1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This module contains C code that generates VDBE code used to process |
|
13 ** the WHERE clause of SQL statements. This module is reponsible for |
|
14 ** generating the code that loops through a table looking for applicable |
|
15 ** rows. Indices are selected and used to speed the search when doing |
|
16 ** so is applicable. Because this module is responsible for selecting |
|
17 ** indices, you might also think of this module as the "query optimizer". |
|
18 ** |
|
19 ** $Id: where.cpp 1282 2008-11-13 09:31:33Z LarsPson $ |
|
20 */ |
|
21 #include "sqliteInt.h" |
|
22 |
|
23 /* |
|
24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". |
|
25 */ |
|
26 #define BMS (sizeof(Bitmask)*8) |
|
27 |
|
28 /* |
|
29 ** Trace output macros |
|
30 */ |
|
31 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) |
|
32 int sqlite3_where_trace = 0; |
|
33 # define WHERETRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X |
|
34 #else |
|
35 # define WHERETRACE(X) |
|
36 #endif |
|
37 |
|
38 /* Forward reference |
|
39 */ |
|
40 typedef struct WhereClause WhereClause; |
|
41 typedef struct ExprMaskSet ExprMaskSet; |
|
42 |
|
43 /* |
|
44 ** The query generator uses an array of instances of this structure to |
|
45 ** help it analyze the subexpressions of the WHERE clause. Each WHERE |
|
46 ** clause subexpression is separated from the others by an AND operator. |
|
47 ** |
|
48 ** All WhereTerms are collected into a single WhereClause structure. |
|
49 ** The following identity holds: |
|
50 ** |
|
51 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm |
|
52 ** |
|
53 ** When a term is of the form: |
|
54 ** |
|
55 ** X <op> <expr> |
|
56 ** |
|
57 ** where X is a column name and <op> is one of certain operators, |
|
58 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the |
|
59 ** cursor number and column number for X. WhereTerm.operator records |
|
60 ** the <op> using a bitmask encoding defined by WO_xxx below. The |
|
61 ** use of a bitmask encoding for the operator allows us to search |
|
62 ** quickly for terms that match any of several different operators. |
|
63 ** |
|
64 ** prereqRight and prereqAll record sets of cursor numbers, |
|
65 ** but they do so indirectly. A single ExprMaskSet structure translates |
|
66 ** cursor number into bits and the translated bit is stored in the prereq |
|
67 ** fields. The translation is used in order to maximize the number of |
|
68 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be |
|
69 ** spread out over the non-negative integers. For example, the cursor |
|
70 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet |
|
71 ** translates these sparse cursor numbers into consecutive integers |
|
72 ** beginning with 0 in order to make the best possible use of the available |
|
73 ** bits in the Bitmask. So, in the example above, the cursor numbers |
|
74 ** would be mapped into integers 0 through 7. |
|
75 */ |
|
76 typedef struct WhereTerm WhereTerm; |
|
77 struct WhereTerm { |
|
78 Expr *pExpr; /* Pointer to the subexpression */ |
|
79 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ |
|
80 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ |
|
81 i16 leftColumn; /* Column number of X in "X <op> <expr>" */ |
|
82 u16 eOperator; /* A WO_xx value describing <op> */ |
|
83 u8 flags; /* Bit flags. See below */ |
|
84 u8 nChild; /* Number of children that must disable us */ |
|
85 WhereClause *pWC; /* The clause this term is part of */ |
|
86 Bitmask prereqRight; /* Bitmask of tables used by pRight */ |
|
87 Bitmask prereqAll; /* Bitmask of tables referenced by p */ |
|
88 }; |
|
89 |
|
90 /* |
|
91 ** Allowed values of WhereTerm.flags |
|
92 */ |
|
93 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */ |
|
94 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ |
|
95 #define TERM_CODED 0x04 /* This term is already coded */ |
|
96 #define TERM_COPIED 0x08 /* Has a child */ |
|
97 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ |
|
98 |
|
99 /* |
|
100 ** An instance of the following structure holds all information about a |
|
101 ** WHERE clause. Mostly this is a container for one or more WhereTerms. |
|
102 */ |
|
103 struct WhereClause { |
|
104 Parse *pParse; /* The parser context */ |
|
105 ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */ |
|
106 int nTerm; /* Number of terms */ |
|
107 int nSlot; /* Number of entries in a[] */ |
|
108 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ |
|
109 WhereTerm aStatic[10]; /* Initial static space for a[] */ |
|
110 }; |
|
111 |
|
112 /* |
|
113 ** An instance of the following structure keeps track of a mapping |
|
114 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. |
|
115 ** |
|
116 ** The VDBE cursor numbers are small integers contained in |
|
117 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE |
|
118 ** clause, the cursor numbers might not begin with 0 and they might |
|
119 ** contain gaps in the numbering sequence. But we want to make maximum |
|
120 ** use of the bits in our bitmasks. This structure provides a mapping |
|
121 ** from the sparse cursor numbers into consecutive integers beginning |
|
122 ** with 0. |
|
123 ** |
|
124 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask |
|
125 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. |
|
126 ** |
|
127 ** For example, if the WHERE clause expression used these VDBE |
|
128 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure |
|
129 ** would map those cursor numbers into bits 0 through 5. |
|
130 ** |
|
131 ** Note that the mapping is not necessarily ordered. In the example |
|
132 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, |
|
133 ** 57->5, 73->4. Or one of 719 other combinations might be used. It |
|
134 ** does not really matter. What is important is that sparse cursor |
|
135 ** numbers all get mapped into bit numbers that begin with 0 and contain |
|
136 ** no gaps. |
|
137 */ |
|
138 struct ExprMaskSet { |
|
139 int n; /* Number of assigned cursor values */ |
|
140 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ |
|
141 }; |
|
142 |
|
143 |
|
144 /* |
|
145 ** Bitmasks for the operators that indices are able to exploit. An |
|
146 ** OR-ed combination of these values can be used when searching for |
|
147 ** terms in the where clause. |
|
148 */ |
|
149 #define WO_IN 1 |
|
150 #define WO_EQ 2 |
|
151 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) |
|
152 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) |
|
153 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) |
|
154 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) |
|
155 #define WO_MATCH 64 |
|
156 #define WO_ISNULL 128 |
|
157 |
|
158 /* |
|
159 ** Value for flags returned by bestIndex(). |
|
160 ** |
|
161 ** The least significant byte is reserved as a mask for WO_ values above. |
|
162 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL. |
|
163 ** But if the table is the right table of a left join, WhereLevel.flags |
|
164 ** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as |
|
165 ** the "op" parameter to findTerm when we are resolving equality constraints. |
|
166 ** ISNULL constraints will then not be used on the right table of a left |
|
167 ** join. Tickets #2177 and #2189. |
|
168 */ |
|
169 #define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */ |
|
170 #define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */ |
|
171 #define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */ |
|
172 #define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */ |
|
173 #define WHERE_COLUMN_IN 0x004000 /* x IN (...) */ |
|
174 #define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */ |
|
175 #define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */ |
|
176 #define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */ |
|
177 #define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */ |
|
178 #define WHERE_REVERSE 0x200000 /* Scan in reverse order */ |
|
179 #define WHERE_UNIQUE 0x400000 /* Selects no more than one row */ |
|
180 #define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */ |
|
181 |
|
182 /* |
|
183 ** Initialize a preallocated WhereClause structure. |
|
184 */ |
|
185 static void whereClauseInit( |
|
186 WhereClause *pWC, /* The WhereClause to be initialized */ |
|
187 Parse *pParse, /* The parsing context */ |
|
188 ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */ |
|
189 ){ |
|
190 pWC->pParse = pParse; |
|
191 pWC->pMaskSet = pMaskSet; |
|
192 pWC->nTerm = 0; |
|
193 pWC->nSlot = ArraySize(pWC->aStatic); |
|
194 pWC->a = pWC->aStatic; |
|
195 } |
|
196 |
|
197 /* |
|
198 ** Deallocate a WhereClause structure. The WhereClause structure |
|
199 ** itself is not freed. This routine is the inverse of whereClauseInit(). |
|
200 */ |
|
201 static void whereClauseClear(WhereClause *pWC){ |
|
202 int i; |
|
203 WhereTerm *a; |
|
204 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ |
|
205 if( a->flags & TERM_DYNAMIC ){ |
|
206 sqlite3ExprDelete(a->pExpr); |
|
207 } |
|
208 } |
|
209 if( pWC->a!=pWC->aStatic ){ |
|
210 sqlite3_free(pWC->a); |
|
211 } |
|
212 } |
|
213 |
|
214 /* |
|
215 ** Add a new entries to the WhereClause structure. Increase the allocated |
|
216 ** space as necessary. |
|
217 ** |
|
218 ** If the flags argument includes TERM_DYNAMIC, then responsibility |
|
219 ** for freeing the expression p is assumed by the WhereClause object. |
|
220 ** |
|
221 ** WARNING: This routine might reallocate the space used to store |
|
222 ** WhereTerms. All pointers to WhereTerms should be invalided after |
|
223 ** calling this routine. Such pointers may be reinitialized by referencing |
|
224 ** the pWC->a[] array. |
|
225 */ |
|
226 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ |
|
227 WhereTerm *pTerm; |
|
228 int idx; |
|
229 if( pWC->nTerm>=pWC->nSlot ){ |
|
230 WhereTerm *pOld = pWC->a; |
|
231 pWC->a = (WhereTerm*)sqlite3_malloc( sizeof(pWC->a[0])*pWC->nSlot*2 ); |
|
232 if( pWC->a==0 ){ |
|
233 pWC->pParse->db->mallocFailed = 1; |
|
234 if( flags & TERM_DYNAMIC ){ |
|
235 sqlite3ExprDelete(p); |
|
236 } |
|
237 pWC->a = pOld; |
|
238 return 0; |
|
239 } |
|
240 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); |
|
241 if( pOld!=pWC->aStatic ){ |
|
242 sqlite3_free(pOld); |
|
243 } |
|
244 pWC->nSlot *= 2; |
|
245 } |
|
246 pTerm = &pWC->a[idx = pWC->nTerm]; |
|
247 pWC->nTerm++; |
|
248 pTerm->pExpr = p; |
|
249 pTerm->flags = flags; |
|
250 pTerm->pWC = pWC; |
|
251 pTerm->iParent = -1; |
|
252 return idx; |
|
253 } |
|
254 |
|
255 /* |
|
256 ** This routine identifies subexpressions in the WHERE clause where |
|
257 ** each subexpression is separated by the AND operator or some other |
|
258 ** operator specified in the op parameter. The WhereClause structure |
|
259 ** is filled with pointers to subexpressions. For example: |
|
260 ** |
|
261 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) |
|
262 ** \________/ \_______________/ \________________/ |
|
263 ** slot[0] slot[1] slot[2] |
|
264 ** |
|
265 ** The original WHERE clause in pExpr is unaltered. All this routine |
|
266 ** does is make slot[] entries point to substructure within pExpr. |
|
267 ** |
|
268 ** In the previous sentence and in the diagram, "slot[]" refers to |
|
269 ** the WhereClause.a[] array. This array grows as needed to contain |
|
270 ** all terms of the WHERE clause. |
|
271 */ |
|
272 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ |
|
273 if( pExpr==0 ) return; |
|
274 if( pExpr->op!=op ){ |
|
275 whereClauseInsert(pWC, pExpr, 0); |
|
276 }else{ |
|
277 whereSplit(pWC, pExpr->pLeft, op); |
|
278 whereSplit(pWC, pExpr->pRight, op); |
|
279 } |
|
280 } |
|
281 |
|
282 /* |
|
283 ** Initialize an expression mask set |
|
284 */ |
|
285 #define initMaskSet(P) memset(P, 0, sizeof(*P)) |
|
286 |
|
287 /* |
|
288 ** Return the bitmask for the given cursor number. Return 0 if |
|
289 ** iCursor is not in the set. |
|
290 */ |
|
291 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ |
|
292 int i; |
|
293 for(i=0; i<pMaskSet->n; i++){ |
|
294 if( pMaskSet->ix[i]==iCursor ){ |
|
295 return ((Bitmask)1)<<i; |
|
296 } |
|
297 } |
|
298 return 0; |
|
299 } |
|
300 |
|
301 /* |
|
302 ** Create a new mask for cursor iCursor. |
|
303 ** |
|
304 ** There is one cursor per table in the FROM clause. The number of |
|
305 ** tables in the FROM clause is limited by a test early in the |
|
306 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] |
|
307 ** array will never overflow. |
|
308 */ |
|
309 static void createMask(ExprMaskSet *pMaskSet, int iCursor){ |
|
310 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); |
|
311 pMaskSet->ix[pMaskSet->n++] = iCursor; |
|
312 } |
|
313 |
|
314 /* |
|
315 ** This routine walks (recursively) an expression tree and generates |
|
316 ** a bitmask indicating which tables are used in that expression |
|
317 ** tree. |
|
318 ** |
|
319 ** In order for this routine to work, the calling function must have |
|
320 ** previously invoked sqlite3ExprResolveNames() on the expression. See |
|
321 ** the header comment on that routine for additional information. |
|
322 ** The sqlite3ExprResolveNames() routines looks for column names and |
|
323 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to |
|
324 ** the VDBE cursor number of the table. This routine just has to |
|
325 ** translate the cursor numbers into bitmask values and OR all |
|
326 ** the bitmasks together. |
|
327 */ |
|
328 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); |
|
329 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); |
|
330 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ |
|
331 Bitmask mask = 0; |
|
332 if( p==0 ) return 0; |
|
333 if( p->op==TK_COLUMN ){ |
|
334 mask = getMask(pMaskSet, p->iTable); |
|
335 return mask; |
|
336 } |
|
337 mask = exprTableUsage(pMaskSet, p->pRight); |
|
338 mask |= exprTableUsage(pMaskSet, p->pLeft); |
