|
1 /* |
|
2 ** 2003 October 31 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This file contains the C functions that implement date and time |
|
13 ** functions for SQLite. |
|
14 ** |
|
15 ** There is only one exported symbol in this file - the function |
|
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. |
|
17 ** All other code has file scope. |
|
18 ** |
|
19 ** $Id: date.cpp 1282 2008-11-13 09:31:33Z LarsPson $ |
|
20 ** |
|
21 ** SQLite processes all times and dates as Julian Day numbers. The |
|
22 ** dates and times are stored as the number of days since noon |
|
23 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian |
|
24 ** calendar system. |
|
25 ** |
|
26 ** 1970-01-01 00:00:00 is JD 2440587.5 |
|
27 ** 2000-01-01 00:00:00 is JD 2451544.5 |
|
28 ** |
|
29 ** This implemention requires years to be expressed as a 4-digit number |
|
30 ** which means that only dates between 0000-01-01 and 9999-12-31 can |
|
31 ** be represented, even though julian day numbers allow a much wider |
|
32 ** range of dates. |
|
33 ** |
|
34 ** The Gregorian calendar system is used for all dates and times, |
|
35 ** even those that predate the Gregorian calendar. Historians usually |
|
36 ** use the Julian calendar for dates prior to 1582-10-15 and for some |
|
37 ** dates afterwards, depending on locale. Beware of this difference. |
|
38 ** |
|
39 ** The conversion algorithms are implemented based on descriptions |
|
40 ** in the following text: |
|
41 ** |
|
42 ** Jean Meeus |
|
43 ** Astronomical Algorithms, 2nd Edition, 1998 |
|
44 ** ISBM 0-943396-61-1 |
|
45 ** Willmann-Bell, Inc |
|
46 ** Richmond, Virginia (USA) |
|
47 */ |
|
48 #include "sqliteInt.h" |
|
49 #include <ctype.h> |
|
50 #include <stdlib.h> |
|
51 #include <assert.h> |
|
52 #include <time.h> |
|
53 |
|
54 #ifndef SQLITE_OMIT_DATETIME_FUNCS |
|
55 |
|
56 /* |
|
57 ** A structure for holding a single date and time. |
|
58 */ |
|
59 typedef struct DateTime DateTime; |
|
60 struct DateTime { |
|
61 double rJD; /* The julian day number */ |
|
62 int Y, M, D; /* Year, month, and day */ |
|
63 int h, m; /* Hour and minutes */ |
|
64 int tz; /* Timezone offset in minutes */ |
|
65 double s; /* Seconds */ |
|
66 char validYMD; /* True if Y,M,D are valid */ |
|
67 char validHMS; /* True if h,m,s are valid */ |
|
68 char validJD; /* True if rJD is valid */ |
|
69 char validTZ; /* True if tz is valid */ |
|
70 }; |
|
71 |
|
72 |
|
73 /* |
|
74 ** Convert zDate into one or more integers. Additional arguments |
|
75 ** come in groups of 5 as follows: |
|
76 ** |
|
77 ** N number of digits in the integer |
|
78 ** min minimum allowed value of the integer |
|
79 ** max maximum allowed value of the integer |
|
80 ** nextC first character after the integer |
|
81 ** pVal where to write the integers value. |
|
82 ** |
|
83 ** Conversions continue until one with nextC==0 is encountered. |
|
84 ** The function returns the number of successful conversions. |
|
85 */ |
|
86 static int getDigits(const char *zDate, ...){ |
|
87 va_list ap; |
|
88 int val; |
|
89 int N; |
|
90 int min; |
|
91 int max; |
|
92 int nextC; |
|
93 int *pVal; |
|
94 int cnt = 0; |
|
95 va_start(ap, zDate); |
|
96 do{ |
|
97 N = va_arg(ap, int); |
|
98 min = va_arg(ap, int); |
|
99 max = va_arg(ap, int); |
|
100 nextC = va_arg(ap, int); |
|
101 pVal = va_arg(ap, int*); |
|
102 val = 0; |
|
103 while( N-- ){ |
|
104 if( !isdigit(*(u8*)zDate) ){ |
|
105 goto end_getDigits; |
|
106 } |
|
107 val = val*10 + *zDate - '0'; |
|
108 zDate++; |
|
109 } |
|
110 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ |
|
111 goto end_getDigits; |
|
112 } |
|
113 *pVal = val; |
|
114 zDate++; |
