engine/sqlite/src/insert.cpp
changeset 2 29cda98b007e
equal deleted inserted replaced
1:5f8e5adbbed9 2:29cda98b007e
       
     1 /*
       
     2 ** 2001 September 15
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** This file contains C code routines that are called by the parser
       
    13 ** to handle INSERT statements in SQLite.
       
    14 **
       
    15 ** $Id: insert.cpp 1282 2008-11-13 09:31:33Z LarsPson $
       
    16 */
       
    17 #include "sqliteInt.h"
       
    18 
       
    19 /*
       
    20 ** Set P3 of the most recently inserted opcode to a column affinity
       
    21 ** string for index pIdx. A column affinity string has one character
       
    22 ** for each column in the table, according to the affinity of the column:
       
    23 **
       
    24 **  Character      Column affinity
       
    25 **  ------------------------------
       
    26 **  'a'            TEXT
       
    27 **  'b'            NONE
       
    28 **  'c'            NUMERIC
       
    29 **  'd'            INTEGER
       
    30 **  'e'            REAL
       
    31 */
       
    32 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
       
    33   if( !pIdx->zColAff ){
       
    34     /* The first time a column affinity string for a particular index is
       
    35     ** required, it is allocated and populated here. It is then stored as
       
    36     ** a member of the Index structure for subsequent use.
       
    37     **
       
    38     ** The column affinity string will eventually be deleted by
       
    39     ** sqliteDeleteIndex() when the Index structure itself is cleaned
       
    40     ** up.
       
    41     */
       
    42     int n;
       
    43     Table *pTab = pIdx->pTable;
       
    44     sqlite3 *db = sqlite3VdbeDb(v);
       
    45     pIdx->zColAff = (char *)sqlite3DbMallocZero(db, pIdx->nColumn+1);
       
    46     if( !pIdx->zColAff ){
       
    47       return;
       
    48     }
       
    49     for(n=0; n<pIdx->nColumn; n++){
       
    50       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
       
    51     }
       
    52     pIdx->zColAff[pIdx->nColumn] = '\0';
       
    53   }
       
    54  
       
    55   sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0);
       
    56 }
       
    57 
       
    58 /*
       
    59 ** Set P3 of the most recently inserted opcode to a column affinity
       
    60 ** string for table pTab. A column affinity string has one character
       
    61 ** for each column indexed by the index, according to the affinity of the
       
    62 ** column:
       
    63 **
       
    64 **  Character      Column affinity
       
    65 **  ------------------------------
       
    66 **  'a'            TEXT
       
    67 **  'b'            NONE
       
    68 **  'c'            NUMERIC
       
    69 **  'd'            INTEGER
       
    70 **  'e'            REAL
       
    71 */
       
    72 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
       
    73   /* The first time a column affinity string for a particular table
       
    74   ** is required, it is allocated and populated here. It is then 
       
    75   ** stored as a member of the Table structure for subsequent use.
       
    76   **
       
    77   ** The column affinity string will eventually be deleted by
       
    78   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
       
    79   */
       
    80   if( !pTab->zColAff ){
       
    81     char *zColAff;
       
    82     int i;
       
    83     sqlite3 *db = sqlite3VdbeDb(v);
       
    84 
       
    85     zColAff = (char *)sqlite3DbMallocZero(db, pTab->nCol+1);
       
    86     if( !zColAff ){
       
    87       return;
       
    88     }
       
    89 
       
    90     for(i=0; i<pTab->nCol; i++){
       
    91       zColAff[i] = pTab->aCol[i].affinity;
       
    92     }
       
    93     zColAff[pTab->nCol] = '\0';
       
    94 
       
    95     pTab->zColAff = zColAff;
       
    96   }
       
    97 
       
    98   sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0);
       
    99 }
       
   100 
       
   101 /*
       
   102 ** Return non-zero if the table pTab in database iDb or any of its indices
       
   103 ** have been opened at any point in the VDBE program beginning at location
       
   104 ** iStartAddr throught the end of the program.  This is used to see if 
       
   105 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can 
       
   106 ** run without using temporary table for the results of the SELECT. 
       
   107 */
       
   108 static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
       
   109   int i;
       
   110   int iEnd = sqlite3VdbeCurrentAddr(v);
       
   111   for(i=iStartAddr; i<iEnd; i++){
       
   112     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
       
   113     assert( pOp!=0 );
       
   114     if( pOp->opcode==OP_OpenRead ){
       
   115       VdbeOp *pPrior = &pOp[-1];
       
   116       int tnum = pOp->p2;
       
   117       assert( i>iStartAddr );
       
   118       assert( pPrior->opcode==OP_Integer );
       
   119       if( pPrior->p1==iDb ){
       
   120         Index *pIndex;
       
   121         if( tnum==pTab->tnum ){
       
   122           return 1;
       
   123         }
       
   124         for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
       
   125           if( tnum==pIndex->tnum ){
       
   126             return 1;
       
   127           }
       
   128         }
       
   129       }
       
   130     }
       
   131 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
   132     if( pOp->opcode==OP_VOpen && pOp->p3==(const char*)pTab->pVtab ){
       
   133       assert( pOp->p3!=0 );
       
   134       assert( pOp->p3type==P3_VTAB );
       
   135       return 1;
       
   136     }
       
   137 #endif
       
   138   }
       
   139   return 0;
       
   140 }
       
   141 
       
   142 #ifndef SQLITE_OMIT_AUTOINCREMENT
       
   143 /*
       
   144 ** Write out code to initialize the autoincrement logic.  This code
       
   145 ** looks up the current autoincrement value in the sqlite_sequence
       
   146 ** table and stores that value in a memory cell.  Code generated by
       
   147 ** autoIncStep() will keep that memory cell holding the largest
       
   148 ** rowid value.  Code generated by autoIncEnd() will write the new
       
   149 ** largest value of the counter back into the sqlite_sequence table.
       
   150 **
       
   151 ** This routine returns the index of the mem[] cell that contains
       
   152 ** the maximum rowid counter.
       
   153 **
       
   154 ** Two memory cells are allocated.  The next memory cell after the
       
   155 ** one returned holds the rowid in sqlite_sequence where we will
       
   156 ** write back the revised maximum rowid.
       
   157 */
       
   158 static int autoIncBegin(
       
   159   Parse *pParse,      /* Parsing context */
       
   160   int iDb,            /* Index of the database holding pTab */
       
   161   Table *pTab         /* The table we are writing to */
       
   162 ){
       
   163   int memId = 0;
       
   164   if( pTab->autoInc ){
       
   165     Vdbe *v = pParse->pVdbe;
       
   166     Db *pDb = &pParse->db->aDb[iDb];
       
   167     int iCur = pParse->nTab;
       
   168     int addr;
       
   169     assert( v );
       
   170     addr = sqlite3VdbeCurrentAddr(v);
       
   171     memId = pParse->nMem+1;
       
   172     pParse->nMem += 2;
       
   173     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
       
   174     sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13);
       
   175     sqlite3VdbeAddOp(v, OP_Column, iCur, 0);
       
   176     sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
       
   177     sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12);
       
   178     sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
       
   179     sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1);
       
   180     sqlite3VdbeAddOp(v, OP_Column, iCur, 1);
       
   181     sqlite3VdbeAddOp(v, OP_MemStore, memId, 1);
       
   182     sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13);
       
   183     sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4);
       
   184     sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
       
   185   }
       
   186   return memId;
       
   187 }
       
   188 
       
   189 /*
       
   190 ** Update the maximum rowid for an autoincrement calculation.
       
   191 **
       
   192 ** This routine should be called when the top of the stack holds a
       
   193 ** new rowid that is about to be inserted.  If that new rowid is
       
   194 ** larger than the maximum rowid in the memId memory cell, then the
       
   195 ** memory cell is updated.  The stack is unchanged.
       
   196 */
       
   197 static void autoIncStep(Parse *pParse, int memId){
       
   198   if( memId>0 ){
       
   199     sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0);
       
   200   }
       
   201 }
       
   202 
       
   203 /*
       
   204 ** After doing one or more inserts, the maximum rowid is stored
       
   205 ** in mem[memId].  Generate code to write this value back into the
       
   206 ** the sqlite_sequence table.
       