|
339 mask |= exprListTableUsage(pMaskSet, p->pList); |
|
340 mask |= exprSelectTableUsage(pMaskSet, p->pSelect); |
|
341 return mask; |
|
342 } |
|
343 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ |
|
344 int i; |
|
345 Bitmask mask = 0; |
|
346 if( pList ){ |
|
347 for(i=0; i<pList->nExpr; i++){ |
|
348 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); |
|
349 } |
|
350 } |
|
351 return mask; |
|
352 } |
|
353 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ |
|
354 Bitmask mask = 0; |
|
355 while( pS ){ |
|
356 mask |= exprListTableUsage(pMaskSet, pS->pEList); |
|
357 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); |
|
358 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); |
|
359 mask |= exprTableUsage(pMaskSet, pS->pWhere); |
|
360 mask |= exprTableUsage(pMaskSet, pS->pHaving); |
|
361 pS = pS->pPrior; |
|
362 } |
|
363 return mask; |
|
364 } |
|
365 |
|
366 /* |
|
367 ** Return TRUE if the given operator is one of the operators that is |
|
368 ** allowed for an indexable WHERE clause term. The allowed operators are |
|
369 ** "=", "<", ">", "<=", ">=", and "IN". |
|
370 */ |
|
371 static int allowedOp(int op){ |
|
372 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); |
|
373 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); |
|
374 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); |
|
375 assert( TK_GE==TK_EQ+4 ); |
|
376 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; |
|
377 } |
|
378 |
|
379 /* |
|
380 ** Swap two objects of type T. |
|
381 */ |
|
382 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} |
|
383 |
|
384 /* |
|
385 ** Commute a comparision operator. Expressions of the form "X op Y" |
|
386 ** are converted into "Y op X". |
|
387 ** |
|
388 ** If a collation sequence is associated with either the left or right |
|
389 ** side of the comparison, it remains associated with the same side after |
|
390 ** the commutation. So "Y collate NOCASE op X" becomes |
|
391 ** "X collate NOCASE op Y". This is because any collation sequence on |
|
392 ** the left hand side of a comparison overrides any collation sequence |
|
393 ** attached to the right. For the same reason the EP_ExpCollate flag |
|
394 ** is not commuted. |
|
395 */ |
|
396 static void exprCommute(Expr *pExpr){ |
|
397 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); |
|
398 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); |
|
399 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); |
|
400 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); |
|
401 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; |
|
402 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; |
|
403 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); |
|
404 if( pExpr->op>=TK_GT ){ |
|
405 assert( TK_LT==TK_GT+2 ); |
|
406 assert( TK_GE==TK_LE+2 ); |
|
407 assert( TK_GT>TK_EQ ); |
|
408 assert( TK_GT<TK_LE ); |
|
409 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); |
|
410 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; |
|
411 } |
|
412 } |
|
413 |
|
414 /* |
|
415 ** Translate from TK_xx operator to WO_xx bitmask. |
|
416 */ |
|
417 static int operatorMask(int op){ |
|
418 int c; |
|
419 assert( allowedOp(op) ); |
|
420 if( op==TK_IN ){ |
|
421 c = WO_IN; |
|
422 }else if( op==TK_ISNULL ){ |
|
423 c = WO_ISNULL; |
|
424 }else{ |
|
425 c = WO_EQ<<(op-TK_EQ); |
|
426 } |
|
427 assert( op!=TK_ISNULL || c==WO_ISNULL ); |
|
428 assert( op!=TK_IN || c==WO_IN ); |
|
429 assert( op!=TK_EQ || c==WO_EQ ); |
|
430 assert( op!=TK_LT || c==WO_LT ); |
|
431 assert( op!=TK_LE || c==WO_LE ); |
|
432 assert( op!=TK_GT || c==WO_GT ); |
|
433 assert( op!=TK_GE || c==WO_GE ); |
|
434 return c; |
|
435 } |
|
436 |
|
437 /* |
|
438 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" |
|
439 ** where X is a reference to the iColumn of table iCur and <op> is one of |
|
440 ** the WO_xx operator codes specified by the op parameter. |
|
441 ** Return a pointer to the term. Return 0 if not found. |
|
442 */ |
|
443 static WhereTerm *findTerm( |
|
444 WhereClause *pWC, /* The WHERE clause to be searched */ |
|
445 int iCur, /* Cursor number of LHS */ |
|
446 int iColumn, /* Column number of LHS */ |
|
447 Bitmask notReady, /* RHS must not overlap with this mask */ |
|
448 u16 op, /* Mask of WO_xx values describing operator */ |
|
449 Index *pIdx /* Must be compatible with this index, if not NULL */ |
|
450 ){ |
|
451 WhereTerm *pTerm; |
|
452 int k; |
|
453 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ |
|
454 if( pTerm->leftCursor==iCur |
|
455 && (pTerm->prereqRight & notReady)==0 |
|
456 && pTerm->leftColumn==iColumn |
|
457 && (pTerm->eOperator & op)!=0 |
|
458 ){ |
|
459 if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){ |
|
460 Expr *pX = pTerm->pExpr; |
|
461 CollSeq *pColl; |
|
462 char idxaff; |
|
463 int j; |
|
464 Parse *pParse = pWC->pParse; |
|
465 |
|
466 idxaff = pIdx->pTable->aCol[iColumn].affinity; |
|
467 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; |
|
468 |
|
469 /* Figure out the collation sequence required from an index for |
|
470 ** it to be useful for optimising expression pX. Store this |
|
471 ** value in variable pColl. |
|
472 */ |
|
473 assert(pX->pLeft); |
|
474 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); |
|
475 if( !pColl ){ |
|
476 pColl = pParse->db->pDfltColl; |
|
477 } |
|
478 |
|
479 for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){} |
|
480 assert( j<pIdx->nColumn ); |
|
481 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; |
|
482 } |
|
483 return pTerm; |
|
484 } |
|
485 } |
|
486 return 0; |
|
487 } |
|
488 |
|
489 /* Forward reference */ |
|
490 static void exprAnalyze(SrcList*, WhereClause*, int); |
|
491 |
|
492 /* |
|
493 ** Call exprAnalyze on all terms in a WHERE clause. |
|
494 ** |
|
495 ** |
|
496 */ |
|
497 static void exprAnalyzeAll( |
|
498 SrcList *pTabList, /* the FROM clause */ |
|
499 WhereClause *pWC /* the WHERE clause to be analyzed */ |
|
500 ){ |
|
501 int i; |
|
502 for(i=pWC->nTerm-1; i>=0; i--){ |
|
503 exprAnalyze(pTabList, pWC, i); |
|
504 } |
|
505 } |
|
506 |
|
507 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
|
508 /* |
|
509 ** Check to see if the given expression is a LIKE or GLOB operator that |
|
510 ** can be optimized using inequality constraints. Return TRUE if it is |
|
511 ** so and false if not. |
|
512 ** |
|
513 ** In order for the operator to be optimizible, the RHS must be a string |
|
514 ** literal that does not begin with a wildcard. |
|
515 */ |
|
516 static int isLikeOrGlob( |
|
517 sqlite3 *db, /* The database */ |
|
518 Expr *pExpr, /* Test this expression */ |
|
519 int *pnPattern, /* Number of non-wildcard prefix characters */ |
|
520 int *pisComplete /* True if the only wildcard is % in the last character */ |
|
521 ){ |
|
522 const char *z; |
|
523 Expr *pRight, *pLeft; |
|
524 ExprList *pList; |
|
525 int c, cnt; |
|
526 int noCase; |
|
527 char wc[3]; |
|
528 CollSeq *pColl; |
|
529 |
|
530 if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){ |
|
531 return 0; |
|
532 } |
|
533 pList = pExpr->pList; |
|
534 pRight = pList->a[0].pExpr; |
|
535 if( pRight->op!=TK_STRING ){ |
|
536 return 0; |
|
537 } |
|
538 pLeft = pList->a[1].pExpr; |
|
539 if( pLeft->op!=TK_COLUMN ){ |
|
540 return 0; |
|
541 } |
|
542 pColl = pLeft->pColl; |
|
543 if( pColl==0 ){ |
|
544 /* TODO: Coverage testing doesn't get this case. Is it actually possible |
|
545 ** for an expression of type TK_COLUMN to not have an assigned collation |
|
546 ** sequence at this point? |
|
547 */ |
|
548 pColl = db->pDfltColl; |
|
549 } |
|
550 if( (pColl->type!=SQLITE_COLL_BINARY || noCase) && |
|
551 (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){ |
|
552 return 0; |
|
553 } |
|
554 sqlite3DequoteExpr(db, pRight); |
|
555 z = (char *)pRight->token.z; |
|
556 cnt = 0; |
|
557 if( z ){ |
|
558 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; } |
|
559 } |
|
560 if( cnt==0 || 255==(u8)z[cnt] ){ |
|
561 return 0; |
|
562 } |
|
563 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; |
|
564 *pnPattern = cnt; |
|
565 return 1; |
|
566 } |
|
567 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
|
568 |
|
569 |
|
570 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
571 /* |
|
572 ** Check to see if the given expression is of the form |
|
573 ** |
|
574 ** column MATCH expr |
|
575 ** |
|
576 ** If it is then return TRUE. If not, return FALSE. |
|
577 */ |
|
578 static int isMatchOfColumn( |
|
579 Expr *pExpr /* Test this expression */ |
|
580 ){ |
|
581 ExprList *pList; |
|
582 |
|
583 if( pExpr->op!=TK_FUNCTION ){ |
|
584 return 0; |
|
585 } |
|
586 if( pExpr->token.n!=5 || |
|
587 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ |
|
588 return 0; |
|
589 } |
|
590 pList = pExpr->pList; |
|
591 if( pList->nExpr!=2 ){ |
|
592 return 0; |
|
593 } |
|
594 if( pList->a[1].pExpr->op != TK_COLUMN ){ |
|
595 return 0; |
|
596 } |
|
597 return 1; |
|
598 } |
|
599 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
600 |
|
601 /* |
|
602 ** If the pBase expression originated in the ON or USING clause of |
|
603 ** a join, then transfer the appropriate markings over to derived. |
|
604 */ |
|
605 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ |
|
606 pDerived->flags |= pBase->flags & EP_FromJoin; |
|
607 pDerived->iRightJoinTable = pBase->iRightJoinTable; |
|
608 } |
|
609 |
|
610 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
|
611 /* |
|
612 ** Return TRUE if the given term of an OR clause can be converted |
|
613 ** into an IN clause. The iCursor and iColumn define the left-hand |
|
614 ** side of the IN clause. |
|
615 ** |
|
616 ** The context is that we have multiple OR-connected equality terms |
|
617 ** like this: |
|
618 ** |
|
619 ** a=<expr1> OR a=<expr2> OR b=<expr3> OR ... |
|
620 ** |
|
621 ** The pOrTerm input to this routine corresponds to a single term of |
|
622 ** this OR clause. In order for the term to be a condidate for |
|
623 ** conversion to an IN operator, the following must be true: |
|
624 ** |
|
625 ** * The left-hand side of the term must be the column which |
|
626 ** is identified by iCursor and iColumn. |
|
627 ** |
|
628 ** * If the right-hand side is also a column, then the affinities |
|
629 ** of both right and left sides must be such that no type |
|
630 ** conversions are required on the right. (Ticket #2249) |
|
631 ** |
|
632 ** If both of these conditions are true, then return true. Otherwise |
|
633 ** return false. |
|
634 */ |
|
635 static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){ |
|
636 int affLeft, affRight; |
|
637 assert( pOrTerm->eOperator==WO_EQ ); |
|
638 if( pOrTerm->leftCursor!=iCursor ){ |
|
639 return 0; |
|
640 } |
|
641 if( pOrTerm->leftColumn!=iColumn ){ |
|
642 return 0; |
|
643 } |
|
644 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); |
|
645 if( affRight==0 ){ |
|
646 return 1; |
|
647 } |
|
648 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); |
|
649 if( affRight!=affLeft ){ |
|
650 return 0; |
|
651 } |
|
652 return 1; |
|
653 } |
|
654 |
|
655 /* |
|
656 ** Return true if the given term of an OR clause can be ignored during |
|
657 ** a check to make sure all OR terms are candidates for optimization. |
|
658 ** In other words, return true if a call to the orTermIsOptCandidate() |
|
659 ** above returned false but it is not necessary to disqualify the |
|
660 ** optimization. |
|
661 ** |
|
662 ** Suppose the original OR phrase was this: |
|
663 ** |
|
664 ** a=4 OR a=11 OR a=b |
|
665 ** |
|
666 ** During analysis, the third term gets flipped around and duplicate |
|
667 ** so that we are left with this: |
|
668 ** |
|
669 ** a=4 OR a=11 OR a=b OR b=a |
|
670 ** |
|
671 ** Since the last two terms are duplicates, only one of them |
|
672 ** has to qualify in order for the whole phrase to qualify. When |
|
673 ** this routine is called, we know that pOrTerm did not qualify. |
|
674 ** This routine merely checks to see if pOrTerm has a duplicate that |
|
675 ** might qualify. If there is a duplicate that has not yet been |
|
676 ** disqualified, then return true. If there are no duplicates, or |
|
677 ** the duplicate has also been disqualifed, return false. |
|
678 */ |
|
679 static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){ |
|
680 if( pOrTerm->flags & TERM_COPIED ){ |
|
681 /* This is the original term. The duplicate is to the left had |
|
682 ** has not yet been analyzed and thus has not yet been disqualified. */ |
|
683 return 1; |
|
684 } |
|
685 if( (pOrTerm->flags & TERM_VIRTUAL)!=0 |
|
686 && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){ |
|
687 /* This is a duplicate term. The original qualified so this one |
|
688 ** does not have to. */ |
|
689 return 1; |
|
690 } |
|
691 /* This is either a singleton term or else it is a duplicate for |
|
692 ** which the original did not qualify. Either way we are done for. */ |
|
693 return 0; |
|
694 } |
|
695 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ |
|
696 |
|
697 /* |
|
698 ** The input to this routine is an WhereTerm structure with only the |
|
699 ** "pExpr" field filled in. The job of this routine is to analyze the |
|
700 ** subexpression and populate all the other fields of the WhereTerm |
|
701 ** structure. |
|
702 ** |
|
703 ** If the expression is of the form "<expr> <op> X" it gets commuted |
|
704 ** to the standard form of "X <op> <expr>". If the expression is of |
|
705 ** the form "X <op> Y" where both X and Y are columns, then the original |
|
706 ** expression is unchanged and a new virtual expression of the form |
|
707 ** "Y <op> X" is added to the WHERE clause and analyzed separately. |
|
708 */ |
|
709 static void exprAnalyze( |
|
710 SrcList *pSrc, /* the FROM clause */ |
|
711 WhereClause *pWC, /* the WHERE clause */ |
|
712 int idxTerm /* Index of the term to be analyzed */ |
|
713 ){ |