|
115 cnt++; |
|
116 }while( nextC ); |
|
117 end_getDigits: |
|
118 va_end(ap); |
|
119 return cnt; |
|
120 } |
|
121 |
|
122 /* |
|
123 ** Read text from z[] and convert into a floating point number. Return |
|
124 ** the number of digits converted. |
|
125 */ |
|
126 #define getValue sqlite3AtoF |
|
127 |
|
128 /* |
|
129 ** Parse a timezone extension on the end of a date-time. |
|
130 ** The extension is of the form: |
|
131 ** |
|
132 ** (+/-)HH:MM |
|
133 ** |
|
134 ** If the parse is successful, write the number of minutes |
|
135 ** of change in *pnMin and return 0. If a parser error occurs, |
|
136 ** return 0. |
|
137 ** |
|
138 ** A missing specifier is not considered an error. |
|
139 */ |
|
140 static int parseTimezone(const char *zDate, DateTime *p){ |
|
141 int sgn = 0; |
|
142 int nHr, nMn; |
|
143 while( isspace(*(u8*)zDate) ){ zDate++; } |
|
144 p->tz = 0; |
|
145 if( *zDate=='-' ){ |
|
146 sgn = -1; |
|
147 }else if( *zDate=='+' ){ |
|
148 sgn = +1; |
|
149 }else{ |
|
150 return *zDate!=0; |
|
151 } |
|
152 zDate++; |
|
153 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ |
|
154 return 1; |
|
155 } |
|
156 zDate += 5; |
|
157 p->tz = sgn*(nMn + nHr*60); |
|
158 while( isspace(*(u8*)zDate) ){ zDate++; } |
|
159 return *zDate!=0; |
|
160 } |
|
161 |
|
162 /* |
|
163 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. |
|
164 ** The HH, MM, and SS must each be exactly 2 digits. The |
|
165 ** fractional seconds FFFF can be one or more digits. |
|
166 ** |
|
167 ** Return 1 if there is a parsing error and 0 on success. |
|
168 */ |
|
169 static int parseHhMmSs(const char *zDate, DateTime *p){ |
|
170 int h, m, s; |
|
171 double ms = 0.0; |
|
172 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ |
|
173 return 1; |
|
174 } |
|
175 zDate += 5; |
|
176 if( *zDate==':' ){ |
|
177 zDate++; |
|
178 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ |
|
179 return 1; |
|
180 } |
|
181 zDate += 2; |
|
182 if( *zDate=='.' && isdigit((u8)zDate[1]) ){ |
|
183 double rScale = 1.0; |
|
184 zDate++; |
|
185 while( isdigit(*(u8*)zDate) ){ |
|
186 ms = ms*10.0 + *zDate - '0'; |
|
187 rScale *= 10.0; |
|
188 zDate++; |
|
189 } |
|
190 ms /= rScale; |
|
191 } |
|
192 }else{ |
|
193 s = 0; |
|
194 } |
|
195 p->validJD = 0; |
|
196 p->validHMS = 1; |
|
197 p->h = h; |
|
198 p->m = m; |
|
199 p->s = s + ms; |
|
200 if( parseTimezone(zDate, p) ) return 1; |
|
201 p->validTZ = p->tz!=0; |
|
202 return 0; |
|
203 } |
|
204 |
|
205 /* |
|
206 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume |
|
207 ** that the YYYY-MM-DD is according to the Gregorian calendar. |
|
208 ** |
|
209 ** Reference: Meeus page 61 |
|
210 */ |
|
211 static void computeJD(DateTime *p){ |
|
212 int Y, M, D, A, B, X1, X2; |
|
213 |
|
214 if( p->validJD ) return; |
|
215 if( p->validYMD ){ |
|
216 Y = p->Y; |
|
217 M = p->M; |
|
218 D = p->D; |
|
219 }else{ |
|
220 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ |
|
221 M = 1; |
|
222 D = 1; |
|
223 } |
|
224 if( M<=2 ){ |
|
225 Y--; |
|
226 M += 12; |
|
227 } |
|
228 A = Y/100; |
|
229 B = 2 - A + (A/4); |
|
230 X1 = 365.25*(Y+4716); |
|
231 X2 = 30.6001*(M+1); |
|
232 p->rJD = X1 + X2 + D + B - 1524.5; |
|
233 p->validJD = 1; |
|
234 if( p->validHMS ){ |
|
235 p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0; |
|
236 if( p->validTZ ){ |
|
237 p->rJD -= p->tz*60/86400.0; |
|
238 p->validYMD = 0; |
|
239 p->validHMS = 0; |
|
240 p->validTZ = 0; |
|
241 } |
|
242 } |
|
243 } |
|
244 |
|
245 /* |
|
246 ** Parse dates of the form |
|
247 ** |
|
248 ** YYYY-MM-DD HH:MM:SS.FFF |
|
249 ** YYYY-MM-DD HH:MM:SS |
|
250 ** YYYY-MM-DD HH:MM |
|
251 ** YYYY-MM-DD |
