engine/sqlite/src/vdbe.cpp
changeset 97 3903521a36da
parent 96 87e863f6f840
child 98 5f9e7e14eb11
--- a/engine/sqlite/src/vdbe.cpp	Wed May 26 10:44:32 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,5302 +0,0 @@
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code.  In place of
-** a legal notice, here is a blessing:
-**
-**    May you do good and not evil.
-**    May you find forgiveness for yourself and forgive others.
-**    May you share freely, never taking more than you give.
-**
-*************************************************************************
-** The code in this file implements execution method of the 
-** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
-** handles housekeeping details such as creating and deleting
-** VDBE instances.  This file is solely interested in executing
-** the VDBE program.
-**
-** In the external interface, an "sqlite3_stmt*" is an opaque pointer
-** to a VDBE.
-**
-** The SQL parser generates a program which is then executed by
-** the VDBE to do the work of the SQL statement.  VDBE programs are 
-** similar in form to assembly language.  The program consists of
-** a linear sequence of operations.  Each operation has an opcode 
-** and 3 operands.  Operands P1 and P2 are integers.  Operand P3 
-** is a null-terminated string.   The P2 operand must be non-negative.
-** Opcodes will typically ignore one or more operands.  Many opcodes
-** ignore all three operands.
-**
-** Computation results are stored on a stack.  Each entry on the
-** stack is either an integer, a null-terminated string, a floating point
-** number, or the SQL "NULL" value.  An inplicit conversion from one
-** type to the other occurs as necessary.
-** 
-** Most of the code in this file is taken up by the sqlite3VdbeExec()
-** function which does the work of interpreting a VDBE program.
-** But other routines are also provided to help in building up
-** a program instruction by instruction.
-**
-** Various scripts scan this source file in order to generate HTML
-** documentation, headers files, or other derived files.  The formatting
-** of the code in this file is, therefore, important.  See other comments
-** in this file for details.  If in doubt, do not deviate from existing
-** commenting and indentation practices when changing or adding code.
-**
-** $Id: vdbe.cpp 1282 2008-11-13 09:31:33Z LarsPson $
-*/
-#include "sqliteInt.h"
-#include <ctype.h>
-#include "vdbeInt.h"
-
-/*
-** The following global variable is incremented every time a cursor
-** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes.  The test
-** procedures use this information to make sure that indices are
-** working correctly.  This variable has no function other than to
-** help verify the correct operation of the library.
-*/
-#ifdef SQLITE_TEST
-int sqlite3_search_count = 0;
-#endif
-
-/*
-** When this global variable is positive, it gets decremented once before
-** each instruction in the VDBE.  When reaches zero, the u1.isInterrupted
-** field of the sqlite3 structure is set in order to simulate and interrupt.
-**
-** This facility is used for testing purposes only.  It does not function
-** in an ordinary build.
-*/
-#ifdef SQLITE_TEST
-int sqlite3_interrupt_count = 0;
-#endif
-
-/*
-** The next global variable is incremented each type the OP_Sort opcode
-** is executed.  The test procedures use this information to make sure that
-** sorting is occurring or not occuring at appropriate times.   This variable
-** has no function other than to help verify the correct operation of the
-** library.
-*/
-#ifdef SQLITE_TEST
-int sqlite3_sort_count = 0;
-#endif
-
-/*
-** The next global variable records the size of the largest MEM_Blob
-** or MEM_Str that has appeared on the VDBE stack.  The test procedures
-** use this information to make sure that the zero-blob functionality
-** is working correctly.   This variable has no function other than to
-** help verify the correct operation of the library.
-*/
-#ifdef SQLITE_TEST
-int sqlite3_max_blobsize = 0;
-#endif
-
-/*
-** Release the memory associated with the given stack level.  This
-** leaves the Mem.flags field in an inconsistent state.
-*/
-#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
-
-/*
-** Convert the given stack entity into a string if it isn't one
-** already. Return non-zero if a malloc() fails.
-*/
-#define Stringify(P, enc) \
-   if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
-     { goto no_mem; }
-
-/*
-** The header of a record consists of a sequence variable-length integers.
-** These integers are almost always small and are encoded as a single byte.
-** The following macro takes advantage this fact to provide a fast decode
-** of the integers in a record header.  It is faster for the common case
-** where the integer is a single byte.  It is a little slower when the
-** integer is two or more bytes.  But overall it is faster.
-**
-** The following expressions are equivalent:
-**
-**     x = sqlite3GetVarint32( A, &B );
-**
-**     x = GetVarint( A, B );
-**
-*/
-#define GetVarint(A,B)  ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
-
-/*
-** An ephemeral string value (signified by the MEM_Ephem flag) contains
-** a pointer to a dynamically allocated string where some other entity
-** is responsible for deallocating that string.  Because the stack entry
-** does not control the string, it might be deleted without the stack
-** entry knowing it.
-**
-** This routine converts an ephemeral string into a dynamically allocated
-** string that the stack entry itself controls.  In other words, it
-** converts an MEM_Ephem string into an MEM_Dyn string.
-*/
-#define Deephemeralize(P) \
-   if( ((P)->flags&MEM_Ephem)!=0 \
-       && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
-
-/*
-** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
-** P if required.
-*/
-#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
-
-/*
-** Argument pMem points at a memory cell that will be passed to a
-** user-defined function or returned to the user as the result of a query.
-** The second argument, 'db_enc' is the text encoding used by the vdbe for
-** stack variables.  This routine sets the pMem->enc and pMem->type
-** variables used by the sqlite3_value_*() routines.
-*/
-#define storeTypeInfo(A,B) _storeTypeInfo(A)
-static void _storeTypeInfo(Mem *pMem){
-  int flags = pMem->flags;
-  if( flags & MEM_Null ){
-    pMem->type = SQLITE_NULL;
-  }
-  else if( flags & MEM_Int ){
-    pMem->type = SQLITE_INTEGER;
-  }
-  else if( flags & MEM_Real ){
-    pMem->type = SQLITE_FLOAT;
-  }
-  else if( flags & MEM_Str ){
-    pMem->type = SQLITE_TEXT;
-  }else{
-    pMem->type = SQLITE_BLOB;
-  }
-}
-
-/*
-** Pop the stack N times.
-*/
-static void popStack(Mem **ppTos, int N){
-  Mem *pTos = *ppTos;
-  while( N>0 ){
-    N--;
-    Release(pTos);
-    pTos--;
-  }
-  *ppTos = pTos;
-}
-
-/*
-** Allocate cursor number iCur.  Return a pointer to it.  Return NULL
-** if we run out of memory.
-*/
-static Cursor *allocateCursor(Vdbe *p, int iCur, int iDb){
-  Cursor *pCx;
-  assert( iCur<p->nCursor );
-  if( p->apCsr[iCur] ){
-    sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
-  }
-  p->apCsr[iCur] = pCx = (Cursor*)sqlite3MallocZero( sizeof(Cursor) );
-  if( pCx ){
-    pCx->iDb = iDb;
-  }
-  return pCx;
-}
-
-/*
-** Try to convert a value into a numeric representation if we can
-** do so without loss of information.  In other words, if the string
-** looks like a number, convert it into a number.  If it does not
-** look like a number, leave it alone.
-*/
-static void applyNumericAffinity(Mem *pRec){
-  if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
-    int realnum;
-    sqlite3VdbeMemNulTerminate(pRec);
-    if( (pRec->flags&MEM_Str)
-         && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
-      i64 value;
-      sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
-      if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
-        sqlite3VdbeMemRelease(pRec);
-        pRec->u.i = value;
-        pRec->flags = MEM_Int;
-      }else{
-        sqlite3VdbeMemRealify(pRec);
-      }
-    }
-  }
-}
-
-/*
-** Processing is determine by the affinity parameter:
-**
-** SQLITE_AFF_INTEGER:
-** SQLITE_AFF_REAL:
-** SQLITE_AFF_NUMERIC:
-**    Try to convert pRec to an integer representation or a 
-**    floating-point representation if an integer representation
-**    is not possible.  Note that the integer representation is
-**    always preferred, even if the affinity is REAL, because
-**    an integer representation is more space efficient on disk.
-**
-** SQLITE_AFF_TEXT:
-**    Convert pRec to a text representation.
-**
-** SQLITE_AFF_NONE:
-**    No-op.  pRec is unchanged.
-*/
-static void applyAffinity(
-  Mem *pRec,          /* The value to apply affinity to */
-  char affinity,      /* The affinity to be applied */
-  u8 enc              /* Use this text encoding */
-){
-  if( affinity==SQLITE_AFF_TEXT ){
-    /* Only attempt the conversion to TEXT if there is an integer or real
-    ** representation (blob and NULL do not get converted) but no string
-    ** representation.
-    */
-    if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
-      sqlite3VdbeMemStringify(pRec, enc);
-    }
-    pRec->flags &= ~(MEM_Real|MEM_Int);
-  }else if( affinity!=SQLITE_AFF_NONE ){
-    assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
-             || affinity==SQLITE_AFF_NUMERIC );
-    applyNumericAffinity(pRec);
-    if( pRec->flags & MEM_Real ){
-      sqlite3VdbeIntegerAffinity(pRec);
-    }
-  }
-}
-
-/*
-** Try to convert the type of a function argument or a result column
-** into a numeric representation.  Use either INTEGER or REAL whichever
-** is appropriate.  But only do the conversion if it is possible without
-** loss of information and return the revised type of the argument.
-**
-** This is an EXPERIMENTAL api and is subject to change or removal.
-*/
-EXPORT_C int sqlite3_value_numeric_type(sqlite3_value *pVal){
-  Mem *pMem = (Mem*)pVal;
-  applyNumericAffinity(pMem);
-  storeTypeInfo(pMem, 0);
-  return pMem->type;
-}
-
-/*
-** Exported version of applyAffinity(). This one works on sqlite3_value*, 
-** not the internal Mem* type.
-*/
-void sqlite3ValueApplyAffinity(
-  sqlite3_value *pVal, 
-  u8 affinity, 
-  u8 enc
-){
-  applyAffinity((Mem *)pVal, affinity, enc);
-}
-
-#ifdef SQLITE_DEBUG
-/*
-** Write a nice string representation of the contents of cell pMem
-** into buffer zBuf, length nBuf.
-*/
-void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
-  char *zCsr = zBuf;
-  int f = pMem->flags;
-
-  static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
-
-  if( f&MEM_Blob ){
-    int i;
-    char c;
-    if( f & MEM_Dyn ){
-      c = 'z';
-      assert( (f & (MEM_Static|MEM_Ephem))==0 );
-    }else if( f & MEM_Static ){
-      c = 't';
-      assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
-    }else if( f & MEM_Ephem ){
-      c = 'e';
-      assert( (f & (MEM_Static|MEM_Dyn))==0 );
-    }else{
-      c = 's';
-    }
-
-    sqlite3_snprintf(100, zCsr, "%c", c);
-    zCsr += strlen(zCsr);
-    sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
-    zCsr += strlen(zCsr);
-    for(i=0; i<16 && i<pMem->n; i++){
-      sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
-      zCsr += strlen(zCsr);
-    }
-    for(i=0; i<16 && i<pMem->n; i++){
-      char z = pMem->z[i];
-      if( z<32 || z>126 ) *zCsr++ = '.';
-      else *zCsr++ = z;
-    }
-
-    sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
-    zCsr += strlen(zCsr);
-    if( f & MEM_Zero ){
-      sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
-      zCsr += strlen(zCsr);
-    }
-    *zCsr = '\0';
-  }else if( f & MEM_Str ){
-    int j, k;
-    zBuf[0] = ' ';
-    if( f & MEM_Dyn ){
-      zBuf[1] = 'z';
-      assert( (f & (MEM_Static|MEM_Ephem))==0 );
-    }else if( f & MEM_Static ){
-      zBuf[1] = 't';
-      assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
-    }else if( f & MEM_Ephem ){
-      zBuf[1] = 'e';
-      assert( (f & (MEM_Static|MEM_Dyn))==0 );
-    }else{
-      zBuf[1] = 's';
-    }
-    k = 2;
-    sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
-    k += strlen(&zBuf[k]);
-    zBuf[k++] = '[';
-    for(j=0; j<15 && j<pMem->n; j++){
-      u8 c = pMem->z[j];
-      if( c>=0x20 && c<0x7f ){
-        zBuf[k++] = c;
-      }else{
-        zBuf[k++] = '.';
-      }
-    }
-    zBuf[k++] = ']';
-    sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
-    k += strlen(&zBuf[k]);
-    zBuf[k++] = 0;
-  }
-}
-#endif
-
-
-#ifdef VDBE_PROFILE
-/*
-** The following routine only works on pentium-class processors.
-** It uses the RDTSC opcode to read the cycle count value out of the
-** processor and returns that value.  This can be used for high-res
-** profiling.
-*/
-__inline__ unsigned long long int hwtime(void){
-  unsigned long long int x;
-  __asm__("rdtsc\n\t"
-          "mov %%edx, %%ecx\n\t"
-          :"=A" (x));
-  return x;
-}
-#endif
-
-/*
-** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
-** sqlite3_interrupt() routine has been called.  If it has been, then
-** processing of the VDBE program is interrupted.
-**
-** This macro added to every instruction that does a jump in order to
-** implement a loop.  This test used to be on every single instruction,
-** but that meant we more testing that we needed.  By only testing the
-** flag on jump instructions, we get a (small) speed improvement.
-*/
-#define CHECK_FOR_INTERRUPT \
-   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
-
-
-/*
-** Execute as much of a VDBE program as we can then return.
-**
-** sqlite3VdbeMakeReady() must be called before this routine in order to
-** close the program with a final OP_Halt and to set up the callbacks
-** and the error message pointer.
-**
-** Whenever a row or result data is available, this routine will either
-** invoke the result callback (if there is one) or return with
-** SQLITE_ROW.
-**
-** If an attempt is made to open a locked database, then this routine
-** will either invoke the busy callback (if there is one) or it will
-** return SQLITE_BUSY.
-**
-** If an error occurs, an error message is written to memory obtained
-** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
-** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
-**
-** If the callback ever returns non-zero, then the program exits
-** immediately.  There will be no error message but the p->rc field is
-** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
-**
-** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
-** routine to return SQLITE_ERROR.
-**
-** Other fatal errors return SQLITE_ERROR.
-**
-** After this routine has finished, sqlite3VdbeFinalize() should be
-** used to clean up the mess that was left behind.
