engine/sqlite/src/expr.cpp
changeset 2 29cda98b007e
equal deleted inserted replaced
1:5f8e5adbbed9 2:29cda98b007e
       
     1 /*
       
     2 ** 2001 September 15
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** This file contains routines used for analyzing expressions and
       
    13 ** for generating VDBE code that evaluates expressions in SQLite.
       
    14 **
       
    15 ** $Id: expr.cpp 1282 2008-11-13 09:31:33Z LarsPson $
       
    16 */
       
    17 #include "sqliteInt.h"
       
    18 #include <ctype.h>
       
    19 
       
    20 /*
       
    21 ** Return the 'affinity' of the expression pExpr if any.
       
    22 **
       
    23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
       
    24 ** or a sub-select with a column as the return value, then the 
       
    25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
       
    26 ** indicating no affinity for the expression.
       
    27 **
       
    28 ** i.e. the WHERE clause expresssions in the following statements all
       
    29 ** have an affinity:
       
    30 **
       
    31 ** CREATE TABLE t1(a);
       
    32 ** SELECT * FROM t1 WHERE a;
       
    33 ** SELECT a AS b FROM t1 WHERE b;
       
    34 ** SELECT * FROM t1 WHERE (select a from t1);
       
    35 */
       
    36 char sqlite3ExprAffinity(Expr *pExpr){
       
    37   int op = pExpr->op;
       
    38   if( op==TK_SELECT ){
       
    39     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
       
    40   }
       
    41 #ifndef SQLITE_OMIT_CAST
       
    42   if( op==TK_CAST ){
       
    43     return sqlite3AffinityType(&pExpr->token);
       
    44   }
       
    45 #endif
       
    46   return pExpr->affinity;
       
    47 }
       
    48 
       
    49 /*
       
    50 ** Set the collating sequence for expression pExpr to be the collating
       
    51 ** sequence named by pToken.   Return a pointer to the revised expression.
       
    52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
       
    53 ** flag.  An explicit collating sequence will override implicit
       
    54 ** collating sequences.
       
    55 */
       
    56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
       
    57   char *zColl = 0;            /* Dequoted name of collation sequence */
       
    58   CollSeq *pColl;
       
    59   zColl = sqlite3NameFromToken(pParse->db, pName);
       
    60   if( pExpr && zColl ){
       
    61     pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
       
    62     if( pColl ){
       
    63       pExpr->pColl = pColl;
       
    64       pExpr->flags |= EP_ExpCollate;
       
    65     }
       
    66   }
       
    67   sqlite3_free(zColl);
       
    68   return pExpr;
       
    69 }
       
    70 
       
    71 /*
       
    72 ** Return the default collation sequence for the expression pExpr. If
       
    73 ** there is no default collation type, return 0.
       
    74 */
       
    75 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
       
    76   CollSeq *pColl = 0;
       
    77   if( pExpr ){
       
    78     int op;
       
    79     pColl = pExpr->pColl;
       
    80     op = pExpr->op;
       
    81     if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
       
    82       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
       
    83     }
       
    84   }
       
    85   if( sqlite3CheckCollSeq(pParse, pColl) ){ 
       
    86     pColl = 0;
       
    87   }
       
    88   return pColl;
       
    89 }
       
    90 
       
    91 /*
       
    92 ** pExpr is an operand of a comparison operator.  aff2 is the
       
    93 ** type affinity of the other operand.  This routine returns the
       
    94 ** type affinity that should be used for the comparison operator.
       
    95 */
       
    96 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
       
    97   char aff1 = sqlite3ExprAffinity(pExpr);
       
    98   if( aff1 && aff2 ){
       
    99     /* Both sides of the comparison are columns. If one has numeric
       
   100     ** affinity, use that. Otherwise use no affinity.
       
   101     */
       
   102     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
       
   103       return SQLITE_AFF_NUMERIC;
       
   104     }else{
       
   105       return SQLITE_AFF_NONE;
       
   106     }
       
   107   }else if( !aff1 && !aff2 ){
       
   108     /* Neither side of the comparison is a column.  Compare the
       
   109     ** results directly.
       
   110     */
       
   111     return SQLITE_AFF_NONE;
       
   112   }else{
       
   113     /* One side is a column, the other is not. Use the columns affinity. */
       
   114     assert( aff1==0 || aff2==0 );
       
   115     return (aff1 + aff2);
       
   116   }
       
   117 }
       
   118 
       
   119 /*
       
   120 ** pExpr is a comparison operator.  Return the type affinity that should
       
   121 ** be applied to both operands prior to doing the comparison.
       
   122 */
       
   123 static char comparisonAffinity(Expr *pExpr){
       
   124   char aff;
       
   125   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
       
   126           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
       
   127           pExpr->op==TK_NE );
       
   128   assert( pExpr->pLeft );
       
   129   aff = sqlite3ExprAffinity(pExpr->pLeft);
       
   130   if( pExpr->pRight ){
       
   131     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
       
   132   }
       
   133   else if( pExpr->pSelect ){
       
   134     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
       
   135   }
       
   136   else if( !aff ){
       
   137     aff = SQLITE_AFF_NONE;
       
   138   }
       
   139   return aff;
       
   140 }
       
   141 
       
   142 /*
       
   143 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
       
   144 ** idx_affinity is the affinity of an indexed column. Return true
       
   145 ** if the index with affinity idx_affinity may be used to implement
       
   146 ** the comparison in pExpr.
       
   147 */
       
   148 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
       
   149   char aff = comparisonAffinity(pExpr);
       
   150   switch( aff ){
       
   151     case SQLITE_AFF_NONE:
       
   152       return 1;
       
   153     case SQLITE_AFF_TEXT:
       
   154       return idx_affinity==SQLITE_AFF_TEXT;
       
   155     default:
       
   156       return sqlite3IsNumericAffinity(idx_affinity);
       
   157   }
       
   158 }
       
   159 
       
   160 /*
       
   161 ** Return the P1 value that should be used for a binary comparison
       
   162 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
       
   163 ** If jumpIfNull is true, then set the low byte of the returned
       
   164 ** P1 value to tell the opcode to jump if either expression
       
   165 ** evaluates to NULL.
       
   166 */
       
   167 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
       
   168   char aff = sqlite3ExprAffinity(pExpr2);
       
   169   return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);
       
   170 }
       
   171 
       
   172 /*
       
   173 ** Return a pointer to the collation sequence that should be used by
       
   174 ** a binary comparison operator comparing pLeft and pRight.
       
   175 **
       
   176 ** If the left hand expression has a collating sequence type, then it is
       
   177 ** used. Otherwise the collation sequence for the right hand expression
       
   178 ** is used, or the default (BINARY) if neither expression has a collating
       
   179 ** type.
       
   180 **
       
   181 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
       
   182 ** it is not considered.
       
   183 */
       
   184 CollSeq *sqlite3BinaryCompareCollSeq(
       
   185   Parse *pParse, 
       
   186   Expr *pLeft, 
       
   187   Expr *pRight
       
   188 ){
       
   189   CollSeq *pColl;
       
   190   assert( pLeft );
       
   191   if( pLeft->flags & EP_ExpCollate ){
       
   192     assert( pLeft->pColl );
       
   193     pColl = pLeft->pColl;
       
   194   }else if( pRight && pRight->flags & EP_ExpCollate ){
       
   195     assert( pRight->pColl );
       
   196     pColl = pRight->pColl;
       
   197   }else{
       
   198     pColl = sqlite3ExprCollSeq(pParse, pLeft);
       
   199     if( !pColl ){
       
   200       pColl = sqlite3ExprCollSeq(pParse, pRight);
       
   201     }
       
   202   }
       
   203   return pColl;
       
   204 }
       
   205 
       
   206 /*
       
   207 ** Generate code for a comparison operator.
       
   208 */
       
   209 static int codeCompare(
       
   210   Parse *pParse,    /* The parsing (and code generating) context */
       
   211   Expr *pLeft,      /* The left operand */
       
   212   Expr *pRight,     /* The right operand */
       
   213   int opcode,       /* The comparison opcode */
       
   214   int dest,         /* Jump here if true.  */
       
   215   int jumpIfNull    /* If true, jump if either operand is NULL */
       
   216 ){
       
   217   int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
       
   218   CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
       
   219   return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (const char*)p3, P3_COLLSEQ);
       
   220 }
       
   221 
       
   222 /*
       
   223 ** Construct a new expression node and return a pointer to it.  Memory
       
   224 ** for this node is obtained from sqlite3_malloc().  The calling function
       
   225 ** is responsible for making sure the node eventually gets freed.
       
   226 */
       
   227 Expr *sqlite3Expr(
       
   228   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
       
   229   int op,                 /* Expression opcode */
       
   230   Expr *pLeft,            /* Left operand */
       
   231   Expr *pRight,           /* Right operand */
       
   232   const Token *pToken     /* Argument token */
       
   233 ){
       
   234   Expr *pNew;
       
   235   pNew = (Expr*)sqlite3DbMallocZero(db, sizeof(Expr));
       
   236   if( pNew==0 ){
       
   237     /* When malloc fails, delete pLeft and pRight. Expressions passed to 
       
   238     ** this function must always be allocated with sqlite3Expr() for this 
       
   239     ** reason. 
       
   240     */
       
   241     sqlite3ExprDelete(pLeft);
       
   242     sqlite3ExprDelete(pRight);
       
   243     return 0;
       
   244   }
       
   245   pNew->op = op;
       
   246   pNew->pLeft = pLeft;
       
   247   pNew->pRight = pRight;
       
   248   pNew->iAgg = -1;
       
   249   if( pToken ){
       
   250     assert( pToken->dyn==0 );
       
   251     pNew->span = pNew->token = *pToken;
       
   252   }else if( pLeft ){
       
   253     if( pRight ){
       
   254       sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
       
   255       if( pRight->flags & EP_ExpCollate ){
       
   256         pNew->flags |= EP_ExpCollate;
       
   257         pNew->pColl = pRight->pColl;
       
   258       }
       
   259     }
       
   260     if( pLeft->flags & EP_ExpCollate ){
       
   261       pNew->flags |= EP_ExpCollate;
       
   262       pNew->pColl = pLeft->pColl;
       
   263     }
       
   264   }
       
   265 
       
   266   sqlite3ExprSetHeight(pNew);
       
   267   return pNew;
       
   268 }
       
   269 
       
   270 /*
       
   271 ** Works like sqlite3Expr() except that it takes an extra Parse*
       
   272 ** argument and notifies the associated connection object if malloc fails.
       
   273 */
       
   274 Expr *sqlite3PExpr(
       
   275   Parse *pParse,          /* Parsing context */
       
   276   int op,                 /* Expression opcode */
       
   277   Expr *pLeft,            /* Left operand */
       
   278   Expr *pRight,           /* Right operand */
       
   279   const Token *pToken     /* Argument token */
       
   280 ){
       
   281   return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
       
   282 }
       
   283 
       
   284 /*
       
   285 ** When doing a nested parse, you can include terms in an expression
       
   286 ** that look like this:   #0 #1 #2 ...  These terms refer to elements
       
   287 ** on the stack.  "#0" means the top of the stack.
       
   288 ** "#1" means the next down on the stack.  And so forth.
       
   289 **
       
   290 ** This routine is called by the parser to deal with on of those terms.
       
   291 ** It immediately generates code to store the value in a memory location.
       
   292 ** The returns an expression that will code to extract the value from
       
   293 ** that memory location as needed.
       
   294 */
       
   295 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
       
   296   Vdbe *v = pParse->pVdbe;
       
   297   Expr *p;
       
   298   int depth;
       
   299   if( pParse->nested==0 ){
       
   300     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
       
   301     return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
       
   302   }
       
   303   if( v==0 ) return 0;
       
   304   p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
       
   305   if( p==0 ){
       
   306     return 0;  /* Malloc failed */
       
   307   }
       
   308   depth = atoi((char*)&pToken->z[1]);
       
   309   p->iTable = pParse->nMem++;
       
   310   sqlite3VdbeAddOp(v, OP_Dup, depth, 0);
       
   311   sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);
       
   312   return p;
       
   313 }
       
   314 
       
   315 /*
       
   316 ** Join two expressions using an AND operator.  If either expression is
       
   317 ** NULL, then just return the other expression.
       
   318 */
       
   319 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
       
   320   if( pLeft==0 ){
       
   321     return pRight;
       
   322   }else if( pRight==0 ){
       
   323     return pLeft;
       
   324   }else{
       
   325     return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
       
   326   }
       
   327 }
       
   328 
       
   329 /*
       
   330 ** Set the Expr.span field of the given expression to span all
       
   331 ** text between the two given tokens.
       
   332 */
       
   333 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
       
   334   assert( pRight!=0 );
       
   335   assert( pLeft!=0 );
       
   336   if( pExpr && pRight->z && pLeft->z ){
       
   337     assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
       
   338     if( pLeft->dyn==0 && pRight->dyn==0 ){
       
   339       pExpr->span.z = pLeft->z;
       
   340       pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
       
   341     }else{
       
   342       pExpr->span.z = 0;
       
   343     }
       
   344   }
       
   345 }
       
   346 
       
   347 /*
       
   348 ** Construct a new expression node for a function with multiple
       
   349 ** arguments.
       
   350 */
       
   351 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
       
   352   Expr *pNew;
       
   353   assert( pToken );
       
   354   pNew = (Expr*)sqlite3DbMallocZero(pParse->db, sizeof(Expr) );
       
   355   if( pNew==0 ){
       
   356     sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
       
   357     return 0;
       
   358   }
       
   359   pNew->op = TK_FUNCTION;
       
   360   pNew->pList = pList;
       
   361   assert( pToken->dyn==0 );
       
   362   pNew->token = *pToken;
       
   363   pNew->span = pNew->token;
       
   364 
       
   365   sqlite3ExprSetHeight(pNew);
       
   366   return pNew;
       
   367 }
       
   368 
       
   369 /*
       
   370 ** Assign a variable number to an expression that encodes a wildcard
       
   371 ** in the original SQL statement.  
       
   372 **
       
   373 ** Wildcards consisting of a single "?" are assigned the next sequential
       
   374 ** variable number.
       
   375 **
       
   376 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
       
   377 ** sure "nnn" is not too be to avoid a denial of service attack when
       
   378 ** the SQL statement comes from an external source.
       
   379 **
       
   380 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
       
   381 ** as the previous instance of the same wildcard.  Or if this is the first
       
   382 ** instance of the wildcard, the next sequenial variable number is
       
   383 ** assigned.
       
