engine/sqlite/src/btmutex.cpp
changeset 97 3903521a36da
parent 96 87e863f6f840
child 98 5f9e7e14eb11
--- a/engine/sqlite/src/btmutex.cpp	Wed May 26 10:44:32 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,315 +0,0 @@
-/*
-** 2007 August 27
-**
-** The author disclaims copyright to this source code.  In place of
-** a legal notice, here is a blessing:
-**
-**    May you do good and not evil.
-**    May you find forgiveness for yourself and forgive others.
-**    May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** $Id: btmutex.cpp 1282 2008-11-13 09:31:33Z LarsPson $
-**
-** This file contains code used to implement mutexes on Btree objects.
-** This code really belongs in btree.c.  But btree.c is getting too
-** big and we want to break it down some.  This packaged seemed like
-** a good breakout.
-*/
-#include "btreeInt.h"
-#if SQLITE_THREADSAFE && !defined(SQLITE_OMIT_SHARED_CACHE)
-
-
-/*
-** Enter a mutex on the given BTree object.
-**
-** If the object is not sharable, then no mutex is ever required
-** and this routine is a no-op.  The underlying mutex is non-recursive.
-** But we keep a reference count in Btree.wantToLock so the behavior
-** of this interface is recursive.
-**
-** To avoid deadlocks, multiple Btrees are locked in the same order
-** by all database connections.  The p->pNext is a list of other
-** Btrees belonging to the same database connection as the p Btree
-** which need to be locked after p.  If we cannot get a lock on
-** p, then first unlock all of the others on p->pNext, then wait
-** for the lock to become available on p, then relock all of the
-** subsequent Btrees that desire a lock.
-*/
-void sqlite3BtreeEnter(Btree *p){
-  Btree *pLater;
-
-  /* Some basic sanity checking on the Btree.  The list of Btrees
-  ** connected by pNext and pPrev should be in sorted order by
-  ** Btree.pBt value. All elements of the list should belong to
-  ** the same connection. Only shared Btrees are on the list. */
-  assert( p->pNext==0 || p->pNext->pBt>p->pBt );
-  assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
-  assert( p->pNext==0 || p->pNext->db==p->db );
-  assert( p->pPrev==0 || p->pPrev->db==p->db );
-  assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
-
-  /* Check for locking consistency */
-  assert( !p->locked || p->wantToLock>0 );
-  assert( p->sharable || p->wantToLock==0 );
-
-  /* We should already hold a lock on the database connection */
-  assert( sqlite3_mutex_held(p->db->mutex) );
-
-  if( !p->sharable ) return;
-  p->wantToLock++;
-  if( p->locked ) return;
-
-  /* In most cases, we should be able to acquire the lock we
-  ** want without having to go throught the ascending lock
-  ** procedure that follows.  Just be sure not to block.
-  */
-  if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
-    p->locked = 1;
-    return;
-  }
-
-  /* To avoid deadlock, first release all locks with a larger
-  ** BtShared address.  Then acquire our lock.  Then reacquire
-  ** the other BtShared locks that we used to hold in ascending
-  ** order.
-  */
-  for(pLater=p->pNext; pLater; pLater=pLater->pNext){
-    assert( pLater->sharable );
-    assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
-    assert( !pLater->locked || pLater->wantToLock>0 );
-    if( pLater->locked ){
-      sqlite3_mutex_leave(pLater->pBt->mutex);
-      pLater->locked = 0;
-    }
-  }
-  sqlite3_mutex_enter(p->pBt->mutex);
-  p->locked = 1;
-  for(pLater=p->pNext; pLater; pLater=pLater->pNext){
-    if( pLater->wantToLock ){
-      sqlite3_mutex_enter(pLater->pBt->mutex);
-      pLater->locked = 1;
-    }
-  }
-}
-
-/*
-** Exit the recursive mutex on a Btree.
-*/
-void sqlite3BtreeLeave(Btree *p){
-  if( p->sharable ){
-    assert( p->wantToLock>0 );
-    p->wantToLock--;
-    if( p->wantToLock==0 ){
-      assert( p->locked );
-      sqlite3_mutex_leave(p->pBt->mutex);
-      p->locked = 0;
-    }
-  }
-}
-
-#ifndef NDEBUG
-/*
-** Return true if the BtShared mutex is held on the btree.  
-**
-** This routine makes no determination one why or another if the
-** database connection mutex is held.
-**
-** This routine is used only from within assert() statements.
-*/
-int sqlite3BtreeHoldsMutex(Btree *p){
-  return (p->sharable==0 ||
-             (p->locked && p->wantToLock && sqlite3_mutex_held(p->pBt->mutex)));
-}
-#endif
-
-
-#ifndef SQLITE_OMIT_INCRBLOB
-/*
-** Enter and leave a mutex on a Btree given a cursor owned by that
-** Btree.  These entry points are used by incremental I/O and can be
-** omitted if that module is not used.
-*/
-void sqlite3BtreeEnterCursor(BtCursor *pCur){
-  sqlite3BtreeEnter(pCur->pBtree);
-}
-void sqlite3BtreeLeaveCursor(BtCursor *pCur){
-  sqlite3BtreeLeave(pCur->pBtree);
-}
-#endif /* SQLITE_OMIT_INCRBLOB */
-
-
-/*
-** Enter the mutex on every Btree associated with a database
-** connection.  This is needed (for example) prior to parsing
-** a statement since we will be comparing table and column names
-** against all schemas and we do not want those schemas being
-** reset out from under us.