-*/
-int sqlite3VdbeExec(
-  Vdbe *p                    /* The VDBE */
-){
-  int pc;                    /* The program counter */
-  Op *pOp;                   /* Current operation */
-  int rc = SQLITE_OK;        /* Value to return */
-  sqlite3 *db = p->db;       /* The database */
-  u8 encoding = ENC(db);     /* The database encoding */
-  Mem *pTos;                 /* Top entry in the operand stack */
-#ifdef VDBE_PROFILE
-  unsigned long long start;  /* CPU clock count at start of opcode */
-  int origPc;                /* Program counter at start of opcode */
-#endif
-#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
-  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
-#endif
-#ifndef NDEBUG
-  Mem *pStackLimit;
-#endif
-
-  if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
-  assert( db->magic==SQLITE_MAGIC_BUSY );
-  pTos = p->pTos;
-  sqlite3BtreeMutexArrayEnter(&p->aMutex);
-  if( p->rc==SQLITE_NOMEM ){
-    /* This happens if a malloc() inside a call to sqlite3_column_text() or
-    ** sqlite3_column_text16() failed.  */
-    goto no_mem;
-  }
-  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
-  p->rc = SQLITE_OK;
-  assert( p->explain==0 );
-  if( p->popStack ){
-    popStack(&pTos, p->popStack);
-    p->popStack = 0;
-  }
-  p->resOnStack = 0;
-  db->busyHandler.nBusy = 0;
-  CHECK_FOR_INTERRUPT;
-  sqlite3VdbeIOTraceSql(p);
-#ifdef SQLITE_DEBUG
-  if( (p->db->flags & SQLITE_VdbeListing)!=0
-    || sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS)
-  ){
-    int i;
-    printf("VDBE Program Listing:\n");
-    sqlite3VdbePrintSql(p);
-    for(i=0; i<p->nOp; i++){
-      sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
-    }
-  }
-  if( sqlite3OsAccess(db->pVfs, "vdbe_trace", SQLITE_ACCESS_EXISTS) ){
-    p->trace = stdout;
-  }
-#endif
-  for(pc=p->pc; rc==SQLITE_OK; pc++){
-    assert( pc>=0 && pc<p->nOp );
-    assert( pTos<=&p->aStack[pc] );
-    if( db->mallocFailed ) goto no_mem;
-#ifdef VDBE_PROFILE
-    origPc = pc;
-    start = hwtime();
-#endif
-    pOp = &p->aOp[pc];
-
-    /* Only allow tracing if SQLITE_DEBUG is defined.
-    */
-#ifdef SQLITE_DEBUG
-    if( p->trace ){
-      if( pc==0 ){
-        printf("VDBE Execution Trace:\n");
-        sqlite3VdbePrintSql(p);
-      }
-      sqlite3VdbePrintOp(p->trace, pc, pOp);
-    }
-    if( p->trace==0 && pc==0 
-     && sqlite3OsAccess(db->pVfs, "vdbe_sqltrace", SQLITE_ACCESS_EXISTS) ){
-      sqlite3VdbePrintSql(p);
-    }
-#endif
-      
-
-    /* Check to see if we need to simulate an interrupt.  This only happens
-    ** if we have a special test build.
-    */
-#ifdef SQLITE_TEST
-    if( sqlite3_interrupt_count>0 ){
-      sqlite3_interrupt_count--;
-      if( sqlite3_interrupt_count==0 ){
-        sqlite3_interrupt(db);
-      }
-    }
-#endif
-
-#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
-    /* Call the progress callback if it is configured and the required number
-    ** of VDBE ops have been executed (either since this invocation of
-    ** sqlite3VdbeExec() or since last time the progress callback was called).
-    ** If the progress callback returns non-zero, exit the virtual machine with
-    ** a return code SQLITE_ABORT.
-    */
-    if( db->xProgress ){
-      if( db->nProgressOps==nProgressOps ){
-        int prc;
-        if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
-        prc =db->xProgress(db->pProgressArg);
-        if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
-        if( prc!=0 ){
-          rc = SQLITE_INTERRUPT;
-          goto vdbe_halt;
-        }
-        nProgressOps = 0;
-      }
-      nProgressOps++;
-    }
-#endif
-
-#ifndef NDEBUG
-    /* This is to check that the return value of static function
-    ** opcodeNoPush() (see vdbeaux.c) returns values that match the
-    ** implementation of the virtual machine in this file. If
-    ** opcodeNoPush() returns non-zero, then the stack is guarenteed
-    ** not to grow when the opcode is executed. If it returns zero, then
-    ** the stack may grow by at most 1.
-    **
-    ** The global wrapper function sqlite3VdbeOpcodeUsesStack() is not 
-    ** available if NDEBUG is defined at build time.
-    */ 
-    pStackLimit = pTos;
-    if( !sqlite3VdbeOpcodeNoPush(pOp->opcode) ){
-      pStackLimit++;
-    }
-#endif
-
-    switch( pOp->opcode ){
-
-/*****************************************************************************
-** What follows is a massive switch statement where each case implements a
-** separate instruction in the virtual machine.  If we follow the usual
-** indentation conventions, each case should be indented by 6 spaces.  But
-** that is a lot of wasted space on the left margin.  So the code within
-** the switch statement will break with convention and be flush-left. Another
-** big comment (similar to this one) will mark the point in the code where
-** we transition back to normal indentation.
-**
-** The formatting of each case is important.  The makefile for SQLite
-** generates two C files "opcodes.h" and "opcodes.c" by scanning this
-** file looking for lines that begin with "case OP_".  The opcodes.h files
-** will be filled with #defines that give unique integer values to each
-** opcode and the opcodes.c file is filled with an array of strings where
-** each string is the symbolic name for the corresponding opcode.  If the
-** case statement is followed by a comment of the form "/# same as ... #/"
-** that comment is used to determine the particular value of the opcode.
-**
-** If a comment on the same line as the "case OP_" construction contains
-** the word "no-push", then the opcode is guarenteed not to grow the 
-** vdbe stack when it is executed. See function opcode() in
-** vdbeaux.c for details.
-**
-** Documentation about VDBE opcodes is generated by scanning this file
-** for lines of that contain "Opcode:".  That line and all subsequent
-** comment lines are used in the generation of the opcode.html documentation
-** file.
-**
-** SUMMARY:
-**
-**     Formatting is important to scripts that scan this file.
-**     Do not deviate from the formatting style currently in use.
-**
-*****************************************************************************/
-
-/* Opcode:  Goto * P2 *
-**
-** An unconditional jump to address P2.
-** The next instruction executed will be 
-** the one at index P2 from the beginning of
-** the program.
-*/
-case OP_Goto: {             /* no-push */
-  CHECK_FOR_INTERRUPT;
-  pc = pOp->p2 - 1;
-  break;
-}
-
-/* Opcode:  Gosub * P2 *
-**
-** Push the current address plus 1 onto the return address stack
-** and then jump to address P2.
-**
-** The return address stack is of limited depth.  If too many
-** OP_Gosub operations occur without intervening OP_Returns, then
-** the return address stack will fill up and processing will abort
-** with a fatal error.
-*/
-case OP_Gosub: {            /* no-push */
-  assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
-  p->returnStack[p->returnDepth++] = pc+1;
-  pc = pOp->p2 - 1;
-  break;
-}
-
-/* Opcode:  Return * * *
-**
-** Jump immediately to the next instruction after the last unreturned
-** OP_Gosub.  If an OP_Return has occurred for all OP_Gosubs, then
-** processing aborts with a fatal error.
-*/
-case OP_Return: {           /* no-push */
-  assert( p->returnDepth>0 );
-  p->returnDepth--;
-  pc = p->returnStack[p->returnDepth] - 1;
-  break;
-}
-
-/* Opcode:  Halt P1 P2 P3
-**
-** Exit immediately.  All open cursors, Fifos, etc are closed
-** automatically.
-**
-** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
-** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
-** For errors, it can be some other value.  If P1!=0 then P2 will determine
-** whether or not to rollback the current transaction.  Do not rollback
-** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
-** then back out all changes that have occurred during this execution of the
-** VDBE, but do not rollback the transaction. 
-**
-** If P3 is not null then it is an error message string.
-**
-** There is an implied "Halt 0 0 0" instruction inserted at the very end of
-** every program.  So a jump past the last instruction of the program
-** is the same as executing Halt.
-*/
-case OP_Halt: {            /* no-push */
-  p->pTos = pTos;
-  p->rc = pOp->p1;
-  p->pc = pc;
-  p->errorAction = pOp->p2;
-  if( pOp->p3 ){
-    sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
-  }
-  rc = sqlite3VdbeHalt(p);
-  assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
-  if( rc==SQLITE_BUSY ){
-    p->rc = rc = SQLITE_BUSY;
-  }else{
-    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
-  }
-  goto vdbe_return;
-}
-
-/* Opcode:  StackDepth P1 * *
-**
-** If P1 is less than zero, then store the current stack depth
-** in P1.  If P1 is zero or greater, verify that the current stack
-** depth is equal to P1 and throw an exception if it is not.
-**
-** This opcode is used for internal consistency checking.
-*/
-case OP_StackDepth: {       /* no-push */
-  int n = pTos - p->aStack + 1;
-  if( pOp->p1<0 ){
-    pOp->p1 = n;
-  }else if( pOp->p1!=n ){
-    p->pTos = pTos;
-    p->rc = rc = SQLITE_INTERNAL;
-    p->pc = pc;
-    p->errorAction = OE_Rollback;
-    sqlite3SetString(&p->zErrMsg, "internal error: VDBE stack leak", (char*)0);
-    goto vdbe_return;
-  }
-  break;
-}
-
-/* Opcode: Integer P1 * *
-**
-** The 32-bit integer value P1 is pushed onto the stack.
-*/
-case OP_Integer: {
-  pTos++;
-  pTos->flags = MEM_Int;
-  pTos->u.i = pOp->p1;
-  break;
-}
-
-/* Opcode: Int64 * * P3
-**
-** P3 is a pointer to a 64-bit integer value.
-** Push  that value onto  the stack.
-*/
-case OP_Int64: {
-  pTos++;
-  assert( pOp->p3!=0 );
-  pTos->flags = MEM_Int;
-  memcpy(&pTos->u.i, pOp->p3, 8);
-  break;
-}
-
-/* Opcode: Real * * P3
-**
-** P3 is a pointer to a 64-bit floating point value.  Push that value
-** onto the stack.
-*/
-case OP_Real: {            /* same as TK_FLOAT, */
-  pTos++;
-  pTos->flags = MEM_Real;
-  memcpy(&pTos->r, pOp->p3, 8);
-  break;
-}
-
-/* Opcode: String8 * * P3
-**
-** P3 points to a nul terminated UTF-8 string. This opcode is transformed 
-** into an OP_String before it is executed for the first time.
-*/
-case OP_String8: {         /* same as TK_STRING */
-  assert( pOp->p3!=0 );
-  pOp->opcode = OP_String;
-  pOp->p1 = strlen(pOp->p3);
-  assert( SQLITE_MAX_SQL_LENGTH <= SQLITE_MAX_LENGTH );
-  assert( pOp->p1 <= SQLITE_MAX_LENGTH );
-
-#ifndef SQLITE_OMIT_UTF16
-  if( encoding!=SQLITE_UTF8 ){
-    pTos++;
-    sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC);
-    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, encoding) ) goto no_mem;
-    if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem;
-    pTos->flags &= ~(MEM_Dyn);
-    pTos->flags |= MEM_Static;
-    if( pOp->p3type==P3_DYNAMIC ){
-      sqlite3_free(pOp->p3);
-    }
-    pOp->p3type = P3_DYNAMIC;
-    pOp->p3 = pTos->z;
-    pOp->p1 = pTos->n;
-    assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
-    break;
-  }
-#endif
-  /* Otherwise fall through to the next case, OP_String */
-}
-  
-/* Opcode: String P1 * P3
-**
-** The string value P3 of length P1 (bytes) is pushed onto the stack.
-*/
-case OP_String: {
-  assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
-  pTos++;
-  assert( pOp->p3!=0 );
-  pTos->flags = MEM_Str|MEM_Static|MEM_Term;
-  pTos->z = pOp->p3;
-  pTos->n = pOp->p1;
-  pTos->enc = encoding;
-  break;
-}
-
-/* Opcode: Null * * *
-**
-** Push a NULL onto the stack.
-*/
-case OP_Null: {
-  pTos++;
-  pTos->flags = MEM_Null;
-  pTos->n = 0;
-  break;
-}
-
-
-#ifndef SQLITE_OMIT_BLOB_LITERAL
-/* Opcode: HexBlob * * P3
-**
-** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the
-** vdbe stack.
-**
-** The first time this instruction executes, in transforms itself into a
-** 'Blob' opcode with a binary blob as P3.
-*/
-case OP_HexBlob: {            /* same as TK_BLOB */
-  pOp->opcode = OP_Blob;
-  pOp->p1 = strlen(pOp->p3)/2;
-  assert( SQLITE_MAX_SQL_LENGTH <= SQLITE_MAX_LENGTH );
-  assert( pOp->p1 <= SQLITE_MAX_LENGTH );
-  if( pOp->p1 ){
-    char *zBlob = (char*)sqlite3HexToBlob(db, pOp->p3);
-    if( !zBlob ) goto no_mem;
-    if( pOp->p3type==P3_DYNAMIC ){
-      sqlite3_free(pOp->p3);
-    }
-    pOp->p3 = zBlob;
-    pOp->p3type = P3_DYNAMIC;
-  }else{
-    if( pOp->p3type==P3_DYNAMIC ){
-      sqlite3_free(pOp->p3);
-    }
-    pOp->p3type = P3_STATIC;
-    pOp->p3 = "";
-  }
-
-  /* Fall through to the next case, OP_Blob. */
-}
-
-/* Opcode: Blob P1 * P3
-**
-** P3 points to a blob of data P1 bytes long. Push this
-** value onto the stack. This instruction is not coded directly
-** by the compiler. Instead, the compiler layer specifies
-** an OP_HexBlob opcode, with the hex string representation of
-** the blob as P3. This opcode is transformed to an OP_Blob
-** the first time it is executed.
-*/
-case OP_Blob: {
-  pTos++;
-  assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
-  sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0);
-  pTos->enc = encoding;
-  break;
-}
-#endif /* SQLITE_OMIT_BLOB_LITERAL */
-
-/* Opcode: Variable P1 * *
-**
-** Push the value of variable P1 onto the stack.  A variable is
-** an unknown in the original SQL string as handed to sqlite3_compile().
-** Any occurance of the '?' character in the original SQL is considered
-** a variable.  Variables in the SQL string are number from left to
-** right beginning with 1.  The values of variables are set using the
-** sqlite3_bind() API.
-*/
-case OP_Variable: {
-  int j = pOp->p1 - 1;
-  Mem *pVar;
-  assert( j>=0 && j<p->nVar );
-
-  pVar = &p->aVar[j];
-  if( sqlite3VdbeMemTooBig(pVar) ){
-    goto too_big;
-  }
-  pTos++;
-  sqlite3VdbeMemShallowCopy(pTos, &p->aVar[j], MEM_Static);
-  break;
-}
-
-/* Opcode: Pop P1 * *
-**
-** P1 elements are popped off of the top of stack and discarded.