   384 */
       
   385 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
       
   386   Token *pToken;
       
   387   sqlite3 *db = pParse->db;
       
   388 
       
   389   if( pExpr==0 ) return;
       
   390   pToken = &pExpr->token;
       
   391   assert( pToken->n>=1 );
       
   392   assert( pToken->z!=0 );
       
   393   assert( pToken->z[0]!=0 );
       
   394   if( pToken->n==1 ){
       
   395     /* Wildcard of the form "?".  Assign the next variable number */
       
   396     pExpr->iTable = ++pParse->nVar;
       
   397   }else if( pToken->z[0]=='?' ){
       
   398     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
       
   399     ** use it as the variable number */
       
   400     int i;
       
   401     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
       
   402     if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
       
   403       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
       
   404           SQLITE_MAX_VARIABLE_NUMBER);
       
   405     }
       
   406     if( i>pParse->nVar ){
       
   407       pParse->nVar = i;
       
   408     }
       
   409   }else{
       
   410     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
       
   411     ** number as the prior appearance of the same name, or if the name
       
   412     ** has never appeared before, reuse the same variable number
       
   413     */
       
   414     int i, n;
       
   415     n = pToken->n;
       
   416     for(i=0; i<pParse->nVarExpr; i++){
       
   417       Expr *pE;
       
   418       if( (pE = pParse->apVarExpr[i])!=0
       
   419           && pE->token.n==n
       
   420           && memcmp(pE->token.z, pToken->z, n)==0 ){
       
   421         pExpr->iTable = pE->iTable;
       
   422         break;
       
   423       }
       
   424     }
       
   425     if( i>=pParse->nVarExpr ){
       
   426       pExpr->iTable = ++pParse->nVar;
       
   427       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
       
   428         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
       
   429         pParse->apVarExpr =
       
   430             (Expr**)sqlite3DbReallocOrFree(
       
   431               db,
       
   432               pParse->apVarExpr,
       
   433               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
       
   434             );
       
   435       }
       
   436       if( !db->mallocFailed ){
       
   437         assert( pParse->apVarExpr!=0 );
       
   438         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
       
   439       }
       
   440     }
       
   441   } 
       
   442   if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){
       
   443     sqlite3ErrorMsg(pParse, "too many SQL variables");
       
   444   }
       
   445 }
       
   446 
       
   447 /*
       
   448 ** Recursively delete an expression tree.
       
   449 */
       
   450 void sqlite3ExprDelete(Expr *p){
       
   451   if( p==0 ) return;
       
   452   if( p->span.dyn ) sqlite3_free((char*)p->span.z);
       
   453   if( p->token.dyn ) sqlite3_free((char*)p->token.z);
       
   454   sqlite3ExprDelete(p->pLeft);
       
   455   sqlite3ExprDelete(p->pRight);
       
   456   sqlite3ExprListDelete(p->pList);
       
   457   sqlite3SelectDelete(p->pSelect);
       
   458   sqlite3_free(p);
       
   459 }
       
   460 
       
   461 /*
       
   462 ** The Expr.token field might be a string literal that is quoted.
       
   463 ** If so, remove the quotation marks.
       
   464 */
       
   465 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
       
   466   if( ExprHasAnyProperty(p, EP_Dequoted) ){
       
   467     return;
       
   468   }
       
   469   ExprSetProperty(p, EP_Dequoted);
       
   470   if( p->token.dyn==0 ){
       
   471     sqlite3TokenCopy(db, &p->token, &p->token);
       
   472   }
       
   473   sqlite3Dequote((char*)p->token.z);
       
   474 }
       
   475 
       
   476 
       
   477 /*
       
   478 ** The following group of routines make deep copies of expressions,
       
   479 ** expression lists, ID lists, and select statements.  The copies can
       
   480 ** be deleted (by being passed to their respective ...Delete() routines)
       
   481 ** without effecting the originals.
       
   482 **
       
   483 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
       
   484 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 
       
   485 ** by subsequent calls to sqlite*ListAppend() routines.
       
   486 **
       
   487 ** Any tables that the SrcList might point to are not duplicated.
       
   488 */
       
   489 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
       
   490   Expr *pNew;
       
   491   if( p==0 ) return 0;
       
   492   pNew = (Expr*)sqlite3DbMallocRaw(db, sizeof(*p) );
       
   493   if( pNew==0 ) return 0;
       
   494   memcpy(pNew, p, sizeof(*pNew));
       
   495   if( p->token.z!=0 ){
       
   496     pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
       
   497     pNew->token.dyn = 1;
       
   498   }else{
       
   499     assert( pNew->token.z==0 );
       
   500   }
       
   501   pNew->span.z = 0;
       
   502   pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
       
   503   pNew->pRight = sqlite3ExprDup(db, p->pRight);
       
   504   pNew->pList = sqlite3ExprListDup(db, p->pList);
       
   505   pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
       
   506   return pNew;
       
   507 }
       
   508 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
       
   509   if( pTo->dyn ) sqlite3_free((char*)pTo->z);
       
   510   if( pFrom->z ){
       
   511     pTo->n = pFrom->n;
       
   512     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
       
   513     pTo->dyn = 1;
       
   514   }else{
       
   515     pTo->z = 0;
       
   516   }
       
   517 }
       
   518 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
       
   519   ExprList *pNew;
       
   520   ExprList::ExprList_item *pItem, *pOldItem;
       
   521   int i;
       
   522   if( p==0 ) return 0;
       
   523   pNew = (ExprList*)sqlite3DbMallocRaw(db, sizeof(*pNew) );
       
   524   if( pNew==0 ) return 0;
       
   525   pNew->iECursor = 0;
       
   526   pNew->nExpr = pNew->nAlloc = p->nExpr;
       
   527   pNew->a = pItem = (ExprList::ExprList_item*)sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
       
   528   if( pItem==0 ){
       
   529     sqlite3_free(pNew);
       
   530     return 0;
       
   531   } 
       
   532   pOldItem = p->a;
       
   533   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
       
   534     Expr *pNewExpr, *pOldExpr;
       
   535     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
       
   536     if( pOldExpr->span.z!=0 && pNewExpr ){
       
   537       /* Always make a copy of the span for top-level expressions in the
       
   538       ** expression list.  The logic in SELECT processing that determines
       
   539       ** the names of columns in the result set needs this information */
       
   540       sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
       
   541     }
       
   542     assert( pNewExpr==0 || pNewExpr->span.z!=0 
       
   543             || pOldExpr->span.z==0
       
   544             || db->mallocFailed );
       
   545     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
       
   546     pItem->sortOrder = pOldItem->sortOrder;
       
   547     pItem->isAgg = pOldItem->isAgg;
       
   548     pItem->done = 0;
       
   549   }
       
   550   return pNew;
       
   551 }
       
   552 
       
   553 /*
       
   554 ** If cursors, triggers, views and subqueries are all omitted from
       
   555 ** the build, then none of the following routines, except for 
       
   556 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
       
   557 ** called with a NULL argument.
       
   558 */
       
   559 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
       
   560  || !defined(SQLITE_OMIT_SUBQUERY)
       
   561 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
       
   562   SrcList *pNew;
       
   563   int i;
       
   564   int nByte;
       
   565   if( p==0 ) return 0;
       
   566   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
       
   567   pNew = (SrcList*)sqlite3DbMallocRaw(db, nByte );
       
   568   if( pNew==0 ) return 0;
       
   569   pNew->nSrc = pNew->nAlloc = p->nSrc;
       
   570   for(i=0; i<p->nSrc; i++){
       
   571 	  SrcList::SrcList_item *pNewItem = &pNew->a[i];
       
   572 	  SrcList::SrcList_item *pOldItem = &p->a[i];
       
   573     Table *pTab;
       
   574     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
       
   575     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
       
   576     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
       
   577     pNewItem->jointype = pOldItem->jointype;
       
   578     pNewItem->iCursor = pOldItem->iCursor;
       
   579     pNewItem->isPopulated = pOldItem->isPopulated;
       
   580     pTab = pNewItem->pTab = pOldItem->pTab;
       
   581     if( pTab ){
       
   582       pTab->nRef++;
       
   583     }
       
   584     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
       
   585     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
       
   586     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
       
   587     pNewItem->colUsed = pOldItem->colUsed;
       
   588   }
       
   589   return pNew;
       
   590 }
       
   591 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
       
   592   IdList *pNew;
       
   593   int i;
       
   594   if( p==0 ) return 0;
       
   595   pNew = (IdList*)sqlite3DbMallocRaw(db, sizeof(*pNew) );
       
   596   if( pNew==0 ) return 0;
       
   597   pNew->nId = pNew->nAlloc = p->nId;
       
   598   pNew->a = (IdList::IdList_item*)sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
       
   599   if( pNew->a==0 ){
       
   600     sqlite3_free(pNew);
       
   601     return 0;
       
   602   }
       
   603   for(i=0; i<p->nId; i++){
       
   604 	  IdList::IdList_item *pNewItem = &pNew->a[i];
       
   605 	  IdList::IdList_item *pOldItem = &p->a[i];
       
   606     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
       
   607     pNewItem->idx = pOldItem->idx;
       
   608   }
       
   609   return pNew;
       
   610 }
       
   611 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
       
   612   Select *pNew;
       
   613   if( p==0 ) return 0;
       
   614   pNew = (Select*)sqlite3DbMallocRaw(db, sizeof(*p) );
       
   615   if( pNew==0 ) return 0;
       
   616   pNew->isDistinct = p->isDistinct;
       
   617   pNew->pEList = sqlite3ExprListDup(db, p->pEList);
       
   618   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
       
   619   pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
       
   620   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
       
   621   pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
       
   622   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
       
   623   pNew->op = p->op;
       
   624   pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
       
   625   pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
       
   626   pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
       
   627   pNew->iLimit = -1;
       
   628   pNew->iOffset = -1;
       
   629   pNew->isResolved = p->isResolved;
       
   630   pNew->isAgg = p->isAgg;
       
   631   pNew->usesEphm = 0;
       
   632   pNew->disallowOrderBy = 0;
       
   633   pNew->pRightmost = 0;
       
   634   pNew->addrOpenEphm[0] = -1;
       
   635   pNew->addrOpenEphm[1] = -1;
       
   636   pNew->addrOpenEphm[2] = -1;
       
   637   return pNew;
       
   638 }
       
   639 #else
       
   640 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
       
   641   assert( p==0 );
       
   642   return 0;
       
   643 }
       
   644 #endif
       
   645 
       
   646 
       
   647 /*
       
   648 ** Add a new element to the end of an expression list.  If pList is
       
   649 ** initially NULL, then create a new expression list.
       
   650 */
       
   651 ExprList *sqlite3ExprListAppend(
       
   652   Parse *pParse,          /* Parsing context */
       
   653   ExprList *pList,        /* List to which to append. Might be NULL */
       
   654   Expr *pExpr,            /* Expression to be appended */
       
   655   Token *pName            /* AS keyword for the expression */
       
   656 ){
       
   657   sqlite3 *db = pParse->db;
       
   658   if( pList==0 ){
       
   659     pList = (ExprList*)sqlite3DbMallocZero(db, sizeof(ExprList) );
       
   660     if( pList==0 ){
       
   661       goto no_mem;
       
   662     }
       
   663     assert( pList->nAlloc==0 );
       
   664   }
       
   665   if( pList->nAlloc<=pList->nExpr ){
       
   666 	  ExprList::ExprList_item *a;
       
   667     int n = pList->nAlloc*2 + 4;
       
   668 	a = (ExprList::ExprList_item*)sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
       
   669     if( a==0 ){
       
   670       goto no_mem;
       
   671     }
       
   672     pList->a = a;
       
   673     pList->nAlloc = n;
       
   674   }
       
   675   assert( pList->a!=0 );
       
   676   if( pExpr || pName ){
       
   677 	  ExprList::ExprList_item *pItem = &pList->a[pList->nExpr++];
       
   678     memset(pItem, 0, sizeof(*pItem));
       
   679     pItem->zName = sqlite3NameFromToken(db, pName);
       
   680     pItem->pExpr = pExpr;
       
   681   }
       
   682   return pList;
       
   683 
       
   684 no_mem:     
       
   685   /* Avoid leaking memory if malloc has failed. */
       
   686   sqlite3ExprDelete(pExpr);
       
   687   sqlite3ExprListDelete(pList);
       
   688   return 0;
       
   689 }
       
   690 
       
   691 /*
       
   692 ** If the expression list pEList contains more than iLimit elements,
       
   693 ** leave an error message in pParse.
       
   694 */
       
   695 void sqlite3ExprListCheckLength(
       
   696   Parse *pParse,
       
   697   ExprList *pEList,
       
   698   int iLimit,
       
   699   const char *zObject
       
   700 ){
       
   701   if( pEList && pEList->nExpr>iLimit ){
       
   702     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
       
   703   }
       
   704 }
       
   705 
       
   706 
       
   707 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
       
   708 /* The following three functions, heightOfExpr(), heightOfExprList()
       
   709 ** and heightOfSelect(), are used to determine the maximum height
       
   710 ** of any expression tree referenced by the structure passed as the
       
   711 ** first argument.
       
   712 **
       
   713 ** If this maximum height is greater than the current value pointed
       
   714 ** to by pnHeight, the second parameter, then set *pnHeight to that
       
   715 ** value.
       
   716 */
       
   717 static void heightOfExpr(Expr *p, int *pnHeight){
       
   718   if( p ){
       
   719     if( p->nHeight>*pnHeight ){
       
   720       *pnHeight = p->nHeight;
       
   721     }
       
   722   }
       
   723 }
       
   724 static void heightOfExprList(ExprList *p, int *pnHeight){
       
   725   if( p ){
       
   726     int i;
       
   727     for(i=0; i<p->nExpr; i++){
       
   728       heightOfExpr(p->a[i].pExpr, pnHeight);
       
   729     }
       
   730   }
       
   731 }
       
   732 static void heightOfSelect(Select *p, int *pnHeight){
       
   733   if( p ){
       
   734     heightOfExpr(p->pWhere, pnHeight);
       
   735     heightOfExpr(p->pHaving, pnHeight);
       
   736     heightOfExpr(p->pLimit, pnHeight);
       
   737     heightOfExpr(p->pOffset, pnHeight);
       
   738     heightOfExprList(p->pEList, pnHeight);
       
   739     heightOfExprList(p->pGroupBy, pnHeight);
       
   740     heightOfExprList(p->pOrderBy, pnHeight);
       
   741     heightOfSelect(p->pPrior, pnHeight);
       
   742   }
       
   743 }
       
   744 
       
   745 /*
       
   746 ** Set the Expr.nHeight variable in the structure passed as an 
       
   747 ** argument. An expression with no children, Expr.pList or 
       
   748 ** Expr.pSelect member has a height of 1. Any other expression
       
   749 ** has a height equal to the maximum height of any other 
       
   750 ** referenced Expr plus one.
       
