
6836 return rc; |
|
6837 } |
|
6838 |
|
6839 |
|
6840 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
6841 /* |
|
6842 ** Obtain a lock on the table whose root page is iTab. The |
|
6843 ** lock is a write lock if isWritelock is true or a read lock |
|
6844 ** if it is false. |
|
6845 */ |
|
6846 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ |
|
6847 int rc = SQLITE_OK; |
|
6848 u8 lockType = (isWriteLock?WRITE_LOCK:READ_LOCK); |
|
6849 sqlite3BtreeEnter(p); |
|
6850 rc = queryTableLock(p, iTab, lockType); |
|
6851 if( rc==SQLITE_OK ){ |
|
6852 rc = lockTable(p, iTab, lockType); |
|
6853 } |
|
6854 sqlite3BtreeLeave(p); |
|
6855 return rc; |
|
6856 } |
|
6857 #endif |
|
6858 |
|
6859 #ifndef SQLITE_OMIT_INCRBLOB |
|
6860 /* |
|
6861 ** Argument pCsr must be a cursor opened for writing on an |
|
6862 ** INTKEY table currently pointing at a valid table entry. |
|
6863 ** This function modifies the data stored as part of that entry. |
|
6864 ** Only the data content may only be modified, it is not possible |
|
6865 ** to change the length of the data stored. |
|
6866 */ |
|
6867 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ |
|
6868 assert( cursorHoldsMutex(pCsr) ); |
|
6869 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); |
|
6870 assert(pCsr->isIncrblobHandle); |
|
6871 if( pCsr->eState>=CURSOR_REQUIRESEEK ){ |
|
6872 if( pCsr->eState==CURSOR_FAULT ){ |
|
6873 return pCsr->skip; |
|
6874 }else{ |
|
6875 return SQLITE_ABORT; |
|
6876 } |
|
6877 } |
|
6878 |
|
6879 /* Check some preconditions: |
|
6880 ** (a) the cursor is open for writing, |
|
6881 ** (b) there is no read-lock on the table being modified and |
|
6882 ** (c) the cursor points at a valid row of an intKey table. |
|
6883 */ |
|
6884 if( !pCsr->wrFlag ){ |
|
6885 return SQLITE_READONLY; |
|
6886 } |
|
6887 assert( !pCsr->pBt->readOnly |
|
6888 && pCsr->pBt->inTransaction==TRANS_WRITE ); |
|
6889 if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr) ){ |
|
6890 return SQLITE_LOCKED; /* The table pCur points to has a read lock */ |
|
6891 } |
|
6892 if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){ |
|
6893 return SQLITE_ERROR; |
|
6894 } |
|
6895 |
|
6896 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1); |
|
6897 } |
|
6898 |
|
6899 /* |
|
6900 ** Set a flag on this cursor to cache the locations of pages from the |
|
6901 ** overflow list for the current row. This is used by cursors opened |
|
6902 ** for incremental blob IO only. |
|
6903 ** |
|
6904 ** This function sets a flag only. The actual page location cache |
|
6905 ** (stored in BtCursor.aOverflow[]) is allocated and used by function |
|
6906 ** accessPayload() (the worker function for sqlite3BtreeData() and |
|
6907 ** sqlite3BtreePutData()). |
|
6908 */ |
|
6909 void sqlite3BtreeCacheOverflow(BtCursor *pCur){ |
|
6910 assert( cursorHoldsMutex(pCur) ); |
|
6911 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
|
6912 assert(!pCur->isIncrblobHandle); |
|
6913 assert(!pCur->aOverflow); |
|
6914 pCur->isIncrblobHandle = 1; |
|
6915 } |
|
6916 #endif |