-*/
-case OP_Pop: {            /* no-push */
-  assert( pOp->p1>=0 );
-  popStack(&pTos, pOp->p1);
-  assert( pTos>=&p->aStack[-1] );
-  break;
-}
-
-/* Opcode: Dup P1 P2 *
-**
-** A copy of the P1-th element of the stack 
-** is made and pushed onto the top of the stack.
-** The top of the stack is element 0.  So the
-** instruction "Dup 0 0 0" will make a copy of the
-** top of the stack.
-**
-** If the content of the P1-th element is a dynamically
-** allocated string, then a new copy of that string
-** is made if P2==0.  If P2!=0, then just a pointer
-** to the string is copied.
-**
-** Also see the Pull instruction.
-*/
-case OP_Dup: {
-  Mem *pFrom = &pTos[-pOp->p1];
-  assert( pFrom<=pTos && pFrom>=p->aStack );
-  pTos++;
-  sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem);
-  if( pOp->p2 ){
-    Deephemeralize(pTos);
-  }
-  break;
-}
-
-/* Opcode: Pull P1 * *
-**
-** The P1-th element is removed from its current location on 
-** the stack and pushed back on top of the stack.  The
-** top of the stack is element 0, so "Pull 0 0 0" is
-** a no-op.  "Pull 1 0 0" swaps the top two elements of
-** the stack.
-**
-** See also the Dup instruction.
-*/
-case OP_Pull: {            /* no-push */
-  Mem *pFrom = &pTos[-pOp->p1];
-  int i;
-  Mem ts;
-
-  ts = *pFrom;
-  Deephemeralize(pTos);
-  for(i=0; i<pOp->p1; i++, pFrom++){
-    Deephemeralize(&pFrom[1]);
-    assert( (pFrom[1].flags & MEM_Ephem)==0 );
-    *pFrom = pFrom[1];
-    if( pFrom->flags & MEM_Short ){
-      assert( pFrom->flags & (MEM_Str|MEM_Blob) );
-      assert( pFrom->z==pFrom[1].zShort );
-      pFrom->z = pFrom->zShort;
-    }
-  }
-  *pTos = ts;
-  if( pTos->flags & MEM_Short ){
-    assert( pTos->flags & (MEM_Str|MEM_Blob) );
-    assert( pTos->z==pTos[-pOp->p1].zShort );
-    pTos->z = pTos->zShort;
-  }
-  break;
-}
-
-/* Opcode: Push P1 * *
-**
-** Overwrite the value of the P1-th element down on the
-** stack (P1==0 is the top of the stack) with the value
-** of the top of the stack.  Then pop the top of the stack.
-*/
-case OP_Push: {            /* no-push */
-  Mem *pTo = &pTos[-pOp->p1];
-
-  assert( pTo>=p->aStack );
-  sqlite3VdbeMemMove(pTo, pTos);
-  pTos--;
-  break;
-}
-
-/* Opcode: Callback P1 * *
-**
-** The top P1 values on the stack represent a single result row from
-** a query.  This opcode causes the sqlite3_step() call to terminate
-** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
-** structure to provide access to the top P1 values as the result
-** row.  When the sqlite3_step() function is run again, the top P1
-** values will be automatically popped from the stack before the next
-** instruction executes.
-*/
-case OP_Callback: {            /* no-push */
-  Mem *pMem;
-  Mem *pFirstColumn;
-  assert( p->nResColumn==pOp->p1 );
-
-  /* Data in the pager might be moved or changed out from under us
-  ** in between the return from this sqlite3_step() call and the
-  ** next call to sqlite3_step().  So deephermeralize everything on 
-  ** the stack.  Note that ephemeral data is never stored in memory 
-  ** cells so we do not have to worry about them.
-  */
-  pFirstColumn = &pTos[0-pOp->p1];
-  for(pMem = p->aStack; pMem<pFirstColumn; pMem++){
-    Deephemeralize(pMem);
-  }
-
-  /* Invalidate all ephemeral cursor row caches */
-  p->cacheCtr = (p->cacheCtr + 2)|1;
-
-  /* Make sure the results of the current row are \000 terminated
-  ** and have an assigned type.  The results are deephemeralized as
-  ** as side effect.
-  */
-  for(; pMem<=pTos; pMem++ ){
-    sqlite3VdbeMemNulTerminate(pMem);
-    storeTypeInfo(pMem, encoding);
-  }
-
-  /* Set up the statement structure so that it will pop the current
-  ** results from the stack when the statement returns.
-  */
-  p->resOnStack = 1;
-  p->nCallback++;
-  p->popStack = pOp->p1;
-  p->pc = pc + 1;
-  p->pTos = pTos;
-  rc = SQLITE_ROW;
-  goto vdbe_return;
-}
-
-/* Opcode: Concat P1 P2 *
-**
-** Look at the first P1+2 elements of the stack.  Append them all 
-** together with the lowest element first.  The original P1+2 elements
-** are popped from the stack if P2==0 and retained if P2==1.  If
-** any element of the stack is NULL, then the result is NULL.
-**
-** When P1==1, this routine makes a copy of the top stack element
-** into memory obtained from sqlite3_malloc().
-*/
-case OP_Concat: {           /* same as TK_CONCAT */
-  char *zNew;
-  i64 nByte;
-  int nField;
-  int i, j;
-  Mem *pTerm;
-
-  /* Loop through the stack elements to see how long the result will be. */
-  nField = pOp->p1 + 2;
-  pTerm = &pTos[1-nField];
-  nByte = 0;
-  for(i=0; i<nField; i++, pTerm++){
-    assert( pOp->p2==0 || (pTerm->flags&MEM_Str) );
-    if( pTerm->flags&MEM_Null ){
-      nByte = -1;
-      break;
-    }
-    ExpandBlob(pTerm);
-    Stringify(pTerm, encoding);
-    nByte += pTerm->n;
-  }
-
-  if( nByte<0 ){
-    /* If nByte is less than zero, then there is a NULL value on the stack.
-    ** In this case just pop the values off the stack (if required) and
-    ** push on a NULL.
-    */
-    if( pOp->p2==0 ){
-      popStack(&pTos, nField);
-    }
-    pTos++;
-    pTos->flags = MEM_Null;
-  }else{
-    /* Otherwise malloc() space for the result and concatenate all the
-    ** stack values.
-    */
-    if( nByte+2>SQLITE_MAX_LENGTH ){
-      goto too_big;
-    }
-    zNew = (char*)sqlite3DbMallocRaw(db, nByte+2 );
-    if( zNew==0 ) goto no_mem;
-    j = 0;
-    pTerm = &pTos[1-nField];
-    for(i=j=0; i<nField; i++, pTerm++){
-      int n = pTerm->n;
-      assert( pTerm->flags & (MEM_Str|MEM_Blob) );
-      memcpy(&zNew[j], pTerm->z, n);
-      j += n;
-    }
-    zNew[j] = 0;
-    zNew[j+1] = 0;
-    assert( j==nByte );
-
-    if( pOp->p2==0 ){
-      popStack(&pTos, nField);
-    }
-    pTos++;
-    pTos->n = j;
-    pTos->flags = MEM_Str|MEM_Dyn|MEM_Term;
-    pTos->xDel = 0;
-    pTos->enc = encoding;
-    pTos->z = zNew;
-  }
-  break;
-}
-
-/* Opcode: Add * * *
-**
-** Pop the top two elements from the stack, add them together,
-** and push the result back onto the stack.  If either element
-** is a string then it is converted to a double using the atof()
-** function before the addition.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: Multiply * * *
-**
-** Pop the top two elements from the stack, multiply them together,
-** and push the result back onto the stack.  If either element
-** is a string then it is converted to a double using the atof()
-** function before the multiplication.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: Subtract * * *
-**
-** Pop the top two elements from the stack, subtract the
-** first (what was on top of the stack) from the second (the
-** next on stack)
-** and push the result back onto the stack.  If either element
-** is a string then it is converted to a double using the atof()
-** function before the subtraction.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: Divide * * *
-**
-** Pop the top two elements from the stack, divide the
-** first (what was on top of the stack) from the second (the
-** next on stack)
-** and push the result back onto the stack.  If either element
-** is a string then it is converted to a double using the atof()
-** function before the division.  Division by zero returns NULL.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: Remainder * * *
-**
-** Pop the top two elements from the stack, divide the
-** first (what was on top of the stack) from the second (the
-** next on stack)
-** and push the remainder after division onto the stack.  If either element
-** is a string then it is converted to a double using the atof()
-** function before the division.  Division by zero returns NULL.
-** If either operand is NULL, the result is NULL.
-*/
-case OP_Add:                   /* same as TK_PLUS, no-push */
-case OP_Subtract:              /* same as TK_MINUS, no-push */
-case OP_Multiply:              /* same as TK_STAR, no-push */
-case OP_Divide:                /* same as TK_SLASH, no-push */
-case OP_Remainder: {           /* same as TK_REM, no-push */
-  Mem *pNos = &pTos[-1];
-  int flags;
-  assert( pNos>=p->aStack );
-  flags = pTos->flags | pNos->flags;
-  if( (flags & MEM_Null)!=0 ){
-    Release(pTos);
-    pTos--;
-    Release(pTos);
-    pTos->flags = MEM_Null;
-  }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
-    i64 a, b;
-    a = pTos->u.i;
-    b = pNos->u.i;
-    switch( pOp->opcode ){
-      case OP_Add:         b += a;       break;
-      case OP_Subtract:    b -= a;       break;
-      case OP_Multiply:    b *= a;       break;
-      case OP_Divide: {
-        if( a==0 ) goto divide_by_zero;
-        /* Dividing the largest possible negative 64-bit integer (1<<63) by 
-        ** -1 returns an integer to large to store in a 64-bit data-type. On
-        ** some architectures, the value overflows to (1<<63). On others,
-        ** a SIGFPE is issued. The following statement normalizes this
-        ** behaviour so that all architectures behave as if integer 
-        ** overflow occured.
-        */
-        if( a==-1 && b==(((i64)1)<<63) ) a = 1;
-        b /= a;
-        break;
-      }
-      default: {
-        if( a==0 ) goto divide_by_zero;
-        if( a==-1 ) a = 1;
-        b %= a;
-        break;
-      }
-    }
-    Release(pTos);
-    pTos--;
-    Release(pTos);
-    pTos->u.i = b;
-    pTos->flags = MEM_Int;
-  }else{
-    double a, b;
-    a = sqlite3VdbeRealValue(pTos);
-    b = sqlite3VdbeRealValue(pNos);
-    switch( pOp->opcode ){
-      case OP_Add:         b += a;       break;
-      case OP_Subtract:    b -= a;       break;
-      case OP_Multiply:    b *= a;       break;
-      case OP_Divide: {
-        if( a==0.0 ) goto divide_by_zero;
-        b /= a;
-        break;
-      }
-      default: {
-        i64 ia = (i64)a;
-        i64 ib = (i64)b;
-        if( ia==0 ) goto divide_by_zero;
-        if( ia==-1 ) ia = 1;
-        b = ib % ia;
-        break;
-      }
-    }
-    if( sqlite3_isnan(b) ){
-      goto divide_by_zero;
-    }
-    Release(pTos);
-    pTos--;
-    Release(pTos);
-    pTos->r = b;
-    pTos->flags = MEM_Real;
-    if( (flags & MEM_Real)==0 ){
-      sqlite3VdbeIntegerAffinity(pTos);
-    }
-  }
-  break;
-
-divide_by_zero:
-  Release(pTos);
-  pTos--;
-  Release(pTos);
-  pTos->flags = MEM_Null;
-  break;
-}
-
-/* Opcode: CollSeq * * P3
-**
-** P3 is a pointer to a CollSeq struct. If the next call to a user function
-** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
-** be returned. This is used by the built-in min(), max() and nullif()
-** functions.
-**
-** The interface used by the implementation of the aforementioned functions
-** to retrieve the collation sequence set by this opcode is not available
-** publicly, only to user functions defined in func.c.
-*/
-case OP_CollSeq: {             /* no-push */
-  assert( pOp->p3type==P3_COLLSEQ );
-  break;
-}
-
-/* Opcode: Function P1 P2 P3
-**
-** Invoke a user function (P3 is a pointer to a Function structure that
-** defines the function) with P2 arguments taken from the stack.  Pop all
-** arguments from the stack and push back the result.
-**
-** P1 is a 32-bit bitmask indicating whether or not each argument to the 
-** function was determined to be constant at compile time. If the first
-** argument was constant then bit 0 of P1 is set. This is used to determine
-** whether meta data associated with a user function argument using the
-** sqlite3_set_auxdata() API may be safely retained until the next
-** invocation of this opcode.
-**
-** See also: AggStep and AggFinal
-*/
-case OP_Function: {
-  int i;
-  Mem *pArg;
-  sqlite3_context ctx;
-  sqlite3_value **apVal;
-  int n = pOp->p2;
-
-  apVal = p->apArg;
-  assert( apVal || n==0 );
-
-  pArg = &pTos[1-n];
-  for(i=0; i<n; i++, pArg++){
-    apVal[i] = pArg;
-    storeTypeInfo(pArg, encoding);
-  }
-
-  assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC );
-  if( pOp->p3type==P3_FUNCDEF ){
-    ctx.pFunc = (FuncDef*)pOp->p3;
-    ctx.pVdbeFunc = 0;
-  }else{
-    ctx.pVdbeFunc = (VdbeFunc*)pOp->p3;
-    ctx.pFunc = ctx.pVdbeFunc->pFunc;
-  }
-
-  ctx.s.flags = MEM_Null;
-  ctx.s.z = 0;
-  ctx.s.xDel = 0;
-  ctx.s.db = db;
-  ctx.isError = 0;
-  if( ctx.pFunc->needCollSeq ){
-    assert( pOp>p->aOp );
-    assert( pOp[-1].p3type==P3_COLLSEQ );
-    assert( pOp[-1].opcode==OP_CollSeq );
-    ctx.pColl = (CollSeq *)pOp[-1].p3;
-  }
-  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
-  (*ctx.pFunc->xFunc)(&ctx, n, apVal);
-  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
-  if( db->mallocFailed ){
-    /* Even though a malloc() has failed, the implementation of the
-    ** user function may have called an sqlite3_result_XXX() function
-    ** to return a value. The following call releases any resources
-    ** associated with such a value.
-    **
-    ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
-    ** fails also (the if(...) statement above). But if people are
-    ** misusing sqlite, they have bigger problems than a leaked value.
-    */
-    sqlite3VdbeMemRelease(&ctx.s);
-    goto no_mem;
-  }
-  popStack(&pTos, n);
-
-  /* If any auxilary data functions have been called by this user function,
-  ** immediately call the destructor for any non-static values.