   751 */
       
   752 void sqlite3ExprSetHeight(Expr *p){
       
   753   int nHeight = 0;
       
   754   heightOfExpr(p->pLeft, &nHeight);
       
   755   heightOfExpr(p->pRight, &nHeight);
       
   756   heightOfExprList(p->pList, &nHeight);
       
   757   heightOfSelect(p->pSelect, &nHeight);
       
   758   p->nHeight = nHeight + 1;
       
   759 }
       
   760 
       
   761 /*
       
   762 ** Return the maximum height of any expression tree referenced
       
   763 ** by the select statement passed as an argument.
       
   764 */
       
   765 int sqlite3SelectExprHeight(Select *p){
       
   766   int nHeight = 0;
       
   767   heightOfSelect(p, &nHeight);
       
   768   return nHeight;
       
   769 }
       
   770 #endif
       
   771 
       
   772 /*
       
   773 ** Delete an entire expression list.
       
   774 */
       
   775 void sqlite3ExprListDelete(ExprList *pList){
       
   776   int i;
       
   777   ExprList::ExprList_item *pItem;
       
   778   if( pList==0 ) return;
       
   779   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
       
   780   assert( pList->nExpr<=pList->nAlloc );
       
   781   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
       
   782     sqlite3ExprDelete(pItem->pExpr);
       
   783     sqlite3_free(pItem->zName);
       
   784   }
       
   785   sqlite3_free(pList->a);
       
   786   sqlite3_free(pList);
       
   787 }
       
   788 
       
   789 /*
       
   790 ** Walk an expression tree.  Call xFunc for each node visited.
       
   791 **
       
   792 ** The return value from xFunc determines whether the tree walk continues.
       
   793 ** 0 means continue walking the tree.  1 means do not walk children
       
   794 ** of the current node but continue with siblings.  2 means abandon
       
   795 ** the tree walk completely.
       
   796 **
       
   797 ** The return value from this routine is 1 to abandon the tree walk
       
   798 ** and 0 to continue.
       
   799 **
       
   800 ** NOTICE:  This routine does *not* descend into subqueries.
       
   801 */
       
   802 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
       
   803 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
       
   804   int rc;
       
   805   if( pExpr==0 ) return 0;
       
   806   rc = (*xFunc)(pArg, pExpr);
       
   807   if( rc==0 ){
       
   808     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
       
   809     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
       
   810     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
       
   811   }
       
   812   return rc>1;
       
   813 }
       
   814 
       
   815 /*
       
   816 ** Call walkExprTree() for every expression in list p.
       
   817 */
       
   818 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
       
   819   int i;
       
   820   ExprList::ExprList_item *pItem;
       
   821   if( !p ) return 0;
       
   822   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
       
   823     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
       
   824   }
       
   825   return 0;
       
   826 }
       
   827 
       
   828 /*
       
   829 ** Call walkExprTree() for every expression in Select p, not including
       
   830 ** expressions that are part of sub-selects in any FROM clause or the LIMIT
       
   831 ** or OFFSET expressions..
       
   832 */
       
   833 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
       
   834   walkExprList(p->pEList, xFunc, pArg);
       
   835   walkExprTree(p->pWhere, xFunc, pArg);
       
   836   walkExprList(p->pGroupBy, xFunc, pArg);
       
   837   walkExprTree(p->pHaving, xFunc, pArg);
       
   838   walkExprList(p->pOrderBy, xFunc, pArg);
       
   839   if( p->pPrior ){
       
   840     walkSelectExpr(p->pPrior, xFunc, pArg);
       
   841   }
       
   842   return 0;
       
   843 }
       
   844 
       
   845 
       
   846 /*
       
   847 ** This routine is designed as an xFunc for walkExprTree().
       
   848 **
       
   849 ** pArg is really a pointer to an integer.  If we can tell by looking
       
   850 ** at pExpr that the expression that contains pExpr is not a constant
       
   851 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
       
   852 ** If pExpr does does not disqualify the expression from being a constant
       
   853 ** then do nothing.
       
   854 **
       
   855 ** After walking the whole tree, if no nodes are found that disqualify
       
   856 ** the expression as constant, then we assume the whole expression
       
   857 ** is constant.  See sqlite3ExprIsConstant() for additional information.
       
   858 */
       
   859 static int exprNodeIsConstant(void *pArg, Expr *pExpr){
       
   860   int *pN = (int*)pArg;
       
   861 
       
   862   /* If *pArg is 3 then any term of the expression that comes from
       
   863   ** the ON or USING clauses of a join disqualifies the expression
       
   864   ** from being considered constant. */
       
   865   if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
       
   866     *pN = 0;
       
   867     return 2;
       
   868   }
       
   869 
       
   870   switch( pExpr->op ){
       
   871     /* Consider functions to be constant if all their arguments are constant
       
   872     ** and *pArg==2 */
       
   873     case TK_FUNCTION:
       
   874       if( (*pN)==2 ) return 0;
       
   875       /* Fall through */
       
   876     case TK_ID:
       
   877     case TK_COLUMN:
       
   878     case TK_DOT:
       
   879     case TK_AGG_FUNCTION:
       
   880     case TK_AGG_COLUMN:
       
   881 #ifndef SQLITE_OMIT_SUBQUERY
       
   882     case TK_SELECT:
       
   883     case TK_EXISTS:
       
   884 #endif
       
   885       *pN = 0;
       
   886       return 2;
       
   887     case TK_IN:
       
   888       if( pExpr->pSelect ){
       
   889         *pN = 0;
       
   890         return 2;
       
   891       }
       
   892     default:
       
   893       return 0;
       
   894   }
       
   895 }
       
   896 
       
   897 /*
       
   898 ** Walk an expression tree.  Return 1 if the expression is constant
       
   899 ** and 0 if it involves variables or function calls.
       
   900 **
       
   901 ** For the purposes of this function, a double-quoted string (ex: "abc")
       
   902 ** is considered a variable but a single-quoted string (ex: 'abc') is
       
   903 ** a constant.
       
   904 */
       
   905 int sqlite3ExprIsConstant(Expr *p){
       
   906   int isConst = 1;
       
   907   walkExprTree(p, exprNodeIsConstant, &isConst);
       
   908   return isConst;
       
   909 }
       
   910 
       
   911 /*
       
   912 ** Walk an expression tree.  Return 1 if the expression is constant
       
   913 ** that does no originate from the ON or USING clauses of a join.
       
   914 ** Return 0 if it involves variables or function calls or terms from
       
   915 ** an ON or USING clause.
       
   916 */
       
   917 int sqlite3ExprIsConstantNotJoin(Expr *p){
       
   918   int isConst = 3;
       
   919   walkExprTree(p, exprNodeIsConstant, &isConst);
       
   920   return isConst!=0;
       
   921 }
       
   922 
       
   923 /*
       
   924 ** Walk an expression tree.  Return 1 if the expression is constant
       
   925 ** or a function call with constant arguments.  Return and 0 if there
       
   926 ** are any variables.
       
   927 **
       
   928 ** For the purposes of this function, a double-quoted string (ex: "abc")
       
   929 ** is considered a variable but a single-quoted string (ex: 'abc') is
       
   930 ** a constant.
       
   931 */
       
   932 int sqlite3ExprIsConstantOrFunction(Expr *p){
       
   933   int isConst = 2;
       
   934   walkExprTree(p, exprNodeIsConstant, &isConst);
       
   935   return isConst!=0;
       
   936 }
       
   937 
       
   938 /*
       
   939 ** If the expression p codes a constant integer that is small enough
       
   940 ** to fit in a 32-bit integer, return 1 and put the value of the integer
       
   941 ** in *pValue.  If the expression is not an integer or if it is too big
       
   942 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
       
   943 */
       
   944 int sqlite3ExprIsInteger(Expr *p, int *pValue){
       
   945   switch( p->op ){
       
   946     case TK_INTEGER: {
       
   947       if( sqlite3GetInt32((char*)p->token.z, pValue) ){
       
   948         return 1;
       
   949       }
       
   950       break;
       
   951     }
       
   952     case TK_UPLUS: {
       
   953       return sqlite3ExprIsInteger(p->pLeft, pValue);
       
   954     }
       
   955     case TK_UMINUS: {
       
   956       int v;
       
   957       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
       
   958         *pValue = -v;
       
   959         return 1;
       
   960       }
       
   961       break;
       
   962     }
       
   963     default: break;
       
   964   }
       
   965   return 0;
       
   966 }
       
   967 
       
   968 /*
       
   969 ** Return TRUE if the given string is a row-id column name.
       
   970 */
       
   971 int sqlite3IsRowid(const char *z){
       
   972   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
       
   973   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
       
   974   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
       
   975   return 0;
       
   976 }
       
   977 
       
   978 /*
       
   979 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
       
   980 ** that name in the set of source tables in pSrcList and make the pExpr 
       
   981 ** expression node refer back to that source column.  The following changes
       
   982 ** are made to pExpr:
       
   983 **
       
   984 **    pExpr->iDb           Set the index in db->aDb[] of the database holding
       
   985 **                         the table.
       
   986 **    pExpr->iTable        Set to the cursor number for the table obtained
       
   987 **                         from pSrcList.
       
   988 **    pExpr->iColumn       Set to the column number within the table.
       
   989 **    pExpr->op            Set to TK_COLUMN.
       
   990 **    pExpr->pLeft         Any expression this points to is deleted
       
   991 **    pExpr->pRight        Any expression this points to is deleted.
       
   992 **
       
   993 ** The pDbToken is the name of the database (the "X").  This value may be
       
   994 ** NULL meaning that name is of the form Y.Z or Z.  Any available database
       
   995 ** can be used.  The pTableToken is the name of the table (the "Y").  This
       
   996 ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
       
   997 ** means that the form of the name is Z and that columns from any table
       
   998 ** can be used.
       
   999 **
       
  1000 ** If the name cannot be resolved unambiguously, leave an error message
       
  1001 ** in pParse and return non-zero.  Return zero on success.
       
  1002 */
       
  1003 static int lookupName(
       
  1004   Parse *pParse,       /* The parsing context */
       
  1005   Token *pDbToken,     /* Name of the database containing table, or NULL */
       
  1006   Token *pTableToken,  /* Name of table containing column, or NULL */
       
  1007   Token *pColumnToken, /* Name of the column. */
       
  1008   NameContext *pNC,    /* The name context used to resolve the name */
       
  1009   Expr *pExpr          /* Make this EXPR node point to the selected column */
       
  1010 ){
       
  1011   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
       
  1012   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
       
  1013   char *zCol = 0;      /* Name of the column.  The "Z" */
       
  1014   int i, j;            /* Loop counters */
       
  1015   int cnt = 0;         /* Number of matching column names */
       
  1016   int cntTab = 0;      /* Number of matching table names */
       
  1017   sqlite3 *db = pParse->db;  /* The database */
       
  1018   SrcList::SrcList_item *pItem;       /* Use for looping over pSrcList items */
       
  1019   SrcList::SrcList_item *pMatch = 0;  /* The matching pSrcList item */
       
  1020   NameContext *pTopNC = pNC;        /* First namecontext in the list */
       
  1021   Schema *pSchema = 0;              /* Schema of the expression */
       
  1022 
       
  1023   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
       
  1024   zDb = sqlite3NameFromToken(db, pDbToken);
       
  1025   zTab = sqlite3NameFromToken(db, pTableToken);
       
  1026   zCol = sqlite3NameFromToken(db, pColumnToken);
       
  1027   if( db->mallocFailed ){
       
  1028     goto lookupname_end;
       
  1029   }
       
  1030 
       
  1031   pExpr->iTable = -1;
       
  1032   while( pNC && cnt==0 ){
       
  1033     ExprList *pEList;
       
  1034     SrcList *pSrcList = pNC->pSrcList;
       
  1035 
       
  1036     if( pSrcList ){
       
  1037       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
       
  1038         Table *pTab;
       
  1039         int iDb;
       
  1040         Column *pCol;
       
  1041   
       
  1042         pTab = pItem->pTab;
       
  1043         assert( pTab!=0 );
       
  1044         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
       
  1045         assert( pTab->nCol>0 );
       
  1046         if( zTab ){
       
  1047           if( pItem->zAlias ){
       
  1048             char *zTabName = pItem->zAlias;
       
  1049             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
       
  1050           }else{
       
  1051             char *zTabName = pTab->zName;
       
  1052             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
       
  1053             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
       
  1054               continue;
       
  1055             }
       
  1056           }
       
  1057         }
       
  1058         if( 0==(cntTab++) ){
       
  1059           pExpr->iTable = pItem->iCursor;
       
  1060           pSchema = pTab->pSchema;
       
  1061           pMatch = pItem;
       
  1062         }
       
  1063         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
       
  1064           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
       
  1065             const char *zColl = pTab->aCol[j].zColl;
       
  1066             IdList *pUsing;
       
  1067             cnt++;
       
  1068             pExpr->iTable = pItem->iCursor;
       
  1069             pMatch = pItem;
       
  1070             pSchema = pTab->pSchema;
       
  1071             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
       
  1072             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
       
  1073             pExpr->affinity = pTab->aCol[j].affinity;
       
  1074             if( (pExpr->flags & EP_ExpCollate)==0 ){
       
  1075               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
       
  1076             }
       
  1077             if( i<pSrcList->nSrc-1 ){
       
  1078               if( pItem[1].jointype & JT_NATURAL ){
       
  1079                 /* If this match occurred in the left table of a natural join,
       
  1080                 ** then skip the right table to avoid a duplicate match */
       
  1081                 pItem++;
       
  1082                 i++;
       
  1083               }else if( (pUsing = pItem[1].pUsing)!=0 ){
       
  1084                 /* If this match occurs on a column that is in the USING clause
       
  1085                 ** of a join, skip the search of the right table of the join
       
  1086                 ** to avoid a duplicate match there. */
       
  1087                 int k;
       