|
714 WhereTerm *pTerm; |
|
715 ExprMaskSet *pMaskSet; |
|
716 Expr *pExpr; |
|
717 Bitmask prereqLeft; |
|
718 Bitmask prereqAll; |
|
719 int nPattern; |
|
720 int isComplete; |
|
721 int op; |
|
722 Parse *pParse = pWC->pParse; |
|
723 sqlite3 *db = pParse->db; |
|
724 |
|
725 if( db->mallocFailed ){ |
|
726 return; |
|
727 } |
|
728 pTerm = &pWC->a[idxTerm]; |
|
729 pMaskSet = pWC->pMaskSet; |
|
730 pExpr = pTerm->pExpr; |
|
731 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); |
|
732 op = pExpr->op; |
|
733 if( op==TK_IN ){ |
|
734 assert( pExpr->pRight==0 ); |
|
735 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) |
|
736 | exprSelectTableUsage(pMaskSet, pExpr->pSelect); |
|
737 }else if( op==TK_ISNULL ){ |
|
738 pTerm->prereqRight = 0; |
|
739 }else{ |
|
740 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); |
|
741 } |
|
742 prereqAll = exprTableUsage(pMaskSet, pExpr); |
|
743 if( ExprHasProperty(pExpr, EP_FromJoin) ){ |
|
744 prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable); |
|
745 } |
|
746 pTerm->prereqAll = prereqAll; |
|
747 pTerm->leftCursor = -1; |
|
748 pTerm->iParent = -1; |
|
749 pTerm->eOperator = 0; |
|
750 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ |
|
751 Expr *pLeft = pExpr->pLeft; |
|
752 Expr *pRight = pExpr->pRight; |
|
753 if( pLeft->op==TK_COLUMN ){ |
|
754 pTerm->leftCursor = pLeft->iTable; |
|
755 pTerm->leftColumn = pLeft->iColumn; |
|
756 pTerm->eOperator = operatorMask(op); |
|
757 } |
|
758 if( pRight && pRight->op==TK_COLUMN ){ |
|
759 WhereTerm *pNew; |
|
760 Expr *pDup; |
|
761 if( pTerm->leftCursor>=0 ){ |
|
762 int idxNew; |
|
763 pDup = sqlite3ExprDup(db, pExpr); |
|
764 if( db->mallocFailed ){ |
|
765 sqlite3ExprDelete(pDup); |
|
766 return; |
|
767 } |
|
768 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); |
|
769 if( idxNew==0 ) return; |
|
770 pNew = &pWC->a[idxNew]; |
|
771 pNew->iParent = idxTerm; |
|
772 pTerm = &pWC->a[idxTerm]; |
|
773 pTerm->nChild = 1; |
|
774 pTerm->flags |= TERM_COPIED; |
|
775 }else{ |
|
776 pDup = pExpr; |
|
777 pNew = pTerm; |
|
778 } |
|
779 exprCommute(pDup); |
|
780 pLeft = pDup->pLeft; |
|
781 pNew->leftCursor = pLeft->iTable; |
|
782 pNew->leftColumn = pLeft->iColumn; |
|
783 pNew->prereqRight = prereqLeft; |
|
784 pNew->prereqAll = prereqAll; |
|
785 pNew->eOperator = operatorMask(pDup->op); |
|
786 } |
|
787 } |
|
788 |
|
789 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION |
|
790 /* If a term is the BETWEEN operator, create two new virtual terms |
|
791 ** that define the range that the BETWEEN implements. |
|
792 */ |
|
793 else if( pExpr->op==TK_BETWEEN ){ |
|
794 ExprList *pList = pExpr->pList; |
|
795 int i; |
|
796 static const u8 ops[] = {TK_GE, TK_LE}; |
|
797 assert( pList!=0 ); |
|
798 assert( pList->nExpr==2 ); |
|
799 for(i=0; i<2; i++){ |
|
800 Expr *pNewExpr; |
|
801 int idxNew; |
|
802 pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft), |
|
803 sqlite3ExprDup(db, pList->a[i].pExpr), 0); |
|
804 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
|
805 exprAnalyze(pSrc, pWC, idxNew); |
|
806 pTerm = &pWC->a[idxTerm]; |
|
807 pWC->a[idxNew].iParent = idxTerm; |
|
808 } |
|
809 pTerm->nChild = 2; |
|
810 } |
|
811 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ |
|
812 |
|
813 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
|
814 /* Attempt to convert OR-connected terms into an IN operator so that |
|
815 ** they can make use of indices. Example: |
|
816 ** |
|
817 ** x = expr1 OR expr2 = x OR x = expr3 |
|
818 ** |
|
819 ** is converted into |
|
820 ** |
|
821 ** x IN (expr1,expr2,expr3) |
|
822 ** |
|
823 ** This optimization must be omitted if OMIT_SUBQUERY is defined because |
|
824 ** the compiler for the the IN operator is part of sub-queries. |
|
825 */ |
|
826 else if( pExpr->op==TK_OR ){ |
|
827 int ok; |
|
828 int i, j; |
|
829 int iColumn, iCursor; |
|
830 WhereClause sOr; |
|
831 WhereTerm *pOrTerm; |
|
832 |
|
833 assert( (pTerm->flags & TERM_DYNAMIC)==0 ); |
|
834 whereClauseInit(&sOr, pWC->pParse, pMaskSet); |
|
835 whereSplit(&sOr, pExpr, TK_OR); |
|
836 exprAnalyzeAll(pSrc, &sOr); |
|
837 assert( sOr.nTerm>=2 ); |
|
838 j = 0; |
|
839 do{ |
|
840 assert( j<sOr.nTerm ); |
|
841 iColumn = sOr.a[j].leftColumn; |
|
842 iCursor = sOr.a[j].leftCursor; |
|
843 ok = iCursor>=0; |
|
844 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ |
|
845 if( pOrTerm->eOperator!=WO_EQ ){ |
|
846 goto or_not_possible; |
|
847 } |
|
848 if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){ |
|
849 pOrTerm->flags |= TERM_OR_OK; |
|
850 }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){ |
|
851 pOrTerm->flags &= ~TERM_OR_OK; |
|
852 }else{ |
|
853 ok = 0; |
|
854 } |
|
855 } |
|
856 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 ); |
|
857 if( ok ){ |
|
858 ExprList *pList = 0; |
|
859 Expr *pNew, *pDup; |
|
860 Expr *pLeft = 0; |
|
861 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ |
|
862 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; |
|
863 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight); |
|
864 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0); |
|
865 pLeft = pOrTerm->pExpr->pLeft; |
|
866 } |
|
867 assert( pLeft!=0 ); |
|
868 pDup = sqlite3ExprDup(db, pLeft); |
|
869 pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0); |
|
870 if( pNew ){ |
|
871 int idxNew; |
|
872 transferJoinMarkings(pNew, pExpr); |
|
873 pNew->pList = pList; |
|
874 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
|
875 exprAnalyze(pSrc, pWC, idxNew); |
|
876 pTerm = &pWC->a[idxTerm]; |
|
877 pWC->a[idxNew].iParent = idxTerm; |
|
878 pTerm->nChild = 1; |
|
879 }else{ |
|
880 sqlite3ExprListDelete(pList); |
|
881 } |
|
882 } |
|
883 or_not_possible: |
|
884 whereClauseClear(&sOr); |
|
885 } |
|
886 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
|
887 |
|
888 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
|
889 /* Add constraints to reduce the search space on a LIKE or GLOB |
|
890 ** operator. |
|
891 */ |
|
892 if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete) ){ |
|
893 Expr *pLeft, *pRight; |
|
894 Expr *pStr1, *pStr2; |
|
895 Expr *pNewExpr1, *pNewExpr2; |
|
896 int idxNew1, idxNew2; |
|
897 |
|
898 pLeft = pExpr->pList->a[1].pExpr; |
|
899 pRight = pExpr->pList->a[0].pExpr; |
|
900 pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0); |
|
901 if( pStr1 ){ |
|
902 sqlite3TokenCopy(db, &pStr1->token, &pRight->token); |
|
903 pStr1->token.n = nPattern; |
|
904 pStr1->flags = EP_Dequoted; |
|
905 } |
|
906 pStr2 = sqlite3ExprDup(db, pStr1); |
|
907 if( !db->mallocFailed ){ |
|
908 assert( pStr2->token.dyn ); |
|
909 ++*(u8*)&pStr2->token.z[nPattern-1]; |
|
910 } |
|
911 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0); |
|
912 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); |
|
913 exprAnalyze(pSrc, pWC, idxNew1); |
|
914 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0); |
|
915 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); |
|
916 exprAnalyze(pSrc, pWC, idxNew2); |
|
917 pTerm = &pWC->a[idxTerm]; |
|
918 if( isComplete ){ |
|
919 pWC->a[idxNew1].iParent = idxTerm; |
|
920 pWC->a[idxNew2].iParent = idxTerm; |
|
921 pTerm->nChild = 2; |
|
922 } |
|
923 } |
|
924 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
|
925 |
|
926 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
927 /* Add a WO_MATCH auxiliary term to the constraint set if the |
|
928 ** current expression is of the form: column MATCH expr. |
|
929 ** This information is used by the xBestIndex methods of |
|
930 ** virtual tables. The native query optimizer does not attempt |
|
931 ** to do anything with MATCH functions. |
|
932 */ |
|
933 if( isMatchOfColumn(pExpr) ){ |
|
934 int idxNew; |
|
935 Expr *pRight, *pLeft; |
|
936 WhereTerm *pNewTerm; |
|
937 Bitmask prereqColumn, prereqExpr; |
|
938 |
|
939 pRight = pExpr->pList->a[0].pExpr; |
|
940 pLeft = pExpr->pList->a[1].pExpr; |
|
941 prereqExpr = exprTableUsage(pMaskSet, pRight); |
|
942 prereqColumn = exprTableUsage(pMaskSet, pLeft); |
|
943 if( (prereqExpr & prereqColumn)==0 ){ |
|
944 Expr *pNewExpr; |
|
945 pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0); |
|
946 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
|
947 pNewTerm = &pWC->a[idxNew]; |
|
948 pNewTerm->prereqRight = prereqExpr; |
|
949 pNewTerm->leftCursor = pLeft->iTable; |
|
950 pNewTerm->leftColumn = pLeft->iColumn; |
|
951 pNewTerm->eOperator = WO_MATCH; |
|
952 pNewTerm->iParent = idxTerm; |
|
953 pTerm = &pWC->a[idxTerm]; |
|
954 pTerm->nChild = 1; |
|
955 pTerm->flags |= TERM_COPIED; |
|
956 pNewTerm->prereqAll = pTerm->prereqAll; |
|
957 } |
|
958 } |
|
959 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
960 } |
|
961 |
|
962 /* |
|
963 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain |
|
964 ** a reference to any table other than the iBase table. |
|
965 */ |
|
966 static int referencesOtherTables( |
|
967 ExprList *pList, /* Search expressions in ths list */ |
|
968 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ |
|
969 int iFirst, /* Be searching with the iFirst-th expression */ |
|
970 int iBase /* Ignore references to this table */ |
|
971 ){ |
|
972 Bitmask allowed = ~getMask(pMaskSet, iBase); |
|
973 while( iFirst<pList->nExpr ){ |
|
974 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ |
|
975 return 1; |
|
976 } |
|
977 } |
|
978 return 0; |
|
979 } |
|
980 |
|
981 |
|
982 /* |
|
983 ** This routine decides if pIdx can be used to satisfy the ORDER BY |
|
984 ** clause. If it can, it returns 1. If pIdx cannot satisfy the |
|
985 ** ORDER BY clause, this routine returns 0. |
|
986 ** |
|
987 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the |
|
988 ** left-most table in the FROM clause of that same SELECT statement and |
|
989 ** the table has a cursor number of "base". pIdx is an index on pTab. |
|
990 ** |
|
991 ** nEqCol is the number of columns of pIdx that are used as equality |
|
992 ** constraints. Any of these columns may be missing from the ORDER BY |
|
993 ** clause and the match can still be a success. |
|
994 ** |
|
995 ** All terms of the ORDER BY that match against the index must be either |
|
996 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE |
|
997 ** index do not need to satisfy this constraint.) The *pbRev value is |
|
998 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if |
|
999 ** the ORDER BY clause is all ASC. |
|
1000 */ |
|
1001 static int isSortingIndex( |
|
1002 Parse *pParse, /* Parsing context */ |
|
1003 ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */ |
|
1004 Index *pIdx, /* The index we are testing */ |
|
1005 int base, /* Cursor number for the table to be sorted */ |
|
1006 ExprList *pOrderBy, /* The ORDER BY clause */ |
|
1007 int nEqCol, /* Number of index columns with == constraints */ |
|
1008 int *pbRev /* Set to 1 if ORDER BY is DESC */ |
|
1009 ){ |
|
1010 int i, j; /* Loop counters */ |
|
1011 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ |
|
1012 int nTerm; /* Number of ORDER BY terms */ |
|
1013 ExprList::ExprList_item *pTerm; /* A term of the ORDER BY clause */ |
|
1014 sqlite3 *db = pParse->db; |
|
1015 |
|
1016 assert( pOrderBy!=0 ); |
|
1017 nTerm = pOrderBy->nExpr; |
|
1018 assert( nTerm>0 ); |
|
1019 |
|
1020 /* Match terms of the ORDER BY clause against columns of |
|
1021 ** the index. |
|
1022 ** |
|
1023 ** Note that indices have pIdx->nColumn regular columns plus |
|
1024 ** one additional column containing the rowid. The rowid column |
|
1025 ** of the index is also allowed to match against the ORDER BY |
|
1026 ** clause. |
|
1027 */ |
|
1028 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ |
|
1029 Expr *pExpr; /* The expression of the ORDER BY pTerm */ |
|
1030 CollSeq *pColl; /* The collating sequence of pExpr */ |
|
1031 int termSortOrder; /* Sort order for this term */ |
|
1032 int iColumn; /* The i-th column of the index. -1 for rowid */ |
|
1033 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ |
|
1034 const char *zColl; /* Name of the collating sequence for i-th index term */ |
|
1035 |
|
1036 pExpr = pTerm->pExpr; |
|
1037 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ |
|
1038 /* Can not use an index sort on anything that is not a column in the |
|
1039 ** left-most table of the FROM clause */ |
|
1040 break; |
|
1041 } |
|
1042 pColl = sqlite3ExprCollSeq(pParse, pExpr); |
|
1043 if( !pColl ){ |
|
1044 pColl = db->pDfltColl; |
|
1045 } |
|
1046 if( i<pIdx->nColumn ){ |
|
1047 iColumn = pIdx->aiColumn[i]; |
|
1048 if( iColumn==pIdx->pTable->iPKey ){ |
|
1049 iColumn = -1; |
|
1050 } |
|
1051 iSortOrder = pIdx->aSortOrder[i]; |
|
1052 zColl = pIdx->azColl[i]; |
|
1053 }else{ |
|
1054 iColumn = -1; |
|
1055 iSortOrder = 0; |
|
1056 zColl = pColl->zName; |
|
1057 } |
|
1058 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ |
|
1059 /* Term j of the ORDER BY clause does not match column i of the index */ |
|
1060 if( i<nEqCol ){ |
|
1061 /* If an index column that is constrained by == fails to match an |
|
1062 ** ORDER BY term, that is OK. Just ignore that column of the index |
|
1063 */ |
|
1064 continue; |
|
1065 }else{ |
|
1066 /* If an index column fails to match and is not constrained by == |
|
1067 ** then the index cannot satisfy the ORDER BY constraint. |
|
1068 */ |
|
1069 return 0; |
|
1070 } |
|
1071 } |
|
1072 assert( pIdx->aSortOrder!=0 ); |
|
1073 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); |
|
1074 assert( iSortOrder==0 || iSortOrder==1 ); |
|
1075 termSortOrder = iSortOrder ^ pTerm->sortOrder; |
|
1076 if( i>nEqCol ){ |
|
1077 if( termSortOrder!=sortOrder ){ |
|
1078 /* Indices can only be used if all ORDER BY terms past the |
|
1079 ** equality constraints are all either DESC or ASC. */ |
|
1080 return 0; |
|
1081 } |
|
1082 }else{ |
|
1083 sortOrder = termSortOrder; |
|
1084 } |
|
1085 j++; |
|
1086 pTerm++; |
|