-  */
-  if( ctx.pVdbeFunc ){
-    sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
-    pOp->p3 = (char *)ctx.pVdbeFunc;
-    pOp->p3type = P3_VDBEFUNC;
-  }
-
-  /* If the function returned an error, throw an exception */
-  if( ctx.isError ){
-    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
-    rc = SQLITE_ERROR;
-  }
-
-  /* Copy the result of the function to the top of the stack */
-  sqlite3VdbeChangeEncoding(&ctx.s, encoding);
-  pTos++;
-  pTos->flags = 0;
-  sqlite3VdbeMemMove(pTos, &ctx.s);
-  if( sqlite3VdbeMemTooBig(pTos) ){
-    goto too_big;
-  }
-  break;
-}
-
-/* Opcode: BitAnd * * *
-**
-** Pop the top two elements from the stack.  Convert both elements
-** to integers.  Push back onto the stack the bit-wise AND of the
-** two elements.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: BitOr * * *
-**
-** Pop the top two elements from the stack.  Convert both elements
-** to integers.  Push back onto the stack the bit-wise OR of the
-** two elements.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: ShiftLeft * * *
-**
-** Pop the top two elements from the stack.  Convert both elements
-** to integers.  Push back onto the stack the second element shifted
-** left by N bits where N is the top element on the stack.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: ShiftRight * * *
-**
-** Pop the top two elements from the stack.  Convert both elements
-** to integers.  Push back onto the stack the second element shifted
-** right by N bits where N is the top element on the stack.
-** If either operand is NULL, the result is NULL.
-*/
-case OP_BitAnd:                 /* same as TK_BITAND, no-push */
-case OP_BitOr:                  /* same as TK_BITOR, no-push */
-case OP_ShiftLeft:              /* same as TK_LSHIFT, no-push */
-case OP_ShiftRight: {           /* same as TK_RSHIFT, no-push */
-  Mem *pNos = &pTos[-1];
-  i64 a, b;
-
-  assert( pNos>=p->aStack );
-  if( (pTos->flags | pNos->flags) & MEM_Null ){
-    popStack(&pTos, 2);
-    pTos++;
-    pTos->flags = MEM_Null;
-    break;
-  }
-  a = sqlite3VdbeIntValue(pNos);
-  b = sqlite3VdbeIntValue(pTos);
-  switch( pOp->opcode ){
-    case OP_BitAnd:      a &= b;     break;
-    case OP_BitOr:       a |= b;     break;
-    case OP_ShiftLeft:   a <<= b;    break;
-    case OP_ShiftRight:  a >>= b;    break;
-    default:   /* CANT HAPPEN */     break;
-  }
-  Release(pTos);
-  pTos--;
-  Release(pTos);
-  pTos->u.i = a;
-  pTos->flags = MEM_Int;
-  break;
-}
-
-/* Opcode: AddImm  P1 * *
-** 
-** Add the value P1 to whatever is on top of the stack.  The result
-** is always an integer.
-**
-** To force the top of the stack to be an integer, just add 0.
-*/
-case OP_AddImm: {            /* no-push */
-  assert( pTos>=p->aStack );
-  sqlite3VdbeMemIntegerify(pTos);
-  pTos->u.i += pOp->p1;
-  break;
-}
-
-/* Opcode: ForceInt P1 P2 *
-**
-** Convert the top of the stack into an integer.  If the current top of
-** the stack is not numeric (meaning that is is a NULL or a string that
-** does not look like an integer or floating point number) then pop the
-** stack and jump to P2.  If the top of the stack is numeric then
-** convert it into the least integer that is greater than or equal to its
-** current value if P1==0, or to the least integer that is strictly
-** greater than its current value if P1==1.
-*/
-case OP_ForceInt: {            /* no-push */
-  i64 v;
-  assert( pTos>=p->aStack );
-  applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
-  if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){
-    Release(pTos);
-    pTos--;
-    pc = pOp->p2 - 1;
-    break;
-  }
-  if( pTos->flags & MEM_Int ){
-    v = pTos->u.i + (pOp->p1!=0);
-  }else{
-    /* FIX ME:  should this not be assert( pTos->flags & MEM_Real ) ??? */
-    sqlite3VdbeMemRealify(pTos);
-    v = (int)pTos->r;
-    if( pTos->r>(double)v ) v++;
-    if( pOp->p1 && pTos->r==(double)v ) v++;
-  }
-  Release(pTos);
-  pTos->u.i = v;
-  pTos->flags = MEM_Int;
-  break;
-}
-
-/* Opcode: MustBeInt P1 P2 *
-** 
-** Force the top of the stack to be an integer.  If the top of the
-** stack is not an integer and cannot be converted into an integer
-** without data loss, then jump immediately to P2, or if P2==0
-** raise an SQLITE_MISMATCH exception.
-**
-** If the top of the stack is not an integer and P2 is not zero and
-** P1 is 1, then the stack is popped.  In all other cases, the depth
-** of the stack is unchanged.
-*/
-case OP_MustBeInt: {            /* no-push */
-  assert( pTos>=p->aStack );
-  applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
-  if( (pTos->flags & MEM_Int)==0 ){
-    if( pOp->p2==0 ){
-      rc = SQLITE_MISMATCH;
-      goto abort_due_to_error;
-    }else{
-      if( pOp->p1 ) popStack(&pTos, 1);
-      pc = pOp->p2 - 1;
-    }
-  }else{
-    Release(pTos);
-    pTos->flags = MEM_Int;
-  }
-  break;
-}
-
-/* Opcode: RealAffinity * * *
-**
-** If the top of the stack is an integer, convert it to a real value.
-**
-** This opcode is used when extracting information from a column that
-** has REAL affinity.  Such column values may still be stored as
-** integers, for space efficiency, but after extraction we want them
-** to have only a real value.
-*/
-case OP_RealAffinity: {                  /* no-push */
-  assert( pTos>=p->aStack );
-  if( pTos->flags & MEM_Int ){
-    sqlite3VdbeMemRealify(pTos);
-  }
-  break;
-}
-
-#ifndef SQLITE_OMIT_CAST
-/* Opcode: ToText * * *
-**
-** Force the value on the top of the stack to be text.
-** If the value is numeric, convert it to a string using the
-** equivalent of printf().  Blob values are unchanged and
-** are afterwards simply interpreted as text.
-**
-** A NULL value is not changed by this routine.  It remains NULL.
-*/
-case OP_ToText: {                  /* same as TK_TO_TEXT, no-push */
-  assert( pTos>=p->aStack );
-  if( pTos->flags & MEM_Null ) break;
-  assert( MEM_Str==(MEM_Blob>>3) );
-  pTos->flags |= (pTos->flags&MEM_Blob)>>3;
-  applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
-  rc = ExpandBlob(pTos);
-  assert( pTos->flags & MEM_Str );
-  pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
-  break;
-}
-
-/* Opcode: ToBlob * * *
-**
-** Force the value on the top of the stack to be a BLOB.
-** If the value is numeric, convert it to a string first.
-** Strings are simply reinterpreted as blobs with no change
-** to the underlying data.
-**
-** A NULL value is not changed by this routine.  It remains NULL.
-*/
-case OP_ToBlob: {                  /* same as TK_TO_BLOB, no-push */
-  assert( pTos>=p->aStack );
-  if( pTos->flags & MEM_Null ) break;
-  if( (pTos->flags & MEM_Blob)==0 ){
-    applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
-    assert( pTos->flags & MEM_Str );
-    pTos->flags |= MEM_Blob;
-  }
-  pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Str);
-  break;
-}
-
-/* Opcode: ToNumeric * * *
-**
-** Force the value on the top of the stack to be numeric (either an
-** integer or a floating-point number.)
-** If the value is text or blob, try to convert it to an using the
-** equivalent of atoi() or atof() and store 0 if no such conversion 
-** is possible.
-**
-** A NULL value is not changed by this routine.  It remains NULL.
-*/
-case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, no-push */
-  assert( pTos>=p->aStack );
-  if( (pTos->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
-    sqlite3VdbeMemNumerify(pTos);
-  }
-  break;
-}
-#endif /* SQLITE_OMIT_CAST */
-
-/* Opcode: ToInt * * *
-**
-** Force the value on the top of the stack to be an integer.  If
-** The value is currently a real number, drop its fractional part.
-** If the value is text or blob, try to convert it to an integer using the
-** equivalent of atoi() and store 0 if no such conversion is possible.
-**
-** A NULL value is not changed by this routine.  It remains NULL.
-*/
-case OP_ToInt: {                  /* same as TK_TO_INT, no-push */
-  assert( pTos>=p->aStack );
-  if( (pTos->flags & MEM_Null)==0 ){
-    sqlite3VdbeMemIntegerify(pTos);
-  }
-  break;
-}
-
-#ifndef SQLITE_OMIT_CAST
-/* Opcode: ToReal * * *
-**
-** Force the value on the top of the stack to be a floating point number.
-** If The value is currently an integer, convert it.
-** If the value is text or blob, try to convert it to an integer using the
-** equivalent of atoi() and store 0 if no such conversion is possible.
-**
-** A NULL value is not changed by this routine.  It remains NULL.
-*/
-case OP_ToReal: {                  /* same as TK_TO_REAL, no-push */
-  assert( pTos>=p->aStack );
-  if( (pTos->flags & MEM_Null)==0 ){
-    sqlite3VdbeMemRealify(pTos);
-  }
-  break;
-}
-#endif /* SQLITE_OMIT_CAST */
-
-/* Opcode: Eq P1 P2 P3
-**
-** Pop the top two elements from the stack.  If they are equal, then
-** jump to instruction P2.  Otherwise, continue to the next instruction.
-**
-** If the 0x100 bit of P1 is true and either operand is NULL then take the
-** jump.  If the 0x100 bit of P1 is clear then fall thru if either operand
-** is NULL.
-**
-** If the 0x200 bit of P1 is set and either operand is NULL then
-** both operands are converted to integers prior to comparison.
-** NULL operands are converted to zero and non-NULL operands are
-** converted to 1.  Thus, for example, with 0x200 set,  NULL==NULL is true
-** whereas it would normally be NULL.  Similarly,  NULL==123 is false when
-** 0x200 is set but is NULL when the 0x200 bit of P1 is clear.
-**
-** The least significant byte of P1 (mask 0xff) must be an affinity character -
-** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
-** to coerce both values
-** according to the affinity before the comparison is made. If the byte is
-** 0x00, then numeric affinity is used.
-**
-** Once any conversions have taken place, and neither value is NULL, 
-** the values are compared. If both values are blobs, or both are text,
-** then memcmp() is used to determine the results of the comparison. If
-** both values are numeric, then a numeric comparison is used. If the
-** two values are of different types, then they are inequal.
-**
-** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not.  Push a
-** NULL if either operand was NULL.
-**
-** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq
-** structure) that defines how to compare text.
-*/
-/* Opcode: Ne P1 P2 P3
-**
-** This works just like the Eq opcode except that the jump is taken if
-** the operands from the stack are not equal.  See the Eq opcode for
-** additional information.
-*/
-/* Opcode: Lt P1 P2 P3
-**
-** This works just like the Eq opcode except that the jump is taken if
-** the 2nd element down on the stack is less than the top of the stack.
-** See the Eq opcode for additional information.
-*/
-/* Opcode: Le P1 P2 P3
-**
-** This works just like the Eq opcode except that the jump is taken if
-** the 2nd element down on the stack is less than or equal to the
-** top of the stack.  See the Eq opcode for additional information.
-*/
-/* Opcode: Gt P1 P2 P3
-**
-** This works just like the Eq opcode except that the jump is taken if
-** the 2nd element down on the stack is greater than the top of the stack.
-** See the Eq opcode for additional information.
-*/
-/* Opcode: Ge P1 P2 P3
-**
-** This works just like the Eq opcode except that the jump is taken if
-** the 2nd element down on the stack is greater than or equal to the
-** top of the stack.  See the Eq opcode for additional information.
-*/
-case OP_Eq:               /* same as TK_EQ, no-push */
-case OP_Ne:               /* same as TK_NE, no-push */
-case OP_Lt:               /* same as TK_LT, no-push */
-case OP_Le:               /* same as TK_LE, no-push */
-case OP_Gt:               /* same as TK_GT, no-push */
-case OP_Ge: {             /* same as TK_GE, no-push */
-  Mem *pNos;
-  int flags;
-  int res;
-  char affinity;
-
-  pNos = &pTos[-1];
-  flags = pTos->flags|pNos->flags;
-
-  /* If either value is a NULL P2 is not zero, take the jump if the least
-  ** significant byte of P1 is true. If P2 is zero, then push a NULL onto
-  ** the stack.
-  */
-  if( flags&MEM_Null ){
-    if( (pOp->p1 & 0x200)!=0 ){
-      /* The 0x200 bit of P1 means, roughly "do not treat NULL as the
-      ** magic SQL value it normally is - treat it as if it were another
-      ** integer".
-      **
-      ** With 0x200 set, if either operand is NULL then both operands
-      ** are converted to integers prior to being passed down into the
-      ** normal comparison logic below.  NULL operands are converted to
-      ** zero and non-NULL operands are converted to 1.  Thus, for example,
-      ** with 0x200 set,  NULL==NULL is true whereas it would normally
-      ** be NULL.  Similarly,  NULL!=123 is true.
-      */
-      sqlite3VdbeMemSetInt64(pTos, (pTos->flags & MEM_Null)==0);
-      sqlite3VdbeMemSetInt64(pNos, (pNos->flags & MEM_Null)==0);
-    }else{
-      /* If the 0x200 bit of P1 is clear and either operand is NULL then
-      ** the result is always NULL.  The jump is taken if the 0x100 bit
-      ** of P1 is set.
-      */
-      popStack(&pTos, 2);
-      if( pOp->p2 ){
-        if( pOp->p1 & 0x100 ){
-          pc = pOp->p2-1;
-        }
-      }else{
-        pTos++;
-        pTos->flags = MEM_Null;
-      }
-      break;
-    }
-  }
-
-  affinity = pOp->p1 & 0xFF;
-  if( affinity ){
-    applyAffinity(pNos, affinity, encoding);
-    applyAffinity(pTos, affinity, encoding);
-  }
-
-  assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 );
-  ExpandBlob(pNos);
-  ExpandBlob(pTos);
-  res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3);
-  switch( pOp->opcode ){
-    case OP_Eq:    res = res==0;     break;
-    case OP_Ne:    res = res!=0;     break;
-    case OP_Lt:    res = res<0;      break;
-    case OP_Le:    res = res<=0;     break;
-    case OP_Gt:    res = res>0;      break;
-    default:       res = res>=0;     break;
-  }
-
-  popStack(&pTos, 2);
-  if( pOp->p2 ){
-    if( res ){
-      pc = pOp->p2-1;
-    }
-  }else{
-    pTos++;
-    pTos->flags = MEM_Int;
-    pTos->u.i = res;
-  }
-  break;
-}
-
-/* Opcode: And * * *
-**
-** Pop two values off the stack.  Take the logical AND of the
-** two values and push the resulting boolean value back onto the
-** stack. 