  1088                 for(k=0; k<pUsing->nId; k++){
       
  1089                   if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
       
  1090                     pItem++;
       
  1091                     i++;
       
  1092                     break;
       
  1093                   }
       
  1094                 }
       
  1095               }
       
  1096             }
       
  1097             break;
       
  1098           }
       
  1099         }
       
  1100       }
       
  1101     }
       
  1102 
       
  1103 #ifndef SQLITE_OMIT_TRIGGER
       
  1104     /* If we have not already resolved the name, then maybe 
       
  1105     ** it is a new.* or old.* trigger argument reference
       
  1106     */
       
  1107     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
       
  1108       TriggerStack *pTriggerStack = pParse->trigStack;
       
  1109       Table *pTab = 0;
       
  1110       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
       
  1111         pExpr->iTable = pTriggerStack->newIdx;
       
  1112         assert( pTriggerStack->pTab );
       
  1113         pTab = pTriggerStack->pTab;
       
  1114       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
       
  1115         pExpr->iTable = pTriggerStack->oldIdx;
       
  1116         assert( pTriggerStack->pTab );
       
  1117         pTab = pTriggerStack->pTab;
       
  1118       }
       
  1119 
       
  1120       if( pTab ){ 
       
  1121         int iCol;
       
  1122         Column *pCol = pTab->aCol;
       
  1123 
       
  1124         pSchema = pTab->pSchema;
       
  1125         cntTab++;
       
  1126         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
       
  1127           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
       
  1128             const char *zColl = pTab->aCol[iCol].zColl;
       
  1129             cnt++;
       
  1130             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
       
  1131             pExpr->affinity = pTab->aCol[iCol].affinity;
       
  1132             if( (pExpr->flags & EP_ExpCollate)==0 ){
       
  1133               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
       
  1134             }
       
  1135             pExpr->pTab = pTab;
       
  1136             break;
       
  1137           }
       
  1138         }
       
  1139       }
       
  1140     }
       
  1141 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
       
  1142 
       
  1143     /*
       
  1144     ** Perhaps the name is a reference to the ROWID
       
  1145     */
       
  1146     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
       
  1147       cnt = 1;
       
  1148       pExpr->iColumn = -1;
       
  1149       pExpr->affinity = SQLITE_AFF_INTEGER;
       
  1150     }
       
  1151 
       
  1152     /*
       
  1153     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
       
  1154     ** might refer to an result-set alias.  This happens, for example, when
       
  1155     ** we are resolving names in the WHERE clause of the following command:
       
  1156     **
       
  1157     **     SELECT a+b AS x FROM table WHERE x<10;
       
  1158     **
       
  1159     ** In cases like this, replace pExpr with a copy of the expression that
       
  1160     ** forms the result set entry ("a+b" in the example) and return immediately.
       
  1161     ** Note that the expression in the result set should have already been
       
  1162     ** resolved by the time the WHERE clause is resolved.
       
  1163     */
       
  1164     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
       
  1165       for(j=0; j<pEList->nExpr; j++){
       
  1166         char *zAs = pEList->a[j].zName;
       
  1167         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
       
  1168           Expr *pDup, *pOrig;
       
  1169           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
       
  1170           assert( pExpr->pList==0 );
       
  1171           assert( pExpr->pSelect==0 );
       
  1172           pOrig = pEList->a[j].pExpr;
       
  1173           if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
       
  1174             sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
       
  1175             sqlite3_free(zCol);
       
  1176             return 2;
       
  1177           }
       
  1178           pDup = sqlite3ExprDup(db, pOrig);
       
  1179           if( pExpr->flags & EP_ExpCollate ){
       
  1180             pDup->pColl = pExpr->pColl;
       
  1181             pDup->flags |= EP_ExpCollate;
       
  1182           }
       
  1183           if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z);
       
  1184           if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z);
       
  1185           memcpy(pExpr, pDup, sizeof(*pExpr));
       
  1186           sqlite3_free(pDup);
       
  1187           cnt = 1;
       
  1188           pMatch = 0;
       
  1189           assert( zTab==0 && zDb==0 );
       
  1190           goto lookupname_end_2;
       
  1191         }
       
  1192       } 
       
  1193     }
       
  1194 
       
  1195     /* Advance to the next name context.  The loop will exit when either
       
  1196     ** we have a match (cnt>0) or when we run out of name contexts.
       
  1197     */
       
  1198     if( cnt==0 ){
       
  1199       pNC = pNC->pNext;
       
  1200     }
       
  1201   }
       
  1202 
       
  1203   /*
       
  1204   ** If X and Y are NULL (in other words if only the column name Z is
       
  1205   ** supplied) and the value of Z is enclosed in double-quotes, then
       
  1206   ** Z is a string literal if it doesn't match any column names.  In that
       
  1207   ** case, we need to return right away and not make any changes to
       
  1208   ** pExpr.
       
  1209   **
       
  1210   ** Because no reference was made to outer contexts, the pNC->nRef
       
  1211   ** fields are not changed in any context.
       
  1212   */
       
  1213   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
       
  1214     sqlite3_free(zCol);
       
  1215     return 0;
       
  1216   }
       
  1217 
       
  1218   /*
       
  1219   ** cnt==0 means there was not match.  cnt>1 means there were two or
       
  1220   ** more matches.  Either way, we have an error.
       
  1221   */
       
  1222   if( cnt!=1 ){
       
  1223     char *z = 0;
       
  1224     char *zErr;
       
  1225     zErr = (char*)(cnt==0 ? "no such column: %s" : "ambiguous column name: %s");
       
  1226     if( zDb ){
       
  1227       sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0);
       
  1228     }else if( zTab ){
       
  1229       sqlite3SetString(&z, zTab, ".", zCol, (char*)0);
       
  1230     }else{
       
  1231       z = sqlite3StrDup(zCol);
       
  1232     }
       
  1233     if( z ){
       
  1234       sqlite3ErrorMsg(pParse, zErr, z);
       
  1235       sqlite3_free(z);
       
  1236       pTopNC->nErr++;
       
  1237     }else{
       
  1238       db->mallocFailed = 1;
       
  1239     }
       
  1240   }
       
  1241 
       
  1242   /* If a column from a table in pSrcList is referenced, then record
       
  1243   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
       
  1244   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
       
  1245   ** column number is greater than the number of bits in the bitmask
       
  1246   ** then set the high-order bit of the bitmask.
       
  1247   */
       
  1248   if( pExpr->iColumn>=0 && pMatch!=0 ){
       
  1249     int n = pExpr->iColumn;
       
  1250     if( n>=sizeof(Bitmask)*8 ){
       
  1251       n = sizeof(Bitmask)*8-1;
       
  1252     }
       
  1253     assert( pMatch->iCursor==pExpr->iTable );
       
  1254     pMatch->colUsed |= ((Bitmask)1)<<n;
       
  1255   }
       
  1256 
       
  1257 lookupname_end:
       
  1258   /* Clean up and return
       
  1259   */
       
  1260   sqlite3_free(zDb);
       
  1261   sqlite3_free(zTab);
       
  1262   sqlite3ExprDelete(pExpr->pLeft);
       
  1263   pExpr->pLeft = 0;
       
  1264   sqlite3ExprDelete(pExpr->pRight);
       
  1265   pExpr->pRight = 0;
       
  1266   pExpr->op = TK_COLUMN;
       
  1267 lookupname_end_2:
       
  1268   sqlite3_free(zCol);
       
  1269   if( cnt==1 ){
       
  1270     assert( pNC!=0 );
       
  1271     sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
       
  1272     if( pMatch && !pMatch->pSelect ){
       
  1273       pExpr->pTab = pMatch->pTab;
       
  1274     }
       
  1275     /* Increment the nRef value on all name contexts from TopNC up to
       
  1276     ** the point where the name matched. */
       
  1277     for(;;){
       
  1278       assert( pTopNC!=0 );
       
  1279       pTopNC->nRef++;
       
  1280       if( pTopNC==pNC ) break;
       
  1281       pTopNC = pTopNC->pNext;
       
  1282     }
       
  1283     return 0;
       
  1284   } else {
       
  1285     return 1;
       
  1286   }
       
  1287 }
       
  1288 
       
  1289 /*
       
  1290 ** This routine is designed as an xFunc for walkExprTree().
       
  1291 **
       
  1292 ** Resolve symbolic names into TK_COLUMN operators for the current
       
  1293 ** node in the expression tree.  Return 0 to continue the search down
       
  1294 ** the tree or 2 to abort the tree walk.
       
  1295 **
       
  1296 ** This routine also does error checking and name resolution for
       
  1297 ** function names.  The operator for aggregate functions is changed
       
  1298 ** to TK_AGG_FUNCTION.
       
  1299 */
       
  1300 static int nameResolverStep(void *pArg, Expr *pExpr){
       
  1301   NameContext *pNC = (NameContext*)pArg;
       
  1302   Parse *pParse;
       
  1303 
       
  1304   if( pExpr==0 ) return 1;
       
  1305   assert( pNC!=0 );
       
  1306   pParse = pNC->pParse;
       
  1307 
       
  1308   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
       
  1309   ExprSetProperty(pExpr, EP_Resolved);
       
  1310 #ifndef NDEBUG
       
  1311   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
       
  1312     SrcList *pSrcList = pNC->pSrcList;
       
  1313     int i;
       
  1314     for(i=0; i<pNC->pSrcList->nSrc; i++){
       
  1315       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
       
  1316     }
       
  1317   }
       
  1318 #endif
       
  1319   switch( pExpr->op ){
       
  1320     /* Double-quoted strings (ex: "abc") are used as identifiers if
       
  1321     ** possible.  Otherwise they remain as strings.  Single-quoted
       
  1322     ** strings (ex: 'abc') are always string literals.
       
  1323     */
       
  1324     case TK_STRING: {
       
  1325       if( pExpr->token.z[0]=='\'' ) break;
       
  1326       /* Fall thru into the TK_ID case if this is a double-quoted string */
       
  1327     }
       
  1328     /* A lone identifier is the name of a column.
       
  1329     */
       
  1330     case TK_ID: {
       
  1331       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
       
  1332       return 1;
       
  1333     }
       
  1334   
       
  1335     /* A table name and column name:     ID.ID
       
  1336     ** Or a database, table and column:  ID.ID.ID
       
  1337     */
       
  1338     case TK_DOT: {
       
  1339       Token *pColumn;
       
  1340       Token *pTable;
       
  1341       Token *pDb;
       
  1342       Expr *pRight;
       
  1343 
       
  1344       /* if( pSrcList==0 ) break; */
       
  1345       pRight = pExpr->pRight;
       
  1346       if( pRight->op==TK_ID ){
       
  1347         pDb = 0;
       
  1348         pTable = &pExpr->pLeft->token;
       
  1349         pColumn = &pRight->token;
       
  1350       }else{
       
  1351         assert( pRight->op==TK_DOT );
       
  1352         pDb = &pExpr->pLeft->token;
       
  1353         pTable = &pRight->pLeft->token;
       
  1354         pColumn = &pRight->pRight->token;
       
  1355       }
       
  1356       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
       
  1357       return 1;
       
  1358     }
       
  1359 
       
  1360     /* Resolve function names
       
  1361     */
       
  1362     case TK_CONST_FUNC:
       
  1363     case TK_FUNCTION: {
       
  1364       ExprList *pList = pExpr->pList;    /* The argument list */
       
  1365       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
       
  1366       int no_such_func = 0;       /* True if no such function exists */
       
  1367       int wrong_num_args = 0;     /* True if wrong number of arguments */
       
  1368       int is_agg = 0;             /* True if is an aggregate function */
       
  1369       int i;
       
  1370       int auth;                   /* Authorization to use the function */
       
  1371       int nId;                    /* Number of characters in function name */
       
  1372       const char *zId;            /* The function name. */
       
  1373       FuncDef *pDef;              /* Information about the function */
       
  1374       int enc = ENC(pParse->db);  /* The database encoding */
       
  1375 
       
  1376       zId = (char*)pExpr->token.z;
       
  1377       nId = pExpr->token.n;
       
  1378       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
       
  1379       if( pDef==0 ){
       
  1380         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
       
  1381         if( pDef==0 ){
       
  1382           no_such_func = 1;
       
  1383         }else{
       
  1384           wrong_num_args = 1;
       
  1385         }
       
  1386       }else{
       
  1387         is_agg = pDef->xFunc==0;
       
  1388       }
       
  1389 #ifndef SQLITE_OMIT_AUTHORIZATION
       
  1390       if( pDef ){
       
  1391         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
       
  1392         if( auth!=SQLITE_OK ){
       
  1393           if( auth==SQLITE_DENY ){
       
  1394             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
       
  1395                                     pDef->zName);
       
  1396             pNC->nErr++;
       
  1397           }
       
  1398           pExpr->op = TK_NULL;
       
  1399           return 1;
       
  1400         }
       
  1401       }
       
  1402 #endif
       
  1403       if( is_agg && !pNC->allowAgg ){
       
  1404         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
       
  1405         pNC->nErr++;
       
  1406         is_agg = 0;
       
  1407       }else if( no_such_func ){
       
  1408         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
       
  1409         pNC->nErr++;
       
  1410       }else if( wrong_num_args ){
       
  1411         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
       
  1412              nId, zId);
       
  1413         pNC->nErr++;
       
  1414       }
       
  1415       if( is_agg ){
       
  1416         pExpr->op = TK_AGG_FUNCTION;
       
  1417         pNC->hasAgg = 1;
       
  1418       }
       
  1419       if( is_agg ) pNC->allowAgg = 0;
       
  1420       for(i=0; pNC->nErr==0 && i<n; i++){
       
  1421         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
       
  1422       }
       
  1423       if( is_agg ) pNC->allowAgg = 1;
       
  1424       /* FIX ME:  Compute pExpr->affinity based on the expected return
       
  1425       ** type of the function 
       
  1426       */
       
  1427       return is_agg;
       
  1428     }
       
  1429 #ifndef SQLITE_OMIT_SUBQUERY
       
  1430     case TK_SELECT:
       
  1431     case TK_EXISTS:
       
  1432 #endif
       
  1433     case TK_IN: {
       
  1434       if( pExpr->pSelect ){
       
  1435         int nRef = pNC->nRef;
       
  1436 #ifndef SQLITE_OMIT_CHECK
       
  1437         if( pNC->isCheck ){
       
  1438           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
       
  1439         }
       
  1440 #endif
       
  1441         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
       
  1442         assert( pNC->nRef>=nRef );
       
  1443         if( nRef!=pNC->nRef ){
       
  1444           ExprSetProperty(pExpr, EP_VarSelect);
       
  1445         }
       
  1446       }
       
  1447       break;
       
  1448     }
       
  1449 #ifndef SQLITE_OMIT_CHECK
       
  1450     case TK_VARIABLE: {
       
  1451       if( pNC->isCheck ){
       
  1452         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
       
  1453       }
       
  1454       break;
       
  1455     }
       
  1456 #endif
       
  1457   }
       
  1458   return 0;
       
  1459 }
       
  1460 
       
  1461 /*
       
  1462 ** This routine walks an expression tree and resolves references to
       
  1463 ** table columns.  Nodes of the form ID.ID or ID resolve into an
       
  1464 ** index to the table in the table list and a column offset.  The 
       
  1465 ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
       
  1466 ** value is changed to the index of the referenced table in pTabList
       
  1467 ** plus the "base" value.  The base value will ultimately become the
       
  1468 ** VDBE cursor number for a cursor that is pointing into the referenced
       
  1469 ** table.  The Expr.iColumn value is changed to the index of the column 
       
  1470 ** of the referenced table.  The Expr.iColumn value for the special
       
  1471 ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
       
  1472 ** alias for ROWID.
       