1087 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ |
|
1088 /* If the indexed column is the primary key and everything matches |
|
1089 ** so far and none of the ORDER BY terms to the right reference other |
|
1090 ** tables in the join, then we are assured that the index can be used |
|
1091 ** to sort because the primary key is unique and so none of the other |
|
1092 ** columns will make any difference |
|
1093 */ |
|
1094 j = nTerm; |
|
1095 } |
|
1096 } |
|
1097 |
|
1098 *pbRev = sortOrder!=0; |
|
1099 if( j>=nTerm ){ |
|
1100 /* All terms of the ORDER BY clause are covered by this index so |
|
1101 ** this index can be used for sorting. */ |
|
1102 return 1; |
|
1103 } |
|
1104 if( pIdx->onError!=OE_None && i==pIdx->nColumn |
|
1105 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ |
|
1106 /* All terms of this index match some prefix of the ORDER BY clause |
|
1107 ** and the index is UNIQUE and no terms on the tail of the ORDER BY |
|
1108 ** clause reference other tables in a join. If this is all true then |
|
1109 ** the order by clause is superfluous. */ |
|
1110 return 1; |
|
1111 } |
|
1112 return 0; |
|
1113 } |
|
1114 |
|
1115 /* |
|
1116 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied |
|
1117 ** by sorting in order of ROWID. Return true if so and set *pbRev to be |
|
1118 ** true for reverse ROWID and false for forward ROWID order. |
|
1119 */ |
|
1120 static int sortableByRowid( |
|
1121 int base, /* Cursor number for table to be sorted */ |
|
1122 ExprList *pOrderBy, /* The ORDER BY clause */ |
|
1123 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ |
|
1124 int *pbRev /* Set to 1 if ORDER BY is DESC */ |
|
1125 ){ |
|
1126 Expr *p; |
|
1127 |
|
1128 assert( pOrderBy!=0 ); |
|
1129 assert( pOrderBy->nExpr>0 ); |
|
1130 p = pOrderBy->a[0].pExpr; |
|
1131 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 |
|
1132 && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ |
|
1133 *pbRev = pOrderBy->a[0].sortOrder; |
|
1134 return 1; |
|
1135 } |
|
1136 return 0; |
|
1137 } |
|
1138 |
|
1139 /* |
|
1140 ** Prepare a crude estimate of the logarithm of the input value. |
|
1141 ** The results need not be exact. This is only used for estimating |
|
1142 ** the total cost of performing operatings with O(logN) or O(NlogN) |
|
1143 ** complexity. Because N is just a guess, it is no great tragedy if |
|
1144 ** logN is a little off. |
|
1145 */ |
|
1146 static double estLog(double N){ |
|
1147 double logN = 1; |
|
1148 double x = 10; |
|
1149 while( N>x ){ |
|
1150 logN += 1; |
|
1151 x *= 10; |
|
1152 } |
|
1153 return logN; |
|
1154 } |
|
1155 |
|
1156 /* |
|
1157 ** Two routines for printing the content of an sqlite3_index_info |
|
1158 ** structure. Used for testing and debugging only. If neither |
|
1159 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines |
|
1160 ** are no-ops. |
|
1161 */ |
|
1162 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) |
|
1163 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ |
|
1164 int i; |
|
1165 if( !sqlite3_where_trace ) return; |
|
1166 for(i=0; i<p->nConstraint; i++){ |
|
1167 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", |
|
1168 i, |
|
1169 p->aConstraint[i].iColumn, |
|
1170 p->aConstraint[i].iTermOffset, |
|
1171 p->aConstraint[i].op, |
|
1172 p->aConstraint[i].usable); |
|
1173 } |
|
1174 for(i=0; i<p->nOrderBy; i++){ |
|
1175 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", |
|
1176 i, |
|
1177 p->aOrderBy[i].iColumn, |
|
1178 p->aOrderBy[i].desc); |
|
1179 } |
|
1180 } |
|
1181 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ |
|
1182 int i; |
|
1183 if( !sqlite3_where_trace ) return; |
|
1184 for(i=0; i<p->nConstraint; i++){ |
|
1185 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", |
|
1186 i, |
|
1187 p->aConstraintUsage[i].argvIndex, |
|
1188 p->aConstraintUsage[i].omit); |
|
1189 } |
|
1190 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); |
|
1191 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); |
|
1192 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); |
|
1193 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); |
|
1194 } |
|
1195 #else |
|
1196 #define TRACE_IDX_INPUTS(A) |
|
1197 #define TRACE_IDX_OUTPUTS(A) |
|
1198 #endif |
|
1199 |
|
1200 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
1201 /* |
|
1202 ** Compute the best index for a virtual table. |
|
1203 ** |
|
1204 ** The best index is computed by the xBestIndex method of the virtual |
|
1205 ** table module. This routine is really just a wrapper that sets up |
|
1206 ** the sqlite3_index_info structure that is used to communicate with |
|
1207 ** xBestIndex. |
|
1208 ** |
|
1209 ** In a join, this routine might be called multiple times for the |
|
1210 ** same virtual table. The sqlite3_index_info structure is created |
|
1211 ** and initialized on the first invocation and reused on all subsequent |
|
1212 ** invocations. The sqlite3_index_info structure is also used when |
|
1213 ** code is generated to access the virtual table. The whereInfoDelete() |
|
1214 ** routine takes care of freeing the sqlite3_index_info structure after |
|
1215 ** everybody has finished with it. |
|
1216 */ |
|
1217 static double bestVirtualIndex( |
|
1218 Parse *pParse, /* The parsing context */ |
|
1219 WhereClause *pWC, /* The WHERE clause */ |
|
1220 SrcList::SrcList_item *pSrc, /* The FROM clause term to search */ |
|
1221 Bitmask notReady, /* Mask of cursors that are not available */ |
|
1222 ExprList *pOrderBy, /* The order by clause */ |
|
1223 int orderByUsable, /* True if we can potential sort */ |
|
1224 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ |
|
1225 ){ |
|
1226 Table *pTab = pSrc->pTab; |
|
1227 sqlite3_index_info *pIdxInfo; |
|
1228 sqlite3_index_info::sqlite3_index_constraint *pIdxCons; |
|
1229 sqlite3_index_info::sqlite3_index_orderby *pIdxOrderBy; |
|
1230 sqlite3_index_info::sqlite3_index_constraint_usage *pUsage; |
|
1231 WhereTerm *pTerm; |
|
1232 int i, j; |
|
1233 int nOrderBy; |
|
1234 int rc; |
|
1235 |
|
1236 /* If the sqlite3_index_info structure has not been previously |
|
1237 ** allocated and initialized for this virtual table, then allocate |
|
1238 ** and initialize it now |
|
1239 */ |
|
1240 pIdxInfo = *ppIdxInfo; |
|
1241 if( pIdxInfo==0 ){ |
|
1242 WhereTerm *pTerm; |
|
1243 int nTerm; |
|
1244 WHERETRACE(("Recomputing index info for %s...\n", pTab->zName)); |
|
1245 |
|
1246 /* Count the number of possible WHERE clause constraints referring |
|
1247 ** to this virtual table */ |
|
1248 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
|
1249 if( pTerm->leftCursor != pSrc->iCursor ) continue; |
|
1250 if( pTerm->eOperator==WO_IN ) continue; |
|
1251 if( pTerm->eOperator==WO_ISNULL ) continue; |
|
1252 nTerm++; |
|
1253 } |
|
1254 |
|
1255 /* If the ORDER BY clause contains only columns in the current |
|
1256 ** virtual table then allocate space for the aOrderBy part of |
|
1257 ** the sqlite3_index_info structure. |
|
1258 */ |
|
1259 nOrderBy = 0; |
|
1260 if( pOrderBy ){ |
|
1261 for(i=0; i<pOrderBy->nExpr; i++){ |
|
1262 Expr *pExpr = pOrderBy->a[i].pExpr; |
|
1263 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; |
|
1264 } |
|
1265 if( i==pOrderBy->nExpr ){ |
|
1266 nOrderBy = pOrderBy->nExpr; |
|
1267 } |
|
1268 } |
|
1269 |
|
1270 /* Allocate the sqlite3_index_info structure |
|
1271 */ |
|
1272 pIdxInfo = (sqlite3_index_info*)sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) |
|
1273 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm |
|
1274 + sizeof(*pIdxOrderBy)*nOrderBy ); |
|
1275 if( pIdxInfo==0 ){ |
|
1276 sqlite3ErrorMsg(pParse, "out of memory"); |
|
1277 return 0.0; |
|
1278 } |
|
1279 *ppIdxInfo = pIdxInfo; |
|
1280 |
|
1281 /* Initialize the structure. The sqlite3_index_info structure contains |
|
1282 ** many fields that are declared "const" to prevent xBestIndex from |
|
1283 ** changing them. We have to do some funky casting in order to |
|
1284 ** initialize those fields. |
|
1285 */ |
|
1286 pIdxCons = (sqlite3_index_info::sqlite3_index_constraint*)&pIdxInfo[1]; |
|
1287 pIdxOrderBy = (sqlite3_index_info::sqlite3_index_orderby*)&pIdxCons[nTerm]; |
|
1288 pUsage = (sqlite3_index_info::sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; |
|
1289 *(int*)&pIdxInfo->nConstraint = nTerm; |
|
1290 *(int*)&pIdxInfo->nOrderBy = nOrderBy; |
|
1291 *(sqlite3_index_info::sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; |
|
1292 *(sqlite3_index_info::sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; |
|
1293 *(sqlite3_index_info::sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = |
|
1294 pUsage; |
|
1295 |
|
1296 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
|
1297 if( pTerm->leftCursor != pSrc->iCursor ) continue; |
|
1298 if( pTerm->eOperator==WO_IN ) continue; |
|
1299 if( pTerm->eOperator==WO_ISNULL ) continue; |
|
1300 pIdxCons[j].iColumn = pTerm->leftColumn; |
|
1301 pIdxCons[j].iTermOffset = i; |
|
1302 pIdxCons[j].op = pTerm->eOperator; |
|
1303 /* The direct assignment in the previous line is possible only because |
|
1304 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The |
|
1305 ** following asserts verify this fact. */ |
|
1306 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); |
|
1307 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); |
|
1308 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); |
|
1309 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); |
|
1310 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); |
|
1311 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); |
|
1312 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); |
|
1313 j++; |
|
1314 } |
|
1315 for(i=0; i<nOrderBy; i++){ |
|
1316 Expr *pExpr = pOrderBy->a[i].pExpr; |
|
1317 pIdxOrderBy[i].iColumn = pExpr->iColumn; |
|
1318 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; |
|
1319 } |
|
1320 } |
|
1321 |
|
1322 /* At this point, the sqlite3_index_info structure that pIdxInfo points |
|
1323 ** to will have been initialized, either during the current invocation or |
|
1324 ** during some prior invocation. Now we just have to customize the |
|
1325 ** details of pIdxInfo for the current invocation and pass it to |
|
1326 ** xBestIndex. |
|
1327 */ |
|
1328 |
|
1329 /* The module name must be defined. Also, by this point there must |
|
1330 ** be a pointer to an sqlite3_vtab structure. Otherwise |
|
1331 ** sqlite3ViewGetColumnNames() would have picked up the error. |
|
1332 */ |
|
1333 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); |
|
1334 assert( pTab->pVtab ); |
|
1335 #if 0 |
|
1336 if( pTab->pVtab==0 ){ |
|
1337 sqlite3ErrorMsg(pParse, "undefined module %s for table %s", |
|
1338 pTab->azModuleArg[0], pTab->zName); |
|
1339 return 0.0; |
|
1340 } |
|
1341 #endif |
|
1342 |
|
1343 /* Set the aConstraint[].usable fields and initialize all |
|
1344 ** output variables to zero. |
|
1345 ** |
|
1346 ** aConstraint[].usable is true for constraints where the right-hand |
|
1347 ** side contains only references to tables to the left of the current |
|
1348 ** table. In other words, if the constraint is of the form: |
|
1349 ** |
|
1350 ** column = expr |
|
1351 ** |
|
1352 ** and we are evaluating a join, then the constraint on column is |
|
1353 ** only valid if all tables referenced in expr occur to the left |
|
1354 ** of the table containing column. |
|
1355 ** |
|
1356 ** The aConstraints[] array contains entries for all constraints |
|
1357 ** on the current table. That way we only have to compute it once |
|
1358 ** even though we might try to pick the best index multiple times. |
|
1359 ** For each attempt at picking an index, the order of tables in the |
|
1360 ** join might be different so we have to recompute the usable flag |
|
1361 ** each time. |
|
1362 */ |
|
1363 pIdxCons = *(sqlite3_index_info::sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
|
1364 pUsage = pIdxInfo->aConstraintUsage; |
|
1365 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ |
|
1366 j = pIdxCons->iTermOffset; |
|
1367 pTerm = &pWC->a[j]; |
|
1368 pIdxCons->usable = (pTerm->prereqRight & notReady)==0; |
|
1369 } |
|
1370 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); |
|
1371 if( pIdxInfo->needToFreeIdxStr ){ |
|
1372 sqlite3_free(pIdxInfo->idxStr); |
|
1373 } |
|
1374 pIdxInfo->idxStr = 0; |
|
1375 pIdxInfo->idxNum = 0; |
|
1376 pIdxInfo->needToFreeIdxStr = 0; |
|
1377 pIdxInfo->orderByConsumed = 0; |
|
1378 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; |
|
1379 nOrderBy = pIdxInfo->nOrderBy; |
|
1380 if( pIdxInfo->nOrderBy && !orderByUsable ){ |
|
1381 *(int*)&pIdxInfo->nOrderBy = 0; |
|
1382 } |
|
1383 |
|
1384 sqlite3SafetyOff(pParse->db); |
|
1385 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); |
|
1386 TRACE_IDX_INPUTS(pIdxInfo); |
|
1387 rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo); |
|
1388 TRACE_IDX_OUTPUTS(pIdxInfo); |
|
1389 if( rc!=SQLITE_OK ){ |
|
1390 if( rc==SQLITE_NOMEM ){ |
|
1391 pParse->db->mallocFailed = 1; |
|
1392 }else { |
|
1393 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); |
|
1394 } |
|
1395 sqlite3SafetyOn(pParse->db); |
|
1396 }else{ |
|
1397 rc = sqlite3SafetyOn(pParse->db); |
|
1398 } |
|
1399 *(int*)&pIdxInfo->nOrderBy = nOrderBy; |
|
1400 |
|
1401 return pIdxInfo->estimatedCost; |
|
1402 } |
|
1403 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
1404 |
|
1405 /* |
|
1406 ** Find the best index for accessing a particular table. Return a pointer |
|
1407 ** to the index, flags that describe how the index should be used, the |
|
1408 ** number of equality constraints, and the "cost" for this index. |
|
1409 ** |
|
1410 ** The lowest cost index wins. The cost is an estimate of the amount of |
|
1411 ** CPU and disk I/O need to process the request using the selected index. |
|
1412 ** Factors that influence cost include: |
|
1413 ** |
|
1414 ** * The estimated number of rows that will be retrieved. (The |