-**
-** There is a corresponding leave-all procedures.
-**
-** Enter the mutexes in accending order by BtShared pointer address
-** to avoid the possibility of deadlock when two threads with
-** two or more btrees in common both try to lock all their btrees
-** at the same instant.
-*/
-void sqlite3BtreeEnterAll(sqlite3 *db){
-  int i;
-  Btree *p, *pLater;
-  assert( sqlite3_mutex_held(db->mutex) );
-  for(i=0; i<db->nDb; i++){
-    p = db->aDb[i].pBt;
-    if( p && p->sharable ){
-      p->wantToLock++;
-      if( !p->locked ){
-        assert( p->wantToLock==1 );
-        while( p->pPrev ) p = p->pPrev;
-        while( p->locked && p->pNext ) p = p->pNext;
-        for(pLater = p->pNext; pLater; pLater=pLater->pNext){
-          if( pLater->locked ){
-            sqlite3_mutex_leave(pLater->pBt->mutex);
-            pLater->locked = 0;
-          }
-        }
-        while( p ){
-          sqlite3_mutex_enter(p->pBt->mutex);
-          p->locked++;
-          p = p->pNext;
-        }
-      }
-    }
-  }
-}
-void sqlite3BtreeLeaveAll(sqlite3 *db){
-  int i;
-  Btree *p;
-  assert( sqlite3_mutex_held(db->mutex) );
-  for(i=0; i<db->nDb; i++){
-    p = db->aDb[i].pBt;
-    if( p && p->sharable ){
-      assert( p->wantToLock>0 );
-      p->wantToLock--;
-      if( p->wantToLock==0 ){
-        assert( p->locked );
-        sqlite3_mutex_leave(p->pBt->mutex);
-        p->locked = 0;
-      }
-    }
-  }
-}
-
-#ifndef NDEBUG
-/*
-** Return true if the current thread holds the database connection
-** mutex and all required BtShared mutexes.
-**
-** This routine is used inside assert() statements only.
-*/
-int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
-  int i;
-  if( !sqlite3_mutex_held(db->mutex) ){
-    return 0;
-  }
-  for(i=0; i<db->nDb; i++){
-    Btree *p;
-    p = db->aDb[i].pBt;
-    if( p && p->sharable &&
-         (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
-      return 0;
-    }
-  }
-  return 1;
-}
-#endif /* NDEBUG */
-
-/*
-** Potentially dd a new Btree pointer to a BtreeMutexArray.
-** Really only add the Btree if it can possibly be shared with
-** another database connection.
-**
-** The Btrees are kept in sorted order by pBtree->pBt.  That
-** way when we go to enter all the mutexes, we can enter them
-** in order without every having to backup and retry and without
-** worrying about deadlock.
-**
-** The number of shared btrees will always be small (usually 0 or 1)
-** so an insertion sort is an adequate algorithm here.
-*/
-void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){
-  int i, j;
-  BtShared *pBt;
-  if( pBtree==0 || pBtree->sharable==0 ) return;
-#ifndef NDEBUG
-  {
-    for(i=0; i<pArray->nMutex; i++){
-      assert( pArray->aBtree[i]!=pBtree );
-    }
-  }
-#endif
-  assert( pArray->nMutex>=0 );
-  assert( pArray->nMutex<sizeof(pArray->aBtree)/sizeof(pArray->aBtree[0])-1 );
-  pBt = pBtree->pBt;
-  for(i=0; i<pArray->nMutex; i++){
-    assert( pArray->aBtree[i]!=pBtree );
-    if( pArray->aBtree[i]->pBt>pBt ){
-      for(j=pArray->nMutex; j>i; j--){
-        pArray->aBtree[j] = pArray->aBtree[j-1];
-      }
-      pArray->aBtree[i] = pBtree;
-      pArray->nMutex++;
-      return;
-    }
-  }
-  pArray->aBtree[pArray->nMutex++] = pBtree;
-}
-
-/*
-** Enter the mutex of every btree in the array.  This routine is
-** called at the beginning of sqlite3VdbeExec().  The mutexes are
-** exited at the end of the same function.
-*/
-void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){
-  int i;
-  for(i=0; i<pArray->nMutex; i++){
-    Btree *p = pArray->aBtree[i];
-    /* Some basic sanity checking */
-    assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
-    assert( !p->locked || p->wantToLock>0 );
-
-    /* We should already hold a lock on the database connection */
-    assert( sqlite3_mutex_held(p->db->mutex) );
-
-    p->wantToLock++;
-    if( !p->locked && p->sharable ){
-      sqlite3_mutex_enter(p->pBt->mutex);
-      p->locked = 1;
-    }
-  }
-}
-
-/*
-** Leave the mutex of every btree in the group.
-*/
-void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){
-  int i;
-  for(i=0; i<pArray->nMutex; i++){
-    Btree *p = pArray->aBtree[i];
-    /* Some basic sanity checking */
-    assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
-    assert( p->locked || !p->sharable );
-    assert( p->wantToLock>0 );
-
-    /* We should already hold a lock on the database connection */
-    assert( sqlite3_mutex_held(p->db->mutex) );
-
-    p->wantToLock--;
-    if( p->wantToLock==0 && p->locked ){
-      sqlite3_mutex_leave(p->pBt->mutex);
-      p->locked = 0;
-    }
-  }
-}
-
-
-#endif  /* SQLITE_THREADSAFE && !SQLITE_OMIT_SHARED_CACHE */