-*/
-/* Opcode: Or * * *
-**
-** Pop two values off the stack.  Take the logical OR of the
-** two values and push the resulting boolean value back onto the
-** stack. 
-*/
-case OP_And:              /* same as TK_AND, no-push */
-case OP_Or: {             /* same as TK_OR, no-push */
-  Mem *pNos = &pTos[-1];
-  int v1, v2;    /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
-
-  assert( pNos>=p->aStack );
-  if( pTos->flags & MEM_Null ){
-    v1 = 2;
-  }else{
-    sqlite3VdbeMemIntegerify(pTos);
-    v1 = pTos->u.i==0;
-  }
-  if( pNos->flags & MEM_Null ){
-    v2 = 2;
-  }else{
-    sqlite3VdbeMemIntegerify(pNos);
-    v2 = pNos->u.i==0;
-  }
-  if( pOp->opcode==OP_And ){
-    static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
-    v1 = and_logic[v1*3+v2];
-  }else{
-    static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
-    v1 = or_logic[v1*3+v2];
-  }
-  popStack(&pTos, 2);
-  pTos++;
-  if( v1==2 ){
-    pTos->flags = MEM_Null;
-  }else{
-    pTos->u.i = v1==0;
-    pTos->flags = MEM_Int;
-  }
-  break;
-}
-
-/* Opcode: Negative * * *
-**
-** Treat the top of the stack as a numeric quantity.  Replace it
-** with its additive inverse.  If the top of the stack is NULL
-** its value is unchanged.
-*/
-/* Opcode: AbsValue * * *
-**
-** Treat the top of the stack as a numeric quantity.  Replace it
-** with its absolute value. If the top of the stack is NULL
-** its value is unchanged.
-*/
-case OP_Negative:              /* same as TK_UMINUS, no-push */
-case OP_AbsValue: {
-  assert( pTos>=p->aStack );
-  if( (pTos->flags & (MEM_Real|MEM_Int|MEM_Null))==0 ){
-    sqlite3VdbeMemNumerify(pTos);
-  }
-  if( pTos->flags & MEM_Real ){
-    Release(pTos);
-    if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
-      pTos->r = -pTos->r;
-    }
-    pTos->flags = MEM_Real;
-  }else if( pTos->flags & MEM_Int ){
-    Release(pTos);
-    if( pOp->opcode==OP_Negative || pTos->u.i<0 ){
-      pTos->u.i = -pTos->u.i;
-    }
-    pTos->flags = MEM_Int;
-  }
-  break;
-}
-
-/* Opcode: Not * * *
-**
-** Interpret the top of the stack as a boolean value.  Replace it
-** with its complement.  If the top of the stack is NULL its value
-** is unchanged.
-*/
-case OP_Not: {                /* same as TK_NOT, no-push */
-  assert( pTos>=p->aStack );
-  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
-  sqlite3VdbeMemIntegerify(pTos);
-  assert( (pTos->flags & MEM_Dyn)==0 );
-  pTos->u.i = !pTos->u.i;
-  pTos->flags = MEM_Int;
-  break;
-}
-
-/* Opcode: BitNot * * *
-**
-** Interpret the top of the stack as an value.  Replace it
-** with its ones-complement.  If the top of the stack is NULL its
-** value is unchanged.
-*/
-case OP_BitNot: {             /* same as TK_BITNOT, no-push */
-  assert( pTos>=p->aStack );
-  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
-  sqlite3VdbeMemIntegerify(pTos);
-  assert( (pTos->flags & MEM_Dyn)==0 );
-  pTos->u.i = ~pTos->u.i;
-  pTos->flags = MEM_Int;
-  break;
-}
-
-/* Opcode: Noop * * *
-**
-** Do nothing.  This instruction is often useful as a jump
-** destination.
-*/
-/*
-** The magic Explain opcode are only inserted when explain==2 (which
-** is to say when the EXPLAIN QUERY PLAN syntax is used.)
-** This opcode records information from the optimizer.  It is the
-** the same as a no-op.  This opcodesnever appears in a real VM program.
-*/
-case OP_Explain:
-case OP_Noop: {            /* no-push */
-  break;
-}
-
-/* Opcode: If P1 P2 *
-**
-** Pop a single boolean from the stack.  If the boolean popped is
-** true, then jump to p2.  Otherwise continue to the next instruction.
-** An integer is false if zero and true otherwise.  A string is
-** false if it has zero length and true otherwise.
-**
-** If the value popped of the stack is NULL, then take the jump if P1
-** is true and fall through if P1 is false.
-*/
-/* Opcode: IfNot P1 P2 *
-**
-** Pop a single boolean from the stack.  If the boolean popped is
-** false, then jump to p2.  Otherwise continue to the next instruction.
-** An integer is false if zero and true otherwise.  A string is
-** false if it has zero length and true otherwise.
-**
-** If the value popped of the stack is NULL, then take the jump if P1
-** is true and fall through if P1 is false.
-*/
-case OP_If:                 /* no-push */
-case OP_IfNot: {            /* no-push */
-  int c;
-  assert( pTos>=p->aStack );
-  if( pTos->flags & MEM_Null ){
-    c = pOp->p1;
-  }else{
-#ifdef SQLITE_OMIT_FLOATING_POINT
-    c = sqlite3VdbeIntValue(pTos);
-#else
-    c = sqlite3VdbeRealValue(pTos)!=0.0;
-#endif
-    if( pOp->opcode==OP_IfNot ) c = !c;
-  }
-  Release(pTos);
-  pTos--;
-  if( c ) pc = pOp->p2-1;
-  break;
-}
-
-/* Opcode: IsNull P1 P2 *
-**
-** Check the top of the stack and jump to P2 if the top of the stack
-** is NULL.  If P1 is positive, then pop P1 elements from the stack
-** regardless of whether or not the jump is taken.  If P1 is negative,
-** pop -P1 elements from the stack only if the jump is taken and leave
-** the stack unchanged if the jump is not taken.
-*/
-case OP_IsNull: {            /* same as TK_ISNULL, no-push */
-  if( pTos->flags & MEM_Null ){
-    pc = pOp->p2-1;
-    if( pOp->p1<0 ){
-      popStack(&pTos, -pOp->p1);
-    }
-  }
-  if( pOp->p1>0 ){
-    popStack(&pTos, pOp->p1);
-  }
-  break;
-}
-
-/* Opcode: NotNull P1 P2 *
-**
-** Jump to P2 if the top abs(P1) values on the stack are all not NULL.  
-** Regardless of whether or not the jump is taken, pop the stack
-** P1 times if P1 is greater than zero.  But if P1 is negative,
-** leave the stack unchanged.
-*/
-case OP_NotNull: {            /* same as TK_NOTNULL, no-push */
-  int i, cnt;
-  cnt = pOp->p1;
-  if( cnt<0 ) cnt = -cnt;
-  assert( &pTos[1-cnt] >= p->aStack );
-  for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
-  if( i>=cnt ) pc = pOp->p2-1;
-  if( pOp->p1>0 ) popStack(&pTos, cnt);
-  break;
-}
-
-/* Opcode: SetNumColumns P1 P2 *
-**
-** Before the OP_Column opcode can be executed on a cursor, this
-** opcode must be called to set the number of fields in the table.
-**
-** This opcode sets the number of columns for cursor P1 to P2.
-**
-** If OP_KeyAsData is to be applied to cursor P1, it must be executed
-** before this op-code.
-*/
-case OP_SetNumColumns: {       /* no-push */
-  Cursor *pC;
-  assert( (pOp->p1)<p->nCursor );
-  assert( p->apCsr[pOp->p1]!=0 );
-  pC = p->apCsr[pOp->p1];
-  pC->nField = pOp->p2;
-  break;
-}
-
-/* Opcode: Column P1 P2 P3
-**
-** Interpret the data that cursor P1 points to as a structure built using
-** the MakeRecord instruction.  (See the MakeRecord opcode for additional
-** information about the format of the data.) Push onto the stack the value
-** of the P2-th column contained in the data. If there are less that (P2+1) 
-** values in the record, push a NULL onto the stack.
-**
-** If the KeyAsData opcode has previously executed on this cursor, then the
-** field might be extracted from the key rather than the data.
-**
-** If the column contains fewer than P2 fields, then push a NULL.  Or
-** if P3 is of type P3_MEM, then push the P3 value.  The P3 value will
-** be default value for a column that has been added using the ALTER TABLE
-** ADD COLUMN command.  If P3 is an ordinary string, just push a NULL.
-** When P3 is a string it is really just a comment describing the value
-** to be pushed, not a default value.
-*/
-case OP_Column: {
-  u32 payloadSize;   /* Number of bytes in the record */
-  int p1 = pOp->p1;  /* P1 value of the opcode */
-  int p2 = pOp->p2;  /* column number to retrieve */
-  Cursor *pC = 0;    /* The VDBE cursor */
-  char *zRec;        /* Pointer to complete record-data */
-  BtCursor *pCrsr;   /* The BTree cursor */
-  u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
-  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
-  u32 nField;        /* number of fields in the record */
-  int len;           /* The length of the serialized data for the column */
-  int i;             /* Loop counter */
-  char *zData;       /* Part of the record being decoded */
-  Mem sMem;          /* For storing the record being decoded */
-
-  sMem.flags = 0;
-  assert( p1<p->nCursor );
-  pTos++;
-  pTos->flags = MEM_Null;
-
-  /* This block sets the variable payloadSize to be the total number of
-  ** bytes in the record.
-  **
-  ** zRec is set to be the complete text of the record if it is available.
-  ** The complete record text is always available for pseudo-tables
-  ** If the record is stored in a cursor, the complete record text
-  ** might be available in the  pC->aRow cache.  Or it might not be.
-  ** If the data is unavailable,  zRec is set to NULL.
-  **
-  ** We also compute the number of columns in the record.  For cursors,
-  ** the number of columns is stored in the Cursor.nField element.  For
-  ** records on the stack, the next entry down on the stack is an integer
-  ** which is the number of records.
-  */
-  pC = p->apCsr[p1];
-  assert( pC!=0 );
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-  assert( pC->pVtabCursor==0 );
-#endif
-  if( pC->pCursor!=0 ){
-    /* The record is stored in a B-Tree */
-    rc = sqlite3VdbeCursorMoveto(pC);
-    if( rc ) goto abort_due_to_error;
-    zRec = 0;
-    pCrsr = pC->pCursor;
-    if( pC->nullRow ){
-      payloadSize = 0;
-    }else if( pC->cacheStatus==p->cacheCtr ){
-      payloadSize = pC->payloadSize;
-      zRec = (char*)pC->aRow;
-    }else if( pC->isIndex ){
-      i64 payloadSize64;
-      sqlite3BtreeKeySize(pCrsr, &payloadSize64);
-      payloadSize = payloadSize64;
-    }else{
-      sqlite3BtreeDataSize(pCrsr, &payloadSize);
-    }
-    nField = pC->nField;
-  }else if( pC->pseudoTable ){
-    /* The record is the sole entry of a pseudo-table */
-    payloadSize = pC->nData;
-    zRec = pC->pData;
-    pC->cacheStatus = CACHE_STALE;
-    assert( payloadSize==0 || zRec!=0 );
-    nField = pC->nField;
-    pCrsr = 0;
-  }else{
-    zRec = 0;
-    payloadSize = 0;
-    pCrsr = 0;
-    nField = 0;
-  }
-
-  /* If payloadSize is 0, then just push a NULL onto the stack. */
-  if( payloadSize==0 ){
-    assert( pTos->flags==MEM_Null );
-    break;
-  }
-  if( payloadSize>SQLITE_MAX_LENGTH ){
-    goto too_big;
-  }
-
-  assert( p2<nField );
-
-  /* Read and parse the table header.  Store the results of the parse
-  ** into the record header cache fields of the cursor.
-  */
-  if( pC && pC->cacheStatus==p->cacheCtr ){
-    aType = pC->aType;
-    aOffset = pC->aOffset;
-  }else{
-    u8 *zIdx;        /* Index into header */
-    u8 *zEndHdr;     /* Pointer to first byte after the header */
-    u32 offset;      /* Offset into the data */
-    int szHdrSz;     /* Size of the header size field at start of record */
-    int avail;       /* Number of bytes of available data */
-
-    aType = pC->aType;
-    if( aType==0 ){
-      pC->aType = aType = (u32*)sqlite3DbMallocRaw(db, 2*nField*sizeof(aType) );
-    }
-    if( aType==0 ){
-      goto no_mem;
-    }
-    pC->aOffset = aOffset = &aType[nField];
-    pC->payloadSize = payloadSize;
-    pC->cacheStatus = p->cacheCtr;
-
-    /* Figure out how many bytes are in the header */
-    if( zRec ){
-      zData = zRec;
-    }else{
-      if( pC->isIndex ){
-        zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
-      }else{
-        zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
-      }
-      /* If KeyFetch()/DataFetch() managed to get the entire payload,
-      ** save the payload in the pC->aRow cache.  That will save us from
-      ** having to make additional calls to fetch the content portion of
-      ** the record.
-      */
-      if( avail>=payloadSize ){
-        zRec = zData;
-        pC->aRow = (u8*)zData;
-      }else{
-        pC->aRow = 0;
-      }
-    }
-    /* The following assert is true in all cases accept when
-    ** the database file has been corrupted externally.
-    **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
-    szHdrSz = GetVarint((u8*)zData, offset);
-
-    /* The KeyFetch() or DataFetch() above are fast and will get the entire
-    ** record header in most cases.  But they will fail to get the complete
-    ** record header if the record header does not fit on a single page
-    ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
-    ** acquire the complete header text.
-    */
-    if( !zRec && avail<offset ){
-      rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
-      if( rc!=SQLITE_OK ){
-        goto op_column_out;
-      }
-      zData = sMem.z;
-    }
-    zEndHdr = (u8 *)&zData[offset];
-    zIdx = (u8 *)&zData[szHdrSz];
-
-    /* Scan the header and use it to fill in the aType[] and aOffset[]
-    ** arrays.  aType[i] will contain the type integer for the i-th
-    ** column and aOffset[i] will contain the offset from the beginning
-    ** of the record to the start of the data for the i-th column
-    */
-    for(i=0; i<nField; i++){
-      if( zIdx<zEndHdr ){
-        aOffset[i] = offset;
-        zIdx += GetVarint(zIdx, aType[i]);
-        offset += sqlite3VdbeSerialTypeLen(aType[i]);
-      }else{
-        /* If i is less that nField, then there are less fields in this
-        ** record than SetNumColumns indicated there are columns in the
-        ** table. Set the offset for any extra columns not present in
-        ** the record to 0. This tells code below to push a NULL onto the
-        ** stack instead of deserializing a value from the record.