  1473 **
       
  1474 ** Also resolve function names and check the functions for proper
       
  1475 ** usage.  Make sure all function names are recognized and all functions
       
  1476 ** have the correct number of arguments.  Leave an error message
       
  1477 ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
       
  1478 **
       
  1479 ** If the expression contains aggregate functions then set the EP_Agg
       
  1480 ** property on the expression.
       
  1481 */
       
  1482 int sqlite3ExprResolveNames( 
       
  1483   NameContext *pNC,       /* Namespace to resolve expressions in. */
       
  1484   Expr *pExpr             /* The expression to be analyzed. */
       
  1485 ){
       
  1486   int savedHasAgg;
       
  1487   if( pExpr==0 ) return 0;
       
  1488 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
       
  1489   if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){
       
  1490     sqlite3ErrorMsg(pNC->pParse, 
       
  1491        "Expression tree is too large (maximum depth %d)",
       
  1492        SQLITE_MAX_EXPR_DEPTH
       
  1493     );
       
  1494     return 1;
       
  1495   }
       
  1496   pNC->pParse->nHeight += pExpr->nHeight;
       
  1497 #endif
       
  1498   savedHasAgg = pNC->hasAgg;
       
  1499   pNC->hasAgg = 0;
       
  1500   walkExprTree(pExpr, nameResolverStep, pNC);
       
  1501 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
       
  1502   pNC->pParse->nHeight -= pExpr->nHeight;
       
  1503 #endif
       
  1504   if( pNC->nErr>0 ){
       
  1505     ExprSetProperty(pExpr, EP_Error);
       
  1506   }
       
  1507   if( pNC->hasAgg ){
       
  1508     ExprSetProperty(pExpr, EP_Agg);
       
  1509   }else if( savedHasAgg ){
       
  1510     pNC->hasAgg = 1;
       
  1511   }
       
  1512   return ExprHasProperty(pExpr, EP_Error);
       
  1513 }
       
  1514 
       
  1515 /*
       
  1516 ** A pointer instance of this structure is used to pass information
       
  1517 ** through walkExprTree into codeSubqueryStep().
       
  1518 */
       
  1519 typedef struct QueryCoder QueryCoder;
       
  1520 struct QueryCoder {
       
  1521   Parse *pParse;       /* The parsing context */
       
  1522   NameContext *pNC;    /* Namespace of first enclosing query */
       
  1523 };
       
  1524 
       
  1525 #ifdef SQLITE_TEST
       
  1526   int sqlite3_enable_in_opt = 1;
       
  1527 #else
       
  1528   #define sqlite3_enable_in_opt 1
       
  1529 #endif
       
  1530 
       
  1531 /*
       
  1532 ** This function is used by the implementation of the IN (...) operator.
       
  1533 ** It's job is to find or create a b-tree structure that may be used
       
  1534 ** either to test for membership of the (...) set or to iterate through
       
  1535 ** its members, skipping duplicates.
       
  1536 **
       
  1537 ** The cursor opened on the structure (database table, database index 
       
  1538 ** or ephermal table) is stored in pX->iTable before this function returns.
       
  1539 ** The returned value indicates the structure type, as follows:
       
  1540 **
       
  1541 **   IN_INDEX_ROWID - The cursor was opened on a database table.
       
  1542 **   IN_INDEX_INDEX - The cursor was opened on a database indec.
       
  1543 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
       
  1544 **                    populated epheremal table.
       
  1545 **
       
  1546 ** An existing structure may only be used if the SELECT is of the simple
       
  1547 ** form:
       
  1548 **
       
  1549 **     SELECT <column> FROM <table>
       
  1550 **
       
  1551 ** If the mustBeUnique parameter is false, the structure will be used 
       
  1552 ** for fast set membership tests. In this case an epheremal table must 
       
  1553 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
       
  1554 ** be found with <column> as its left-most column.
       
  1555 **
       
  1556 ** If mustBeUnique is true, then the structure will be used to iterate
       
  1557 ** through the set members, skipping any duplicates. In this case an
       
  1558 ** epheremal table must be used unless the selected <column> is guaranteed
       
  1559 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
       
  1560 ** is unique by virtue of a constraint or implicit index.
       
  1561 */
       
  1562 #ifndef SQLITE_OMIT_SUBQUERY
       
  1563 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){
       
  1564   Select *p;
       
  1565   int eType = 0;
       
  1566   int iTab = pParse->nTab++;
       
  1567 
       
  1568   /* The follwing if(...) expression is true if the SELECT is of the 
       
  1569   ** simple form:
       
  1570   **
       
  1571   **     SELECT <column> FROM <table>
       
  1572   **
       
  1573   ** If this is the case, it may be possible to use an existing table
       
  1574   ** or index instead of generating an epheremal table.
       
  1575   */
       
  1576   if( sqlite3_enable_in_opt
       
  1577    && (p=pX->pSelect) && !p->pPrior
       
  1578    && !p->isDistinct && !p->isAgg && !p->pGroupBy
       
  1579    && p->pSrc && p->pSrc->nSrc==1 && !p->pSrc->a[0].pSelect
       
  1580    && !p->pSrc->a[0].pTab->pSelect                                  
       
  1581    && p->pEList->nExpr==1 && p->pEList->a[0].pExpr->op==TK_COLUMN
       
  1582    && !p->pLimit && !p->pOffset && !p->pWhere
       
  1583   ){
       
  1584     sqlite3 *db = pParse->db;
       
  1585     Index *pIdx;
       
  1586     Expr *pExpr = p->pEList->a[0].pExpr;
       
  1587     int iCol = pExpr->iColumn;
       
  1588     Vdbe *v = sqlite3GetVdbe(pParse);
       
  1589 
       
  1590     /* This function is only called from two places. In both cases the vdbe
       
  1591     ** has already been allocated. So assume sqlite3GetVdbe() is always
       
  1592     ** successful here.
       
  1593     */
       
  1594     assert(v);
       
  1595     if( iCol<0 ){
       
  1596       int iMem = pParse->nMem++;
       
  1597       int iAddr;
       
  1598       Table *pTab = p->pSrc->a[0].pTab;
       
  1599       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
       
  1600       sqlite3VdbeUsesBtree(v, iDb);
       
  1601 
       
  1602       sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
       
  1603       iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem);
       
  1604       sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem);
       
  1605 
       
  1606       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
       
  1607       eType = IN_INDEX_ROWID;
       
  1608 
       
  1609       sqlite3VdbeJumpHere(v, iAddr);
       
  1610     }else{
       
  1611       /* The collation sequence used by the comparison. If an index is to 
       
  1612       ** be used in place of a temp-table, it must be ordered according
       
  1613       ** to this collation sequence.
       
  1614       */
       
  1615       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
       
  1616 
       
  1617       /* Check that the affinity that will be used to perform the 
       
  1618       ** comparison is the same as the affinity of the column. If
       
  1619       ** it is not, it is not possible to use any index.
       
  1620       */
       
  1621       Table *pTab = p->pSrc->a[0].pTab;
       
  1622       char aff = comparisonAffinity(pX);
       
  1623       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
       
  1624 
       
  1625       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
       
  1626         if( (pIdx->aiColumn[0]==iCol)
       
  1627          && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
       
  1628          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
       
  1629         ){
       
  1630           int iDb;
       
  1631           int iMem = pParse->nMem++;
       
  1632           int iAddr;
       
  1633           char *pKey;
       
  1634   
       
  1635           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
       
  1636           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
       
  1637           sqlite3VdbeUsesBtree(v, iDb);
       
  1638 
       
  1639           sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
       
  1640           iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem);
       
  1641           sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem);
       
  1642   
       
  1643           sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
       
  1644           VdbeComment((v, "# %s", pIdx->zName));
       
  1645           sqlite3VdbeOp3(v,OP_OpenRead,iTab,pIdx->tnum,pKey,P3_KEYINFO_HANDOFF);
       
  1646           eType = IN_INDEX_INDEX;
       
  1647           sqlite3VdbeAddOp(v, OP_SetNumColumns, iTab, pIdx->nColumn);
       
  1648 
       
  1649           sqlite3VdbeJumpHere(v, iAddr);
       
  1650         }
       
  1651       }
       
  1652     }
       
  1653   }
       
  1654 
       
  1655   if( eType==0 ){
       
  1656     sqlite3CodeSubselect(pParse, pX);
       
  1657     eType = IN_INDEX_EPH;
       
  1658   }else{
       
  1659     pX->iTable = iTab;
       
  1660   }
       
  1661   return eType;
       
  1662 }
       
  1663 #endif
       
  1664 
       
  1665 /*
       
  1666 ** Generate code for scalar subqueries used as an expression
       
  1667 ** and IN operators.  Examples:
       
  1668 **
       
  1669 **     (SELECT a FROM b)          -- subquery
       
  1670 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
       
  1671 **     x IN (4,5,11)              -- IN operator with list on right-hand side
       
  1672 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
       
  1673 **
       
  1674 ** The pExpr parameter describes the expression that contains the IN
       
  1675 ** operator or subquery.
       
  1676 */
       
  1677 #ifndef SQLITE_OMIT_SUBQUERY
       
  1678 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
       
  1679   int testAddr = 0;                       /* One-time test address */
       
  1680   Vdbe *v = sqlite3GetVdbe(pParse);
       
  1681   if( v==0 ) return;
       
  1682 
       
  1683 
       
  1684   /* This code must be run in its entirety every time it is encountered
       
  1685   ** if any of the following is true:
       
  1686   **
       
  1687   **    *  The right-hand side is a correlated subquery
       
  1688   **    *  The right-hand side is an expression list containing variables
       
  1689   **    *  We are inside a trigger
       
  1690   **
       
  1691   ** If all of the above are false, then we can run this code just once
       
  1692   ** save the results, and reuse the same result on subsequent invocations.
       
  1693   */
       
  1694   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
       
  1695     int mem = pParse->nMem++;
       
  1696     sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
       
  1697     testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
       
  1698     assert( testAddr>0 || pParse->db->mallocFailed );
       
  1699     sqlite3VdbeAddOp(v, OP_MemInt, 1, mem);
       
  1700   }
       
  1701 
       
  1702   switch( pExpr->op ){
       
  1703     case TK_IN: {
       
  1704       char affinity;
       
  1705       KeyInfo keyInfo;
       
  1706       int addr;        /* Address of OP_OpenEphemeral instruction */
       
  1707 
       
  1708       affinity = sqlite3ExprAffinity(pExpr->pLeft);
       
  1709 
       
  1710       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
       
  1711       ** expression it is handled the same way. A virtual table is 
       
  1712       ** filled with single-field index keys representing the results
       
  1713       ** from the SELECT or the <exprlist>.
       
  1714       **
       
  1715       ** If the 'x' expression is a column value, or the SELECT...
       
  1716       ** statement returns a column value, then the affinity of that
       
  1717       ** column is used to build the index keys. If both 'x' and the
       
  1718       ** SELECT... statement are columns, then numeric affinity is used
       
  1719       ** if either column has NUMERIC or INTEGER affinity. If neither
       
  1720       ** 'x' nor the SELECT... statement are columns, then numeric affinity
       
  1721       ** is used.
       
  1722       */
       
  1723       pExpr->iTable = pParse->nTab++;
       
  1724       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0);
       
  1725       memset(&keyInfo, 0, sizeof(keyInfo));
       
  1726       keyInfo.nField = 1;
       
  1727       sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);
       
  1728 
       
  1729       if( pExpr->pSelect ){
       
  1730         /* Case 1:     expr IN (SELECT ...)
       
  1731         **
       
  1732         ** Generate code to write the results of the select into the temporary
       
  1733         ** table allocated and opened above.
       
  1734         */
       
  1735         int iParm = pExpr->iTable +  (((int)affinity)<<16);
       
  1736         ExprList *pEList;
       
  1737         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
       
  1738         if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){
       
  1739           return;
       
  1740         }
       
  1741         pEList = pExpr->pSelect->pEList;
       
  1742         if( pEList && pEList->nExpr>0 ){ 
       
  1743           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
       
  1744               pEList->a[0].pExpr);
       
  1745         }
       
  1746       }else if( pExpr->pList ){
       
  1747         /* Case 2:     expr IN (exprlist)
       
  1748         **
       
  1749         ** For each expression, build an index key from the evaluation and
       
  1750         ** store it in the temporary table. If <expr> is a column, then use
       
  1751         ** that columns affinity when building index keys. If <expr> is not
       
  1752         ** a column, use numeric affinity.
       
  1753         */
       
  1754         int i;
       
  1755         ExprList *pList = pExpr->pList;
       
  1756 		ExprList::ExprList_item *pItem;
       
  1757 
       
  1758         if( !affinity ){
       
  1759           affinity = SQLITE_AFF_NONE;
       
  1760         }
       
  1761         keyInfo.aColl[0] = pExpr->pLeft->pColl;
       
  1762 
       
  1763         /* Loop through each expression in <exprlist>. */
       
  1764         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
       
  1765           Expr *pE2 = pItem->pExpr;
       
  1766 
       
  1767           /* If the expression is not constant then we will need to
       
  1768           ** disable the test that was generated above that makes sure
       
  1769           ** this code only executes once.  Because for a non-constant
       
  1770           ** expression we need to rerun this code each time.
       