|
1415 ** fewer the better.) |
|
1416 ** |
|
1417 ** * Whether or not sorting must occur. |
|
1418 ** |
|
1419 ** * Whether or not there must be separate lookups in the |
|
1420 ** index and in the main table. |
|
1421 ** |
|
1422 */ |
|
1423 static double bestIndex( |
|
1424 Parse *pParse, /* The parsing context */ |
|
1425 WhereClause *pWC, /* The WHERE clause */ |
|
1426 SrcList::SrcList_item *pSrc, /* The FROM clause term to search */ |
|
1427 Bitmask notReady, /* Mask of cursors that are not available */ |
|
1428 ExprList *pOrderBy, /* The order by clause */ |
|
1429 Index **ppIndex, /* Make *ppIndex point to the best index */ |
|
1430 int *pFlags, /* Put flags describing this choice in *pFlags */ |
|
1431 int *pnEq /* Put the number of == or IN constraints here */ |
|
1432 ){ |
|
1433 WhereTerm *pTerm; |
|
1434 Index *bestIdx = 0; /* Index that gives the lowest cost */ |
|
1435 double lowestCost; /* The cost of using bestIdx */ |
|
1436 int bestFlags = 0; /* Flags associated with bestIdx */ |
|
1437 int bestNEq = 0; /* Best value for nEq */ |
|
1438 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ |
|
1439 Index *pProbe; /* An index we are evaluating */ |
|
1440 int rev; /* True to scan in reverse order */ |
|
1441 int flags; /* Flags associated with pProbe */ |
|
1442 int nEq; /* Number of == or IN constraints */ |
|
1443 int eqTermMask; /* Mask of valid equality operators */ |
|
1444 double cost; /* Cost of using pProbe */ |
|
1445 |
|
1446 WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady)); |
|
1447 lowestCost = SQLITE_BIG_DBL; |
|
1448 pProbe = pSrc->pTab->pIndex; |
|
1449 |
|
1450 /* If the table has no indices and there are no terms in the where |
|
1451 ** clause that refer to the ROWID, then we will never be able to do |
|
1452 ** anything other than a full table scan on this table. We might as |
|
1453 ** well put it first in the join order. That way, perhaps it can be |
|
1454 ** referenced by other tables in the join. |
|
1455 */ |
|
1456 if( pProbe==0 && |
|
1457 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && |
|
1458 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ |
|
1459 *pFlags = 0; |
|
1460 *ppIndex = 0; |
|
1461 *pnEq = 0; |
|
1462 return 0.0; |
|
1463 } |
|
1464 |
|
1465 /* Check for a rowid=EXPR or rowid IN (...) constraints |
|
1466 */ |
|
1467 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); |
|
1468 if( pTerm ){ |
|
1469 Expr *pExpr; |
|
1470 *ppIndex = 0; |
|
1471 bestFlags = WHERE_ROWID_EQ; |
|
1472 if( pTerm->eOperator & WO_EQ ){ |
|
1473 /* Rowid== is always the best pick. Look no further. Because only |
|
1474 ** a single row is generated, output is always in sorted order */ |
|
1475 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; |
|
1476 *pnEq = 1; |
|
1477 WHERETRACE(("... best is rowid\n")); |
|
1478 return 0.0; |
|
1479 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ |
|
1480 /* Rowid IN (LIST): cost is NlogN where N is the number of list |
|
1481 ** elements. */ |
|
1482 lowestCost = pExpr->pList->nExpr; |
|
1483 lowestCost *= estLog(lowestCost); |
|
1484 }else{ |
|
1485 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows |
|
1486 ** in the result of the inner select. We have no way to estimate |
|
1487 ** that value so make a wild guess. */ |
|
1488 lowestCost = 200; |
|
1489 } |
|
1490 WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost)); |
|
1491 } |
|
1492 |
|
1493 /* Estimate the cost of a table scan. If we do not know how many |
|
1494 ** entries are in the table, use 1 million as a guess. |
|
1495 */ |
|
1496 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; |
|
1497 WHERETRACE(("... table scan base cost: %.9g\n", cost)); |
|
1498 flags = WHERE_ROWID_RANGE; |
|
1499 |
|
1500 /* Check for constraints on a range of rowids in a table scan. |
|
1501 */ |
|
1502 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); |
|
1503 if( pTerm ){ |
|
1504 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ |
|
1505 flags |= WHERE_TOP_LIMIT; |
|
1506 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */ |
|
1507 } |
|
1508 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ |
|
1509 flags |= WHERE_BTM_LIMIT; |
|
1510 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ |
|
1511 } |
|
1512 WHERETRACE(("... rowid range reduces cost to %.9g\n", cost)); |
|
1513 }else{ |
|
1514 flags = 0; |
|
1515 } |
|
1516 |
|
1517 /* If the table scan does not satisfy the ORDER BY clause, increase |
|
1518 ** the cost by NlogN to cover the expense of sorting. */ |
|
1519 if( pOrderBy ){ |
|
1520 if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ |
|
1521 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; |
|
1522 if( rev ){ |
|
1523 flags |= WHERE_REVERSE; |
|
1524 } |
|
1525 }else{ |
|
1526 cost += cost*estLog(cost); |
|
1527 WHERETRACE(("... sorting increases cost to %.9g\n", cost)); |
|
1528 } |
|
1529 } |
|
1530 if( cost<lowestCost ){ |
|
1531 lowestCost = cost; |
|
1532 bestFlags = flags; |
|
1533 } |
|
1534 |
|
1535 /* If the pSrc table is the right table of a LEFT JOIN then we may not |
|
1536 ** use an index to satisfy IS NULL constraints on that table. This is |
|
1537 ** because columns might end up being NULL if the table does not match - |
|
1538 ** a circumstance which the index cannot help us discover. Ticket #2177. |
|
1539 */ |
|
1540 if( (pSrc->jointype & JT_LEFT)!=0 ){ |
|
1541 eqTermMask = WO_EQ|WO_IN; |
|
1542 }else{ |
|
1543 eqTermMask = WO_EQ|WO_IN|WO_ISNULL; |
|
1544 } |
|
1545 |
|
1546 /* Look at each index. |
|
1547 */ |
|
1548 for(; pProbe; pProbe=pProbe->pNext){ |
|
1549 int i; /* Loop counter */ |
|
1550 double inMultiplier = 1; |
|
1551 |
|
1552 WHERETRACE(("... index %s:\n", pProbe->zName)); |
|
1553 |
|
1554 /* Count the number of columns in the index that are satisfied |
|
1555 ** by x=EXPR constraints or x IN (...) constraints. |
|
1556 */ |
|
1557 flags = 0; |
|
1558 for(i=0; i<pProbe->nColumn; i++){ |
|
1559 int j = pProbe->aiColumn[i]; |
|
1560 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); |
|
1561 if( pTerm==0 ) break; |
|
1562 flags |= WHERE_COLUMN_EQ; |
|
1563 if( pTerm->eOperator & WO_IN ){ |
|
1564 Expr *pExpr = pTerm->pExpr; |
|
1565 flags |= WHERE_COLUMN_IN; |
|
1566 if( pExpr->pSelect!=0 ){ |
|
1567 inMultiplier *= 25; |
|
1568 }else if( pExpr->pList!=0 ){ |
|
1569 inMultiplier *= pExpr->pList->nExpr + 1; |
|
1570 } |
|
1571 } |
|
1572 } |
|
1573 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); |
|
1574 nEq = i; |
|
1575 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 |
|
1576 && nEq==pProbe->nColumn ){ |
|
1577 flags |= WHERE_UNIQUE; |
|
1578 } |
|
1579 WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost)); |
|
1580 |
|
1581 /* Look for range constraints |
|
1582 */ |
|
1583 if( nEq<pProbe->nColumn ){ |
|
1584 int j = pProbe->aiColumn[nEq]; |
|
1585 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); |
|
1586 if( pTerm ){ |
|
1587 flags |= WHERE_COLUMN_RANGE; |
|
1588 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ |
|
1589 flags |= WHERE_TOP_LIMIT; |
|
1590 cost /= 3; |
|
1591 } |
|
1592 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ |
|
1593 flags |= WHERE_BTM_LIMIT; |
|
1594 cost /= 3; |
|
1595 } |
|
1596 WHERETRACE(("...... range reduces cost to %.9g\n", cost)); |
|
1597 } |
|
1598 } |
|
1599 |
|
1600 /* Add the additional cost of sorting if that is a factor. |
|
1601 */ |
|
1602 if( pOrderBy ){ |
|
1603 if( (flags & WHERE_COLUMN_IN)==0 && |
|
1604 isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ |
|
1605 if( flags==0 ){ |
|
1606 flags = WHERE_COLUMN_RANGE; |
|
1607 } |
|
1608 flags |= WHERE_ORDERBY; |
|
1609 if( rev ){ |
|
1610 flags |= WHERE_REVERSE; |
|
1611 } |
|
1612 }else{ |
|
1613 cost += cost*estLog(cost); |
|
1614 WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); |
|
1615 } |
|
1616 } |
|
1617 |
|
1618 /* Check to see if we can get away with using just the index without |
|
1619 ** ever reading the table. If that is the case, then halve the |
|
1620 ** cost of this index. |
|
1621 */ |
|
1622 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ |
|
1623 Bitmask m = pSrc->colUsed; |
|
1624 int j; |
|
1625 for(j=0; j<pProbe->nColumn; j++){ |
|
1626 int x = pProbe->aiColumn[j]; |
|
1627 if( x<BMS-1 ){ |
|
1628 m &= ~(((Bitmask)1)<<x); |
|
1629 } |
|
1630 } |
|
1631 if( m==0 ){ |
|
1632 flags |= WHERE_IDX_ONLY; |
|
1633 cost /= 2; |
|
1634 WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost)); |
|
1635 } |
|
1636 } |
|
1637 |
|
1638 /* If this index has achieved the lowest cost so far, then use it. |
|
1639 */ |
|
1640 if( flags && cost < lowestCost ){ |
|
1641 bestIdx = pProbe; |
|
1642 lowestCost = cost; |
|
1643 bestFlags = flags; |
|
1644 bestNEq = nEq; |
|
1645 } |
|
1646 } |
|
1647 |
|
1648 /* Report the best result |
|
1649 */ |
|
1650 *ppIndex = bestIdx; |
|
1651 WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", |
|
1652 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); |
|
1653 *pFlags = bestFlags | eqTermMask; |
|
1654 *pnEq = bestNEq; |
|
1655 return lowestCost; |
|
1656 } |
|
1657 |
|
1658 |
|
1659 /* |
|
1660 ** Disable a term in the WHERE clause. Except, do not disable the term |
|
1661 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON |
|
1662 ** or USING clause of that join. |
|
1663 ** |
|
1664 ** Consider the term t2.z='ok' in the following queries: |
|
1665 ** |
|
1666 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' |
|
1667 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' |
|
1668 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' |
|
1669 ** |
|
1670 ** The t2.z='ok' is disabled in the in (2) because it originates |
|
1671 ** in the ON clause. The term is disabled in (3) because it is not part |
|
1672 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. |
|
1673 ** |
|
1674 ** Disabling a term causes that term to not be tested in the inner loop |
|
1675 ** of the join. Disabling is an optimization. When terms are satisfied |
|
1676 ** by indices, we disable them to prevent redundant tests in the inner |
|
1677 ** loop. We would get the correct results if nothing were ever disabled, |
|
1678 ** but joins might run a little slower. The trick is to disable as much |
|
1679 ** as we can without disabling too much. If we disabled in (1), we'd get |
|
1680 ** the wrong answer. See ticket #813. |
|
1681 */ |
|
1682 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ |
|
1683 if( pTerm |
|
1684 && (pTerm->flags & TERM_CODED)==0 |
|
1685 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
|
1686 ){ |
|
1687 pTerm->flags |= TERM_CODED; |
|
1688 if( pTerm->iParent>=0 ){ |
|
1689 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; |
|
1690 if( (--pOther->nChild)==0 ){ |
|
1691 disableTerm(pLevel, pOther); |
|
1692 } |
|
1693 } |
|
1694 } |
|
1695 } |
|
1696 |
|
1697 /* |
|
1698 ** Generate code that builds a probe for an index. |
|
1699 ** |
|
1700 ** There should be nColumn values on the stack. The index |
|
1701 ** to be probed is pIdx. Pop the values from the stack and |
|
1702 ** replace them all with a single record that is the index |
|
1703 ** problem. |
|
1704 */ |
|
1705 static void buildIndexProbe( |
|
1706 Vdbe *v, /* Generate code into this VM */ |
|
1707 int nColumn, /* The number of columns to check for NULL */ |
|
1708 Index *pIdx /* Index that we will be searching */ |
|
1709 ){ |
|
1710 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
|
1711 sqlite3IndexAffinityStr(v, pIdx); |
|
1712 } |
|
1713 |
|
1714 |
|
1715 /* |
|
1716 ** Generate code for a single equality term of the WHERE clause. An equality |
|
1717 ** term can be either X=expr or X IN (...). pTerm is the term to be |
|
1718 ** coded. |
|
1719 ** |
|
1720 ** The current value for the constraint is left on the top of the stack. |
|
1721 ** |
|
1722 ** For a constraint of the form X=expr, the expression is evaluated and its |
|
1723 ** result is left on the stack. For constraints of the form X IN (...) |
|
1724 ** this routine sets up a loop that will iterate over all values of X. |
|
1725 */ |
|
1726 static void codeEqualityTerm( |
|
1727 Parse *pParse, /* The parsing context */ |
|
1728 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ |
|
1729 WhereLevel *pLevel /* When level of the FROM clause we are working on */ |
|
1730 ){ |
|
1731 Expr *pX = pTerm->pExpr; |
|
1732 Vdbe *v = pParse->pVdbe; |
|
1733 if( pX->op==TK_EQ ){ |
|
1734 sqlite3ExprCode(pParse, pX->pRight); |
|
1735 }else if( pX->op==TK_ISNULL ){ |
|
1736 sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
|
1737 #ifndef SQLITE_OMIT_SUBQUERY |
|
1738 }else{ |
|
1739 int eType; |
|
1740 int iTab; |
|
1741 WhereLevel::InLoop *pIn; |
|
1742 |
|
1743 assert( pX->op==TK_IN ); |
|
1744 eType = sqlite3FindInIndex(pParse, pX, 1); |
|
1745 iTab = pX->iTable; |
|
1746 sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); |
|
1747 VdbeComment((v, "# %.*s", pX->span.n, pX->span.z)); |
|
1748 if( pLevel->nIn==0 ){ |
|
1749 pLevel->nxt = sqlite3VdbeMakeLabel(v); |
|
1750 } |
|
1751 pLevel->nIn++; |
|
1752 pLevel->aInLoop = (WhereLevel::InLoop*)sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop, |
|
1753 sizeof(pLevel->aInLoop[0])*pLevel->nIn); |
|
1754 pIn = (WhereLevel::InLoop*)pLevel->aInLoop; |
|
1755 if( pIn ){ |
|
1756 int op = ((eType==IN_INDEX_ROWID)?OP_Rowid:OP_Column); |
|
1757 pIn += pLevel->nIn - 1; |
|
1758 pIn->iCur = iTab; |
|
1759 pIn->topAddr = sqlite3VdbeAddOp(v, op, iTab, 0); |
|
1760 sqlite3VdbeAddOp(v, OP_IsNull, -1, 0); |
|
1761 }else{ |
|
1762 pLevel->nIn = 0; |
|
1763 } |
|
1764 #endif |
|
1765 } |
|
1766 disableTerm(pLevel, pTerm); |
|
1767 } |
|
1768 |
|
1769 /* |
|
1770 ** Generate code that will evaluate all == and IN constraints for an |
|
1771 ** index. The values for all constraints are left on the stack. |
|
1772 ** |
|
1773 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). |
|