|
252 ** |
|
253 ** Write the result into the DateTime structure and return 0 |
|
254 ** on success and 1 if the input string is not a well-formed |
|
255 ** date. |
|
256 */ |
|
257 static int parseYyyyMmDd(const char *zDate, DateTime *p){ |
|
258 int Y, M, D, neg; |
|
259 |
|
260 if( zDate[0]=='-' ){ |
|
261 zDate++; |
|
262 neg = 1; |
|
263 }else{ |
|
264 neg = 0; |
|
265 } |
|
266 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ |
|
267 return 1; |
|
268 } |
|
269 zDate += 10; |
|
270 while( isspace(*(u8*)zDate) || 'T'==*(u8*)zDate ){ zDate++; } |
|
271 if( parseHhMmSs(zDate, p)==0 ){ |
|
272 /* We got the time */ |
|
273 }else if( *zDate==0 ){ |
|
274 p->validHMS = 0; |
|
275 }else{ |
|
276 return 1; |
|
277 } |
|
278 p->validJD = 0; |
|
279 p->validYMD = 1; |
|
280 p->Y = neg ? -Y : Y; |
|
281 p->M = M; |
|
282 p->D = D; |
|
283 if( p->validTZ ){ |
|
284 computeJD(p); |
|
285 } |
|
286 return 0; |
|
287 } |
|
288 |
|
289 /* |
|
290 ** Attempt to parse the given string into a Julian Day Number. Return |
|
291 ** the number of errors. |
|
292 ** |
|
293 ** The following are acceptable forms for the input string: |
|
294 ** |
|
295 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM |
|
296 ** DDDD.DD |
|
297 ** now |
|
298 ** |
|
299 ** In the first form, the +/-HH:MM is always optional. The fractional |
|
300 ** seconds extension (the ".FFF") is optional. The seconds portion |
|
301 ** (":SS.FFF") is option. The year and date can be omitted as long |
|
302 ** as there is a time string. The time string can be omitted as long |
|
303 ** as there is a year and date. |
|
304 */ |
|
305 static int parseDateOrTime( |
|
306 sqlite3_context *context, |
|
307 const char *zDate, |
|
308 DateTime *p |
|
309 ){ |
|
310 memset(p, 0, sizeof(*p)); |
|
311 if( parseYyyyMmDd(zDate,p)==0 ){ |
|
312 return 0; |
|
313 }else if( parseHhMmSs(zDate, p)==0 ){ |
|
314 return 0; |
|
315 }else if( sqlite3StrICmp(zDate,"now")==0){ |
|
316 double r; |
|
317 sqlite3OsCurrentTime((sqlite3_vfs *)sqlite3_user_data(context), &r); |
|
318 p->rJD = r; |
|
319 p->validJD = 1; |
|
320 return 0; |
|
321 }else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){ |
|
322 getValue(zDate, &p->rJD); |
|
323 p->validJD = 1; |
|
324 return 0; |
|
325 } |
|
326 return 1; |
|
327 } |
|
328 |
|
329 /* |
|
330 ** Compute the Year, Month, and Day from the julian day number. |
|
331 */ |
|
332 static void computeYMD(DateTime *p){ |
|
333 int Z, A, B, C, D, E, X1; |
|
334 if( p->validYMD ) return; |
|
335 if( !p->validJD ){ |
|
336 p->Y = 2000; |
|
337 p->M = 1; |
|
338 p->D = 1; |
|
339 }else{ |
|
340 Z = p->rJD + 0.5; |
|
341 A = (Z - 1867216.25)/36524.25; |
|
342 A = Z + 1 + A - (A/4); |
|
343 B = A + 1524; |
|
344 C = (B - 122.1)/365.25; |
|
345 D = 365.25*C; |
|
346 E = (B-D)/30.6001; |
|
347 X1 = 30.6001*E; |
|
348 p->D = B - D - X1; |
|
349 p->M = E<14 ? E-1 : E-13; |
|
350 p->Y = p->M>2 ? C - 4716 : C - 4715; |
|
351 } |
|
352 p->validYMD = 1; |
|
353 } |
|
354 |
|
355 /* |
|
356 ** Compute the Hour, Minute, and Seconds from the julian day number. |
|
357 */ |
|
358 static void computeHMS(DateTime *p){ |
|
359 int Z, s; |
|
360 if( p->validHMS ) return; |
|
361 computeJD(p); |
|
362 Z = p->rJD + 0.5; |
|
363 s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5; |
|
364 p->s = 0.001*s; |
|
365 s = p->s; |
|
366 p->s -= s; |
|
367 p->h = s/3600; |
|
368 s -= p->h*3600; |
|
369 p->m = s/60; |
|
370 p->s += s - p->m*60; |
|
371 p->validHMS = 1; |
|
372 } |
|
373 |
|
374 /* |
|
375 ** Compute both YMD and HMS |
|
376 */ |
|
377 static void computeYMD_HMS(DateTime *p){ |
|
378 computeYMD(p); |
|
379 computeHMS(p); |
|
380 } |
|
381 |
|