   207 */
       
   208 static void autoIncEnd(
       
   209   Parse *pParse,     /* The parsing context */
       
   210   int iDb,           /* Index of the database holding pTab */
       
   211   Table *pTab,       /* Table we are inserting into */
       
   212   int memId          /* Memory cell holding the maximum rowid */
       
   213 ){
       
   214   if( pTab->autoInc ){
       
   215     int iCur = pParse->nTab;
       
   216     Vdbe *v = pParse->pVdbe;
       
   217     Db *pDb = &pParse->db->aDb[iDb];
       
   218     int addr;
       
   219     assert( v );
       
   220     addr = sqlite3VdbeCurrentAddr(v);
       
   221     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
       
   222     sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0);
       
   223     sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7);
       
   224     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
   225     sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0);
       
   226     sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
       
   227     sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0);
       
   228     sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0);
       
   229     sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND);
       
   230     sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
       
   231   }
       
   232 }
       
   233 #else
       
   234 /*
       
   235 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
       
   236 ** above are all no-ops
       
   237 */
       
   238 # define autoIncBegin(A,B,C) (0)
       
   239 # define autoIncStep(A,B)
       
   240 # define autoIncEnd(A,B,C,D)
       
   241 #endif /* SQLITE_OMIT_AUTOINCREMENT */
       
   242 
       
   243 
       
   244 /* Forward declaration */
       
   245 static int xferOptimization(
       
   246   Parse *pParse,        /* Parser context */
       
   247   Table *pDest,         /* The table we are inserting into */
       
   248   Select *pSelect,      /* A SELECT statement to use as the data source */
       
   249   int onError,          /* How to handle constraint errors */
       
   250   int iDbDest           /* The database of pDest */
       
   251 );
       
   252 
       
   253 /*
       
   254 ** This routine is call to handle SQL of the following forms:
       
   255 **
       
   256 **    insert into TABLE (IDLIST) values(EXPRLIST)
       
   257 **    insert into TABLE (IDLIST) select
       
   258 **
       
   259 ** The IDLIST following the table name is always optional.  If omitted,
       
   260 ** then a list of all columns for the table is substituted.  The IDLIST
       
   261 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
       
   262 **
       
   263 ** The pList parameter holds EXPRLIST in the first form of the INSERT
       
   264 ** statement above, and pSelect is NULL.  For the second form, pList is
       
   265 ** NULL and pSelect is a pointer to the select statement used to generate
       
   266 ** data for the insert.
       
   267 **
       
   268 ** The code generated follows one of four templates.  For a simple
       
   269 ** select with data coming from a VALUES clause, the code executes
       
   270 ** once straight down through.  The template looks like this:
       
   271 **
       
   272 **         open write cursor to <table> and its indices
       
   273 **         puts VALUES clause expressions onto the stack
       
   274 **         write the resulting record into <table>
       
   275 **         cleanup
       
   276 **
       
   277 ** The three remaining templates assume the statement is of the form
       
   278 **
       
   279 **   INSERT INTO <table> SELECT ...
       
   280 **
       
   281 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
       
   282 ** in other words if the SELECT pulls all columns from a single table
       
   283 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
       
   284 ** if <table2> and <table1> are distinct tables but have identical
       
   285 ** schemas, including all the same indices, then a special optimization
       
   286 ** is invoked that copies raw records from <table2> over to <table1>.
       
   287 ** See the xferOptimization() function for the implementation of this
       
   288 ** template.  This is the second template.
       
   289 **
       
   290 **         open a write cursor to <table>
       
   291 **         open read cursor on <table2>
       
   292 **         transfer all records in <table2> over to <table>
       
   293 **         close cursors
       
   294 **         foreach index on <table>
       
   295 **           open a write cursor on the <table> index
       
   296 **           open a read cursor on the corresponding <table2> index
       
   297 **           transfer all records from the read to the write cursors
       
   298 **           close cursors
       
   299 **         end foreach
       
   300 **
       
   301 ** The third template is for when the second template does not apply
       
   302 ** and the SELECT clause does not read from <table> at any time.
       
   303 ** The generated code follows this template:
       
   304 **
       
   305 **         goto B
       
   306 **      A: setup for the SELECT
       
   307 **         loop over the rows in the SELECT
       
   308 **           gosub C
       
   309 **         end loop
       
   310 **         cleanup after the SELECT
       
   311 **         goto D
       
   312 **      B: open write cursor to <table> and its indices
       
   313 **         goto A
       
   314 **      C: insert the select result into <table>
       
   315 **         return
       
   316 **      D: cleanup
       
   317 **
       
   318 ** The fourth template is used if the insert statement takes its
       
   319 ** values from a SELECT but the data is being inserted into a table
       
   320 ** that is also read as part of the SELECT.  In the third form,
       
   321 ** we have to use a intermediate table to store the results of
       
   322 ** the select.  The template is like this:
       
   323 **
       
   324 **         goto B
       
   325 **      A: setup for the SELECT
       
   326 **         loop over the tables in the SELECT
       
   327 **           gosub C
       
   328 **         end loop
       
   329 **         cleanup after the SELECT
       
   330 **         goto D
       
   331 **      C: insert the select result into the intermediate table
       
   332 **         return
       
   333 **      B: open a cursor to an intermediate table
       
   334 **         goto A
       
   335 **      D: open write cursor to <table> and its indices
       
   336 **         loop over the intermediate table
       
   337 **           transfer values form intermediate table into <table>
       
   338 **         end the loop
       
   339 **         cleanup
       
   340 */
       
   341 void sqlite3Insert(
       
   342   Parse *pParse,        /* Parser context */
       
   343   SrcList *pTabList,    /* Name of table into which we are inserting */
       
   344   ExprList *pList,      /* List of values to be inserted */
       
   345   Select *pSelect,      /* A SELECT statement to use as the data source */
       
   346   IdList *pColumn,      /* Column names corresponding to IDLIST. */
       
   347   int onError           /* How to handle constraint errors */
       
   348 ){
       
   349   Table *pTab;          /* The table to insert into */
       
   350   char *zTab;           /* Name of the table into which we are inserting */
       
   351   const char *zDb;      /* Name of the database holding this table */
       
   352   int i, j, idx;        /* Loop counters */
       
   353   Vdbe *v;              /* Generate code into this virtual machine */
       
   354   Index *pIdx;          /* For looping over indices of the table */
       
   355   int nColumn;          /* Number of columns in the data */
       
   356   int base = 0;         /* VDBE Cursor number for pTab */
       
   357   int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
       
   358   sqlite3 *db;          /* The main database structure */
       
   359   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
       
   360   int endOfLoop;        /* Label for the end of the insertion loop */
       
   361   int useTempTable = 0; /* Store SELECT results in intermediate table */
       
   362   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
       
   363   int iSelectLoop = 0;  /* Address of code that implements the SELECT */
       
   364   int iCleanup = 0;     /* Address of the cleanup code */
       
   365   int iInsertBlock = 0; /* Address of the subroutine used to insert data */
       
   366   int iCntMem = 0;      /* Memory cell used for the row counter */
       
   367   int newIdx = -1;      /* Cursor for the NEW table */
       
   368   Db *pDb;              /* The database containing table being inserted into */
       
   369   int counterMem = 0;   /* Memory cell holding AUTOINCREMENT counter */
       
   370   int appendFlag = 0;   /* True if the insert is likely to be an append */
       
   371   int iDb;
       
   372 
       
   373   int nHidden = 0;
       
   374 
       
   375 #ifndef SQLITE_OMIT_TRIGGER
       
   376   int isView;                 /* True if attempting to insert into a view */
       
   377   int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
       
   378 #endif
       
   379 
       
   380   db = pParse->db;
       
   381   if( pParse->nErr || db->mallocFailed ){
       
   382     goto insert_cleanup;
       
   383   }
       
   384 
       
   385   /* Locate the table into which we will be inserting new information.
       