1774 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 |
|
1775 ** The index has as many as three equality constraints, but in this |
|
1776 ** example, the third "c" value is an inequality. So only two |
|
1777 ** constraints are coded. This routine will generate code to evaluate |
|
1778 ** a==5 and b IN (1,2,3). The current values for a and b will be left |
|
1779 ** on the stack - a is the deepest and b the shallowest. |
|
1780 ** |
|
1781 ** In the example above nEq==2. But this subroutine works for any value |
|
1782 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. |
|
1783 ** The only thing it does is allocate the pLevel->iMem memory cell. |
|
1784 ** |
|
1785 ** This routine always allocates at least one memory cell and puts |
|
1786 ** the address of that memory cell in pLevel->iMem. The code that |
|
1787 ** calls this routine will use pLevel->iMem to store the termination |
|
1788 ** key value of the loop. If one or more IN operators appear, then |
|
1789 ** this routine allocates an additional nEq memory cells for internal |
|
1790 ** use. |
|
1791 */ |
|
1792 static void codeAllEqualityTerms( |
|
1793 Parse *pParse, /* Parsing context */ |
|
1794 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ |
|
1795 WhereClause *pWC, /* The WHERE clause */ |
|
1796 Bitmask notReady /* Which parts of FROM have not yet been coded */ |
|
1797 ){ |
|
1798 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ |
|
1799 int termsInMem = 0; /* If true, store value in mem[] cells */ |
|
1800 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ |
|
1801 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ |
|
1802 int iCur = pLevel->iTabCur; /* The cursor of the table */ |
|
1803 WhereTerm *pTerm; /* A single constraint term */ |
|
1804 int j; /* Loop counter */ |
|
1805 |
|
1806 /* Figure out how many memory cells we will need then allocate them. |
|
1807 ** We always need at least one used to store the loop terminator |
|
1808 ** value. If there are IN operators we'll need one for each == or |
|
1809 ** IN constraint. |
|
1810 */ |
|
1811 pLevel->iMem = pParse->nMem++; |
|
1812 if( pLevel->flags & WHERE_COLUMN_IN ){ |
|
1813 pParse->nMem += pLevel->nEq; |
|
1814 termsInMem = 1; |
|
1815 } |
|
1816 |
|
1817 /* Evaluate the equality constraints |
|
1818 */ |
|
1819 assert( pIdx->nColumn>=nEq ); |
|
1820 for(j=0; j<nEq; j++){ |
|
1821 int k = pIdx->aiColumn[j]; |
|
1822 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx); |
|
1823 if( pTerm==0 ) break; |
|
1824 assert( (pTerm->flags & TERM_CODED)==0 ); |
|
1825 codeEqualityTerm(pParse, pTerm, pLevel); |
|
1826 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ |
|
1827 sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk); |
|
1828 } |
|
1829 if( termsInMem ){ |
|
1830 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1); |
|
1831 } |
|
1832 } |
|
1833 |
|
1834 /* Make sure all the constraint values are on the top of the stack |
|
1835 */ |
|
1836 if( termsInMem ){ |
|
1837 for(j=0; j<nEq; j++){ |
|
1838 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0); |
|
1839 } |
|
1840 } |
|
1841 } |
|
1842 |
|
1843 #if defined(SQLITE_TEST) |
|
1844 /* |
|
1845 ** The following variable holds a text description of query plan generated |
|
1846 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin |
|
1847 ** overwrites the previous. This information is used for testing and |
|
1848 ** analysis only. |
|
1849 */ |
|
1850 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ |
|
1851 static int nQPlan = 0; /* Next free slow in _query_plan[] */ |
|
1852 |
|
1853 #endif /* SQLITE_TEST */ |
|
1854 |
|
1855 |
|
1856 /* |
|
1857 ** Free a WhereInfo structure |
|
1858 */ |
|
1859 static void whereInfoFree(WhereInfo *pWInfo){ |
|
1860 if( pWInfo ){ |
|
1861 int i; |
|
1862 for(i=0; i<pWInfo->nLevel; i++){ |
|
1863 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; |
|
1864 if( pInfo ){ |
|
1865 if( pInfo->needToFreeIdxStr ){ |
|
1866 /* Coverage: Don't think this can be reached. By the time this |
|
1867 ** function is called, the index-strings have been passed |
|
1868 ** to the vdbe layer for deletion. |
|
1869 */ |
|
1870 sqlite3_free(pInfo->idxStr); |
|
1871 } |
|
1872 sqlite3_free(pInfo); |
|
1873 } |
|
1874 } |
|
1875 sqlite3_free(pWInfo); |
|
1876 } |
|
1877 } |
|
1878 |
|
1879 |
|
1880 /* |
|
1881 ** Generate the beginning of the loop used for WHERE clause processing. |
|
1882 ** The return value is a pointer to an opaque structure that contains |
|
1883 ** information needed to terminate the loop. Later, the calling routine |
|
1884 ** should invoke sqlite3WhereEnd() with the return value of this function |
|
1885 ** in order to complete the WHERE clause processing. |
|
1886 ** |
|
1887 ** If an error occurs, this routine returns NULL. |
|
1888 ** |
|
1889 ** The basic idea is to do a nested loop, one loop for each table in |
|
1890 ** the FROM clause of a select. (INSERT and UPDATE statements are the |
|
1891 ** same as a SELECT with only a single table in the FROM clause.) For |
|
1892 ** example, if the SQL is this: |
|
1893 ** |
|
1894 ** SELECT * FROM t1, t2, t3 WHERE ...; |
|
1895 ** |
|
1896 ** Then the code generated is conceptually like the following: |
|
1897 ** |
|
1898 ** foreach row1 in t1 do \ Code generated |
|
1899 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() |
|
1900 ** foreach row3 in t3 do / |
|
1901 ** ... |
|
1902 ** end \ Code generated |
|
1903 ** end |-- by sqlite3WhereEnd() |
|
1904 ** end / |
|
1905 ** |
|
1906 ** Note that the loops might not be nested in the order in which they |
|
1907 ** appear in the FROM clause if a different order is better able to make |
|
1908 ** use of indices. Note also that when the IN operator appears in |
|
1909 ** the WHERE clause, it might result in additional nested loops for |
|
1910 ** scanning through all values on the right-hand side of the IN. |
|
1911 ** |
|
1912 ** There are Btree cursors associated with each table. t1 uses cursor |
|
1913 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. |
|
1914 ** And so forth. This routine generates code to open those VDBE cursors |
|
1915 ** and sqlite3WhereEnd() generates the code to close them. |
|
1916 ** |
|
1917 ** The code that sqlite3WhereBegin() generates leaves the cursors named |
|
1918 ** in pTabList pointing at their appropriate entries. The [...] code |
|
1919 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract |
|
1920 ** data from the various tables of the loop. |
|
1921 ** |
|
1922 ** If the WHERE clause is empty, the foreach loops must each scan their |
|
1923 ** entire tables. Thus a three-way join is an O(N^3) operation. But if |
|
1924 ** the tables have indices and there are terms in the WHERE clause that |
|
1925 ** refer to those indices, a complete table scan can be avoided and the |
|
1926 ** code will run much faster. Most of the work of this routine is checking |
|
1927 ** to see if there are indices that can be used to speed up the loop. |
|
1928 ** |
|
1929 ** Terms of the WHERE clause are also used to limit which rows actually |
|
1930 ** make it to the "..." in the middle of the loop. After each "foreach", |
|
1931 ** terms of the WHERE clause that use only terms in that loop and outer |
|
1932 ** loops are evaluated and if false a jump is made around all subsequent |
|
1933 ** inner loops (or around the "..." if the test occurs within the inner- |
|
1934 ** most loop) |
|
1935 ** |
|
1936 ** OUTER JOINS |
|
1937 ** |
|
1938 ** An outer join of tables t1 and t2 is conceptally coded as follows: |
|
1939 ** |
|
1940 ** foreach row1 in t1 do |
|
1941 ** flag = 0 |
|
1942 ** foreach row2 in t2 do |
|
1943 ** start: |
|
1944 ** ... |
|
1945 ** flag = 1 |
|
1946 ** end |
|
1947 ** if flag==0 then |
|
1948 ** move the row2 cursor to a null row |
|
1949 ** goto start |
|
1950 ** fi |
|
1951 ** end |
|
1952 ** |
|
1953 ** ORDER BY CLAUSE PROCESSING |
|
1954 ** |
|
1955 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, |
|
1956 ** if there is one. If there is no ORDER BY clause or if this routine |
|
1957 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. |
|
1958 ** |
|
1959 ** If an index can be used so that the natural output order of the table |
|
1960 ** scan is correct for the ORDER BY clause, then that index is used and |
|
1961 ** *ppOrderBy is set to NULL. This is an optimization that prevents an |
|
1962 ** unnecessary sort of the result set if an index appropriate for the |
|
1963 ** ORDER BY clause already exists. |
|
1964 ** |
|
1965 ** If the where clause loops cannot be arranged to provide the correct |
|
1966 ** output order, then the *ppOrderBy is unchanged. |
|
1967 */ |
|
1968 WhereInfo *sqlite3WhereBegin( |
|
1969 Parse *pParse, /* The parser context */ |
|
1970 SrcList *pTabList, /* A list of all tables to be scanned */ |
|
1971 Expr *pWhere, /* The WHERE clause */ |
|
1972 ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ |
|
1973 ){ |
|
1974 int i; /* Loop counter */ |
|
1975 WhereInfo *pWInfo; /* Will become the return value of this function */ |
|
1976 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ |
|
1977 int brk, cont = 0; /* Addresses used during code generation */ |
|
1978 Bitmask notReady; /* Cursors that are not yet positioned */ |
|
1979 WhereTerm *pTerm; /* A single term in the WHERE clause */ |
|
1980 ExprMaskSet maskSet; /* The expression mask set */ |
|
1981 WhereClause wc; /* The WHERE clause is divided into these terms */ |
|
1982 SrcList::SrcList_item *pTabItem; /* A single entry from pTabList */ |
|
1983 WhereLevel *pLevel; /* A single level in the pWInfo list */ |
|
1984 int iFrom; /* First unused FROM clause element */ |
|
1985 int andFlags; /* AND-ed combination of all wc.a[].flags */ |
|
1986 sqlite3 *db; /* Database connection */ |
|
1987 |
|
1988 /* The number of tables in the FROM clause is limited by the number of |
|
1989 ** bits in a Bitmask |
|
1990 */ |
|
1991 if( pTabList->nSrc>BMS ){ |
|
1992 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); |
|
1993 return 0; |
|
1994 } |
|
1995 |
|
1996 /* Split the WHERE clause into separate subexpressions where each |
|
1997 ** subexpression is separated by an AND operator. |
|
1998 */ |
|
1999 initMaskSet(&maskSet); |
|
2000 whereClauseInit(&wc, pParse, &maskSet); |
|
2001 whereSplit(&wc, pWhere, TK_AND); |
|
2002 |
|
2003 /* Allocate and initialize the WhereInfo structure that will become the |
|
2004 ** return value. |
|
2005 */ |
|
2006 db = pParse->db; |
|
2007 pWInfo = (WhereInfo*)sqlite3DbMallocZero(db, |
|
2008 sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); |
|
2009 if( db->mallocFailed ){ |
|
2010 goto whereBeginNoMem; |
|
2011 } |
|
2012 pWInfo->nLevel = pTabList->nSrc; |
|
2013 pWInfo->pParse = pParse; |
|
2014 pWInfo->pTabList = pTabList; |
|
2015 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); |
|
2016 |
|
2017 /* Special case: a WHERE clause that is constant. Evaluate the |
|
2018 ** expression and either jump over all of the code or fall thru. |
|
2019 */ |
|
2020 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ |
|
2021 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); |
|
2022 pWhere = 0; |
|
2023 } |
|
2024 |
|
2025 /* Analyze all of the subexpressions. Note that exprAnalyze() might |
|
2026 ** add new virtual terms onto the end of the WHERE clause. We do not |
|
2027 ** want to analyze these virtual terms, so start analyzing at the end |
|
2028 ** and work forward so that the added virtual terms are never processed. |
|
2029 */ |
|
2030 for(i=0; i<pTabList->nSrc; i++){ |
|
2031 createMask(&maskSet, pTabList->a[i].iCursor); |
|
2032 } |
|
2033 exprAnalyzeAll(pTabList, &wc); |
|
2034 if( db->mallocFailed ){ |
|
2035 goto whereBeginNoMem; |
|
2036 } |
|
2037 |
|
2038 /* Chose the best index to use for each table in the FROM clause. |
|
2039 ** |
|
2040 ** This loop fills in the following fields: |
|
2041 ** |
|
2042 ** pWInfo->a[].pIdx The index to use for this level of the loop. |
|
2043 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx |
|
2044 ** pWInfo->a[].nEq The number of == and IN constraints |
|
2045 ** pWInfo->a[].iFrom When term of the FROM clause is being coded |
|
2046 ** pWInfo->a[].iTabCur The VDBE cursor for the database table |
|
2047 ** pWInfo->a[].iIdxCur The VDBE cursor for the index |
|
2048 ** |
|
2049 ** This loop also figures out the nesting order of tables in the FROM |
|
2050 ** clause. |
|
2051 */ |
|
2052 notReady = ~(Bitmask)0; |
|
2053 pTabItem = pTabList->a; |
|
2054 pLevel = pWInfo->a; |
|
2055 andFlags = ~0; |
|
2056 WHERETRACE(("*** Optimizer Start ***\n")); |
|
2057 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
|
2058 Index *pIdx; /* Index for FROM table at pTabItem */ |
|
2059 int flags; /* Flags asssociated with pIdx */ |
|
2060 int nEq; /* Number of == or IN constraints */ |
|
2061 double cost; /* The cost for pIdx */ |
|
2062 int j; /* For looping over FROM tables */ |
|
2063 Index *pBest = 0; /* The best index seen so far */ |
|
2064 int bestFlags = 0; /* Flags associated with pBest */ |
|
2065 int bestNEq = 0; /* nEq associated with pBest */ |
|
2066 double lowestCost; /* Cost of the pBest */ |
|
2067 int bestJ = 0; /* The value of j */ |
|
2068 Bitmask m; /* Bitmask value for j or bestJ */ |
|
2069 int once = 0; /* True when first table is seen */ |
|
2070 sqlite3_index_info *pIndex; /* Current virtual index */ |
|
2071 |
|
2072 lowestCost = SQLITE_BIG_DBL; |
|
2073 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ |
|
2074 int doNotReorder; /* True if this table should not be reordered */ |
|
2075 |
|
2076 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; |
|
2077 if( once && doNotReorder ) break; |
|
2078 m = getMask(&maskSet, pTabItem->iCursor); |
|
2079 if( (m & notReady)==0 ){ |
|
2080 if( j==iFrom ) iFrom++; |
|
2081 continue; |
|
2082 } |
|
2083 assert( pTabItem->pTab ); |
|
2084 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
2085 if( IsVirtual(pTabItem->pTab) ){ |