382 /* |
|
383 ** Clear the YMD and HMS and the TZ |
|
384 */ |
|
385 static void clearYMD_HMS_TZ(DateTime *p){ |
|
386 p->validYMD = 0; |
|
387 p->validHMS = 0; |
|
388 p->validTZ = 0; |
|
389 } |
|
390 |
|
391 /* |
|
392 ** Compute the difference (in days) between localtime and UTC (a.k.a. GMT) |
|
393 ** for the time value p where p is in UTC. |
|
394 */ |
|
395 static double localtimeOffset(DateTime *p){ |
|
396 DateTime x, y; |
|
397 time_t t; |
|
398 x = *p; |
|
399 computeYMD_HMS(&x); |
|
400 if( x.Y<1971 || x.Y>=2038 ){ |
|
401 x.Y = 2000; |
|
402 x.M = 1; |
|
403 x.D = 1; |
|
404 x.h = 0; |
|
405 x.m = 0; |
|
406 x.s = 0.0; |
|
407 } else { |
|
408 int s = x.s + 0.5; |
|
409 x.s = s; |
|
410 } |
|
411 x.tz = 0; |
|
412 x.validJD = 0; |
|
413 computeJD(&x); |
|
414 t = (x.rJD-2440587.5)*86400.0 + 0.5; |
|
415 #ifdef HAVE_LOCALTIME_R |
|
416 { |
|
417 struct tm sLocal; |
|
418 localtime_r(&t, &sLocal); |
|
419 y.Y = sLocal.tm_year + 1900; |
|
420 y.M = sLocal.tm_mon + 1; |
|
421 y.D = sLocal.tm_mday; |
|
422 y.h = sLocal.tm_hour; |
|
423 y.m = sLocal.tm_min; |
|
424 y.s = sLocal.tm_sec; |
|
425 } |
|
426 #else |
|
427 { |
|
428 struct tm *pTm; |
|
429 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); |
|
430 pTm = localtime(&t); |
|
431 y.Y = pTm->tm_year + 1900; |
|
432 y.M = pTm->tm_mon + 1; |
|
433 y.D = pTm->tm_mday; |
|
434 y.h = pTm->tm_hour; |
|
435 y.m = pTm->tm_min; |
|
436 y.s = pTm->tm_sec; |
|
437 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); |
|
438 } |
|
439 #endif |
|
440 y.validYMD = 1; |
|
441 y.validHMS = 1; |
|
442 y.validJD = 0; |
|
443 y.validTZ = 0; |
|
444 computeJD(&y); |
|
445 return y.rJD - x.rJD; |
|
446 } |
|
447 |
|
448 /* |
|
449 ** Process a modifier to a date-time stamp. The modifiers are |
|
450 ** as follows: |
|
451 ** |
|
452 ** NNN days |
|
453 ** NNN hours |
|
454 ** NNN minutes |
|
455 ** NNN.NNNN seconds |
|
456 ** NNN months |
|
457 ** NNN years |
|
458 ** start of month |
|
459 ** start of year |
|
460 ** start of week |
|
461 ** start of day |
|
462 ** weekday N |
|
463 ** unixepoch |
|
464 ** localtime |
|
465 ** utc |
|
466 ** |
|
467 ** Return 0 on success and 1 if there is any kind of error. |
|
468 */ |
|
469 static int parseModifier(const char *zMod, DateTime *p){ |
|
470 int rc = 1; |
|
471 int n; |
|
472 double r; |
|
473 char *z, zBuf[30]; |
|
474 z = zBuf; |
|
475 for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){ |
|
476 z[n] = tolower(zMod[n]); |
|
477 } |
|
478 z[n] = 0; |
|
479 switch( z[0] ){ |
|
480 case 'l': { |
|
481 /* localtime |
|
482 ** |
|
483 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to |
|
484 ** show local time. |
|
485 */ |
|
486 if( strcmp(z, "localtime")==0 ){ |
|
487 computeJD(p); |
|
488 p->rJD += localtimeOffset(p); |
|
489 clearYMD_HMS_TZ(p); |
|
490 rc = 0; |
|
491 } |
|
492 break; |
|
493 } |
|
494 case 'u': { |
|
495 /* |
|
496 ** unixepoch |
|
497 ** |
|
498 ** Treat the current value of p->rJD as the number of |
|
499 ** seconds since 1970. Convert to a real julian day number. |
|
500 */ |
|
501 if( strcmp(z, "unixepoch")==0 && p->validJD ){ |
|
502 p->rJD = p->rJD/86400.0 + 2440587.5; |
|
503 clearYMD_HMS_TZ(p); |
|
504 rc = 0; |
|
505 }else if( strcmp(z, "utc")==0 ){ |
|
506 double c1; |
|
507 computeJD(p); |
|
508 c1 = localtimeOffset(p); |
|
509 p->rJD -= c1; |
|
510 clearYMD_HMS_TZ(p); |
|
511 p->rJD += c1 - localtimeOffset(p); |
|
512 rc = 0; |
|
513 } |
|
514 break; |
|
515 } |
|
516 case 'w': { |
|
517 /* |
|
518 ** weekday N |
|
519 ** |
|
520 ** Move the date to the same time on the next occurrence of |
|
521 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the |
|