   386   */
       
   387   assert( pTabList->nSrc==1 );
       
   388   zTab = pTabList->a[0].zName;
       
   389   if( zTab==0 ) goto insert_cleanup;
       
   390   pTab = sqlite3SrcListLookup(pParse, pTabList);
       
   391   if( pTab==0 ){
       
   392     goto insert_cleanup;
       
   393   }
       
   394   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
       
   395   assert( iDb<db->nDb );
       
   396   pDb = &db->aDb[iDb];
       
   397   zDb = pDb->zName;
       
   398   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
       
   399     goto insert_cleanup;
       
   400   }
       
   401 
       
   402   /* Figure out if we have any triggers and if the table being
       
   403   ** inserted into is a view
       
   404   */
       
   405 #ifndef SQLITE_OMIT_TRIGGER
       
   406   triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
       
   407   isView = pTab->pSelect!=0;
       
   408 #else
       
   409 # define triggers_exist 0
       
   410 # define isView 0
       
   411 #endif
       
   412 #ifdef SQLITE_OMIT_VIEW
       
   413 # undef isView
       
   414 # define isView 0
       
   415 #endif
       
   416 
       
   417   /* Ensure that:
       
   418   *  (a) the table is not read-only, 
       
   419   *  (b) that if it is a view then ON INSERT triggers exist
       
   420   */
       
   421   if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
       
   422     goto insert_cleanup;
       
   423   }
       
   424   assert( pTab!=0 );
       
   425 
       
   426   /* If pTab is really a view, make sure it has been initialized.
       
   427   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 
       
   428   ** module table).
       
   429   */
       
   430   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
       
   431     goto insert_cleanup;
       
   432   }
       
   433 
       
   434   /* Allocate a VDBE
       
   435   */
       
   436   v = sqlite3GetVdbe(pParse);
       
   437   if( v==0 ) goto insert_cleanup;
       
   438   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
       
   439   sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
       
   440 
       
   441   /* if there are row triggers, allocate a temp table for new.* references. */
       
   442   if( triggers_exist ){
       
   443     newIdx = pParse->nTab++;
       
   444   }
       
   445 
       
   446 #ifndef SQLITE_OMIT_XFER_OPT
       
   447   /* If the statement is of the form
       
   448   **
       
   449   **       INSERT INTO <table1> SELECT * FROM <table2>;
       
   450   **
       
   451   ** Then special optimizations can be applied that make the transfer
       
   452   ** very fast and which reduce fragmentation of indices.
       
   453   */
       
   454   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
       
   455     assert( !triggers_exist );
       
   456     assert( pList==0 );
       
   457     goto insert_cleanup;
       
   458   }
       
   459 #endif /* SQLITE_OMIT_XFER_OPT */
       
   460 
       
   461   /* If this is an AUTOINCREMENT table, look up the sequence number in the
       
   462   ** sqlite_sequence table and store it in memory cell counterMem.  Also
       
   463   ** remember the rowid of the sqlite_sequence table entry in memory cell
       
   464   ** counterRowid.
       
   465   */
       
   466   counterMem = autoIncBegin(pParse, iDb, pTab);
       
   467 
       
   468   /* Figure out how many columns of data are supplied.  If the data
       
   469   ** is coming from a SELECT statement, then this step also generates
       
   470   ** all the code to implement the SELECT statement and invoke a subroutine
       
   471   ** to process each row of the result. (Template 2.) If the SELECT
       
   472   ** statement uses the the table that is being inserted into, then the
       
   473   ** subroutine is also coded here.  That subroutine stores the SELECT
       
   474   ** results in a temporary table. (Template 3.)
       
   475   */
       
   476   if( pSelect ){
       
   477     /* Data is coming from a SELECT.  Generate code to implement that SELECT
       
   478     */
       
   479     int rc, iInitCode;
       
   480     iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
       
   481     iSelectLoop = sqlite3VdbeCurrentAddr(v);
       
   482     iInsertBlock = sqlite3VdbeMakeLabel(v);
       
   483 
       
   484     /* Resolve the expressions in the SELECT statement and execute it. */
       
   485     rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0);
       
   486     if( rc || pParse->nErr || db->mallocFailed ){
       
   487       goto insert_cleanup;
       
   488     }
       
   489 
       
   490     iCleanup = sqlite3VdbeMakeLabel(v);
       
   491     sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup);
       
   492     assert( pSelect->pEList );
       
   493     nColumn = pSelect->pEList->nExpr;
       
   494 
       
   495     /* Set useTempTable to TRUE if the result of the SELECT statement
       
   496     ** should be written into a temporary table.  Set to FALSE if each
       
   497     ** row of the SELECT can be written directly into the result table.
       
   498     **
       
   499     ** A temp table must be used if the table being updated is also one
       
   500     ** of the tables being read by the SELECT statement.  Also use a 
       
   501     ** temp table in the case of row triggers.
       
   502     */
       
   503     if( triggers_exist || readsTable(v, iSelectLoop, iDb, pTab) ){
       
   504       useTempTable = 1;
       
   505     }
       
   506 
       
   507     if( useTempTable ){
       
   508       /* Generate the subroutine that SELECT calls to process each row of
       
   509       ** the result.  Store the result in a temporary table
       
   510       */
       
   511       srcTab = pParse->nTab++;
       
   512       sqlite3VdbeResolveLabel(v, iInsertBlock);
       
   513       sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);
       
   514       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
       
   515       sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0);
       
   516       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
       
   517       sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND);
       
   518       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
       
   519 
       
   520       /* The following code runs first because the GOTO at the very top
       
   521       ** of the program jumps to it.  Create the temporary table, then jump
       
   522       ** back up and execute the SELECT code above.
       
   523       */
       
   524       sqlite3VdbeJumpHere(v, iInitCode);
       
   525       sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0);
       
   526       sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn);
       
   527       sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
       
   528       sqlite3VdbeResolveLabel(v, iCleanup);
       
   529     }else{
       
   530       sqlite3VdbeJumpHere(v, iInitCode);
       
   531     }
       
   532   }else{
       
   533     /* This is the case if the data for the INSERT is coming from a VALUES
       
   534     ** clause
       
   535     */
       
   536     NameContext sNC;
       
   537     memset(&sNC, 0, sizeof(sNC));
       
   538     sNC.pParse = pParse;
       
   539     srcTab = -1;
       
   540     assert( useTempTable==0 );
       
   541     nColumn = pList ? pList->nExpr : 0;
       
   542     for(i=0; i<nColumn; i++){
       
   543       if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
       
   544         goto insert_cleanup;
       
   545       }
       
   546     }
       
   547   }
       
   548 
       
   549   /* Make sure the number of columns in the source data matches the number
       
   550   ** of columns to be inserted into the table.
       
   551   */
       
   552   if( IsVirtual(pTab) ){
       
   553     for(i=0; i<pTab->nCol; i++){
       
   554       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
       
   555     }
       
   556   }
       
   557   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
       
   558     sqlite3ErrorMsg(pParse, 
       
   559        "table %S has %d columns but %d values were supplied",
       
   560        pTabList, 0, pTab->nCol, nColumn);
       
   561     goto insert_cleanup;
       
   562   }
       
   563   if( pColumn!=0 && nColumn!=pColumn->nId ){
       
   564     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
       
   565     goto insert_cleanup;
       
   566   }
       
   567 
       
   568   /* If the INSERT statement included an IDLIST term, then make sure
       
   569   ** all elements of the IDLIST really are columns of the table and 
       
   570   ** remember the column indices.
       
   571   **
       
   572   ** If the table has an INTEGER PRIMARY KEY column and that column
       
   573   ** is named in the IDLIST, then record in the keyColumn variable
       
   574   ** the index into IDLIST of the primary key column.  keyColumn is
       
   575   ** the index of the primary key as it appears in IDLIST, not as
       
   576   ** is appears in the original table.  (The index of the primary
       
   577   ** key in the original table is pTab->iPKey.)
       
   578   */
       
   579   if( pColumn ){
       
   580     for(i=0; i<pColumn->nId; i++){
       
   581       pColumn->a[i].idx = -1;
       
   582     }
       
   583     for(i=0; i<pColumn->nId; i++){
       
   584       for(j=0; j<pTab->nCol; j++){
       
   585         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
       
   586           pColumn->a[i].idx = j;
       
   587           if( j==pTab->iPKey ){
       
   588             keyColumn = i;
       
   589           }
       
   590           break;
       
   591         }
       
   592       }
       
   593       if( j>=pTab->nCol ){
       
   594         if( sqlite3IsRowid(pColumn->a[i].zName) ){
       
   595           keyColumn = i;
       
   596         }else{
       
   597           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
       
   598               pTabList, 0, pColumn->a[i].zName);
       
   599           pParse->nErr++;
       
   600           goto insert_cleanup;
       
   601         }
       
   602       }
       
   603     }
       
   604   }
       
   605 
       
   606   /* If there is no IDLIST term but the table has an integer primary
       
   607   ** key, the set the keyColumn variable to the primary key column index
       
   608   ** in the original table definition.
       