-        */
-        aOffset[i] = 0;
-      }
-    }
-    Release(&sMem);
-    sMem.flags = MEM_Null;
-
-    /* If we have read more header data than was contained in the header,
-    ** or if the end of the last field appears to be past the end of the
-    ** record, then we must be dealing with a corrupt database.
-    */
-    if( zIdx>zEndHdr || offset>payloadSize ){
-      rc = SQLITE_CORRUPT_BKPT;
-      goto op_column_out;
-    }
-  }
-
-  /* Get the column information. If aOffset[p2] is non-zero, then 
-  ** deserialize the value from the record. If aOffset[p2] is zero,
-  ** then there are not enough fields in the record to satisfy the
-  ** request.  In this case, set the value NULL or to P3 if P3 is
-  ** a pointer to a Mem object.
-  */
-  if( aOffset[p2] ){
-    assert( rc==SQLITE_OK );
-    if( zRec ){
-      zData = &zRec[aOffset[p2]];
-    }else{
-      len = sqlite3VdbeSerialTypeLen(aType[p2]);
-      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
-      if( rc!=SQLITE_OK ){
-        goto op_column_out;
-      }
-      zData = sMem.z;
-    }
-    sqlite3VdbeSerialGet((u8*)zData, aType[p2], pTos);
-    pTos->enc = encoding;
-  }else{
-    if( pOp->p3type==P3_MEM ){
-      sqlite3VdbeMemShallowCopy(pTos, (Mem *)(pOp->p3), MEM_Static);
-    }else{
-      pTos->flags = MEM_Null;
-    }
-  }
-
-  /* If we dynamically allocated space to hold the data (in the
-  ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
-  ** dynamically allocated space over to the pTos structure.
-  ** This prevents a memory copy.
-  */
-  if( (sMem.flags & MEM_Dyn)!=0 ){
-    assert( pTos->flags & MEM_Ephem );
-    assert( pTos->flags & (MEM_Str|MEM_Blob) );
-    assert( pTos->z==sMem.z );
-    assert( sMem.flags & MEM_Term );
-    pTos->flags &= ~MEM_Ephem;
-    pTos->flags |= MEM_Dyn|MEM_Term;
-  }
-
-  /* pTos->z might be pointing to sMem.zShort[].  Fix that so that we
-  ** can abandon sMem */
-  rc = sqlite3VdbeMemMakeWriteable(pTos);
-
-op_column_out:
-  break;
-}
-
-/* Opcode: MakeRecord P1 P2 P3
-**
-** Convert the top abs(P1) entries of the stack into a single entry
-** suitable for use as a data record in a database table or as a key
-** in an index.  The details of the format are irrelavant as long as
-** the OP_Column opcode can decode the record later and as long as the
-** sqlite3VdbeRecordCompare function will correctly compare two encoded
-** records.  Refer to source code comments for the details of the record
-** format.
-**
-** The original stack entries are popped from the stack if P1>0 but
-** remain on the stack if P1<0.
-**
-** If P2 is not zero and one or more of the entries are NULL, then jump
-** to the address given by P2.  This feature can be used to skip a
-** uniqueness test on indices.
-**
-** P3 may be a string that is P1 characters long.  The nth character of the
-** string indicates the column affinity that should be used for the nth
-** field of the index key (i.e. the first character of P3 corresponds to the
-** lowest element on the stack).
-**
-** The mapping from character to affinity is given by the SQLITE_AFF_
-** macros defined in sqliteInt.h.
-**
-** If P3 is NULL then all index fields have the affinity NONE.
-**
-** See also OP_MakeIdxRec
-*/
-/* Opcode: MakeIdxRec P1 P2 P3
-**
-** This opcode works just OP_MakeRecord except that it reads an extra
-** integer from the stack (thus reading a total of abs(P1+1) entries)
-** and appends that extra integer to the end of the record as a varint.
-** This results in an index key.
-*/
-case OP_MakeIdxRec:
-case OP_MakeRecord: {
-  /* Assuming the record contains N fields, the record format looks
-  ** like this:
-  **
-  ** ------------------------------------------------------------------------
-  ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
-  ** ------------------------------------------------------------------------
-  **
-  ** Data(0) is taken from the lowest element of the stack and data(N-1) is
-  ** the top of the stack.
-  **
-  ** Each type field is a varint representing the serial type of the 
-  ** corresponding data element (see sqlite3VdbeSerialType()). The
-  ** hdr-size field is also a varint which is the offset from the beginning
-  ** of the record to data0.
-  */
-  u8 *zNewRecord;        /* A buffer to hold the data for the new record */
-  Mem *pRec;             /* The new record */
-  Mem *pRowid = 0;       /* Rowid appended to the new record */
-  u64 nData = 0;         /* Number of bytes of data space */
-  int nHdr = 0;          /* Number of bytes of header space */
-  u64 nByte = 0;         /* Data space required for this record */
-  int nZero = 0;         /* Number of zero bytes at the end of the record */
-  int nVarint;           /* Number of bytes in a varint */
-  u32 serial_type;       /* Type field */
-  int containsNull = 0;  /* True if any of the data fields are NULL */
-  Mem *pData0;           /* Bottom of the stack */
-  int leaveOnStack;      /* If true, leave the entries on the stack */
-  int nField;            /* Number of fields in the record */
-  int jumpIfNull;        /* Jump here if non-zero and any entries are NULL. */
-  int addRowid;          /* True to append a rowid column at the end */
-  char *zAffinity;       /* The affinity string for the record */
-  int file_format;       /* File format to use for encoding */
-  int i;                 /* Space used in zNewRecord[] */
-  char zTemp[NBFS];      /* Space to hold small records */
-
-  leaveOnStack = ((pOp->p1<0)?1:0);
-  nField = pOp->p1 * (leaveOnStack?-1:1);
-  jumpIfNull = pOp->p2;
-  addRowid = pOp->opcode==OP_MakeIdxRec;
-  zAffinity = pOp->p3;
-
-  pData0 = &pTos[1-nField];
-  assert( pData0>=p->aStack );
-  containsNull = 0;
-  file_format = p->minWriteFileFormat;
-
-  /* Loop through the elements that will make up the record to figure
-  ** out how much space is required for the new record.
-  */
-  for(pRec=pData0; pRec<=pTos; pRec++){
-    int len;
-    if( zAffinity ){
-      applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
-    }
-    if( pRec->flags&MEM_Null ){
-      containsNull = 1;
-    }
-    if( pRec->flags&MEM_Zero && pRec->n>0 ){
-      ExpandBlob(pRec);
-    }
-    serial_type = sqlite3VdbeSerialType(pRec, file_format);
-    len = sqlite3VdbeSerialTypeLen(serial_type);
-    nData += len;
-    nHdr += sqlite3VarintLen(serial_type);
-    if( pRec->flags & MEM_Zero ){
-      /* Only pure zero-filled BLOBs can be input to this Opcode.
-      ** We do not allow blobs with a prefix and a zero-filled tail. */
-      nZero += pRec->u.i;
-    }else if( len ){
-      nZero = 0;
-    }
-  }
-
-  /* If we have to append a varint rowid to this record, set pRowid
-  ** to the value of the rowid and increase nByte by the amount of space
-  ** required to store it.
-  */
-  if( addRowid ){
-    pRowid = &pTos[0-nField];
-    assert( pRowid>=p->aStack );
-    sqlite3VdbeMemIntegerify(pRowid);
-    serial_type = sqlite3VdbeSerialType(pRowid, 0);
-    nData += sqlite3VdbeSerialTypeLen(serial_type);
-    nHdr += sqlite3VarintLen(serial_type);
-    nZero = 0;
-  }
-
-  /* Add the initial header varint and total the size */
-  nHdr += nVarint = sqlite3VarintLen(nHdr);
-  if( nVarint<sqlite3VarintLen(nHdr) ){
-    nHdr++;
-  }
-  nByte = nHdr+nData-nZero;
-  if( nByte>SQLITE_MAX_LENGTH ){
-    goto too_big;
-  }
-
-  /* Allocate space for the new record. */
-  if( nByte>sizeof(zTemp) ){
-    zNewRecord = (u8*)sqlite3DbMallocRaw(db, nByte);
-    if( !zNewRecord ){
-      goto no_mem;
-    }
-  }else{
-    zNewRecord = (u8*)zTemp;
-  }
-
-  /* Write the record */
-  i = sqlite3PutVarint(zNewRecord, nHdr);
-  for(pRec=pData0; pRec<=pTos; pRec++){
-    serial_type = sqlite3VdbeSerialType(pRec, file_format);
-    i += sqlite3PutVarint(&zNewRecord[i], serial_type);      /* serial type */
-  }
-  if( addRowid ){
-    i += sqlite3PutVarint(&zNewRecord[i], sqlite3VdbeSerialType(pRowid, 0));
-  }
-  for(pRec=pData0; pRec<=pTos; pRec++){  /* serial data */
-    i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
-  }
-  if( addRowid ){
-    i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRowid, 0);
-  }
-  assert( i==nByte );
-
-  /* Pop entries off the stack if required. Push the new record on. */
-  if( !leaveOnStack ){
-    popStack(&pTos, nField+addRowid);
-  }
-  pTos++;
-  pTos->n = nByte;
-  if( nByte<=sizeof(zTemp) ){
-    assert( zNewRecord==(unsigned char *)zTemp );
-    pTos->z = pTos->zShort;
-    memcpy(pTos->zShort, zTemp, nByte);
-    pTos->flags = MEM_Blob | MEM_Short;
-  }else{
-    assert( zNewRecord!=(unsigned char *)zTemp );
-    pTos->z = (char*)zNewRecord;
-    pTos->flags = MEM_Blob | MEM_Dyn;
-    pTos->xDel = 0;
-  }
-  if( nZero ){
-    pTos->u.i = nZero;
-    pTos->flags |= MEM_Zero;
-  }
-  pTos->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
-
-  /* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */
-  if( jumpIfNull && containsNull ){
-    pc = jumpIfNull - 1;
-  }
-  break;
-}
-
-/* Opcode: Statement P1 * *
-**
-** Begin an individual statement transaction which is part of a larger
-** BEGIN..COMMIT transaction.  This is needed so that the statement
-** can be rolled back after an error without having to roll back the
-** entire transaction.  The statement transaction will automatically
-** commit when the VDBE halts.
-**
-** The statement is begun on the database file with index P1.  The main
-** database file has an index of 0 and the file used for temporary tables
-** has an index of 1.
-*/
-case OP_Statement: {       /* no-push */
-  int i = pOp->p1;
-  Btree *pBt;
-  if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt)!=0
-        && (db->autoCommit==0 || db->activeVdbeCnt>1) ){
-    assert( sqlite3BtreeIsInTrans(pBt) );
-    assert( (p->btreeMask & (1<<i))!=0 );
-    if( !sqlite3BtreeIsInStmt(pBt) ){
-      rc = sqlite3BtreeBeginStmt(pBt);
-      p->openedStatement = 1;
-    }
-  }
-  break;
-}
-
-/* Opcode: AutoCommit P1 P2 *
-**
-** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
-** back any currently active btree transactions. If there are any active
-** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
-**
-** This instruction causes the VM to halt.
-*/
-case OP_AutoCommit: {       /* no-push */
-  u8 i = pOp->p1;
-  u8 rollback = pOp->p2;
-
-  assert( i==1 || i==0 );
-  assert( i==1 || rollback==0 );
-
-  assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */
-
-  if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
-    /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
-    ** still running, and a transaction is active, return an error indicating
-    ** that the other VMs must complete first. 
-    */
-    sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit", 
-        " transaction - SQL statements in progress", (char*)0);
-    rc = SQLITE_ERROR;
-  }else if( i!=db->autoCommit ){
-    if( pOp->p2 ){
-      assert( i==1 );
-      sqlite3RollbackAll(db);
-      db->autoCommit = 1;
-    }else{
-      db->autoCommit = i;
-      if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
-        p->pTos = pTos;
-        p->pc = pc;
-        db->autoCommit = 1-i;
-        p->rc = rc = SQLITE_BUSY;
-        goto vdbe_return;
-      }
-    }
-    if( p->rc==SQLITE_OK ){
-      rc = SQLITE_DONE;
-    }else{
-      rc = SQLITE_ERROR;
-    }
-    goto vdbe_return;
-  }else{
-    sqlite3SetString(&p->zErrMsg,
-        (!i)?"cannot start a transaction within a transaction":(
-        (rollback)?"cannot rollback - no transaction is active":
-                   "cannot commit - no transaction is active"), (char*)0);
-         
-    rc = SQLITE_ERROR;
-  }
-  break;
-}
-
-/* Opcode: Transaction P1 P2 *
-**
-** Begin a transaction.  The transaction ends when a Commit or Rollback
-** opcode is encountered.  Depending on the ON CONFLICT setting, the
-** transaction might also be rolled back if an error is encountered.
-**
-** P1 is the index of the database file on which the transaction is
-** started.  Index 0 is the main database file and index 1 is the
-** file used for temporary tables.
-**
-** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
-** obtained on the database file when a write-transaction is started.  No
-** other process can start another write transaction while this transaction is
-** underway.  Starting a write transaction also creates a rollback journal. A
-** write transaction must be started before any changes can be made to the
-** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
-** on the file.
-**
-** If P2 is zero, then a read-lock is obtained on the database file.
-*/
-case OP_Transaction: {       /* no-push */
-  int i = pOp->p1;
-  Btree *pBt;
-
-  assert( i>=0 && i<db->nDb );
-  assert( (p->btreeMask & (1<<i))!=0 );
-  pBt = db->aDb[i].pBt;
-
-  if( pBt ){
-    rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
-    if( rc==SQLITE_BUSY ){
-      p->pc = pc;
-      p->rc = rc = SQLITE_BUSY;
-      p->pTos = pTos;
-      goto vdbe_return;
-    }
-    if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
-      goto abort_due_to_error;
-    }
-  }
-  break;
-}
-
-/* Opcode: ReadCookie P1 P2 *
-**
-** Read cookie number P2 from database P1 and push it onto the stack.
-** P2==0 is the schema version.  P2==1 is the database format.
-** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
-** the main database file and P1==1 is the database file used to store
-** temporary tables.
-**
-** If P1 is negative, then this is a request to read the size of a
-** databases free-list. P2 must be set to 1 in this case. The actual
-** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
-** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
-**
-** There must be a read-lock on the database (either a transaction
-** must be started or there must be an open cursor) before
-** executing this instruction.
-*/
-case OP_ReadCookie: {
-  int iMeta;
-  int iDb = pOp->p1;
-  int iCookie = pOp->p2;
-
-  assert( pOp->p2<SQLITE_N_BTREE_META );
-  if( iDb<0 ){
-    iDb = (-1*(iDb+1));
-    iCookie *= -1;
-  }
-  assert( iDb>=0 && iDb<db->nDb );
-  assert( db->aDb[iDb].pBt!=0 );
-  assert( (p->btreeMask & (1<<iDb))!=0 );
-  /* The indexing of meta values at the schema layer is off by one from
-  ** the indexing in the btree layer.  The btree considers meta[0] to
-  ** be the number of free pages in the database (a read-only value)
-  ** and meta[1] to be the schema cookie.  The schema layer considers
-  ** meta[1] to be the schema cookie.  So we have to shift the index
-  ** by one in the following statement.