522 ** date is already on the appropriate weekday, this is a no-op. |
|
523 */ |
|
524 if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0 |
|
525 && (n=r)==r && n>=0 && r<7 ){ |
|
526 int Z; |
|
527 computeYMD_HMS(p); |
|
528 p->validTZ = 0; |
|
529 p->validJD = 0; |
|
530 computeJD(p); |
|
531 Z = p->rJD + 1.5; |
|
532 Z %= 7; |
|
533 if( Z>n ) Z -= 7; |
|
534 p->rJD += n - Z; |
|
535 clearYMD_HMS_TZ(p); |
|
536 rc = 0; |
|
537 } |
|
538 break; |
|
539 } |
|
540 case 's': { |
|
541 /* |
|
542 ** start of TTTTT |
|
543 ** |
|
544 ** Move the date backwards to the beginning of the current day, |
|
545 ** or month or year. |
|
546 */ |
|
547 if( strncmp(z, "start of ", 9)!=0 ) break; |
|
548 z += 9; |
|
549 computeYMD(p); |
|
550 p->validHMS = 1; |
|
551 p->h = p->m = 0; |
|
552 p->s = 0.0; |
|
553 p->validTZ = 0; |
|
554 p->validJD = 0; |
|
555 if( strcmp(z,"month")==0 ){ |
|
556 p->D = 1; |
|
557 rc = 0; |
|
558 }else if( strcmp(z,"year")==0 ){ |
|
559 computeYMD(p); |
|
560 p->M = 1; |
|
561 p->D = 1; |
|
562 rc = 0; |
|
563 }else if( strcmp(z,"day")==0 ){ |
|
564 rc = 0; |
|
565 } |
|
566 break; |
|
567 } |
|
568 case '+': |
|
569 case '-': |
|
570 case '0': |
|
571 case '1': |
|
572 case '2': |
|
573 case '3': |
|
574 case '4': |
|
575 case '5': |
|
576 case '6': |
|
577 case '7': |
|
578 case '8': |
|
579 case '9': { |
|
580 n = getValue(z, &r); |
|
581 assert( n>=1 ); |
|
582 if( z[n]==':' ){ |
|
583 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the |
|
584 ** specified number of hours, minutes, seconds, and fractional seconds |
|
585 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be |
|
586 ** omitted. |
|
587 */ |
|
588 const char *z2 = z; |
|
589 DateTime tx; |
|
590 int day; |
|
591 if( !isdigit(*(u8*)z2) ) z2++; |
|
592 memset(&tx, 0, sizeof(tx)); |
|
593 if( parseHhMmSs(z2, &tx) ) break; |
|
594 computeJD(&tx); |
|
595 tx.rJD -= 0.5; |
|
596 day = (int)tx.rJD; |
|
597 tx.rJD -= day; |
|
598 if( z[0]=='-' ) tx.rJD = -tx.rJD; |
|
599 computeJD(p); |
|
600 clearYMD_HMS_TZ(p); |
|
601 p->rJD += tx.rJD; |
|
602 rc = 0; |
|
603 break; |
|
604 } |
|
605 z += n; |
|
606 while( isspace(*(u8*)z) ) z++; |
|
607 n = strlen(z); |
|
608 if( n>10 || n<3 ) break; |
|
609 if( z[n-1]=='s' ){ z[n-1] = 0; n--; } |
|
610 computeJD(p); |
|
611 rc = 0; |
|
612 if( n==3 && strcmp(z,"day")==0 ){ |
|
613 p->rJD += r; |
|
614 }else if( n==4 && strcmp(z,"hour")==0 ){ |
|
615 p->rJD += r/24.0; |
|
616 }else if( n==6 && strcmp(z,"minute")==0 ){ |
|
617 p->rJD += r/(24.0*60.0); |
|
618 }else if( n==6 && strcmp(z,"second")==0 ){ |
|
619 p->rJD += r/(24.0*60.0*60.0); |
|
620 }else if( n==5 && strcmp(z,"month")==0 ){ |
|
621 int x, y; |
|
622 computeYMD_HMS(p); |
|
623 p->M += r; |
|
624 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; |
|
625 p->Y += x; |
|
626 p->M -= x*12; |
|
627 p->validJD = 0; |
|
628 computeJD(p); |
|
629 y = r; |
|
630 if( y!=r ){ |
|
631 p->rJD += (r - y)*30.0; |
|
632 } |
|
633 }else if( n==4 && strcmp(z,"year")==0 ){ |
|
634 computeYMD_HMS(p); |
|
635 p->Y += r; |
|
636 p->validJD = 0; |
|
637 computeJD(p); |
|
638 }else{ |
|
639 rc = 1; |
|
640 } |
|
641 clearYMD_HMS_TZ(p); |
|
642 break; |
|
643 } |
|
644 default: { |
|
645 break; |
|
646 } |
|
647 } |
|
648 return rc; |
|
649 } |
|
650 |
|
651 /* |
|
652 ** Process time function arguments. argv[0] is a date-time stamp. |
|
653 ** argv[1] and following are modifiers. Parse them all and write |
|
654 ** the resulting time into the DateTime structure p. Return 0 |
|
655 ** on success and 1 if there are any errors. |
|
656 */ |
|
657 static int isDate( |
|
658 sqlite3_context *context, |
|
659 int argc, |
|
660 sqlite3_value **argv, |
|