   609   */
       
   610   if( pColumn==0 && nColumn>0 ){
       
   611     keyColumn = pTab->iPKey;
       
   612   }
       
   613 
       
   614   /* Open the temp table for FOR EACH ROW triggers
       
   615   */
       
   616   if( triggers_exist ){
       
   617     sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
       
   618     sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);
       
   619   }
       
   620     
       
   621   /* Initialize the count of rows to be inserted
       
   622   */
       
   623   if( db->flags & SQLITE_CountRows ){
       
   624     iCntMem = pParse->nMem++;
       
   625     sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem);
       
   626   }
       
   627 
       
   628   /* Open tables and indices if there are no row triggers */
       
   629   if( !triggers_exist ){
       
   630     base = pParse->nTab;
       
   631     sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
       
   632   }
       
   633 
       
   634   /* If the data source is a temporary table, then we have to create
       
   635   ** a loop because there might be multiple rows of data.  If the data
       
   636   ** source is a subroutine call from the SELECT statement, then we need
       
   637   ** to launch the SELECT statement processing.
       
   638   */
       
   639   if( useTempTable ){
       
   640     iBreak = sqlite3VdbeMakeLabel(v);
       
   641     sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak);
       
   642     iCont = sqlite3VdbeCurrentAddr(v);
       
   643   }else if( pSelect ){
       
   644     sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
       
   645     sqlite3VdbeResolveLabel(v, iInsertBlock);
       
   646     sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);
       
   647   }
       
   648 
       
   649   /* Run the BEFORE and INSTEAD OF triggers, if there are any
       
   650   */
       
   651   endOfLoop = sqlite3VdbeMakeLabel(v);
       
   652   if( triggers_exist & TRIGGER_BEFORE ){
       
   653 
       
   654     /* build the NEW.* reference row.  Note that if there is an INTEGER
       
   655     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
       
   656     ** translated into a unique ID for the row.  But on a BEFORE trigger,
       
   657     ** we do not know what the unique ID will be (because the insert has
       
   658     ** not happened yet) so we substitute a rowid of -1
       
   659     */
       
   660     if( keyColumn<0 ){
       
   661       sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
       
   662     }else if( useTempTable ){
       
   663       sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
       
   664     }else{
       
   665       assert( pSelect==0 );  /* Otherwise useTempTable is true */
       
   666       sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
       
   667       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
       
   668       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
   669       sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
       
   670       sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
       
   671     }
       
   672 
       
   673     /* Cannot have triggers on a virtual table. If it were possible,
       
   674     ** this block would have to account for hidden column.
       
   675     */
       
   676     assert(!IsVirtual(pTab));
       
   677 
       
   678     /* Create the new column data
       
   679     */
       
   680     for(i=0; i<pTab->nCol; i++){
       
   681       if( pColumn==0 ){
       
   682         j = i;
       
   683       }else{
       
   684         for(j=0; j<pColumn->nId; j++){
       
   685           if( pColumn->a[j].idx==i ) break;
       
   686         }
       
   687       }
       
   688       if( pColumn && j>=pColumn->nId ){
       
   689         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
       
   690       }else if( useTempTable ){
       
   691         sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 
       
   692       }else{
       
   693         assert( pSelect==0 ); /* Otherwise useTempTable is true */
       
   694         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr);
       
   695       }
       
   696     }
       
   697     sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
       
   698 
       
   699     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
       
   700     ** do not attempt any conversions before assembling the record.
       
   701     ** If this is a real table, attempt conversions as required by the
       
   702     ** table column affinities.
       
   703     */
       
   704     if( !isView ){
       
   705       sqlite3TableAffinityStr(v, pTab);
       
   706     }
       
   707     sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
       
   708 
       
   709     /* Fire BEFORE or INSTEAD OF triggers */
       
   710     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, 
       
   711         newIdx, -1, onError, endOfLoop) ){
       
   712       goto insert_cleanup;
       
   713     }
       
   714   }
       
   715 
       
   716   /* If any triggers exists, the opening of tables and indices is deferred
       
   717   ** until now.
       
   718   */
       
   719   if( triggers_exist && !isView ){
       
   720     base = pParse->nTab;
       
   721     sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
       
   722   }
       
   723 
       
   724   /* Push the record number for the new entry onto the stack.  The
       
   725   ** record number is a randomly generate integer created by NewRowid
       
   726   ** except when the table has an INTEGER PRIMARY KEY column, in which
       
   727   ** case the record number is the same as that column. 
       
   728   */
       
   729   if( !isView ){
       
   730     if( IsVirtual(pTab) ){
       
   731       /* The row that the VUpdate opcode will delete:  none */
       
   732       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
   733     }
       
   734     if( keyColumn>=0 ){
       
   735       if( useTempTable ){
       
   736         sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
       
   737       }else if( pSelect ){
       
   738         sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
       
   739       }else{
       
   740         VdbeOp *pOp;
       
   741         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
       
   742         pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
       
   743         if( pOp && pOp->opcode==OP_Null ){
       
   744           appendFlag = 1;
       
   745           pOp->opcode = OP_NewRowid;
       
   746           pOp->p1 = base;
       
   747           pOp->p2 = counterMem;
       
   748         }
       
   749       }
       
   750       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
       
   751       ** to generate a unique primary key value.
       
   752       */
       
   753       if( !appendFlag ){
       
   754         sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
       
   755         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
   756         sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
       
   757         sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
       
   758       }
       
   759     }else if( IsVirtual(pTab) ){
       
   760       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
   761     }else{
       
   762       sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
       
   763       appendFlag = 1;
       
   764     }
       
   765     autoIncStep(pParse, counterMem);
       
   766 
       
   767     /* Push onto the stack, data for all columns of the new entry, beginning
       
   768     ** with the first column.
       
   769     */
       
   770     nHidden = 0;
       
   771     for(i=0; i<pTab->nCol; i++){
       
   772       if( i==pTab->iPKey ){
       
   773         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
       
   774         ** Whenever this column is read, the record number will be substituted
       
   775         ** in its place.  So will fill this column with a NULL to avoid
       
   776         ** taking up data space with information that will never be used. */
       
   777         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
   778         continue;
       
   779       }
       
   780       if( pColumn==0 ){
       
   781         if( IsHiddenColumn(&pTab->aCol[i]) ){
       
   782           assert( IsVirtual(pTab) );
       
   783           j = -1;
       
   784           nHidden++;
       
   785         }else{
       
   786           j = i - nHidden;
       
   787         }
       
   788       }else{
       
   789         for(j=0; j<pColumn->nId; j++){
       
   790           if( pColumn->a[j].idx==i ) break;
       
   791         }
       
   792       }
       
   793       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
       
   794         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
       
   795       }else if( useTempTable ){
       
   796         sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 
       
   797       }else if( pSelect ){
       
   798         sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1);
       
   799       }else{
       
   800         sqlite3ExprCode(pParse, pList->a[j].pExpr);
       
   801       }
       
   802     }
       
   803 
       
   804     /* Generate code to check constraints and generate index keys and
       
   805     ** do the insertion.
       