-  */
-  rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
-  pTos++;
-  pTos->u.i = iMeta;
-  pTos->flags = MEM_Int;
-  break;
-}
-
-/* Opcode: SetCookie P1 P2 *
-**
-** Write the top of the stack into cookie number P2 of database P1.
-** P2==0 is the schema version.  P2==1 is the database format.
-** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
-** the main database file and P1==1 is the database file used to store
-** temporary tables.
-**
-** A transaction must be started before executing this opcode.
-*/
-case OP_SetCookie: {       /* no-push */
-  Db *pDb;
-  assert( pOp->p2<SQLITE_N_BTREE_META );
-  assert( pOp->p1>=0 && pOp->p1<db->nDb );
-  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
-  pDb = &db->aDb[pOp->p1];
-  assert( pDb->pBt!=0 );
-  assert( pTos>=p->aStack );
-  sqlite3VdbeMemIntegerify(pTos);
-  /* See note about index shifting on OP_ReadCookie */
-  rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->u.i);
-  if( pOp->p2==0 ){
-    /* When the schema cookie changes, record the new cookie internally */
-    pDb->pSchema->schema_cookie = pTos->u.i;
-    db->flags |= SQLITE_InternChanges;
-  }else if( pOp->p2==1 ){
-    /* Record changes in the file format */
-    pDb->pSchema->file_format = pTos->u.i;
-  }
-  assert( (pTos->flags & MEM_Dyn)==0 );
-  pTos--;
-  if( pOp->p1==1 ){
-    /* Invalidate all prepared statements whenever the TEMP database
-    ** schema is changed.  Ticket #1644 */
-    sqlite3ExpirePreparedStatements(db);
-  }
-  break;
-}
-
-/* Opcode: VerifyCookie P1 P2 *
-**
-** Check the value of global database parameter number 0 (the
-** schema version) and make sure it is equal to P2.  
-** P1 is the database number which is 0 for the main database file
-** and 1 for the file holding temporary tables and some higher number
-** for auxiliary databases.
-**
-** The cookie changes its value whenever the database schema changes.
-** This operation is used to detect when that the cookie has changed
-** and that the current process needs to reread the schema.
-**
-** Either a transaction needs to have been started or an OP_Open needs
-** to be executed (to establish a read lock) before this opcode is
-** invoked.
-*/
-case OP_VerifyCookie: {       /* no-push */
-  int iMeta;
-  Btree *pBt;
-  assert( pOp->p1>=0 && pOp->p1<db->nDb );
-  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
-  pBt = db->aDb[pOp->p1].pBt;
-  if( pBt ){
-    rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
-  }else{
-    rc = SQLITE_OK;
-    iMeta = 0;
-  }
-  if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
-    sqlite3_free(p->zErrMsg);
-    p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
-    /* If the schema-cookie from the database file matches the cookie 
-    ** stored with the in-memory representation of the schema, do
-    ** not reload the schema from the database file.
-    **
-    ** If virtual-tables are in use, this is not just an optimisation.
-    ** Often, v-tables store their data in other SQLite tables, which
-    ** are queried from within xNext() and other v-table methods using
-    ** prepared queries. If such a query is out-of-date, we do not want to
-    ** discard the database schema, as the user code implementing the
-    ** v-table would have to be ready for the sqlite3_vtab structure itself
-    ** to be invalidated whenever sqlite3_step() is called from within 
-    ** a v-table method.
-    */
-    if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
-      sqlite3ResetInternalSchema(db, pOp->p1);
-    }
-
-    sqlite3ExpirePreparedStatements(db);
-    rc = SQLITE_SCHEMA;
-  }
-  break;
-}
-
-/* Opcode: OpenRead P1 P2 P3
-**
-** Open a read-only cursor for the database table whose root page is
-** P2 in a database file.  The database file is determined by an 
-** integer from the top of the stack.  0 means the main database and
-** 1 means the database used for temporary tables.  Give the new 
-** cursor an identifier of P1.  The P1 values need not be contiguous
-** but all P1 values should be small integers.  It is an error for
-** P1 to be negative.
-**
-** If P2==0 then take the root page number from the next of the stack.
-**
-** There will be a read lock on the database whenever there is an
-** open cursor.  If the database was unlocked prior to this instruction
-** then a read lock is acquired as part of this instruction.  A read
-** lock allows other processes to read the database but prohibits
-** any other process from modifying the database.  The read lock is
-** released when all cursors are closed.  If this instruction attempts
-** to get a read lock but fails, the script terminates with an
-** SQLITE_BUSY error code.
-**
-** The P3 value is a pointer to a KeyInfo structure that defines the
-** content and collating sequence of indices.  P3 is NULL for cursors
-** that are not pointing to indices.
-**
-** See also OpenWrite.
-*/
-/* Opcode: OpenWrite P1 P2 P3
-**
-** Open a read/write cursor named P1 on the table or index whose root
-** page is P2.  If P2==0 then take the root page number from the stack.
-**
-** The P3 value is a pointer to a KeyInfo structure that defines the
-** content and collating sequence of indices.  P3 is NULL for cursors
-** that are not pointing to indices.
-**
-** This instruction works just like OpenRead except that it opens the cursor
-** in read/write mode.  For a given table, there can be one or more read-only
-** cursors or a single read/write cursor but not both.
-**
-** See also OpenRead.
-*/
-case OP_OpenRead:          /* no-push */
-case OP_OpenWrite: {       /* no-push */
-  int i = pOp->p1;
-  int p2 = pOp->p2;
-  int wrFlag;
-  Btree *pX;
-  int iDb;
-  Cursor *pCur;
-  Db *pDb;
-  
-  assert( pTos>=p->aStack );
-  sqlite3VdbeMemIntegerify(pTos);
-  iDb = pTos->u.i;
-  assert( (pTos->flags & MEM_Dyn)==0 );
-  pTos--;
-  assert( iDb>=0 && iDb<db->nDb );
-  assert( (p->btreeMask & (1<<iDb))!=0 );
-  pDb = &db->aDb[iDb];
-  pX = pDb->pBt;
-  assert( pX!=0 );
-  if( pOp->opcode==OP_OpenWrite ){
-    wrFlag = 1;
-    if( pDb->pSchema->file_format < p->minWriteFileFormat ){
-      p->minWriteFileFormat = pDb->pSchema->file_format;
-    }
-  }else{
-    wrFlag = 0;
-  }
-  if( p2<=0 ){
-    assert( pTos>=p->aStack );
-    sqlite3VdbeMemIntegerify(pTos);
-    p2 = pTos->u.i;
-    assert( (pTos->flags & MEM_Dyn)==0 );
-    pTos--;
-    assert( p2>=2 );
-  }
-  assert( i>=0 );
-  pCur = allocateCursor(p, i, iDb);
-  if( pCur==0 ) goto no_mem;
-  pCur->nullRow = 1;
-  if( pX==0 ) break;
-  /* We always provide a key comparison function.  If the table being
-  ** opened is of type INTKEY, the comparision function will be ignored. */
-  rc = sqlite3BtreeCursor(pX, p2, wrFlag,
-           sqlite3VdbeRecordCompare, pOp->p3,
-           &pCur->pCursor);
-  if( pOp->p3type==P3_KEYINFO ){
-    pCur->pKeyInfo = (KeyInfo*)pOp->p3;
-    pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
-    pCur->pKeyInfo->enc = ENC(p->db);
-  }else{
-    pCur->pKeyInfo = 0;
-    pCur->pIncrKey = &pCur->bogusIncrKey;
-  }
-  switch( rc ){
-    case SQLITE_BUSY: {
-      p->pc = pc;
-      p->rc = rc = SQLITE_BUSY;
-      p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
-      goto vdbe_return;
-    }
-    case SQLITE_OK: {
-      int flags = sqlite3BtreeFlags(pCur->pCursor);
-      /* Sanity checking.  Only the lower four bits of the flags byte should
-      ** be used.  Bit 3 (mask 0x08) is unpreditable.  The lower 3 bits
-      ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
-      ** 2 (zerodata for indices).  If these conditions are not met it can
-      ** only mean that we are dealing with a corrupt database file
-      */
-      if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
-        rc = SQLITE_CORRUPT_BKPT;
-        goto abort_due_to_error;
-      }
-      pCur->isTable = (flags & BTREE_INTKEY)!=0;
-      pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
-      /* If P3==0 it means we are expected to open a table.  If P3!=0 then
-      ** we expect to be opening an index.  If this is not what happened,
-      ** then the database is corrupt
-      */
-      if( (pCur->isTable && pOp->p3type==P3_KEYINFO)
-       || (pCur->isIndex && pOp->p3type!=P3_KEYINFO) ){
-        rc = SQLITE_CORRUPT_BKPT;
-        goto abort_due_to_error;
-      }
-      break;
-    }
-    case SQLITE_EMPTY: {
-      pCur->isTable = pOp->p3type!=P3_KEYINFO;
-      pCur->isIndex = !pCur->isTable;
-      rc = SQLITE_OK;
-      break;
-    }
-    default: {
-      goto abort_due_to_error;
-    }
-  }
-  break;
-}
-
-/* Opcode: OpenEphemeral P1 P2 P3
-**
-** Open a new cursor P1 to a transient table.
-** The cursor is always opened read/write even if 
-** the main database is read-only.  The transient or virtual
-** table is deleted automatically when the cursor is closed.
-**
-** P2 is the number of columns in the virtual table.
-** The cursor points to a BTree table if P3==0 and to a BTree index
-** if P3 is not 0.  If P3 is not NULL, it points to a KeyInfo structure
-** that defines the format of keys in the index.
-**
-** This opcode was once called OpenTemp.  But that created
-** confusion because the term "temp table", might refer either
-** to a TEMP table at the SQL level, or to a table opened by
-** this opcode.  Then this opcode was call OpenVirtual.  But
-** that created confusion with the whole virtual-table idea.
-*/
-case OP_OpenEphemeral: {       /* no-push */
-  int i = pOp->p1;
-  Cursor *pCx;
-  static const int openFlags = 
-      SQLITE_OPEN_READWRITE |
-      SQLITE_OPEN_CREATE |
-      SQLITE_OPEN_EXCLUSIVE |
-      SQLITE_OPEN_DELETEONCLOSE |
-      SQLITE_OPEN_TRANSIENT_DB;
-
-  assert( i>=0 );
-  pCx = allocateCursor(p, i, -1);
-  if( pCx==0 ) goto no_mem;
-  pCx->nullRow = 1;
-  rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
-                           &pCx->pBt);
-  if( rc==SQLITE_OK ){
-    rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
-  }
-  if( rc==SQLITE_OK ){
-    /* If a transient index is required, create it by calling
-    ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
-    ** opening it. If a transient table is required, just use the
-    ** automatically created table with root-page 1 (an INTKEY table).
-    */
-    if( pOp->p3 ){
-      int pgno;
-      assert( pOp->p3type==P3_KEYINFO );
-      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); 
-      if( rc==SQLITE_OK ){
-        assert( pgno==MASTER_ROOT+1 );
-        rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare,
-            pOp->p3, &pCx->pCursor);
-        pCx->pKeyInfo = (KeyInfo*)pOp->p3;
-        pCx->pKeyInfo->enc = ENC(p->db);
-        pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
-      }
-      pCx->isTable = 0;
-    }else{
-      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
-      pCx->isTable = 1;
-      pCx->pIncrKey = &pCx->bogusIncrKey;
-    }
-  }
-  pCx->nField = pOp->p2;
-  pCx->isIndex = !pCx->isTable;
-  break;
-}
-
-/* Opcode: OpenPseudo P1 * *
-**
-** Open a new cursor that points to a fake table that contains a single
-** row of data.  Any attempt to write a second row of data causes the
-** first row to be deleted.  All data is deleted when the cursor is
-** closed.
-**
-** A pseudo-table created by this opcode is useful for holding the
-** NEW or OLD tables in a trigger.  Also used to hold the a single
-** row output from the sorter so that the row can be decomposed into
-** individual columns using the OP_Column opcode.
-*/
-case OP_OpenPseudo: {       /* no-push */
-  int i = pOp->p1;
-  Cursor *pCx;
-  assert( i>=0 );
-  pCx = allocateCursor(p, i, -1);
-  if( pCx==0 ) goto no_mem;
-  pCx->nullRow = 1;
-  pCx->pseudoTable = 1;
-  pCx->pIncrKey = &pCx->bogusIncrKey;
-  pCx->isTable = 1;
-  pCx->isIndex = 0;
-  break;
-}
-
-/* Opcode: Close P1 * *
-**
-** Close a cursor previously opened as P1.  If P1 is not
-** currently open, this instruction is a no-op.
-*/
-case OP_Close: {       /* no-push */
-  int i = pOp->p1;
-  if( i>=0 && i<p->nCursor ){
-    sqlite3VdbeFreeCursor(p, p->apCsr[i]);
-    p->apCsr[i] = 0;
-  }
-  break;
-}
-
-/* Opcode: MoveGe P1 P2 *
-**
-** Pop the top of the stack and use its value as a key.  Reposition
-** cursor P1 so that it points to the smallest entry that is greater
-** than or equal to the key that was popped ffrom the stack.
-** If there are no records greater than or equal to the key and P2 
-** is not zero, then jump to P2.
-**
-** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
-*/
-/* Opcode: MoveGt P1 P2 *
-**
-** Pop the top of the stack and use its value as a key.  Reposition
-** cursor P1 so that it points to the smallest entry that is greater
-** than the key from the stack.
-** If there are no records greater than the key and P2 is not zero,
-** then jump to P2.
-**
-** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
-*/
-/* Opcode: MoveLt P1 P2 *
-**
-** Pop the top of the stack and use its value as a key.  Reposition
-** cursor P1 so that it points to the largest entry that is less
-** than the key from the stack.
-** If there are no records less than the key and P2 is not zero,
-** then jump to P2.
-**
-** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
-*/
-/* Opcode: MoveLe P1 P2 *
-**
-** Pop the top of the stack and use its value as a key.  Reposition
-** cursor P1 so that it points to the largest entry that is less than
-** or equal to the key that was popped from the stack.
-** If there are no records less than or eqal to the key and P2 is not zero,
-** then jump to P2.