661 DateTime *p |
|
662 ){ |
|
663 int i; |
|
664 const unsigned char *z; |
|
665 if( argc==0 ) return 1; |
|
666 z = sqlite3_value_text(argv[0]); |
|
667 if( !z || parseDateOrTime(context, (char*)z, p) ){ |
|
668 return 1; |
|
669 } |
|
670 for(i=1; i<argc; i++){ |
|
671 if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){ |
|
672 return 1; |
|
673 } |
|
674 } |
|
675 return 0; |
|
676 } |
|
677 |
|
678 |
|
679 /* |
|
680 ** The following routines implement the various date and time functions |
|
681 ** of SQLite. |
|
682 */ |
|
683 |
|
684 /* |
|
685 ** julianday( TIMESTRING, MOD, MOD, ...) |
|
686 ** |
|
687 ** Return the julian day number of the date specified in the arguments |
|
688 */ |
|
689 static void juliandayFunc( |
|
690 sqlite3_context *context, |
|
691 int argc, |
|
692 sqlite3_value **argv |
|
693 ){ |
|
694 DateTime x; |
|
695 if( isDate(context, argc, argv, &x)==0 ){ |
|
696 computeJD(&x); |
|
697 sqlite3_result_double(context, x.rJD); |
|
698 } |
|
699 } |
|
700 |
|
701 /* |
|
702 ** datetime( TIMESTRING, MOD, MOD, ...) |
|
703 ** |
|
704 ** Return YYYY-MM-DD HH:MM:SS |
|
705 */ |
|
706 static void datetimeFunc( |
|
707 sqlite3_context *context, |
|
708 int argc, |
|
709 sqlite3_value **argv |
|
710 ){ |
|
711 DateTime x; |
|
712 if( isDate(context, argc, argv, &x)==0 ){ |
|
713 char zBuf[100]; |
|
714 computeYMD_HMS(&x); |
|
715 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", |
|
716 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); |
|
717 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
|
718 } |
|
719 } |
|
720 |
|
721 /* |
|
722 ** time( TIMESTRING, MOD, MOD, ...) |
|
723 ** |
|
724 ** Return HH:MM:SS |
|
725 */ |
|
726 static void timeFunc( |
|
727 sqlite3_context *context, |
|
728 int argc, |
|
729 sqlite3_value **argv |
|
730 ){ |
|
731 DateTime x; |
|
732 if( isDate(context, argc, argv, &x)==0 ){ |
|
733 char zBuf[100]; |
|
734 computeHMS(&x); |
|
735 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); |
|
736 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
|
737 } |
|
738 } |
|
739 |
|
740 /* |
|
741 ** date( TIMESTRING, MOD, MOD, ...) |
|
742 ** |
|
743 ** Return YYYY-MM-DD |
|
744 */ |
|
745 static void dateFunc( |
|
746 sqlite3_context *context, |
|
747 int argc, |
|
748 sqlite3_value **argv |
|
749 ){ |
|
750 DateTime x; |
|
751 if( isDate(context, argc, argv, &x)==0 ){ |
|
752 char zBuf[100]; |
|
753 computeYMD(&x); |
|
754 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); |
|
755 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
|
756 } |
|
757 } |
|
758 |
|
759 /* |
|
760 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) |
|
761 ** |
|
762 ** Return a string described by FORMAT. Conversions as follows: |
|
763 ** |
|
764 ** %d day of month |
|
765 ** %f ** fractional seconds SS.SSS |
|
766 ** %H hour 00-24 |
|
767 ** %j day of year 000-366 |
|
768 ** %J ** Julian day number |
|
769 ** %m month 01-12 |
|
770 ** %M minute 00-59 |
|
771 ** %s seconds since 1970-01-01 |
|
772 ** %S seconds 00-59 |
|
773 ** %w day of week 0-6 sunday==0 |
|
774 ** %W week of year 00-53 |
|
775 ** %Y year 0000-9999 |
|
776 ** %% % |
|
777 */ |
|
778 static void strftimeFunc( |
|
779 sqlite3_context *context, |
|
780 int argc, |
|
781 sqlite3_value **argv |
|
782 ){ |
|
783 DateTime x; |
|
784 u64 n; |
|
785 int i, j; |
|
786 char *z; |
|
787 const char *zFmt = (const char*)sqlite3_value_text(argv[0]); |
|
788 char zBuf[100]; |
|
789 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; |
|
790 for(i=0, n=1; zFmt[i]; i++, n++){ |
|
791 if( zFmt[i]=='%' ){ |
|
792 switch( zFmt[i+1] ){ |
|
793 case 'd': |
|
794 case 'H': |
|
795 case 'm': |
|