  1771           */
       
  1772           if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){
       
  1773             sqlite3VdbeChangeToNoop(v, testAddr-1, 3);
       
  1774             testAddr = 0;
       
  1775           }
       
  1776 
       
  1777           /* Evaluate the expression and insert it into the temp table */
       
  1778           sqlite3ExprCode(pParse, pE2);
       
  1779           sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
       
  1780           sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0);
       
  1781         }
       
  1782       }
       
  1783       sqlite3VdbeChangeP3(v, addr, (const char *)&keyInfo, P3_KEYINFO);
       
  1784       break;
       
  1785     }
       
  1786 
       
  1787     case TK_EXISTS:
       
  1788     case TK_SELECT: {
       
  1789       /* This has to be a scalar SELECT.  Generate code to put the
       
  1790       ** value of this select in a memory cell and record the number
       
  1791       ** of the memory cell in iColumn.
       
  1792       */
       
  1793       static const Token one = { (u8*)"1", 0, 1 };
       
  1794       Select *pSel;
       
  1795       int iMem;
       
  1796       int sop;
       
  1797 
       
  1798       pExpr->iColumn = iMem = pParse->nMem++;
       
  1799       pSel = pExpr->pSelect;
       
  1800       if( pExpr->op==TK_SELECT ){
       
  1801         sop = SRT_Mem;
       
  1802         sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0);
       
  1803         VdbeComment((v, "# Init subquery result"));
       
  1804       }else{
       
  1805         sop = SRT_Exists;
       
  1806         sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem);
       
  1807         VdbeComment((v, "# Init EXISTS result"));
       
  1808       }
       
  1809       sqlite3ExprDelete(pSel->pLimit);
       
  1810       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
       
  1811       if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){
       
  1812         return;
       
  1813       }
       
  1814       break;
       
  1815     }
       
  1816   }
       
  1817 
       
  1818   if( testAddr ){
       
  1819     sqlite3VdbeJumpHere(v, testAddr);
       
  1820   }
       
  1821 
       
  1822   return;
       
  1823 }
       
  1824 #endif /* SQLITE_OMIT_SUBQUERY */
       
  1825 
       
  1826 /*
       
  1827 ** Duplicate an 8-byte value
       
  1828 */
       
  1829 static char *dup8bytes(Vdbe *v, const char *in){
       
  1830   char *out = (char*)sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
       
  1831   if( out ){
       
  1832     memcpy(out, in, 8);
       
  1833   }
       
  1834   return out;
       
  1835 }
       
  1836 
       
  1837 /*
       
  1838 ** Generate an instruction that will put the floating point
       
  1839 ** value described by z[0..n-1] on the stack.
       
  1840 **
       
  1841 ** The z[] string will probably not be zero-terminated.  But the 
       
  1842 ** z[n] character is guaranteed to be something that does not look
       
  1843 ** like the continuation of the number.
       
  1844 */
       
  1845 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag){
       
  1846   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
       
  1847   if( z ){
       
  1848     double value;
       
  1849     char *zV;
       
  1850     assert( !isdigit(z[n]) );
       
  1851     sqlite3AtoF(z, &value);
       
  1852     if( negateFlag ) value = -value;
       
  1853     zV = dup8bytes(v, (char*)&value);
       
  1854     sqlite3VdbeOp3(v, OP_Real, 0, 0, zV, P3_REAL);
       
  1855   }
       
  1856 }
       
  1857 
       
  1858 
       
  1859 /*
       
  1860 ** Generate an instruction that will put the integer describe by
       
  1861 ** text z[0..n-1] on the stack.
       
  1862 **
       
  1863 ** The z[] string will probably not be zero-terminated.  But the 
       
  1864 ** z[n] character is guaranteed to be something that does not look
       
  1865 ** like the continuation of the number.
       
  1866 */
       
  1867 static void codeInteger(Vdbe *v, const char *z, int n, int negateFlag){
       
  1868   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
       
  1869   if( z ){
       
  1870     int i;
       
  1871     assert( !isdigit(z[n]) );
       
  1872     if( sqlite3GetInt32(z, &i) ){
       
  1873       if( negateFlag ) i = -i;
       
  1874       sqlite3VdbeAddOp(v, OP_Integer, i, 0);
       
  1875     }else if( sqlite3FitsIn64Bits(z, negateFlag) ){
       
  1876       i64 value;
       
  1877       char *zV;
       
  1878       sqlite3Atoi64(z, &value);
       
  1879       if( negateFlag ) value = -value;
       
  1880       zV = dup8bytes(v, (char*)&value);
       
  1881       sqlite3VdbeOp3(v, OP_Int64, 0, 0, zV, P3_INT64);
       
  1882     }else{
       
  1883       codeReal(v, z, n, negateFlag);
       
  1884     }
       
  1885   }
       
  1886 }
       
  1887 
       
  1888 
       
  1889 /*
       
  1890 ** Generate code that will extract the iColumn-th column from
       
  1891 ** table pTab and push that column value on the stack.  There
       
  1892 ** is an open cursor to pTab in iTable.  If iColumn<0 then
       
  1893 ** code is generated that extracts the rowid.
       
  1894 */
       
  1895 void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){
       
  1896   if( iColumn<0 ){
       
  1897     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
       
  1898     sqlite3VdbeAddOp(v, op, iTable, 0);
       
  1899   }else if( pTab==0 ){
       
  1900     sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn);
       
  1901   }else{
       
  1902     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
       
  1903     sqlite3VdbeAddOp(v, op, iTable, iColumn);
       
  1904     sqlite3ColumnDefault(v, pTab, iColumn);
       
  1905 #ifndef SQLITE_OMIT_FLOATING_POINT
       
  1906     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
       
  1907       sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0);
       
  1908     }
       
  1909 #endif
       
  1910   }
       
  1911 }
       
  1912 
       
  1913 /*
       
  1914 ** Generate code into the current Vdbe to evaluate the given
       
  1915 ** expression and leave the result on the top of stack.
       
  1916 **
       
  1917 ** This code depends on the fact that certain token values (ex: TK_EQ)
       
  1918 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
       
  1919 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
       
  1920 ** the make process cause these values to align.  Assert()s in the code
       
  1921 ** below verify that the numbers are aligned correctly.
       
  1922 */
       
  1923 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
       
  1924   Vdbe *v = pParse->pVdbe;
       
  1925   int op;
       
  1926   int stackChng = 1;    /* Amount of change to stack depth */
       
  1927 
       
  1928   if( v==0 ) return;
       
  1929   if( pExpr==0 ){
       
  1930     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
  1931     return;
       
  1932   }
       
  1933   op = pExpr->op;
       
  1934   switch( op ){
       
  1935     case TK_AGG_COLUMN: {
       
  1936       AggInfo *pAggInfo = pExpr->pAggInfo;
       
  1937 	  AggInfo::AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
       
  1938       if( !pAggInfo->directMode ){
       
  1939         sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);
       
  1940         break;
       
  1941       }else if( pAggInfo->useSortingIdx ){
       
  1942         sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,
       
  1943                               pCol->iSorterColumn);
       
  1944         break;
       
  1945       }
       
  1946       /* Otherwise, fall thru into the TK_COLUMN case */
       
  1947     }
       
  1948     case TK_COLUMN: {
       
  1949       if( pExpr->iTable<0 ){
       
  1950         /* This only happens when coding check constraints */
       
  1951         assert( pParse->ckOffset>0 );
       
  1952         sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);
       
  1953       }else{
       
  1954         sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable);
       
  1955       }
       
  1956       break;
       
  1957     }
       
  1958     case TK_INTEGER: {
       
  1959       codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0);
       
  1960       break;
       
  1961     }
       
  1962     case TK_FLOAT: {
       
  1963       codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0);
       
  1964       break;
       
  1965     }
       
  1966     case TK_STRING: {
       
  1967       sqlite3DequoteExpr(pParse->db, pExpr);
       
  1968       sqlite3VdbeOp3(v,OP_String8, 0, 0, (char*)pExpr->token.z, pExpr->token.n);
       
  1969       break;
       
  1970     }
       
  1971     case TK_NULL: {
       
  1972       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
  1973       break;
       
  1974     }
       
  1975 #ifndef SQLITE_OMIT_BLOB_LITERAL
       
  1976     case TK_BLOB: {
       
  1977       int n;
       
  1978       const char *z;
       
  1979       assert( TK_BLOB==OP_HexBlob );
       
  1980       n = pExpr->token.n - 3;
       
  1981       z = (char*)pExpr->token.z + 2;
       
  1982       assert( n>=0 );
       
  1983       if( n==0 ){
       
  1984         z = "";
       
  1985       }
       
  1986       sqlite3VdbeOp3(v, op, 0, 0, z, n);
       
  1987       break;
       
  1988     }
       
  1989 #endif
       
  1990     case TK_VARIABLE: {
       
  1991       sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
       
  1992       if( pExpr->token.n>1 ){
       
  1993         sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n);
       
  1994       }
       
  1995       break;
       
  1996     }
       
  1997     case TK_REGISTER: {
       
  1998       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0);
       
  1999       break;
       
  2000     }
       
  2001 #ifndef SQLITE_OMIT_CAST
       
  2002     case TK_CAST: {
       
  2003       /* Expressions of the form:   CAST(pLeft AS token) */
       
  2004       int aff, to_op;
       
  2005       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2006       aff = sqlite3AffinityType(&pExpr->token);
       
  2007       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
       
  2008       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
       
  2009       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
       
  2010       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
       
  2011       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
       
  2012       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
       
  2013       sqlite3VdbeAddOp(v, to_op, 0, 0);
       
  2014       stackChng = 0;
       
  2015       break;
       
  2016     }
       
  2017 #endif /* SQLITE_OMIT_CAST */
       
  2018     case TK_LT:
       
  2019     case TK_LE:
       
  2020     case TK_GT:
       
  2021     case TK_GE:
       
  2022     case TK_NE:
       
  2023     case TK_EQ: {
       
  2024       assert( TK_LT==OP_Lt );
       
  2025       assert( TK_LE==OP_Le );
       
  2026       assert( TK_GT==OP_Gt );
       
  2027       assert( TK_GE==OP_Ge );
       
  2028       assert( TK_EQ==OP_Eq );
       
  2029       assert( TK_NE==OP_Ne );
       
  2030       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2031       sqlite3ExprCode(pParse, pExpr->pRight);
       
  2032       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0);
       
  2033       stackChng = -1;
       
  2034       break;
       
  2035     }
       
  2036     case TK_AND:
       
  2037     case TK_OR:
       
  2038     case TK_PLUS:
       
  2039     case TK_STAR:
       
  2040     case TK_MINUS:
       
  2041     case TK_REM:
       
  2042     case TK_BITAND:
       
  2043     case TK_BITOR:
       
  2044     case TK_SLASH:
       
  2045     case TK_LSHIFT:
       
  2046     case TK_RSHIFT: 
       
  2047     case TK_CONCAT: {
       
  2048       assert( TK_AND==OP_And );
       
  2049       assert( TK_OR==OP_Or );
       
  2050       assert( TK_PLUS==OP_Add );
       
  2051       assert( TK_MINUS==OP_Subtract );
       
  2052       assert( TK_REM==OP_Remainder );
       
  2053       assert( TK_BITAND==OP_BitAnd );
       
  2054       assert( TK_BITOR==OP_BitOr );
       
  2055       assert( TK_SLASH==OP_Divide );
       
  2056       assert( TK_LSHIFT==OP_ShiftLeft );
       
  2057       assert( TK_RSHIFT==OP_ShiftRight );
       
  2058       assert( TK_CONCAT==OP_Concat );
       
  2059       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2060       sqlite3ExprCode(pParse, pExpr->pRight);
       
  2061       sqlite3VdbeAddOp(v, op, 0, 0);
       
  2062       stackChng = -1;
       
  2063       break;
       
  2064     }
       
  2065     case TK_UMINUS: {
       
  2066       Expr *pLeft = pExpr->pLeft;
       
  2067       assert( pLeft );
       
  2068       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
       
  2069         Token *p = &pLeft->token;
       
  2070         if( pLeft->op==TK_FLOAT ){
       
  2071           codeReal(v, (char*)p->z, p->n, 1);
       
  2072         }else{
       
  2073           codeInteger(v, (char*)p->z, p->n, 1);
       
  2074         }
       
  2075         break;
       
  2076       }
       
  2077       /* Fall through into TK_NOT */
       
  2078     }
       
  2079     case TK_BITNOT:
       
  2080     case TK_NOT: {
       
  2081       assert( TK_BITNOT==OP_BitNot );
       
  2082       assert( TK_NOT==OP_Not );
       
  2083       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2084       sqlite3VdbeAddOp(v, op, 0, 0);
       
  2085       stackChng = 0;
       
  2086       break;
       
  2087     }
       
  2088     case TK_ISNULL:
       
  2089     case TK_NOTNULL: {
       
  2090       int dest;
       
  2091       assert( TK_ISNULL==OP_IsNull );
       
  2092       assert( TK_NOTNULL==OP_NotNull );
       
  2093       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
       
  2094       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2095       dest = sqlite3VdbeCurrentAddr(v) + 2;
       
  2096       sqlite3VdbeAddOp(v, op, 1, dest);
       
  2097       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
       
  2098       stackChng = 0;
       
  2099       break;
       
  2100     }
       
  2101     case TK_AGG_FUNCTION: {
       
  2102       AggInfo *pInfo = pExpr->pAggInfo;
       
  2103       if( pInfo==0 ){
       
  2104         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
       
  2105             &pExpr->span);
       
  2106       }else{
       
  2107         sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);
       
  2108       }
       
  2109       break;
       
  2110     }
       
  2111     case TK_CONST_FUNC:
       
  2112     case TK_FUNCTION: {
       
  2113       ExprList *pList = pExpr->pList;
       
  2114       int nExpr = pList ? pList->nExpr : 0;
       
  2115       FuncDef *pDef;
       
  2116       int nId;
       
  2117       const char *zId;
       
  2118       int constMask = 0;
       
  2119       int i;
       
  2120       sqlite3 *db = pParse->db;
       
  2121       u8 enc = ENC(db);
       
  2122       CollSeq *pColl = 0;
       
  2123 
       
  2124       zId = (char*)pExpr->token.z;
       
  2125       nId = pExpr->token.n;
       
  2126       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
       
  2127       assert( pDef!=0 );
       
  2128       nExpr = sqlite3ExprCodeExprList(pParse, pList);
       
  2129 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  2130       /* Possibly overload the function if the first argument is
       
  2131       ** a virtual table column.
       