|
2086 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; |
|
2087 cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, |
|
2088 ppOrderBy ? *ppOrderBy : 0, i==0, |
|
2089 ppIdxInfo); |
|
2090 flags = WHERE_VIRTUALTABLE; |
|
2091 pIndex = *ppIdxInfo; |
|
2092 if( pIndex && pIndex->orderByConsumed ){ |
|
2093 flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; |
|
2094 } |
|
2095 pIdx = 0; |
|
2096 nEq = 0; |
|
2097 if( (SQLITE_BIG_DBL/2.0)<cost ){ |
|
2098 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the |
|
2099 ** inital value of lowestCost in this loop. If it is, then |
|
2100 ** the (cost<lowestCost) test below will never be true and |
|
2101 ** pLevel->pBestIdx never set. |
|
2102 */ |
|
2103 cost = (SQLITE_BIG_DBL/2.0); |
|
2104 } |
|
2105 }else |
|
2106 #endif |
|
2107 { |
|
2108 cost = bestIndex(pParse, &wc, pTabItem, notReady, |
|
2109 (i==0 && ppOrderBy) ? *ppOrderBy : 0, |
|
2110 &pIdx, &flags, &nEq); |
|
2111 pIndex = 0; |
|
2112 } |
|
2113 if( cost<lowestCost ){ |
|
2114 once = 1; |
|
2115 lowestCost = cost; |
|
2116 pBest = pIdx; |
|
2117 bestFlags = flags; |
|
2118 bestNEq = nEq; |
|
2119 bestJ = j; |
|
2120 pLevel->pBestIdx = pIndex; |
|
2121 } |
|
2122 if( doNotReorder ) break; |
|
2123 } |
|
2124 WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ, |
|
2125 pLevel-pWInfo->a)); |
|
2126 if( (bestFlags & WHERE_ORDERBY)!=0 ){ |
|
2127 *ppOrderBy = 0; |
|
2128 } |
|
2129 andFlags &= bestFlags; |
|
2130 pLevel->flags = bestFlags; |
|
2131 pLevel->pIdx = pBest; |
|
2132 pLevel->nEq = bestNEq; |
|
2133 pLevel->aInLoop = 0; |
|
2134 pLevel->nIn = 0; |
|
2135 if( pBest ){ |
|
2136 pLevel->iIdxCur = pParse->nTab++; |
|
2137 }else{ |
|
2138 pLevel->iIdxCur = -1; |
|
2139 } |
|
2140 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); |
|
2141 pLevel->iFrom = bestJ; |
|
2142 } |
|
2143 WHERETRACE(("*** Optimizer Finished ***\n")); |
|
2144 |
|
2145 /* If the total query only selects a single row, then the ORDER BY |
|
2146 ** clause is irrelevant. |
|
2147 */ |
|
2148 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ |
|
2149 *ppOrderBy = 0; |
|
2150 } |
|
2151 |
|
2152 /* Open all tables in the pTabList and any indices selected for |
|
2153 ** searching those tables. |
|
2154 */ |
|
2155 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ |
|
2156 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
|
2157 Table *pTab; /* Table to open */ |
|
2158 Index *pIx; /* Index used to access pTab (if any) */ |
|
2159 int iDb; /* Index of database containing table/index */ |
|
2160 int iIdxCur = pLevel->iIdxCur; |
|
2161 |
|
2162 #ifndef SQLITE_OMIT_EXPLAIN |
|
2163 if( pParse->explain==2 ){ |
|
2164 char *zMsg; |
|
2165 SrcList::SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; |
|
2166 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName); |
|
2167 if( pItem->zAlias ){ |
|
2168 zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias); |
|
2169 } |
|
2170 if( (pIx = pLevel->pIdx)!=0 ){ |
|
2171 zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName); |
|
2172 }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ |
|
2173 zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg); |
|
2174 } |
|
2175 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
2176 else if( pLevel->pBestIdx ){ |
|
2177 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; |
|
2178 zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg, |
|
2179 pBestIdx->idxNum, pBestIdx->idxStr); |
|
2180 } |
|
2181 #endif |
|
2182 if( pLevel->flags & WHERE_ORDERBY ){ |
|
2183 zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg); |
|
2184 } |
|
2185 sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC); |
|
2186 } |
|
2187 #endif /* SQLITE_OMIT_EXPLAIN */ |
|
2188 pTabItem = &pTabList->a[pLevel->iFrom]; |
|
2189 pTab = pTabItem->pTab; |
|
2190 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
|
2191 if( pTab->isEphem || pTab->pSelect ) continue; |
|
2192 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
2193 if( pLevel->pBestIdx ){ |
|
2194 int iCur = pTabItem->iCursor; |
|
2195 sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB); |
|
2196 }else |
|
2197 #endif |
|
2198 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ |
|
2199 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead); |
|
2200 if( pTab->nCol<(sizeof(Bitmask)*8) ){ |
|
2201 Bitmask b = pTabItem->colUsed; |
|
2202 int n = 0; |
|
2203 for(; b; b=b>>1, n++){} |
|
2204 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n); |
|
2205 assert( n<=pTab->nCol ); |
|
2206 } |
|
2207 }else{ |
|
2208 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
|
2209 } |
|
2210 pLevel->iTabCur = pTabItem->iCursor; |
|
2211 if( (pIx = pLevel->pIdx)!=0 ){ |
|
2212 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); |
|
2213 assert( pIx->pSchema==pTab->pSchema ); |
|
2214 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); |
|
2215 VdbeComment((v, "# %s", pIx->zName)); |
|
2216 sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum, |
|
2217 (char*)pKey, P3_KEYINFO_HANDOFF); |
|
2218 sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1); |
|
2219 } |
|
2220 sqlite3CodeVerifySchema(pParse, iDb); |
|
2221 } |
|
2222 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); |
|
2223 |
|
2224 /* Generate the code to do the search. Each iteration of the for |
|
2225 ** loop below generates code for a single nested loop of the VM |
|
2226 ** program. |
|
2227 */ |
|
2228 notReady = ~(Bitmask)0; |
|
2229 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
|
2230 int j; |
|
2231 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ |
|
2232 Index *pIdx; /* The index we will be using */ |
|
2233 int nxt; /* Where to jump to continue with the next IN case */ |
|
2234 int iIdxCur; /* The VDBE cursor for the index */ |
|
2235 int omitTable; /* True if we use the index only */ |
|
2236 int bRev; /* True if we need to scan in reverse order */ |
|
2237 |
|
2238 pTabItem = &pTabList->a[pLevel->iFrom]; |
|
2239 iCur = pTabItem->iCursor; |
|
2240 pIdx = pLevel->pIdx; |
|
2241 iIdxCur = pLevel->iIdxCur; |
|
2242 bRev = (pLevel->flags & WHERE_REVERSE)!=0; |
|
2243 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; |
|
2244 |
|
2245 /* Create labels for the "break" and "continue" instructions |
|
2246 ** for the current loop. Jump to brk to break out of a loop. |
|
2247 ** Jump to cont to go immediately to the next iteration of the |
|
2248 ** loop. |
|
2249 ** |
|
2250 ** When there is an IN operator, we also have a "nxt" label that |
|
2251 ** means to continue with the next IN value combination. When |
|
2252 ** there are no IN operators in the constraints, the "nxt" label |
|
2253 ** is the same as "brk". |
|
2254 */ |
|
2255 brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v); |
|
2256 cont = pLevel->cont = sqlite3VdbeMakeLabel(v); |
|
2257 |
|
2258 /* If this is the right table of a LEFT OUTER JOIN, allocate and |
|
2259 ** initialize a memory cell that records if this table matches any |
|
2260 ** row of the left table of the join. |
|
2261 */ |
|
2262 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ |
|
2263 if( !pParse->nMem ) pParse->nMem++; |
|
2264 pLevel->iLeftJoin = pParse->nMem++; |
|
2265 sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin); |
|
2266 VdbeComment((v, "# init LEFT JOIN no-match flag")); |
|
2267 } |
|
2268 |
|
2269 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
2270 if( pLevel->pBestIdx ){ |
|
2271 /* Case 0: The table is a virtual-table. Use the VFilter and VNext |
|
2272 ** to access the data. |
|
2273 */ |
|
2274 int j; |
|
2275 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; |
|
2276 int nConstraint = pBestIdx->nConstraint; |
|
2277 sqlite3_index_info::sqlite3_index_constraint_usage *aUsage = |
|
2278 pBestIdx->aConstraintUsage; |
|
2279 const sqlite3_index_info::sqlite3_index_constraint *aConstraint = |
|
2280 pBestIdx->aConstraint; |
|
2281 |
|
2282 for(j=1; j<=nConstraint; j++){ |
|
2283 int k; |
|
2284 for(k=0; k<nConstraint; k++){ |
|
2285 if( aUsage[k].argvIndex==j ){ |
|
2286 int iTerm = aConstraint[k].iTermOffset; |
|
2287 sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight); |
|
2288 break; |
|
2289 } |
|
2290 } |
|
2291 if( k==nConstraint ) break; |
|
2292 } |
|
2293 sqlite3VdbeAddOp(v, OP_Integer, j-1, 0); |
|
2294 sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0); |
|
2295 sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr, |
|
2296 pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC); |
|
2297 pBestIdx->needToFreeIdxStr = 0; |
|
2298 for(j=0; j<pBestIdx->nConstraint; j++){ |
|
2299 if( aUsage[j].omit ){ |
|
2300 int iTerm = aConstraint[j].iTermOffset; |
|
2301 disableTerm(pLevel, &wc.a[iTerm]); |
|
2302 } |
|
2303 } |
|
2304 pLevel->op = OP_VNext; |
|
2305 pLevel->p1 = iCur; |
|
2306 pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
|
2307 }else |
|
2308 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
2309 |
|
2310 if( pLevel->flags & WHERE_ROWID_EQ ){ |
|
2311 /* Case 1: We can directly reference a single row using an |
|
2312 ** equality comparison against the ROWID field. Or |
|
2313 ** we reference multiple rows using a "rowid IN (...)" |
|
2314 ** construct. |
|
2315 */ |
|
2316 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); |
|
2317 assert( pTerm!=0 ); |
|
2318 assert( pTerm->pExpr!=0 ); |
|
2319 assert( pTerm->leftCursor==iCur ); |
|
2320 assert( omitTable==0 ); |
|
2321 codeEqualityTerm(pParse, pTerm, pLevel); |
|
2322 nxt = pLevel->nxt; |
|
2323 sqlite3VdbeAddOp(v, OP_MustBeInt, 1, nxt); |
|
2324 sqlite3VdbeAddOp(v, OP_NotExists, iCur, nxt); |
|
2325 VdbeComment((v, "pk")); |
|
2326 pLevel->op = OP_Noop; |
|
2327 }else if( pLevel->flags & WHERE_ROWID_RANGE ){ |
|
2328 /* Case 2: We have an inequality comparison against the ROWID field. |
|
2329 */ |
|
2330 int testOp = OP_Noop; |
|
2331 int start; |
|
2332 WhereTerm *pStart, *pEnd; |
|
2333 |
|
2334 assert( omitTable==0 ); |
|
2335 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); |
|
2336 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); |
|
2337 if( bRev ){ |
|
2338 pTerm = pStart; |
|
2339 pStart = pEnd; |
|
2340 pEnd = pTerm; |
|
2341 } |
|
2342 if( pStart ){ |
|
2343 Expr *pX; |
|
2344 pX = pStart->pExpr; |
|
2345 assert( pX!=0 ); |
|
2346 assert( pStart->leftCursor==iCur ); |
|
2347 sqlite3ExprCode(pParse, pX->pRight); |
|
2348 sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk); |
|
2349 sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk); |
|
2350 VdbeComment((v, "pk")); |
|
2351 disableTerm(pLevel, pStart); |
|
2352 }else{ |
|
2353 sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk); |
|
2354 } |
|
2355 if( pEnd ){ |
|
2356 Expr *pX; |
|
2357 pX = pEnd->pExpr; |
|
2358 assert( pX!=0 ); |
|
2359 assert( pEnd->leftCursor==iCur ); |
|
2360 sqlite3ExprCode(pParse, pX->pRight); |
|
2361 pLevel->iMem = pParse->nMem++; |
|
2362 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
|
2363 if( pX->op==TK_LT || pX->op==TK_GT ){ |
|
2364 testOp = bRev ? OP_Le : OP_Ge; |
|
2365 }else{ |
|
2366 testOp = bRev ? OP_Lt : OP_Gt; |
|
2367 } |
|
2368 disableTerm(pLevel, pEnd); |
|
2369 } |
|
2370 start = sqlite3VdbeCurrentAddr(v); |
|
2371 pLevel->op = bRev ? OP_Prev : OP_Next; |
|
2372 pLevel->p1 = iCur; |
|
2373 pLevel->p2 = start; |
|
2374 if( testOp!=OP_Noop ){ |
|
2375 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); |
|
2376 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
|
2377 sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk); |
|
2378 } |
|
2379 }else if( pLevel->flags & WHERE_COLUMN_RANGE ){ |
|
2380 /* Case 3: The WHERE clause term that refers to the right-most |
|
2381 ** column of the index is an inequality. For example, if |
|
2382 ** the index is on (x,y,z) and the WHERE clause is of the |
|
2383 ** form "x=5 AND y<10" then this case is used. Only the |
|
2384 ** right-most column can be an inequality - the rest must |
|
2385 ** use the "==" and "IN" operators. |
|
2386 ** |
|
2387 ** This case is also used when there are no WHERE clause |
|
2388 ** constraints but an index is selected anyway, in order |
|
2389 ** to force the output order to conform to an ORDER BY. |
|
2390 */ |
|
2391 int start; |
|
2392 int nEq = pLevel->nEq; |
|
2393 int topEq=0; /* True if top limit uses ==. False is strictly < */ |
|
2394 int btmEq=0; /* True if btm limit uses ==. False if strictly > */ |
|
2395 int topOp, btmOp; /* Operators for the top and bottom search bounds */ |
|
2396 int testOp; |
|
2397 int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0; |
|
2398 int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0; |
|
2399 |
|
2400 /* Generate code to evaluate all constraint terms using == or IN |
|
2401 ** and level the values of those terms on the stack. |
|
2402 */ |
|
2403 codeAllEqualityTerms(pParse, pLevel, &wc, notReady); |
|
2404 |
|
2405 /* Duplicate the equality term values because they will all be |
|
2406 ** used twice: once to make the termination key and once to make the |
|
2407 ** start key. |
|
2408 */ |
|
2409 for(j=0; j<nEq; j++){ |
|
2410 sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0); |
|
2411 } |
|
2412 |
|
2413 /* Figure out what comparison operators to use for top and bottom |
|
2414 ** search bounds. For an ascending index, the bottom bound is a > or >= |
|
2415 ** operator and the top bound is a < or <= operator. For a descending |
|
2416 ** index the operators are reversed. |
|
2417 */ |
|
2418 if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){ |
|
2419 topOp = WO_LT|WO_LE; |
|
2420 btmOp = WO_GT|WO_GE; |
|
2421 }else{ |
|
2422 topOp = WO_GT|WO_GE; |
|
2423 btmOp = WO_LT|WO_LE; |
|
2424 SWAP(int, topLimit, btmLimit); |
|
2425 } |
|
2426 |
|
2427 /* Generate the termination key. This is the key value that |
|
2428 ** will end the search. There is no termination key if there |
|
2429 ** are no equality terms and no "X<..." term. |