796 case 'M': |
|
797 case 'S': |
|
798 case 'W': |
|
799 n++; |
|
800 /* fall thru */ |
|
801 case 'w': |
|
802 case '%': |
|
803 break; |
|
804 case 'f': |
|
805 n += 8; |
|
806 break; |
|
807 case 'j': |
|
808 n += 3; |
|
809 break; |
|
810 case 'Y': |
|
811 n += 8; |
|
812 break; |
|
813 case 's': |
|
814 case 'J': |
|
815 n += 50; |
|
816 break; |
|
817 default: |
|
818 return; /* ERROR. return a NULL */ |
|
819 } |
|
820 i++; |
|
821 } |
|
822 } |
|
823 if( n<sizeof(zBuf) ){ |
|
824 z = zBuf; |
|
825 }else if( n>SQLITE_MAX_LENGTH ){ |
|
826 sqlite3_result_error_toobig(context); |
|
827 return; |
|
828 }else{ |
|
829 z = (char*)sqlite3_malloc( n ); |
|
830 if( z==0 ) return; |
|
831 } |
|
832 computeJD(&x); |
|
833 computeYMD_HMS(&x); |
|
834 for(i=j=0; zFmt[i]; i++){ |
|
835 if( zFmt[i]!='%' ){ |
|
836 z[j++] = zFmt[i]; |
|
837 }else{ |
|
838 i++; |
|
839 switch( zFmt[i] ){ |
|
840 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; |
|
841 case 'f': { |
|
842 double s = x.s; |
|
843 if( s>59.999 ) s = 59.999; |
|
844 sqlite3_snprintf(7, &z[j],"%06.3f", s); |
|
845 j += strlen(&z[j]); |
|
846 break; |
|
847 } |
|
848 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; |
|
849 case 'W': /* Fall thru */ |
|
850 case 'j': { |
|
851 int nDay; /* Number of days since 1st day of year */ |
|
852 DateTime y = x; |
|
853 y.validJD = 0; |
|
854 y.M = 1; |
|
855 y.D = 1; |
|
856 computeJD(&y); |
|
857 nDay = x.rJD - y.rJD + 0.5; |
|
858 if( zFmt[i]=='W' ){ |
|
859 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ |
|
860 wd = ((int)(x.rJD+0.5)) % 7; |
|
861 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); |
|
862 j += 2; |
|
863 }else{ |
|
864 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); |
|
865 j += 3; |
|
866 } |
|
867 break; |
|
868 } |
|
869 case 'J': { |
|
870 sqlite3_snprintf(20, &z[j],"%.16g",x.rJD); |
|
871 j+=strlen(&z[j]); |
|
872 break; |
|
873 } |
|
874 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; |
|
875 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; |
|
876 case 's': { |
|
877 sqlite3_snprintf(30,&z[j],"%d", |
|
878 (int)((x.rJD-2440587.5)*86400.0 + 0.5)); |
|
879 j += strlen(&z[j]); |
|
880 break; |
|
881 } |
|
882 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; |
|
883 case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break; |
|
884 case 'Y': sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=strlen(&z[j]);break; |
|
885 case '%': z[j++] = '%'; break; |
|
886 } |
|
887 } |
|
888 } |
|
889 z[j] = 0; |
|
890 sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT); |
|
891 if( z!=zBuf ){ |
|
892 sqlite3_free(z); |
|
893 } |
|
894 } |
|
895 |
|
896 /* |
|
897 ** current_time() |
|
898 ** |
|
899 ** This function returns the same value as time('now'). |
|
900 */ |
|
901 static void ctimeFunc( |
|
902 sqlite3_context *context, |
|
903 int argc, |
|
904 sqlite3_value **argv |
|
905 ){ |
|
906 sqlite3_value *pVal = sqlite3ValueNew(0); |
|
907 if( pVal ){ |
|
908 sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC); |
|
909 timeFunc(context, 1, &pVal); |
|
910 sqlite3ValueFree(pVal); |
|
911 } |
|
912 } |
|
913 |
|
914 /* |
|
915 ** current_date() |
|
916 ** |
|
917 ** This function returns the same value as date('now'). |
|
918 */ |
|
919 static void cdateFunc( |
|
920 sqlite3_context *context, |
|
921 int argc, |
|
922 sqlite3_value **argv |
|
923 ){ |
|
924 sqlite3_value *pVal = sqlite3ValueNew(0); |
|
925 if( pVal ){ |
|
926 sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC); |
|
927 dateFunc(context, 1, &pVal); |
|
928 sqlite3ValueFree(pVal); |
|
929 } |
|
930 } |
|
931 |
|
932 /* |
|
933 ** current_timestamp() |
|
934 ** |
|