   806     */
       
   807 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
   808     if( IsVirtual(pTab) ){
       
   809       pParse->pVirtualLock = pTab;
       
   810       sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2,
       
   811                      (const char*)pTab->pVtab, P3_VTAB);
       
   812     }else
       
   813 #endif
       
   814     {
       
   815       sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
       
   816                                      0, onError, endOfLoop);
       
   817       sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0,
       
   818                             (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
       
   819                             appendFlag);
       
   820     }
       
   821   }
       
   822 
       
   823   /* Update the count of rows that are inserted
       
   824   */
       
   825   if( (db->flags & SQLITE_CountRows)!=0 ){
       
   826     sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem);
       
   827   }
       
   828 
       
   829   if( triggers_exist ){
       
   830     /* Close all tables opened */
       
   831     if( !isView ){
       
   832       sqlite3VdbeAddOp(v, OP_Close, base, 0);
       
   833       for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
       
   834         sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
       
   835       }
       
   836     }
       
   837 
       
   838     /* Code AFTER triggers */
       
   839     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
       
   840           newIdx, -1, onError, endOfLoop) ){
       
   841       goto insert_cleanup;
       
   842     }
       
   843   }
       
   844 
       
   845   /* The bottom of the loop, if the data source is a SELECT statement
       
   846   */
       
   847   sqlite3VdbeResolveLabel(v, endOfLoop);
       
   848   if( useTempTable ){
       
   849     sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont);
       
   850     sqlite3VdbeResolveLabel(v, iBreak);
       
   851     sqlite3VdbeAddOp(v, OP_Close, srcTab, 0);
       
   852   }else if( pSelect ){
       
   853     sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
       
   854     sqlite3VdbeAddOp(v, OP_Return, 0, 0);
       
   855     sqlite3VdbeResolveLabel(v, iCleanup);
       
   856   }
       
   857 
       
   858   if( !triggers_exist && !IsVirtual(pTab) ){
       
   859     /* Close all tables opened */
       
   860     sqlite3VdbeAddOp(v, OP_Close, base, 0);
       
   861     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
       
   862       sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
       
   863     }
       
   864   }
       
   865 
       
   866   /* Update the sqlite_sequence table by storing the content of the
       
   867   ** counter value in memory counterMem back into the sqlite_sequence
       
   868   ** table.
       
   869   */
       
   870   autoIncEnd(pParse, iDb, pTab, counterMem);
       
   871 
       
   872   /*
       
   873   ** Return the number of rows inserted. If this routine is 
       
   874   ** generating code because of a call to sqlite3NestedParse(), do not
       
   875   ** invoke the callback function.
       
   876   */
       
   877   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
       
   878     sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0);
       
   879     sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
       
   880     sqlite3VdbeSetNumCols(v, 1);
       
   881     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC);
       
   882   }
       
   883 
       
   884 insert_cleanup:
       
   885   sqlite3SrcListDelete(pTabList);
       
   886   sqlite3ExprListDelete(pList);
       
   887   sqlite3SelectDelete(pSelect);
       
   888   sqlite3IdListDelete(pColumn);
       
   889 }
       
   890 
       
   891 /*
       
   892 ** Generate code to do a constraint check prior to an INSERT or an UPDATE.
       
   893 **
       
   894 ** When this routine is called, the stack contains (from bottom to top)
       
   895 ** the following values:
       
   896 **
       
   897 **    1.  The rowid of the row to be updated before the update.  This
       
   898 **        value is omitted unless we are doing an UPDATE that involves a
       
   899 **        change to the record number.
       
   900 **
       
   901 **    2.  The rowid of the row after the update.
       
   902 **
       
   903 **    3.  The data in the first column of the entry after the update.
       
   904 **
       
   905 **    i.  Data from middle columns...
       
   906 **
       
   907 **    N.  The data in the last column of the entry after the update.
       
   908 **
       
   909 ** The old rowid shown as entry (1) above is omitted unless both isUpdate
       
   910 ** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
       
   911 ** INSERTs and rowidChng is true if the record number is being changed.
       
   912 **
       
   913 ** The code generated by this routine pushes additional entries onto
       
   914 ** the stack which are the keys for new index entries for the new record.
       
   915 ** The order of index keys is the same as the order of the indices on
       
   916 ** the pTable->pIndex list.  A key is only created for index i if 
       
   917 ** aIdxUsed!=0 and aIdxUsed[i]!=0.
       
   918 **
       
   919 ** This routine also generates code to check constraints.  NOT NULL,
       
   920 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
       
   921 ** then the appropriate action is performed.  There are five possible
       
   922 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
       
   923 **
       
   924 **  Constraint type  Action       What Happens
       
   925 **  ---------------  ----------   ----------------------------------------
       
   926 **  any              ROLLBACK     The current transaction is rolled back and
       
   927 **                                sqlite3_exec() returns immediately with a
       
   928 **                                return code of SQLITE_CONSTRAINT.
       
   929 **
       
   930 **  any              ABORT        Back out changes from the current command
       
   931 **                                only (do not do a complete rollback) then
       
   932 **                                cause sqlite3_exec() to return immediately
       
   933 **                                with SQLITE_CONSTRAINT.
       
   934 **
       
   935 **  any              FAIL         Sqlite_exec() returns immediately with a
       
   936 **                                return code of SQLITE_CONSTRAINT.  The
       
   937 **                                transaction is not rolled back and any
       
   938 **                                prior changes are retained.
       
   939 **
       
   940 **  any              IGNORE       The record number and data is popped from
       
   941 **                                the stack and there is an immediate jump
       
   942 **                                to label ignoreDest.
       
   943 **
       
   944 **  NOT NULL         REPLACE      The NULL value is replace by the default
       
   945 **                                value for that column.  If the default value
       
   946 **                                is NULL, the action is the same as ABORT.
       
   947 **
       
   948 **  UNIQUE           REPLACE      The other row that conflicts with the row
       
   949 **                                being inserted is removed.
       
   950 **
       
   951 **  CHECK            REPLACE      Illegal.  The results in an exception.
       
   952 **
       
   953 ** Which action to take is determined by the overrideError parameter.
       
   954 ** Or if overrideError==OE_Default, then the pParse->onError parameter
       
   955 ** is used.  Or if pParse->onError==OE_Default then the onError value
       
   956 ** for the constraint is used.
       
   957 **
       
   958 ** The calling routine must open a read/write cursor for pTab with
       
   959 ** cursor number "base".  All indices of pTab must also have open
       
   960 ** read/write cursors with cursor number base+i for the i-th cursor.
       
   961 ** Except, if there is no possibility of a REPLACE action then
       
   962 ** cursors do not need to be open for indices where aIdxUsed[i]==0.
       
   963 **
       
   964 ** If the isUpdate flag is true, it means that the "base" cursor is
       
   965 ** initially pointing to an entry that is being updated.  The isUpdate
       
   966 ** flag causes extra code to be generated so that the "base" cursor
       
   967 ** is still pointing at the same entry after the routine returns.
       
   968 ** Without the isUpdate flag, the "base" cursor might be moved.
       
   969 */
       
   970 void sqlite3GenerateConstraintChecks(
       
   971   Parse *pParse,      /* The parser context */
       
   972   Table *pTab,        /* the table into which we are inserting */
       
   973   int base,           /* Index of a read/write cursor pointing at pTab */
       
   974   char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
       
   975   int rowidChng,      /* True if the record number will change */
       
   976   int isUpdate,       /* True for UPDATE, False for INSERT */
       
   977   int overrideError,  /* Override onError to this if not OE_Default */
       
   978   int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
       
   979 ){
       
   980   int i;
       
   981   Vdbe *v;
       
   982   int nCol;
       
   983   int onError;
       
   984   int addr;
       
   985   int extra;
       
   986   int iCur;
       
   987   Index *pIdx;
       
   988   int seenReplace = 0;
       
   989   int jumpInst1=0, jumpInst2;
       
   990   int hasTwoRowids = (isUpdate && rowidChng);
       
   991 
       
   992   v = sqlite3GetVdbe(pParse);
       
   993   assert( v!=0 );
       
   994   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
       
   995   nCol = pTab->nCol;
       
   996 
       
   997   /* Test all NOT NULL constraints.
       