|
2430 ** |
|
2431 ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" |
|
2432 ** key computed here really ends up being the start key. |
|
2433 */ |
|
2434 nxt = pLevel->nxt; |
|
2435 if( topLimit ){ |
|
2436 Expr *pX; |
|
2437 int k = pIdx->aiColumn[j]; |
|
2438 pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx); |
|
2439 assert( pTerm!=0 ); |
|
2440 pX = pTerm->pExpr; |
|
2441 assert( (pTerm->flags & TERM_CODED)==0 ); |
|
2442 sqlite3ExprCode(pParse, pX->pRight); |
|
2443 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq*2+1), nxt); |
|
2444 topEq = pTerm->eOperator & (WO_LE|WO_GE); |
|
2445 disableTerm(pLevel, pTerm); |
|
2446 testOp = OP_IdxGE; |
|
2447 }else{ |
|
2448 testOp = nEq>0 ? OP_IdxGE : OP_Noop; |
|
2449 topEq = 1; |
|
2450 } |
|
2451 if( testOp!=OP_Noop ){ |
|
2452 int nCol = nEq + topLimit; |
|
2453 pLevel->iMem = pParse->nMem++; |
|
2454 buildIndexProbe(v, nCol, pIdx); |
|
2455 if( bRev ){ |
|
2456 int op = topEq ? OP_MoveLe : OP_MoveLt; |
|
2457 sqlite3VdbeAddOp(v, op, iIdxCur, nxt); |
|
2458 }else{ |
|
2459 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
|
2460 } |
|
2461 }else if( bRev ){ |
|
2462 sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk); |
|
2463 } |
|
2464 |
|
2465 /* Generate the start key. This is the key that defines the lower |
|
2466 ** bound on the search. There is no start key if there are no |
|
2467 ** equality terms and if there is no "X>..." term. In |
|
2468 ** that case, generate a "Rewind" instruction in place of the |
|
2469 ** start key search. |
|
2470 ** |
|
2471 ** 2002-Dec-04: In the case of a reverse-order search, the so-called |
|
2472 ** "start" key really ends up being used as the termination key. |
|
2473 */ |
|
2474 if( btmLimit ){ |
|
2475 Expr *pX; |
|
2476 int k = pIdx->aiColumn[j]; |
|
2477 pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx); |
|
2478 assert( pTerm!=0 ); |
|
2479 pX = pTerm->pExpr; |
|
2480 assert( (pTerm->flags & TERM_CODED)==0 ); |
|
2481 sqlite3ExprCode(pParse, pX->pRight); |
|
2482 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt); |
|
2483 btmEq = pTerm->eOperator & (WO_LE|WO_GE); |
|
2484 disableTerm(pLevel, pTerm); |
|
2485 }else{ |
|
2486 btmEq = 1; |
|
2487 } |
|
2488 if( nEq>0 || btmLimit ){ |
|
2489 int nCol = nEq + btmLimit; |
|
2490 buildIndexProbe(v, nCol, pIdx); |
|
2491 if( bRev ){ |
|
2492 pLevel->iMem = pParse->nMem++; |
|
2493 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
|
2494 testOp = OP_IdxLT; |
|
2495 }else{ |
|
2496 int op = btmEq ? OP_MoveGe : OP_MoveGt; |
|
2497 sqlite3VdbeAddOp(v, op, iIdxCur, nxt); |
|
2498 } |
|
2499 }else if( bRev ){ |
|
2500 testOp = OP_Noop; |
|
2501 }else{ |
|
2502 sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk); |
|
2503 } |
|
2504 |
|
2505 /* Generate the the top of the loop. If there is a termination |
|
2506 ** key we have to test for that key and abort at the top of the |
|
2507 ** loop. |
|
2508 */ |
|
2509 start = sqlite3VdbeCurrentAddr(v); |
|
2510 if( testOp!=OP_Noop ){ |
|
2511 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
|
2512 sqlite3VdbeAddOp(v, testOp, iIdxCur, nxt); |
|
2513 if( (topEq && !bRev) || (!btmEq && bRev) ){ |
|
2514 sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); |
|
2515 } |
|
2516 } |
|
2517 if( topLimit | btmLimit ){ |
|
2518 sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq); |
|
2519 sqlite3VdbeAddOp(v, OP_IsNull, 1, cont); |
|
2520 } |
|
2521 if( !omitTable ){ |
|
2522 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); |
|
2523 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); |
|
2524 } |
|
2525 |
|
2526 /* Record the instruction used to terminate the loop. |
|
2527 */ |
|
2528 pLevel->op = bRev ? OP_Prev : OP_Next; |
|
2529 pLevel->p1 = iIdxCur; |
|
2530 pLevel->p2 = start; |
|
2531 }else if( pLevel->flags & WHERE_COLUMN_EQ ){ |
|
2532 /* Case 4: There is an index and all terms of the WHERE clause that |
|
2533 ** refer to the index using the "==" or "IN" operators. |
|
2534 */ |
|
2535 int start; |
|
2536 int nEq = pLevel->nEq; |
|
2537 |
|
2538 /* Generate code to evaluate all constraint terms using == or IN |
|
2539 ** and leave the values of those terms on the stack. |
|
2540 */ |
|
2541 codeAllEqualityTerms(pParse, pLevel, &wc, notReady); |
|
2542 nxt = pLevel->nxt; |
|
2543 |
|
2544 /* Generate a single key that will be used to both start and terminate |
|
2545 ** the search |
|
2546 */ |
|
2547 buildIndexProbe(v, nEq, pIdx); |
|
2548 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); |
|
2549 |
|
2550 /* Generate code (1) to move to the first matching element of the table. |
|
2551 ** Then generate code (2) that jumps to "nxt" after the cursor is past |
|
2552 ** the last matching element of the table. The code (1) is executed |
|
2553 ** once to initialize the search, the code (2) is executed before each |
|
2554 ** iteration of the scan to see if the scan has finished. */ |
|
2555 if( bRev ){ |
|
2556 /* Scan in reverse order */ |
|
2557 sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, nxt); |
|
2558 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
|
2559 sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, nxt); |
|
2560 pLevel->op = OP_Prev; |
|
2561 }else{ |
|
2562 /* Scan in the forward order */ |
|
2563 sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, nxt); |
|
2564 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
|
2565 sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, nxt, "+", P3_STATIC); |
|
2566 pLevel->op = OP_Next; |
|
2567 } |
|
2568 if( !omitTable ){ |
|
2569 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); |
|
2570 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); |
|
2571 } |
|
2572 pLevel->p1 = iIdxCur; |
|
2573 pLevel->p2 = start; |
|
2574 }else{ |
|
2575 /* Case 5: There is no usable index. We must do a complete |
|
2576 ** scan of the entire table. |
|
2577 */ |
|
2578 assert( omitTable==0 ); |
|
2579 assert( bRev==0 ); |
|
2580 pLevel->op = OP_Next; |
|
2581 pLevel->p1 = iCur; |
|
2582 pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk); |
|
2583 } |
|
2584 notReady &= ~getMask(&maskSet, iCur); |
|
2585 sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0); |
|
2586 |
|
2587 /* Insert code to test every subexpression that can be completely |
|
2588 ** computed using the current set of tables. |
|
2589 */ |
|
2590 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ |
|
2591 Expr *pE; |
|
2592 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
|
2593 if( (pTerm->prereqAll & notReady)!=0 ) continue; |
|
2594 pE = pTerm->pExpr; |
|
2595 assert( pE!=0 ); |
|
2596 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ |
|
2597 continue; |
|
2598 } |
|
2599 sqlite3ExprIfFalse(pParse, pE, cont, 1); |
|
2600 pTerm->flags |= TERM_CODED; |
|
2601 } |
|
2602 |
|
2603 /* For a LEFT OUTER JOIN, generate code that will record the fact that |
|
2604 ** at least one row of the right table has matched the left table. |
|
2605 */ |
|
2606 if( pLevel->iLeftJoin ){ |
|
2607 pLevel->top = sqlite3VdbeCurrentAddr(v); |
|
2608 sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin); |
|
2609 VdbeComment((v, "# record LEFT JOIN hit")); |
|
2610 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ |
|
2611 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
|
2612 if( (pTerm->prereqAll & notReady)!=0 ) continue; |
|
2613 assert( pTerm->pExpr ); |
|
2614 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1); |
|
2615 pTerm->flags |= TERM_CODED; |
|
2616 } |
|
2617 } |
|
2618 } |
|
2619 |
|
2620 #ifdef SQLITE_TEST /* For testing and debugging use only */ |
|
2621 /* Record in the query plan information about the current table |
|
2622 ** and the index used to access it (if any). If the table itself |
|
2623 ** is not used, its name is just '{}'. If no index is used |
|
2624 ** the index is listed as "{}". If the primary key is used the |
|
2625 ** index name is '*'. |
|
2626 */ |
|
2627 for(i=0; i<pTabList->nSrc; i++){ |
|
2628 char *z; |
|
2629 int n; |
|
2630 pLevel = &pWInfo->a[i]; |
|
2631 pTabItem = &pTabList->a[pLevel->iFrom]; |
|
2632 z = pTabItem->zAlias; |
|
2633 if( z==0 ) z = pTabItem->pTab->zName; |
|
2634 n = strlen(z); |
|
2635 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ |
|
2636 if( pLevel->flags & WHERE_IDX_ONLY ){ |
|
2637 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); |
|
2638 nQPlan += 2; |
|
2639 }else{ |
|
2640 memcpy(&sqlite3_query_plan[nQPlan], z, n); |
|
2641 nQPlan += n; |
|
2642 } |
|
2643 sqlite3_query_plan[nQPlan++] = ' '; |
|
2644 } |
|
2645 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ |
|
2646 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); |
|
2647 nQPlan += 2; |
|
2648 }else if( pLevel->pIdx==0 ){ |
|
2649 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); |
|
2650 nQPlan += 3; |
|
2651 }else{ |
|
2652 n = strlen(pLevel->pIdx->zName); |
|
2653 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ |
|
2654 memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n); |
|
2655 nQPlan += n; |
|
2656 sqlite3_query_plan[nQPlan++] = ' '; |
|
2657 } |
|
2658 } |
|
2659 } |
|
2660 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ |
|
2661 sqlite3_query_plan[--nQPlan] = 0; |
|
2662 } |
|
2663 sqlite3_query_plan[nQPlan] = 0; |
|
2664 nQPlan = 0; |
|
2665 #endif /* SQLITE_TEST // Testing and debugging use only */ |
|
2666 |
|
2667 /* Record the continuation address in the WhereInfo structure. Then |
|
2668 ** clean up and return. |
|
2669 */ |
|
2670 pWInfo->iContinue = cont; |
|
2671 whereClauseClear(&wc); |
|
2672 return pWInfo; |
|
2673 |
|
2674 /* Jump here if malloc fails */ |
|
2675 whereBeginNoMem: |
|
2676 whereClauseClear(&wc); |
|
2677 whereInfoFree(pWInfo); |
|
2678 return 0; |
|
2679 } |
|
2680 |
|
2681 /* |
|
2682 ** Generate the end of the WHERE loop. See comments on |
|
2683 ** sqlite3WhereBegin() for additional information. |
|
2684 */ |
|
2685 void sqlite3WhereEnd(WhereInfo *pWInfo){ |
|
2686 Vdbe *v = pWInfo->pParse->pVdbe; |
|
2687 int i; |
|
2688 WhereLevel *pLevel; |
|
2689 SrcList *pTabList = pWInfo->pTabList; |
|
2690 |
|
2691 /* Generate loop termination code. |
|
2692 */ |
|
2693 for(i=pTabList->nSrc-1; i>=0; i--){ |
|
2694 pLevel = &pWInfo->a[i]; |
|
2695 sqlite3VdbeResolveLabel(v, pLevel->cont); |
|
2696 if( pLevel->op!=OP_Noop ){ |
|
2697 sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); |
|
2698 } |
|
2699 if( pLevel->nIn ){ |
|
2700 WhereLevel::InLoop *pIn; |
|
2701 int j; |
|
2702 sqlite3VdbeResolveLabel(v, pLevel->nxt); |
|
2703 for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){ |
|
2704 sqlite3VdbeJumpHere(v, pIn->topAddr+1); |
|
2705 sqlite3VdbeAddOp(v, OP_Next, pIn->iCur, pIn->topAddr); |
|
2706 sqlite3VdbeJumpHere(v, pIn->topAddr-1); |
|
2707 } |
|
2708 sqlite3_free(pLevel->aInLoop); |
|
2709 } |
|
2710 sqlite3VdbeResolveLabel(v, pLevel->brk); |
|
2711 if( pLevel->iLeftJoin ){ |
|
2712 int addr; |
|
2713 addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0); |
|
2714 sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); |
|
2715 if( pLevel->iIdxCur>=0 ){ |
|
2716 sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0); |
|
2717 } |
|
2718 sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top); |
|
2719 sqlite3VdbeJumpHere(v, addr); |
|
2720 } |
|
2721 } |
|
2722 |
|
2723 /* The "break" point is here, just past the end of the outer loop. |
|
2724 ** Set it. |
|
2725 */ |
|
2726 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); |
|
2727 |
|
2728 /* Close all of the cursors that were opened by sqlite3WhereBegin. |
|
2729 */ |
|
2730 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
|
2731 SrcList::SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; |
|
2732 Table *pTab = pTabItem->pTab; |
|
2733 assert( pTab!=0 ); |
|
2734 if( pTab->isEphem || pTab->pSelect ) continue; |
|
2735 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ |
|
2736 sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0); |
|
2737 } |
|
2738 if( pLevel->pIdx!=0 ){ |
|
2739 sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0); |
|
2740 } |
|
2741 |
|
2742 /* If this scan uses an index, make code substitutions to read data |
|
2743 ** from the index in preference to the table. Sometimes, this means |
|
2744 ** the table need never be read from. This is a performance boost, |
|
2745 ** as the vdbe level waits until the table is read before actually |
|
2746 ** seeking the table cursor to the record corresponding to the current |
|
2747 ** position in the index. |
|
2748 ** |
|
2749 ** Calls to the code generator in between sqlite3WhereBegin and |
|
2750 ** sqlite3WhereEnd will have created code that references the table |
|
2751 ** directly. This loop scans all that code looking for opcodes |
|
2752 ** that reference the table and converts them into opcodes that |
|
2753 ** reference the index. |
|
2754 */ |
|
2755 if( pLevel->pIdx ){ |
|
2756 int k, j, last; |
|
2757 VdbeOp *pOp; |
|
2758 Index *pIdx = pLevel->pIdx; |
|
2759 int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY; |
|
2760 |
|
2761 assert( pIdx!=0 ); |
|
2762 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); |
|
2763 last = sqlite3VdbeCurrentAddr(v); |
|
2764 for(k=pWInfo->iTop; k<last; k++, pOp++){ |
|
2765 if( pOp->p1!=pLevel->iTabCur ) continue; |
|
2766 if( pOp->opcode==OP_Column ){ |
|
2767 for(j=0; j<pIdx->nColumn; j++){ |
|
2768 if( pOp->p2==pIdx->aiColumn[j] ){ |
|
2769 pOp->p2 = j; |
|
2770 pOp->p1 = pLevel->iIdxCur; |
|
2771 break; |
|
2772 } |
|
2773 } |
|
2774 assert(!useIndexOnly || j<pIdx->nColumn); |
|
2775 }else if( pOp->opcode==OP_Rowid ){ |
|
2776 pOp->p1 = pLevel->iIdxCur; |
|
2777 pOp->opcode = OP_IdxRowid; |
|
2778 }else if( pOp->opcode==OP_NullRow && useIndexOnly ){ |
|
2779 pOp->opcode = OP_Noop; |
|
2780 } |
|
2781 } |
|
2782 } |
|
2783 } |
|
2784 |
|
2785 /* Final cleanup |
|
2786 */ |
|
2787 whereInfoFree(pWInfo); |
|
2788 return; |
|
2789 } |
|