935 ** This function returns the same value as datetime('now'). |
|
936 */ |
|
937 static void ctimestampFunc( |
|
938 sqlite3_context *context, |
|
939 int argc, |
|
940 sqlite3_value **argv |
|
941 ){ |
|
942 sqlite3_value *pVal = sqlite3ValueNew(0); |
|
943 if( pVal ){ |
|
944 sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC); |
|
945 datetimeFunc(context, 1, &pVal); |
|
946 sqlite3ValueFree(pVal); |
|
947 } |
|
948 } |
|
949 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ |
|
950 |
|
951 #ifdef SQLITE_OMIT_DATETIME_FUNCS |
|
952 /* |
|
953 ** If the library is compiled to omit the full-scale date and time |
|
954 ** handling (to get a smaller binary), the following minimal version |
|
955 ** of the functions current_time(), current_date() and current_timestamp() |
|
956 ** are included instead. This is to support column declarations that |
|
957 ** include "DEFAULT CURRENT_TIME" etc. |
|
958 ** |
|
959 ** This function uses the C-library functions time(), gmtime() |
|
960 ** and strftime(). The format string to pass to strftime() is supplied |
|
961 ** as the user-data for the function. |
|
962 */ |
|
963 static void currentTimeFunc( |
|
964 sqlite3_context *context, |
|
965 int argc, |
|
966 sqlite3_value **argv |
|
967 ){ |
|
968 time_t t; |
|
969 char *zFormat = (char *)sqlite3_user_data(context); |
|
970 char zBuf[20]; |
|
971 |
|
972 time(&t); |
|
973 #ifdef SQLITE_TEST |
|
974 { |
|
975 extern int sqlite3_current_time; /* See os_XXX.c */ |
|
976 if( sqlite3_current_time ){ |
|
977 t = sqlite3_current_time; |
|
978 } |
|
979 } |
|
980 #endif |
|
981 |
|
982 #ifdef HAVE_GMTIME_R |
|
983 { |
|
984 struct tm sNow; |
|
985 gmtime_r(&t, &sNow); |
|
986 strftime(zBuf, 20, zFormat, &sNow); |
|
987 } |
|
988 #else |
|
989 { |
|
990 struct tm *pTm; |
|
991 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); |
|
992 pTm = gmtime(&t); |
|
993 strftime(zBuf, 20, zFormat, pTm); |
|
994 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); |
|
995 } |
|
996 #endif |
|
997 |
|
998 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
|
999 } |
|
1000 #endif |
|
1001 |
|
1002 /* |
|
1003 ** This function registered all of the above C functions as SQL |
|
1004 ** functions. This should be the only routine in this file with |
|
1005 ** external linkage. |
|
1006 */ |
|
1007 void sqlite3RegisterDateTimeFunctions(sqlite3 *db){ |
|
1008 #ifndef SQLITE_OMIT_DATETIME_FUNCS |
|
1009 static const struct { |
|
1010 char *zName; |
|
1011 int nArg; |
|
1012 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); |
|
1013 } aFuncs[] = { |
|
1014 { "julianday", -1, juliandayFunc }, |
|
1015 { "date", -1, dateFunc }, |
|
1016 { "time", -1, timeFunc }, |
|
1017 { "datetime", -1, datetimeFunc }, |
|
1018 { "strftime", -1, strftimeFunc }, |
|
1019 { "current_time", 0, ctimeFunc }, |
|
1020 { "current_timestamp", 0, ctimestampFunc }, |
|
1021 { "current_date", 0, cdateFunc }, |
|
1022 }; |
|
1023 int i; |
|
1024 |
|
1025 for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ |
|
1026 sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg, |
|
1027 SQLITE_UTF8, (void *)(db->pVfs), aFuncs[i].xFunc, 0, 0); |
|
1028 } |
|
1029 #else |
|
1030 static const struct { |
|
1031 char *zName; |
|
1032 char *zFormat; |
|
1033 } aFuncs[] = { |
|
1034 { "current_time", "%H:%M:%S" }, |
|
1035 { "current_date", "%Y-%m-%d" }, |
|
1036 { "current_timestamp", "%Y-%m-%d %H:%M:%S" } |
|
1037 }; |
|
1038 int i; |
|
1039 |
|
1040 for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ |
|
1041 sqlite3CreateFunc(db, aFuncs[i].zName, 0, SQLITE_UTF8, |
|
1042 aFuncs[i].zFormat, currentTimeFunc, 0, 0); |
|
1043 } |
|
1044 #endif |
|
1045 } |