   998   */
       
   999   for(i=0; i<nCol; i++){
       
  1000     if( i==pTab->iPKey ){
       
  1001       continue;
       
  1002     }
       
  1003     onError = pTab->aCol[i].notNull;
       
  1004     if( onError==OE_None ) continue;
       
  1005     if( overrideError!=OE_Default ){
       
  1006       onError = overrideError;
       
  1007     }else if( onError==OE_Default ){
       
  1008       onError = OE_Abort;
       
  1009     }
       
  1010     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
       
  1011       onError = OE_Abort;
       
  1012     }
       
  1013     sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1);
       
  1014     addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0);
       
  1015     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
       
  1016         || onError==OE_Ignore || onError==OE_Replace );
       
  1017     switch( onError ){
       
  1018       case OE_Rollback:
       
  1019       case OE_Abort:
       
  1020       case OE_Fail: {
       
  1021         char *zMsg = 0;
       
  1022         sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
       
  1023         sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
       
  1024                         " may not be NULL", (char*)0);
       
  1025         sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
       
  1026         break;
       
  1027       }
       
  1028       case OE_Ignore: {
       
  1029         sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
       
  1030         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
       
  1031         break;
       
  1032       }
       
  1033       case OE_Replace: {
       
  1034         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
       
  1035         sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0);
       
  1036         break;
       
  1037       }
       
  1038     }
       
  1039     sqlite3VdbeJumpHere(v, addr);
       
  1040   }
       
  1041 
       
  1042   /* Test all CHECK constraints
       
  1043   */
       
  1044 #ifndef SQLITE_OMIT_CHECK
       
  1045   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
       
  1046     int allOk = sqlite3VdbeMakeLabel(v);
       
  1047     assert( pParse->ckOffset==0 );
       
  1048     pParse->ckOffset = nCol;
       
  1049     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1);
       
  1050     assert( pParse->ckOffset==nCol );
       
  1051     pParse->ckOffset = 0;
       
  1052     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
       
  1053     if( onError==OE_Ignore ){
       
  1054       sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
       
  1055       sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
       
  1056     }else{
       
  1057       sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
       
  1058     }
       
  1059     sqlite3VdbeResolveLabel(v, allOk);
       
  1060   }
       
  1061 #endif /* !defined(SQLITE_OMIT_CHECK) */
       
  1062 
       
  1063   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
       
  1064   ** of the new record does not previously exist.  Except, if this
       
  1065   ** is an UPDATE and the primary key is not changing, that is OK.
       
  1066   */
       
  1067   if( rowidChng ){
       
  1068     onError = pTab->keyConf;
       
  1069     if( overrideError!=OE_Default ){
       
  1070       onError = overrideError;
       
  1071     }else if( onError==OE_Default ){
       
  1072       onError = OE_Abort;
       
  1073     }
       
  1074     
       
  1075     if( isUpdate ){
       
  1076       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
       
  1077       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
       
  1078       jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0);
       
  1079     }
       
  1080     sqlite3VdbeAddOp(v, OP_Dup, nCol, 1);
       
  1081     jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0);
       
  1082     switch( onError ){
       
  1083       default: {
       
  1084         onError = OE_Abort;
       
  1085         /* Fall thru into the next case */
       
  1086       }
       
  1087       case OE_Rollback:
       
  1088       case OE_Abort:
       
  1089       case OE_Fail: {
       
  1090         sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
       
  1091                          "PRIMARY KEY must be unique", P3_STATIC);
       
  1092         break;
       
  1093       }
       
  1094       case OE_Replace: {
       
  1095         sqlite3GenerateRowIndexDelete(v, pTab, base, 0);
       
  1096         if( isUpdate ){
       
  1097           sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1);
       
  1098           sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
       
  1099         }
       
  1100         seenReplace = 1;
       
  1101         break;
       
  1102       }
       
  1103       case OE_Ignore: {
       
  1104         assert( seenReplace==0 );
       
  1105         sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
       
  1106         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
       
  1107         break;
       
  1108       }
       
  1109     }
       
  1110     sqlite3VdbeJumpHere(v, jumpInst2);
       
  1111     if( isUpdate ){
       
  1112       sqlite3VdbeJumpHere(v, jumpInst1);
       
  1113       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
       
  1114       sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
       
  1115     }
       
  1116   }
       
  1117 
       
  1118   /* Test all UNIQUE constraints by creating entries for each UNIQUE
       
  1119   ** index and making sure that duplicate entries do not already exist.
       
  1120   ** Add the new records to the indices as we go.
       
  1121   */
       
  1122   extra = -1;
       
  1123   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
       
  1124     if( aIdxUsed && aIdxUsed[iCur]==0 ) continue;  /* Skip unused indices */
       
  1125     extra++;
       
  1126 
       
  1127     /* Create a key for accessing the index entry */
       
  1128     sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1);
       
  1129     for(i=0; i<pIdx->nColumn; i++){
       
  1130       int idx = pIdx->aiColumn[i];
       
  1131       if( idx==pTab->iPKey ){
       
  1132         sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
       
  1133       }else{
       
  1134         sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
       
  1135       }
       
  1136     }
       
  1137     jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
       
  1138     sqlite3IndexAffinityStr(v, pIdx);
       
  1139 
       
  1140     /* Find out what action to take in case there is an indexing conflict */
       
  1141     onError = pIdx->onError;
       
  1142     if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
       
  1143     if( overrideError!=OE_Default ){
       
  1144       onError = overrideError;
       
  1145     }else if( onError==OE_Default ){
       
  1146       onError = OE_Abort;
       
  1147     }
       
  1148     if( seenReplace ){
       
  1149       if( onError==OE_Ignore ) onError = OE_Replace;
       
  1150       else if( onError==OE_Fail ) onError = OE_Abort;
       
  1151     }
       
  1152     
       
  1153 
       
  1154     /* Check to see if the new index entry will be unique */
       
  1155     sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1);
       
  1156     jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
       
  1157 
       
  1158     /* Generate code that executes if the new index entry is not unique */
       
  1159     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
       
  1160         || onError==OE_Ignore || onError==OE_Replace );
       
  1161     switch( onError ){
       
  1162       case OE_Rollback:
       
  1163       case OE_Abort:
       
  1164       case OE_Fail: {
       
  1165         int j, n1, n2;
       
  1166         char zErrMsg[200];
       
  1167         sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
       
  1168                          pIdx->nColumn>1 ? "columns " : "column ");
       
  1169         n1 = strlen(zErrMsg);
       
  1170         for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
       
  1171           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
       
  1172           n2 = strlen(zCol);
       
  1173           if( j>0 ){
       
  1174             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
       
  1175             n1 += 2;
       
  1176           }
       
  1177           if( n1+n2>sizeof(zErrMsg)-30 ){
       
  1178             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
       
  1179             n1 += 3;
       
  1180             break;
       
  1181           }else{
       
  1182             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
       
  1183             n1 += n2;
       
  1184           }
       
  1185         }
       
  1186         sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], 
       
  1187             pIdx->nColumn>1 ? " are not unique" : " is not unique");
       
  1188         sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
       
  1189         break;
       
  1190       }
       
  1191       case OE_Ignore: {
       
  1192         assert( seenReplace==0 );
       
  1193         sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0);
       
  1194         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
       
  1195         break;
       
  1196       }
       
  1197       case OE_Replace: {
       
  1198         sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0);
       
  1199         if( isUpdate ){
       
  1200           sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1);
       
  1201           sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
       
  1202         }
       
  1203         seenReplace = 1;
       
  1204         break;
       
  1205       }
       
  1206     }
       
  1207 #if NULL_DISTINCT_FOR_UNIQUE
       
  1208     sqlite3VdbeJumpHere(v, jumpInst1);
       
  1209 #endif
       
  1210     sqlite3VdbeJumpHere(v, jumpInst2);
       
  1211   }
       
  1212 }
       
  1213 
       
  1214 /*
       
  1215 ** This routine generates code to finish the INSERT or UPDATE operation
       
  1216 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
       
  1217 ** The stack must contain keys for all active indices followed by data
       
  1218 ** and the rowid for the new entry.  This routine creates the new
       
  1219 ** entries in all indices and in the main table.
       
  1220 **
       
  1221 ** The arguments to this routine should be the same as the first six
       
  1222 ** arguments to sqlite3GenerateConstraintChecks.
       