  2132       **
       
  2133       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
       
  2134       ** second argument, not the first, as the argument to test to
       
  2135       ** see if it is a column in a virtual table.  This is done because
       
  2136       ** the left operand of infix functions (the operand we want to
       
  2137       ** control overloading) ends up as the second argument to the
       
  2138       ** function.  The expression "A glob B" is equivalent to 
       
  2139       ** "glob(B,A).  We want to use the A in "A glob B" to test
       
  2140       ** for function overloading.  But we use the B term in "glob(B,A)".
       
  2141       */
       
  2142       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
       
  2143         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
       
  2144       }else if( nExpr>0 ){
       
  2145         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
       
  2146       }
       
  2147 #endif
       
  2148       for(i=0; i<nExpr && i<32; i++){
       
  2149         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
       
  2150           constMask |= (1<<i);
       
  2151         }
       
  2152         if( pDef->needCollSeq && !pColl ){
       
  2153           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
       
  2154         }
       
  2155       }
       
  2156       if( pDef->needCollSeq ){
       
  2157         if( !pColl ) pColl = pParse->db->pDfltColl; 
       
  2158         sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
       
  2159       }
       
  2160       sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);
       
  2161       stackChng = 1-nExpr;
       
  2162       break;
       
  2163     }
       
  2164 #ifndef SQLITE_OMIT_SUBQUERY
       
  2165     case TK_EXISTS:
       
  2166     case TK_SELECT: {
       
  2167       if( pExpr->iColumn==0 ){
       
  2168         sqlite3CodeSubselect(pParse, pExpr);
       
  2169       }
       
  2170       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
       
  2171       VdbeComment((v, "# load subquery result"));
       
  2172       break;
       
  2173     }
       
  2174     case TK_IN: {
       
  2175       int addr;
       
  2176       char affinity;
       
  2177       int ckOffset = pParse->ckOffset;
       
  2178       int eType;
       
  2179       int iLabel = sqlite3VdbeMakeLabel(v);
       
  2180 
       
  2181       eType = sqlite3FindInIndex(pParse, pExpr, 0);
       
  2182 
       
  2183       /* Figure out the affinity to use to create a key from the results
       
  2184       ** of the expression. affinityStr stores a static string suitable for
       
  2185       ** P3 of OP_MakeRecord.
       
  2186       */
       
  2187       affinity = comparisonAffinity(pExpr);
       
  2188 
       
  2189       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
       
  2190       pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0);
       
  2191 
       
  2192       /* Code the <expr> from "<expr> IN (...)". The temporary table
       
  2193       ** pExpr->iTable contains the values that make up the (...) set.
       
  2194       */
       
  2195       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2196       addr = sqlite3VdbeCurrentAddr(v);
       
  2197       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4);            /* addr + 0 */
       
  2198       sqlite3VdbeAddOp(v, OP_Pop, 2, 0);
       
  2199       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
  2200       sqlite3VdbeAddOp(v, OP_Goto, 0, iLabel);
       
  2201       if( eType==IN_INDEX_ROWID ){
       
  2202         int iAddr = sqlite3VdbeCurrentAddr(v)+3;
       
  2203         sqlite3VdbeAddOp(v, OP_MustBeInt, 1, iAddr);
       
  2204         sqlite3VdbeAddOp(v, OP_NotExists, pExpr->iTable, iAddr);
       
  2205         sqlite3VdbeAddOp(v, OP_Goto, pExpr->iTable, iLabel);
       
  2206       }else{
       
  2207         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);   /* addr + 4 */
       
  2208         sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, iLabel);
       
  2209       }
       
  2210       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);                  /* addr + 6 */
       
  2211       sqlite3VdbeResolveLabel(v, iLabel);
       
  2212 
       
  2213       break;
       
  2214     }
       
  2215 #endif
       
  2216     case TK_BETWEEN: {
       
  2217       Expr *pLeft = pExpr->pLeft;
       
  2218 	  ExprList::ExprList_item *pLItem = pExpr->pList->a;
       
  2219       Expr *pRight = pLItem->pExpr;
       
  2220       sqlite3ExprCode(pParse, pLeft);
       
  2221       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
       
  2222       sqlite3ExprCode(pParse, pRight);
       
  2223       codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
       
  2224       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
       
  2225       pLItem++;
       
  2226       pRight = pLItem->pExpr;
       
  2227       sqlite3ExprCode(pParse, pRight);
       
  2228       codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
       
  2229       sqlite3VdbeAddOp(v, OP_And, 0, 0);
       
  2230       break;
       
  2231     }
       
  2232     case TK_UPLUS: {
       
  2233       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2234       stackChng = 0;
       
  2235       break;
       
  2236     }
       
  2237     case TK_CASE: {
       
  2238       int expr_end_label;
       
  2239       int jumpInst;
       
  2240       int nExpr;
       
  2241       int i;
       
  2242       ExprList *pEList;
       
  2243 	  ExprList::ExprList_item *aListelem;
       
  2244 
       
  2245       assert(pExpr->pList);
       
  2246       assert((pExpr->pList->nExpr % 2) == 0);
       
  2247       assert(pExpr->pList->nExpr > 0);
       
  2248       pEList = pExpr->pList;
       
  2249       aListelem = pEList->a;
       
  2250       nExpr = pEList->nExpr;
       
  2251       expr_end_label = sqlite3VdbeMakeLabel(v);
       
  2252       if( pExpr->pLeft ){
       
  2253         sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2254       }
       
  2255       for(i=0; i<nExpr; i=i+2){
       
  2256         sqlite3ExprCode(pParse, aListelem[i].pExpr);
       
  2257         if( pExpr->pLeft ){
       
  2258           sqlite3VdbeAddOp(v, OP_Dup, 1, 1);
       
  2259           jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
       
  2260                                  OP_Ne, 0, 1);
       
  2261           sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  2262         }else{
       
  2263           jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0);
       
  2264         }
       
  2265         sqlite3ExprCode(pParse, aListelem[i+1].pExpr);
       
  2266         sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label);
       
  2267         sqlite3VdbeJumpHere(v, jumpInst);
       
  2268       }
       
  2269       if( pExpr->pLeft ){
       
  2270         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  2271       }
       
  2272       if( pExpr->pRight ){
       
  2273         sqlite3ExprCode(pParse, pExpr->pRight);
       
  2274       }else{
       
  2275         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
  2276       }
       
  2277       sqlite3VdbeResolveLabel(v, expr_end_label);
       
  2278       break;
       
  2279     }
       
  2280 #ifndef SQLITE_OMIT_TRIGGER
       
  2281     case TK_RAISE: {
       
  2282       if( !pParse->trigStack ){
       
  2283         sqlite3ErrorMsg(pParse,
       
  2284                        "RAISE() may only be used within a trigger-program");
       
  2285         return;
       
  2286       }
       
  2287       if( pExpr->iColumn!=OE_Ignore ){
       
  2288          assert( pExpr->iColumn==OE_Rollback ||
       
  2289                  pExpr->iColumn == OE_Abort ||
       
  2290                  pExpr->iColumn == OE_Fail );
       
  2291          sqlite3DequoteExpr(pParse->db, pExpr);
       
  2292          sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
       
  2293                         (char*)pExpr->token.z, pExpr->token.n);
       
  2294       } else {
       
  2295          assert( pExpr->iColumn == OE_Ignore );
       
  2296          sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
       
  2297          sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
       
  2298          VdbeComment((v, "# raise(IGNORE)"));
       
  2299       }
       
  2300       stackChng = 0;
       
  2301       break;
       
  2302     }
       
  2303 #endif
       
  2304   }
       
  2305 
       
  2306   if( pParse->ckOffset ){
       
  2307     pParse->ckOffset += stackChng;
       
  2308     assert( pParse->ckOffset );
       
  2309   }
       
  2310 }
       
  2311 
       
  2312 #ifndef SQLITE_OMIT_TRIGGER
       
  2313 /*
       
  2314 ** Generate code that evalutes the given expression and leaves the result
       
  2315 ** on the stack.  See also sqlite3ExprCode().
       
  2316 **
       
  2317 ** This routine might also cache the result and modify the pExpr tree
       
  2318 ** so that it will make use of the cached result on subsequent evaluations
       
  2319 ** rather than evaluate the whole expression again.  Trivial expressions are
       
  2320 ** not cached.  If the expression is cached, its result is stored in a 
       
  2321 ** memory location.
       
  2322 */
       
  2323 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){
       
  2324   Vdbe *v = pParse->pVdbe;
       
  2325   VdbeOp *pOp;
       
  2326   int iMem;
       
  2327   int addr1, addr2;
       
  2328   if( v==0 ) return;
       
  2329   addr1 = sqlite3VdbeCurrentAddr(v);
       
  2330   sqlite3ExprCode(pParse, pExpr);
       
  2331   addr2 = sqlite3VdbeCurrentAddr(v);
       
  2332   if( addr2>addr1+1
       
  2333    || ((pOp = sqlite3VdbeGetOp(v, addr1))!=0 && pOp->opcode==OP_Function) ){
       
  2334     iMem = pExpr->iTable = pParse->nMem++;
       
  2335     sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
       
  2336     pExpr->op = TK_REGISTER;
       
  2337   }
       
  2338 }
       
  2339 #endif
       
  2340 
       
  2341 /*
       
  2342 ** Generate code that pushes the value of every element of the given
       
  2343 ** expression list onto the stack.
       
  2344 **
       
  2345 ** Return the number of elements pushed onto the stack.
       
  2346 */
       
  2347 int sqlite3ExprCodeExprList(
       
  2348   Parse *pParse,     /* Parsing context */
       
  2349   ExprList *pList    /* The expression list to be coded */
       
  2350 ){
       
  2351 	ExprList::ExprList_item *pItem;
       
  2352   int i, n;
       
  2353   if( pList==0 ) return 0;
       
  2354   n = pList->nExpr;
       
  2355   for(pItem=pList->a, i=n; i>0; i--, pItem++){
       
  2356     sqlite3ExprCode(pParse, pItem->pExpr);
       
  2357   }
       
  2358   return n;
       
  2359 }
       
  2360 
       
  2361 /*
       
  2362 ** Generate code for a boolean expression such that a jump is made
       
  2363 ** to the label "dest" if the expression is true but execution
       
  2364 ** continues straight thru if the expression is false.
       
  2365 **
       
  2366 ** If the expression evaluates to NULL (neither true nor false), then
       
  2367 ** take the jump if the jumpIfNull flag is true.
       
  2368 **
       
  2369 ** This code depends on the fact that certain token values (ex: TK_EQ)
       
  2370 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
       
  2371 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
       
  2372 ** the make process cause these values to align.  Assert()s in the code
       
  2373 ** below verify that the numbers are aligned correctly.
       
  2374 */
       
  2375 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
       
  2376   Vdbe *v = pParse->pVdbe;
       
  2377   int op = 0;
       
  2378   int ckOffset = pParse->ckOffset;
       
  2379   if( v==0 || pExpr==0 ) return;
       
  2380   op = pExpr->op;
       
  2381   switch( op ){
       
  2382     case TK_AND: {
       
  2383       int d2 = sqlite3VdbeMakeLabel(v);
       
  2384       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
       
  2385       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
       
  2386       sqlite3VdbeResolveLabel(v, d2);
       
  2387       break;
       
  2388     }
       
  2389     case TK_OR: {
       
  2390       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  2391       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
       
  2392       break;
       
  2393     }
       
  2394     case TK_NOT: {
       
  2395       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  2396       break;
       
  2397     }
       
  2398     case TK_LT:
       
  2399     case TK_LE:
       
  2400     case TK_GT:
       
  2401     case TK_GE:
       
  2402     case TK_NE:
       
  2403     case TK_EQ: {
       
  2404       assert( TK_LT==OP_Lt );
       
  2405       assert( TK_LE==OP_Le );
       
  2406       assert( TK_GT==OP_Gt );
       
  2407       assert( TK_GE==OP_Ge );
       
  2408       assert( TK_EQ==OP_Eq );
       
  2409       assert( TK_NE==OP_Ne );
       
  2410       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2411       sqlite3ExprCode(pParse, pExpr->pRight);
       
  2412       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
       
  2413       break;
       
  2414     }
       
  2415     case TK_ISNULL:
       
  2416     case TK_NOTNULL: {
       
  2417       assert( TK_ISNULL==OP_IsNull );
       
  2418       assert( TK_NOTNULL==OP_NotNull );
       
  2419       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2420       sqlite3VdbeAddOp(v, op, 1, dest);
       
  2421       break;
       
  2422     }
       
  2423     case TK_BETWEEN: {
       
  2424       /* The expression "x BETWEEN y AND z" is implemented as:
       
  2425       **
       
  2426       ** 1 IF (x < y) GOTO 3
       
  2427       ** 2 IF (x <= z) GOTO <dest>
       
  2428       ** 3 ...
       
  2429       */
       
  2430       int addr;
       
  2431       Expr *pLeft = pExpr->pLeft;
       
  2432       Expr *pRight = pExpr->pList->a[0].pExpr;
       
  2433       sqlite3ExprCode(pParse, pLeft);
       
  2434       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
       
  2435       sqlite3ExprCode(pParse, pRight);
       
  2436       addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);
       
  2437 
       
  2438       pRight = pExpr->pList->a[1].pExpr;
       
  2439       sqlite3ExprCode(pParse, pRight);
       
  2440       codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);
       
  2441 
       
  2442       sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
       
  2443       sqlite3VdbeJumpHere(v, addr);
       
  2444       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  2445       break;
       
  2446     }
       
  2447     default: {
       
  2448       sqlite3ExprCode(pParse, pExpr);
       
  2449       sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest);
       
  2450       break;
       
  2451     }
       
  2452   }
       
  2453   pParse->ckOffset = ckOffset;
       
  2454 }
       
  2455 
       
  2456 /*
       
  2457 ** Generate code for a boolean expression such that a jump is made
       
  2458 ** to the label "dest" if the expression is false but execution
       
  2459 ** continues straight thru if the expression is true.
       
  2460 **
       
  2461 ** If the expression evaluates to NULL (neither true nor false) then
       
  2462 ** jump if jumpIfNull is true or fall through if jumpIfNull is false.
       