  1223 */
       
  1224 void sqlite3CompleteInsertion(
       
  1225   Parse *pParse,      /* The parser context */
       
  1226   Table *pTab,        /* the table into which we are inserting */
       
  1227   int base,           /* Index of a read/write cursor pointing at pTab */
       
  1228   char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
       
  1229   int rowidChng,      /* True if the record number will change */
       
  1230   int isUpdate,       /* True for UPDATE, False for INSERT */
       
  1231   int newIdx,         /* Index of NEW table for triggers.  -1 if none */
       
  1232   int appendBias      /* True if this is likely to be an append */
       
  1233 ){
       
  1234   int i;
       
  1235   Vdbe *v;
       
  1236   int nIdx;
       
  1237   Index *pIdx;
       
  1238   int pik_flags;
       
  1239 
       
  1240   v = sqlite3GetVdbe(pParse);
       
  1241   assert( v!=0 );
       
  1242   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
       
  1243   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
       
  1244   for(i=nIdx-1; i>=0; i--){
       
  1245     if( aIdxUsed && aIdxUsed[i]==0 ) continue;
       
  1246     sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0);
       
  1247   }
       
  1248   sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
       
  1249   sqlite3TableAffinityStr(v, pTab);
       
  1250 #ifndef SQLITE_OMIT_TRIGGER
       
  1251   if( newIdx>=0 ){
       
  1252     sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
       
  1253     sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
       
  1254     sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
       
  1255   }
       
  1256 #endif
       
  1257   if( pParse->nested ){
       
  1258     pik_flags = 0;
       
  1259   }else{
       
  1260     pik_flags = OPFLAG_NCHANGE;
       
  1261     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
       
  1262   }
       
  1263   if( appendBias ){
       
  1264     pik_flags |= OPFLAG_APPEND;
       
  1265   }
       
  1266   sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags);
       
  1267   if( !pParse->nested ){
       
  1268     sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
       
  1269   }
       
  1270   
       
  1271   if( isUpdate && rowidChng ){
       
  1272     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  1273   }
       
  1274 }
       
  1275 
       
  1276 /*
       
  1277 ** Generate code that will open cursors for a table and for all
       
  1278 ** indices of that table.  The "base" parameter is the cursor number used
       
  1279 ** for the table.  Indices are opened on subsequent cursors.
       
  1280 */
       
  1281 void sqlite3OpenTableAndIndices(
       
  1282   Parse *pParse,   /* Parsing context */
       
  1283   Table *pTab,     /* Table to be opened */
       
  1284   int base,        /* Cursor number assigned to the table */
       
  1285   int op           /* OP_OpenRead or OP_OpenWrite */
       
  1286 ){
       
  1287   int i;
       
  1288   int iDb;
       
  1289   Index *pIdx;
       
  1290   Vdbe *v;
       
  1291 
       
  1292   if( IsVirtual(pTab) ) return;
       
  1293   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
       
  1294   v = sqlite3GetVdbe(pParse);
       
  1295   assert( v!=0 );
       
  1296   sqlite3OpenTable(pParse, base, iDb, pTab, op);
       
  1297   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
       
  1298     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
       
  1299     assert( pIdx->pSchema==pTab->pSchema );
       
  1300     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
       
  1301     VdbeComment((v, "# %s", pIdx->zName));
       
  1302     sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF);
       
  1303   }
       
  1304   if( pParse->nTab<=base+i ){
       
  1305     pParse->nTab = base+i;
       
  1306   }
       
  1307 }
       
  1308 
       
  1309 
       
  1310 #ifdef SQLITE_TEST
       
  1311 /*
       
  1312 ** The following global variable is incremented whenever the
       
  1313 ** transfer optimization is used.  This is used for testing
       
  1314 ** purposes only - to make sure the transfer optimization really
       
  1315 ** is happening when it is suppose to.
       
  1316 */
       
  1317 int sqlite3_xferopt_count;
       
  1318 #endif /* SQLITE_TEST */
       
  1319 
       
  1320 
       
  1321 #ifndef SQLITE_OMIT_XFER_OPT
       
  1322 /*
       
  1323 ** Check to collation names to see if they are compatible.
       
  1324 */
       
  1325 static int xferCompatibleCollation(const char *z1, const char *z2){
       
  1326   if( z1==0 ){
       
  1327     return z2==0;
       
  1328   }
       
  1329   if( z2==0 ){
       
  1330     return 0;
       
  1331   }
       
  1332   return sqlite3StrICmp(z1, z2)==0;
       
  1333 }
       
  1334 
       
  1335 
       
  1336 /*
       
  1337 ** Check to see if index pSrc is compatible as a source of data
       
  1338 ** for index pDest in an insert transfer optimization.  The rules
       
  1339 ** for a compatible index:
       
  1340 **
       
  1341 **    *   The index is over the same set of columns
       
  1342 **    *   The same DESC and ASC markings occurs on all columns
       
  1343 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
       
  1344 **    *   The same collating sequence on each column
       
  1345 */
       
  1346 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
       
  1347   int i;
       
  1348   assert( pDest && pSrc );
       
  1349   assert( pDest->pTable!=pSrc->pTable );
       
  1350   if( pDest->nColumn!=pSrc->nColumn ){
       
  1351     return 0;   /* Different number of columns */
       
  1352   }
       
  1353   if( pDest->onError!=pSrc->onError ){
       
  1354     return 0;   /* Different conflict resolution strategies */
       
  1355   }
       
  1356   for(i=0; i<pSrc->nColumn; i++){
       
  1357     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
       
  1358       return 0;   /* Different columns indexed */
       
  1359     }
       
  1360     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
       
  1361       return 0;   /* Different sort orders */
       
  1362     }
       
  1363     if( pSrc->azColl[i]!=pDest->azColl[i] ){
       
  1364       return 0;   /* Different sort orders */
       
  1365     }
       
  1366   }
       
  1367 
       
  1368   /* If no test above fails then the indices must be compatible */
       
  1369   return 1;
       
  1370 }
       
  1371 
       
  1372 /*
       
  1373 ** Attempt the transfer optimization on INSERTs of the form
       
  1374 **
       
  1375 **     INSERT INTO tab1 SELECT * FROM tab2;
       
  1376 **
       
  1377 ** This optimization is only attempted if
       
  1378 **
       
  1379 **    (1)  tab1 and tab2 have identical schemas including all the
       
  1380 **         same indices and constraints
       
  1381 **
       
  1382 **    (2)  tab1 and tab2 are different tables
       
  1383 **
       
  1384 **    (3)  There must be no triggers on tab1
       
  1385 **
       
  1386 **    (4)  The result set of the SELECT statement is "*"
       
  1387 **
       
  1388 **    (5)  The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
       
  1389 **         or LIMIT clause.
       
  1390 **
       
  1391 **    (6)  The SELECT statement is a simple (not a compound) select that
       
  1392 **         contains only tab2 in its FROM clause
       
  1393 **
       
  1394 ** This method for implementing the INSERT transfers raw records from
       
  1395 ** tab2 over to tab1.  The columns are not decoded.  Raw records from
       
  1396 ** the indices of tab2 are transfered to tab1 as well.  In so doing,
       
  1397 ** the resulting tab1 has much less fragmentation.
       
  1398 **
       
  1399 ** This routine returns TRUE if the optimization is attempted.  If any
       
  1400 ** of the conditions above fail so that the optimization should not
       
  1401 ** be attempted, then this routine returns FALSE.
       
  1402 */
       
  1403 static int xferOptimization(
       
  1404   Parse *pParse,        /* Parser context */
       
  1405   Table *pDest,         /* The table we are inserting into */
       
  1406   Select *pSelect,      /* A SELECT statement to use as the data source */
       
  1407   int onError,          /* How to handle constraint errors */
       
  1408   int iDbDest           /* The database of pDest */
       
  1409 ){
       
  1410   ExprList *pEList;                /* The result set of the SELECT */
       
  1411   Table *pSrc;                     /* The table in the FROM clause of SELECT */
       
  1412   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
       
  1413   SrcList::SrcList_item *pItem;      /* An element of pSelect->pSrc */
       
  1414   int i;                           /* Loop counter */
       
  1415   int iDbSrc;                      /* The database of pSrc */
       
  1416   int iSrc, iDest;                 /* Cursors from source and destination */
       
  1417   int addr1, addr2;                /* Loop addresses */
       
  1418   int emptyDestTest;               /* Address of test for empty pDest */
       
  1419   int emptySrcTest;                /* Address of test for empty pSrc */
       
  1420   Vdbe *v;                         /* The VDBE we are building */
       
  1421   KeyInfo *pKey;                   /* Key information for an index */
       
  1422   int counterMem;                  /* Memory register used by AUTOINC */
       
  1423   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
       
  1424 
       
  1425   if( pSelect==0 ){
       
  1426     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
       
  1427   }
       
  1428   if( pDest->pTrigger ){
       
  1429     return 0;   /* tab1 must not have triggers */
       
  1430   }
       
  1431 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  1432   if( pDest->isVirtual ){
       
  1433     return 0;   /* tab1 must not be a virtual table */
       
  1434   }
       
  1435 #endif
       
  1436   if( onError==OE_Default ){
       
  1437     onError = OE_Abort;
       
  1438   }
       
  1439   if( onError!=OE_Abort && onError!=OE_Rollback ){
       
  1440     return 0;   /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
       
  1441   }
       
  1442   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
       
  1443   if( pSelect->pSrc->nSrc!=1 ){
       
  1444     return 0;   /* FROM clause must have exactly one term */
       
  1445   }
       
  1446   if( pSelect->pSrc->a[0].pSelect ){
       
  1447     return 0;   /* FROM clause cannot contain a subquery */
       
  1448   }
       
  1449   if( pSelect->pWhere ){
       
  1450     return 0;   /* SELECT may not have a WHERE clause */
       
  1451   }
       
  1452   if( pSelect->pOrderBy ){
       
  1453     return 0;   /* SELECT may not have an ORDER BY clause */
       
  1454   }
       
  1455   /* Do not need to test for a HAVING clause.  If HAVING is present but
       
  1456   ** there is no ORDER BY, we will get an error. */
       
  1457   if( pSelect->pGroupBy ){
       
  1458     return 0;   /* SELECT may not have a GROUP BY clause */
       
  1459   }
       
  1460   if( pSelect->pLimit ){
       
  1461     return 0;   /* SELECT may not have a LIMIT clause */
       
  1462   }
       
  1463   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
       
  1464   if( pSelect->pPrior ){
       
  1465     return 0;   /* SELECT may not be a compound query */
       
  1466   }
       
  1467   if( pSelect->isDistinct ){
       
  1468     return 0;   /* SELECT may not be DISTINCT */
       
  1469   }
       
  1470   pEList = pSelect->pEList;
       
  1471   assert( pEList!=0 );
       
  1472   if( pEList->nExpr!=1 ){
       
  1473     return 0;   /* The result set must have exactly one column */
       
  1474   }
       
  1475   assert( pEList->a[0].pExpr );
       
  1476   if( pEList->a[0].pExpr->op!=TK_ALL ){
       
  1477     return 0;   /* The result set must be the special operator "*" */
       
  1478   }
       
  1479 
       
  1480   /* At this point we have established that the statement is of the
       
  1481   ** correct syntactic form to participate in this optimization.  Now
       
  1482   ** we have to check the semantics.
       
  1483   */
       
  1484   pItem = pSelect->pSrc->a;
       
  1485   pSrc = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase);
       
  1486   if( pSrc==0 ){
       
  1487     return 0;   /* FROM clause does not contain a real table */
       
  1488   }
       
  1489   if( pSrc==pDest ){
       
  1490     return 0;   /* tab1 and tab2 may not be the same table */
       
  1491   }
       
  1492 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  1493   if( pSrc->isVirtual ){
       
  1494     return 0;   /* tab2 must not be a virtual table */
       
  1495   }
       
  1496 #endif
       
  1497   if( pSrc->pSelect ){
       
  1498     return 0;   /* tab2 may not be a view */
       
  1499   }
       
  1500   if( pDest->nCol!=pSrc->nCol ){
       
  1501     return 0;   /* Number of columns must be the same in tab1 and tab2 */
       
  1502   }
       
  1503   if( pDest->iPKey!=pSrc->iPKey ){
       
  1504     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
       
  1505   }
       
  1506   for(i=0; i<pDest->nCol; i++){
       
  1507     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
       
  1508       return 0;    /* Affinity must be the same on all columns */
       
  1509     }
       
  1510     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
       
  1511       return 0;    /* Collating sequence must be the same on all columns */
       
  1512     }
       
  1513     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
       
  1514       return 0;    /* tab2 must be NOT NULL if tab1 is */
       
  1515     }
       
  1516   }
       
  1517   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
       
  1518     if( pDestIdx->onError!=OE_None ){
       
  1519       destHasUniqueIdx = 1;
       
  1520     }
       
  1521     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
       
  1522       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
       
  1523     }
       
  1524     if( pSrcIdx==0 ){
       
  1525       return 0;    /* pDestIdx has no corresponding index in pSrc */
       
  1526     }
       
  1527   }
       
  1528 #ifndef SQLITE_OMIT_CHECK
       
  1529   if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
       
  1530     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
       
  1531   }
       
  1532 #endif
       
  1533 
       
  1534   /* If we get this far, it means either:
       
  1535   **
       
  1536   **    *   We can always do the transfer if the table contains an
       
  1537   **        an integer primary key
       
  1538   **
       
  1539   **    *   We can conditionally do the transfer if the destination
       
  1540   **        table is empty.
       
  1541   */
       
  1542 #ifdef SQLITE_TEST
       
  1543   sqlite3_xferopt_count++;
       
  1544 #endif
       
  1545   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
       
  1546   v = sqlite3GetVdbe(pParse);
       
  1547   sqlite3CodeVerifySchema(pParse, iDbSrc);
       
  1548   iSrc = pParse->nTab++;
       
  1549   iDest = pParse->nTab++;
       
  1550   counterMem = autoIncBegin(pParse, iDbDest, pDest);
       
  1551   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
       
  1552   if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
       
  1553     /* If tables do not have an INTEGER PRIMARY KEY and there
       
  1554     ** are indices to be copied and the destination is not empty,
       
  1555     ** we have to disallow the transfer optimization because the
       
  1556     ** the rowids might change which will mess up indexing.
       
  1557     **
       
  1558     ** Or if the destination has a UNIQUE index and is not empty,
       
  1559     ** we also disallow the transfer optimization because we cannot
       
  1560     ** insure that all entries in the union of DEST and SRC will be
       
  1561     ** unique.
       
  1562     */
       
  1563     addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0);
       
  1564     emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
       
  1565     sqlite3VdbeJumpHere(v, addr1);
       
  1566   }else{
       
  1567     emptyDestTest = 0;
       
  1568   }
       
  1569   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
       
  1570   emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
       
  1571   if( pDest->iPKey>=0 ){
       
  1572     addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
       
  1573     sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
       
  1574     addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0);
       
  1575     sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, 
       
  1576                       "PRIMARY KEY must be unique", P3_STATIC);
       
  1577     sqlite3VdbeJumpHere(v, addr2);
       
  1578     autoIncStep(pParse, counterMem);
       
  1579   }else if( pDest->pIndex==0 ){
       
  1580     addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0);
       
  1581   }else{
       
  1582     addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
       
  1583     assert( pDest->autoInc==0 );
       
  1584   }
       
  1585   sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0);
       
  1586   sqlite3VdbeOp3(v, OP_Insert, iDest,
       
  1587                     OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND,
       
  1588                     pDest->zName, 0);
       
  1589   sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1);
       
  1590   autoIncEnd(pParse, iDbDest, pDest, counterMem);
       
  1591   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
       
  1592     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
       
  1593       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
       
  1594     }
       
  1595     assert( pSrcIdx );
       
  1596     sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
       
  1597     sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
       
  1598     sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0);
       
  1599     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
       
  1600     VdbeComment((v, "# %s", pSrcIdx->zName));
       
  1601     sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, 
       
  1602                    (char*)pKey, P3_KEYINFO_HANDOFF);
       
  1603     sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0);
       
  1604     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
       
  1605     VdbeComment((v, "# %s", pDestIdx->zName));
       
  1606     sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, 
       
  1607                    (char*)pKey, P3_KEYINFO_HANDOFF);
       
  1608     addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
       
  1609     sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0);
       
  1610     sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1);
       
  1611     sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1);
       
  1612     sqlite3VdbeJumpHere(v, addr1);
       
  1613   }
       
  1614   sqlite3VdbeJumpHere(v, emptySrcTest);
       
  1615   sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
       
  1616   sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
       
  1617   if( emptyDestTest ){
       
  1618     sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0);
       
  1619     sqlite3VdbeJumpHere(v, emptyDestTest);
       
  1620     sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
       
  1621     return 0;
       
  1622   }else{
       
  1623     return 1;
       
  1624   }
       
  1625 }
       
  1626 #endif /* SQLITE_OMIT_XFER_OPT */