  2463 */
       
  2464 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
       
  2465   Vdbe *v = pParse->pVdbe;
       
  2466   int op = 0;
       
  2467   int ckOffset = pParse->ckOffset;
       
  2468   if( v==0 || pExpr==0 ) return;
       
  2469 
       
  2470   /* The value of pExpr->op and op are related as follows:
       
  2471   **
       
  2472   **       pExpr->op            op
       
  2473   **       ---------          ----------
       
  2474   **       TK_ISNULL          OP_NotNull
       
  2475   **       TK_NOTNULL         OP_IsNull
       
  2476   **       TK_NE              OP_Eq
       
  2477   **       TK_EQ              OP_Ne
       
  2478   **       TK_GT              OP_Le
       
  2479   **       TK_LE              OP_Gt
       
  2480   **       TK_GE              OP_Lt
       
  2481   **       TK_LT              OP_Ge
       
  2482   **
       
  2483   ** For other values of pExpr->op, op is undefined and unused.
       
  2484   ** The value of TK_ and OP_ constants are arranged such that we
       
  2485   ** can compute the mapping above using the following expression.
       
  2486   ** Assert()s verify that the computation is correct.
       
  2487   */
       
  2488   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
       
  2489 
       
  2490   /* Verify correct alignment of TK_ and OP_ constants
       
  2491   */
       
  2492   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
       
  2493   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
       
  2494   assert( pExpr->op!=TK_NE || op==OP_Eq );
       
  2495   assert( pExpr->op!=TK_EQ || op==OP_Ne );
       
  2496   assert( pExpr->op!=TK_LT || op==OP_Ge );
       
  2497   assert( pExpr->op!=TK_LE || op==OP_Gt );
       
  2498   assert( pExpr->op!=TK_GT || op==OP_Le );
       
  2499   assert( pExpr->op!=TK_GE || op==OP_Lt );
       
  2500 
       
  2501   switch( pExpr->op ){
       
  2502     case TK_AND: {
       
  2503       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  2504       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
       
  2505       break;
       
  2506     }
       
  2507     case TK_OR: {
       
  2508       int d2 = sqlite3VdbeMakeLabel(v);
       
  2509       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
       
  2510       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
       
  2511       sqlite3VdbeResolveLabel(v, d2);
       
  2512       break;
       
  2513     }
       
  2514     case TK_NOT: {
       
  2515       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  2516       break;
       
  2517     }
       
  2518     case TK_LT:
       
  2519     case TK_LE:
       
  2520     case TK_GT:
       
  2521     case TK_GE:
       
  2522     case TK_NE:
       
  2523     case TK_EQ: {
       
  2524       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2525       sqlite3ExprCode(pParse, pExpr->pRight);
       
  2526       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
       
  2527       break;
       
  2528     }
       
  2529     case TK_ISNULL:
       
  2530     case TK_NOTNULL: {
       
  2531       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2532       sqlite3VdbeAddOp(v, op, 1, dest);
       
  2533       break;
       
  2534     }
       
  2535     case TK_BETWEEN: {
       
  2536       /* The expression is "x BETWEEN y AND z". It is implemented as:
       
  2537       **
       
  2538       ** 1 IF (x >= y) GOTO 3
       
  2539       ** 2 GOTO <dest>
       
  2540       ** 3 IF (x > z) GOTO <dest>
       
  2541       */
       
  2542       int addr;
       
  2543       Expr *pLeft = pExpr->pLeft;
       
  2544       Expr *pRight = pExpr->pList->a[0].pExpr;
       
  2545       sqlite3ExprCode(pParse, pLeft);
       
  2546       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
       
  2547       sqlite3ExprCode(pParse, pRight);
       
  2548       addr = sqlite3VdbeCurrentAddr(v);
       
  2549       codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);
       
  2550 
       
  2551       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  2552       sqlite3VdbeAddOp(v, OP_Goto, 0, dest);
       
  2553       pRight = pExpr->pList->a[1].pExpr;
       
  2554       sqlite3ExprCode(pParse, pRight);
       
  2555       codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);
       
  2556       break;
       
  2557     }
       
  2558     default: {
       
  2559       sqlite3ExprCode(pParse, pExpr);
       
  2560       sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
       
  2561       break;
       
  2562     }
       
  2563   }
       
  2564   pParse->ckOffset = ckOffset;
       
  2565 }
       
  2566 
       
  2567 /*
       
  2568 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
       
  2569 ** if they are identical and return FALSE if they differ in any way.
       
  2570 **
       
  2571 ** Sometimes this routine will return FALSE even if the two expressions
       
  2572 ** really are equivalent.  If we cannot prove that the expressions are
       
  2573 ** identical, we return FALSE just to be safe.  So if this routine
       
  2574 ** returns false, then you do not really know for certain if the two
       
  2575 ** expressions are the same.  But if you get a TRUE return, then you
       
  2576 ** can be sure the expressions are the same.  In the places where
       
  2577 ** this routine is used, it does not hurt to get an extra FALSE - that
       
  2578 ** just might result in some slightly slower code.  But returning
       
  2579 ** an incorrect TRUE could lead to a malfunction.
       
  2580 */
       
  2581 int sqlite3ExprCompare(Expr *pA, Expr *pB){
       
  2582   int i;
       
  2583   if( pA==0||pB==0 ){
       
  2584     return pB==pA;
       
  2585   }
       
  2586   if( pA->op!=pB->op ) return 0;
       
  2587   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
       
  2588   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
       
  2589   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
       
  2590   if( pA->pList ){
       
  2591     if( pB->pList==0 ) return 0;
       
  2592     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
       
  2593     for(i=0; i<pA->pList->nExpr; i++){
       
  2594       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
       
  2595         return 0;
       
  2596       }
       
  2597     }
       
  2598   }else if( pB->pList ){
       
  2599     return 0;
       
  2600   }
       
  2601   if( pA->pSelect || pB->pSelect ) return 0;
       
  2602   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
       
  2603   if( pA->op!=TK_COLUMN && pA->token.z ){
       
  2604     if( pB->token.z==0 ) return 0;
       
  2605     if( pB->token.n!=pA->token.n ) return 0;
       
  2606     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
       
  2607       return 0;
       
  2608     }
       
  2609   }
       
  2610   return 1;
       
  2611 }
       
  2612 
       
  2613 
       
  2614 /*
       
  2615 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
       
  2616 ** the new element.  Return a negative number if malloc fails.
       
  2617 */
       
  2618 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
       
  2619   int i;
       
  2620   pInfo->aCol = (AggInfo::AggInfo_col*)sqlite3ArrayAllocate(
       
  2621        db,
       
  2622        pInfo->aCol,
       
  2623        sizeof(pInfo->aCol[0]),
       
  2624        3,
       
  2625        &pInfo->nColumn,
       
  2626        &pInfo->nColumnAlloc,
       
  2627        &i
       
  2628   );
       
  2629   return i;
       
  2630 }    
       
  2631 
       
  2632 /*
       
  2633 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
       
  2634 ** the new element.  Return a negative number if malloc fails.
       
  2635 */
       
  2636 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
       
  2637   int i;
       
  2638   pInfo->aFunc = (AggInfo::AggInfo_func*)sqlite3ArrayAllocate(
       
  2639        db, 
       
  2640        pInfo->aFunc,
       
  2641        sizeof(pInfo->aFunc[0]),
       
  2642        3,
       
  2643        &pInfo->nFunc,
       
  2644        &pInfo->nFuncAlloc,
       
  2645        &i
       
  2646   );
       
  2647   return i;
       
  2648 }    
       
  2649 
       
  2650 /*
       
  2651 ** This is an xFunc for walkExprTree() used to implement 
       
  2652 ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
       
  2653 ** for additional information.
       
  2654 **
       
  2655 ** This routine analyzes the aggregate function at pExpr.
       
  2656 */
       
  2657 static int analyzeAggregate(void *pArg, Expr *pExpr){
       
  2658   int i;
       
  2659   NameContext *pNC = (NameContext *)pArg;
       
  2660   Parse *pParse = pNC->pParse;
       
  2661   SrcList *pSrcList = pNC->pSrcList;
       
  2662   AggInfo *pAggInfo = pNC->pAggInfo;
       
  2663 
       
  2664   switch( pExpr->op ){
       
  2665     case TK_AGG_COLUMN:
       
  2666     case TK_COLUMN: {
       
  2667       /* Check to see if the column is in one of the tables in the FROM
       
  2668       ** clause of the aggregate query */
       
  2669       if( pSrcList ){
       
  2670 		  SrcList::SrcList_item *pItem = pSrcList->a;
       
  2671         for(i=0; i<pSrcList->nSrc; i++, pItem++){
       
  2672 			AggInfo::AggInfo_col *pCol;
       
  2673           if( pExpr->iTable==pItem->iCursor ){
       
  2674             /* If we reach this point, it means that pExpr refers to a table
       
  2675             ** that is in the FROM clause of the aggregate query.  
       
  2676             **
       
  2677             ** Make an entry for the column in pAggInfo->aCol[] if there
       
  2678             ** is not an entry there already.
       
  2679             */
       
  2680 			  int k=0;
       
  2681             pCol = pAggInfo->aCol;
       
  2682             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
       
  2683               if( pCol->iTable==pExpr->iTable &&
       
  2684                   pCol->iColumn==pExpr->iColumn ){
       
  2685                 break;
       
  2686               }
       
  2687             }
       
  2688             if( (k>=pAggInfo->nColumn)
       
  2689              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 
       
  2690             ){
       
  2691               pCol = &pAggInfo->aCol[k];
       
  2692               pCol->pTab = pExpr->pTab;
       
  2693               pCol->iTable = pExpr->iTable;
       
  2694               pCol->iColumn = pExpr->iColumn;
       
  2695               pCol->iMem = pParse->nMem++;
       
  2696               pCol->iSorterColumn = -1;
       
  2697               pCol->pExpr = pExpr;
       
  2698               if( pAggInfo->pGroupBy ){
       
  2699                 int j, n;
       
  2700                 ExprList *pGB = pAggInfo->pGroupBy;
       
  2701 				ExprList::ExprList_item *pTerm = pGB->a;
       
  2702                 n = pGB->nExpr;
       
  2703                 for(j=0; j<n; j++, pTerm++){
       
  2704                   Expr *pE = pTerm->pExpr;
       
  2705                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
       
  2706                       pE->iColumn==pExpr->iColumn ){
       
  2707                     pCol->iSorterColumn = j;
       
  2708                     break;
       
  2709                   }
       
  2710                 }
       
  2711               }
       
  2712               if( pCol->iSorterColumn<0 ){
       
  2713                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
       
  2714               }
       
  2715             }
       
  2716             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
       
  2717             ** because it was there before or because we just created it).
       
  2718             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
       
  2719             ** pAggInfo->aCol[] entry.
       
  2720             */
       
  2721             pExpr->pAggInfo = pAggInfo;
       
  2722             pExpr->op = TK_AGG_COLUMN;
       
  2723             pExpr->iAgg = k;
       
  2724             break;
       
  2725           } /* endif pExpr->iTable==pItem->iCursor */
       
  2726         } /* end loop over pSrcList */
       
  2727       }
       
  2728       return 1;
       
  2729     }
       
  2730     case TK_AGG_FUNCTION: {
       
  2731       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
       
  2732       ** to be ignored */
       
  2733       if( pNC->nDepth==0 ){
       
  2734         /* Check to see if pExpr is a duplicate of another aggregate 
       
  2735         ** function that is already in the pAggInfo structure
       
  2736         */
       
  2737 		  AggInfo::AggInfo_func *pItem = pAggInfo->aFunc;
       
  2738         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
       
  2739           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
       
  2740             break;
       
  2741           }
       
  2742         }
       
  2743         if( i>=pAggInfo->nFunc ){
       
  2744           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
       
  2745           */
       
  2746           u8 enc = ENC(pParse->db);
       
  2747           i = addAggInfoFunc(pParse->db, pAggInfo);
       
  2748           if( i>=0 ){
       
  2749             pItem = &pAggInfo->aFunc[i];
       
  2750             pItem->pExpr = pExpr;
       
  2751             pItem->iMem = pParse->nMem++;
       
  2752             pItem->pFunc = sqlite3FindFunction(pParse->db,
       
  2753                    (char*)pExpr->token.z, pExpr->token.n,
       
  2754                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
       
  2755             if( pExpr->flags & EP_Distinct ){
       
  2756               pItem->iDistinct = pParse->nTab++;
       
  2757             }else{
       
  2758               pItem->iDistinct = -1;
       
  2759             }
       
  2760           }
       
  2761         }
       
  2762         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
       
  2763         */
       
  2764         pExpr->iAgg = i;
       
  2765         pExpr->pAggInfo = pAggInfo;
       
  2766         return 1;
       
  2767       }
       
  2768     }
       
  2769   }
       
  2770 
       
  2771   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
       
  2772   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
       
  2773   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
       
  2774   */
       
  2775   if( pExpr->pSelect ){
       
  2776     pNC->nDepth++;
       
  2777     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
       
  2778     pNC->nDepth--;
       
  2779   }
       
  2780   return 0;
       
  2781 }
       
  2782 
       
  2783 /*
       
  2784 ** Analyze the given expression looking for aggregate functions and
       
  2785 ** for variables that need to be added to the pParse->aAgg[] array.
       
  2786 ** Make additional entries to the pParse->aAgg[] array as necessary.
       
  2787 **
       
  2788 ** This routine should only be called after the expression has been
       
  2789 ** analyzed by sqlite3ExprResolveNames().
       
  2790 **
       
  2791 ** If errors are seen, leave an error message in zErrMsg and return
       
  2792 ** the number of errors.
       
  2793 */
       
  2794 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
       
  2795   int nErr = pNC->pParse->nErr;
       
  2796   walkExprTree(pExpr, analyzeAggregate, pNC);
       
  2797   return pNC->pParse->nErr - nErr;
       
  2798 }
       
  2799 
       
  2800 /*
       
  2801 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
       
  2802 ** expression list.  Return the number of errors.
       
  2803 **
       
  2804 ** If an error is found, the analysis is cut short.
       
  2805 */
       
  2806 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
       
  2807 	ExprList::ExprList_item *pItem;
       
  2808   int i;
       
  2809   int nErr = 0;
       
  2810   if( pList ){
       
  2811     for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){
       
  2812       nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
       
  2813     }
       
  2814   }
       
  2815   return nErr;
       
  2816 }