-**
-** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
-*/
-case OP_MoveLt:         /* no-push */
-case OP_MoveLe:         /* no-push */
-case OP_MoveGe:         /* no-push */
-case OP_MoveGt: {       /* no-push */
-  int i = pOp->p1;
-  Cursor *pC;
-
-  assert( pTos>=p->aStack );
-  assert( i>=0 && i<p->nCursor );
-  pC = p->apCsr[i];
-  assert( pC!=0 );
-  if( pC->pCursor!=0 ){
-    int res, oc;
-    oc = pOp->opcode;
-    pC->nullRow = 0;
-    *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
-    if( pC->isTable ){
-      i64 iKey;
-      sqlite3VdbeMemIntegerify(pTos);
-      iKey = intToKey(pTos->u.i);
-      if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){
-        pC->movetoTarget = iKey;
-        pC->deferredMoveto = 1;
-        assert( (pTos->flags & MEM_Dyn)==0 );
-        pTos--;
-        break;
-      }
-      rc = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, 0, &res);
-      if( rc!=SQLITE_OK ){
-        goto abort_due_to_error;
-      }
-      pC->lastRowid = pTos->u.i;
-      pC->rowidIsValid = res==0;
-    }else{
-      assert( pTos->flags & MEM_Blob );
-      ExpandBlob(pTos);
-      rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
-      if( rc!=SQLITE_OK ){
-        goto abort_due_to_error;
-      }
-      pC->rowidIsValid = 0;
-    }
-    pC->deferredMoveto = 0;
-    pC->cacheStatus = CACHE_STALE;
-    *pC->pIncrKey = 0;
-#ifdef SQLITE_TEST
-    sqlite3_search_count++;
-#endif
-    if( oc==OP_MoveGe || oc==OP_MoveGt ){
-      if( res<0 ){
-        rc = sqlite3BtreeNext(pC->pCursor, &res);
-        if( rc!=SQLITE_OK ) goto abort_due_to_error;
-        pC->rowidIsValid = 0;
-      }else{
-        res = 0;
-      }
-    }else{
-      assert( oc==OP_MoveLt || oc==OP_MoveLe );
-      if( res>=0 ){
-        rc = sqlite3BtreePrevious(pC->pCursor, &res);
-        if( rc!=SQLITE_OK ) goto abort_due_to_error;
-        pC->rowidIsValid = 0;
-      }else{
-        /* res might be negative because the table is empty.  Check to
-        ** see if this is the case.
-        */
-        res = sqlite3BtreeEof(pC->pCursor);
-      }
-    }
-    if( res ){
-      if( pOp->p2>0 ){
-        pc = pOp->p2 - 1;
-      }else{
-        pC->nullRow = 1;
-      }
-    }
-  }
-  Release(pTos);
-  pTos--;
-  break;
-}
-
-/* Opcode: Distinct P1 P2 *
-**
-** Use the top of the stack as a record created using MakeRecord.  P1 is a
-** cursor on a table that declared as an index.  If that table contains an
-** entry that matches the top of the stack fall thru.  If the top of the stack
-** matches no entry in P1 then jump to P2.
-**
-** The cursor is left pointing at the matching entry if it exists.  The
-** record on the top of the stack is not popped.
-**
-** This instruction is similar to NotFound except that this operation
-** does not pop the key from the stack.
-**
-** The instruction is used to implement the DISTINCT operator on SELECT
-** statements.  The P1 table is not a true index but rather a record of
-** all results that have produced so far.  
-**
-** See also: Found, NotFound, MoveTo, IsUnique, NotExists
-*/
-/* Opcode: Found P1 P2 *
-**
-** Top of the stack holds a blob constructed by MakeRecord.  P1 is an index.
-** If an entry that matches the top of the stack exists in P1 then
-** jump to P2.  If the top of the stack does not match any entry in P1
-** then fall thru.  The P1 cursor is left pointing at the matching entry
-** if it exists.  The blob is popped off the top of the stack.
-**
-** This instruction is used to implement the IN operator where the
-** left-hand side is a SELECT statement.  P1 may be a true index, or it
-** may be a temporary index that holds the results of the SELECT
-** statement. 
-**
-** This instruction checks if index P1 contains a record for which 
-** the first N serialised values exactly match the N serialised values
-** in the record on the stack, where N is the total number of values in
-** the stack record (stack record is a prefix of the P1 record). 
-**
-** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
-*/
-/* Opcode: NotFound P1 P2 *
-**
-** The top of the stack holds a blob constructed by MakeRecord.  P1 is
-** an index.  If no entry exists in P1 that matches the blob then jump
-** to P2.  If an entry does existing, fall through.  The cursor is left
-** pointing to the entry that matches.  The blob is popped from the stack.
-**
-** The difference between this operation and Distinct is that
-** Distinct does not pop the key from the stack.
-**
-** See also: Distinct, Found, MoveTo, NotExists, IsUnique
-*/
-case OP_Distinct:       /* no-push */
-case OP_NotFound:       /* no-push */
-case OP_Found: {        /* no-push */
-  int i = pOp->p1;
-  int alreadyExists = 0;
-  Cursor *pC;
-  assert( pTos>=p->aStack );
-  assert( i>=0 && i<p->nCursor );
-  assert( p->apCsr[i]!=0 );
-  if( (pC = p->apCsr[i])->pCursor!=0 ){
-    int res;
-    assert( pC->isTable==0 );
-    assert( pTos->flags & MEM_Blob );
-    Stringify(pTos, encoding);
-    if( pOp->opcode==OP_Found ){
-      pC->pKeyInfo->prefixIsEqual = 1;
-    }
-    rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
-    pC->pKeyInfo->prefixIsEqual = 0;
-    if( rc!=SQLITE_OK ){
-      break;
-    }
-    alreadyExists = (res==0);
-    pC->deferredMoveto = 0;
-    pC->cacheStatus = CACHE_STALE;
-  }
-  if( pOp->opcode==OP_Found ){
-    if( alreadyExists ) pc = pOp->p2 - 1;
-  }else{
-    if( !alreadyExists ) pc = pOp->p2 - 1;
-  }
-  if( pOp->opcode!=OP_Distinct ){
-    Release(pTos);
-    pTos--;
-  }
-  break;
-}
-
-/* Opcode: IsUnique P1 P2 *
-**
-** The top of the stack is an integer record number.  Call this
-** record number R.  The next on the stack is an index key created
-** using MakeIdxRec.  Call it K.  This instruction pops R from the
-** stack but it leaves K unchanged.
-**
-** P1 is an index.  So it has no data and its key consists of a
-** record generated by OP_MakeRecord where the last field is the 
-** rowid of the entry that the index refers to.
-** 
-** This instruction asks if there is an entry in P1 where the
-** fields matches K but the rowid is different from R.
-** If there is no such entry, then there is an immediate
-** jump to P2.  If any entry does exist where the index string
-** matches K but the record number is not R, then the record
-** number for that entry is pushed onto the stack and control
-** falls through to the next instruction.
-**
-** See also: Distinct, NotFound, NotExists, Found
-*/
-case OP_IsUnique: {        /* no-push */
-  int i = pOp->p1;
-  Mem *pNos = &pTos[-1];
-  Cursor *pCx;
-  BtCursor *pCrsr;
-  i64 R;
-
-  /* Pop the value R off the top of the stack
-  */
-  assert( pNos>=p->aStack );
-  sqlite3VdbeMemIntegerify(pTos);
-  R = pTos->u.i;
-  assert( (pTos->flags & MEM_Dyn)==0 );
-  pTos--;
-  assert( i>=0 && i<p->nCursor );
-  pCx = p->apCsr[i];
-  assert( pCx!=0 );
-  pCrsr = pCx->pCursor;
-  if( pCrsr!=0 ){
-    int res;
-    i64 v;         /* The record number on the P1 entry that matches K */
-    char *zKey;    /* The value of K */
-    int nKey;      /* Number of bytes in K */
-    int len;       /* Number of bytes in K without the rowid at the end */
-    int szRowid;   /* Size of the rowid column at the end of zKey */
-
-    /* Make sure K is a string and make zKey point to K
-    */
-    assert( pNos->flags & MEM_Blob );
-    Stringify(pNos, encoding);
-    zKey = pNos->z;
-    nKey = pNos->n;
-
-    szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
-    len = nKey-szRowid;
-
-    /* Search for an entry in P1 where all but the last four bytes match K.
-    ** If there is no such entry, jump immediately to P2.
-    */
-    assert( pCx->deferredMoveto==0 );
-    pCx->cacheStatus = CACHE_STALE;
-    rc = sqlite3BtreeMoveto(pCrsr, zKey, len, 0, &res);
-    if( rc!=SQLITE_OK ){
-      goto abort_due_to_error;
-    }
-    if( res<0 ){
-      rc = sqlite3BtreeNext(pCrsr, &res);
-      if( res ){
-        pc = pOp->p2 - 1;
-        break;
-      }
-    }
-    rc = sqlite3VdbeIdxKeyCompare(pCx, len, (u8*)zKey, &res); 
-    if( rc!=SQLITE_OK ) goto abort_due_to_error;
-    if( res>0 ){
-      pc = pOp->p2 - 1;
-      break;
-    }
-
-    /* At this point, pCrsr is pointing to an entry in P1 where all but
-    ** the final entry (the rowid) matches K.  Check to see if the
-    ** final rowid column is different from R.  If it equals R then jump
-    ** immediately to P2.
-    */
-    rc = sqlite3VdbeIdxRowid(pCrsr, &v);
-    if( rc!=SQLITE_OK ){
-      goto abort_due_to_error;
-    }
-    if( v==R ){
-      pc = pOp->p2 - 1;
-      break;
-    }
-
-    /* The final varint of the key is different from R.  Push it onto
-    ** the stack.  (The record number of an entry that violates a UNIQUE
-    ** constraint.)
-    */
-    pTos++;
-    pTos->u.i = v;
-    pTos->flags = MEM_Int;
-  }
-  break;
-}
-
-/* Opcode: NotExists P1 P2 *
-**
-** Use the top of the stack as a integer key.  If a record with that key
-** does not exist in table of P1, then jump to P2.  If the record
-** does exist, then fall thru.  The cursor is left pointing to the
-** record if it exists.  The integer key is popped from the stack.
-**
-** The difference between this operation and NotFound is that this
-** operation assumes the key is an integer and that P1 is a table whereas
-** NotFound assumes key is a blob constructed from MakeRecord and
-** P1 is an index.
-**
-** See also: Distinct, Found, MoveTo, NotFound, IsUnique
-*/
-case OP_NotExists: {        /* no-push */
-  int i = pOp->p1;
-  Cursor *pC;
-  BtCursor *pCrsr;
-  assert( pTos>=p->aStack );
-  assert( i>=0 && i<p->nCursor );
-  assert( p->apCsr[i]!=0 );
-  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
-    int res;
-    u64 iKey;
-    assert( pTos->flags & MEM_Int );
-    assert( p->apCsr[i]->isTable );
-    iKey = intToKey(pTos->u.i);
-    rc = sqlite3BtreeMoveto(pCrsr, 0, iKey, 0,&res);
-    pC->lastRowid = pTos->u.i;
-    pC->rowidIsValid = res==0;
-    pC->nullRow = 0;
-    pC->cacheStatus = CACHE_STALE;
-    /* res might be uninitialized if rc!=SQLITE_OK.  But if rc!=SQLITE_OK
-    ** processing is about to abort so we really do not care whether or not
-    ** the following jump is taken.  (In other words, do not stress over
-    ** the error that valgrind sometimes shows on the next statement when
-    ** running ioerr.test and similar failure-recovery test scripts.) */
-    if( res!=0 ){
-      pc = pOp->p2 - 1;
-      pC->rowidIsValid = 0;
-    }
-  }
-  Release(pTos);
-  pTos--;
-  break;
-}
-
-/* Opcode: Sequence P1 * *
-**
-** Push an integer onto the stack which is the next available
-** sequence number for cursor P1.  The sequence number on the
-** cursor is incremented after the push.
-*/
-case OP_Sequence: {
-  int i = pOp->p1;
-  assert( pTos>=p->aStack );
-  assert( i>=0 && i<p->nCursor );
-  assert( p->apCsr[i]!=0 );
-  pTos++;
-  pTos->u.i = p->apCsr[i]->seqCount++;
-  pTos->flags = MEM_Int;
-  break;
-}
-
-
-/* Opcode: NewRowid P1 P2 *
-**
-** Get a new integer record number (a.k.a "rowid") used as the key to a table.
-** The record number is not previously used as a key in the database
-** table that cursor P1 points to.  The new record number is pushed 
-** onto the stack.
-**
-** If P2>0 then P2 is a memory cell that holds the largest previously
-** generated record number.  No new record numbers are allowed to be less
-** than this value.  When this value reaches its maximum, a SQLITE_FULL
-** error is generated.  The P2 memory cell is updated with the generated
-** record number.  This P2 mechanism is used to help implement the
-** AUTOINCREMENT feature.
-*/
-case OP_NewRowid: {
-  int i = pOp->p1;
-  i64 v = 0;
-  Cursor *pC;
-  assert( i>=0 && i<p->nCursor );
-  assert( p->apCsr[i]!=0 );
-  if( (pC = p->apCsr[i])->pCursor==0 ){
-    /* The zero initialization above is all that is needed */
-  }else{
-    /* The next rowid or record number (different terms for the same
-    ** thing) is obtained in a two-step algorithm.
-    **
-    ** First we attempt to find the largest existing rowid and add one
-    ** to that.  But if the largest existing rowid is already the maximum
-    ** positive integer, we have to fall through to the second
-    ** probabilistic algorithm
-    **
-    ** The second algorithm is to select a rowid at random and see if
-    ** it already exists in the table.  If it does not exist, we have
-    ** succeeded.  If the random rowid does exist, we select a new one
-    ** and try again, up to 1000 times.
-    **
-    ** For a table with less than 2 billion entries, the probability
-    ** of not finding a unused rowid is about 1.0e-300.  This is a 
-    ** non-zero probability, but it is still vanishingly small and should
-    ** never cause a problem.  You are much, much more likely to have a
-    ** hardware failure than for this algorithm to fail.
-    **
-    ** The analysis in the previous paragraph assumes that you have a good
-    ** source of random numbers.  Is a library function like lrand48()
-    ** good enough?  Maybe. Maybe not. It's hard to know whether there
-    ** might be subtle bugs is some implementations of lrand48() that
-    ** could cause problems. To avoid uncertainty, SQLite uses its own 
-    ** random number generator based on the RC4 algorithm.
-    **
-    ** To promote locality of reference for repetitive inserts, the
-    ** first few attempts at chosing a random rowid pick values just a little
-    ** larger than the previous rowid.  This has been shown experimentally
-    ** to double the speed of the COPY operation.
-    */
-    int res, rx=SQLITE_OK, cnt;
-    i64 x;
-    cnt = 0;
-    if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
-          BTREE_INTKEY ){
-      rc = SQLITE_CORRUPT_BKPT;
-      goto abort_due_to_error;
-    }
-    assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
-    assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
-
-#ifdef SQLITE_32BIT_ROWID
-#   define MAX_ROWID 0x7fffffff
-#else
-    /* Some compilers complain about constants of the form 0x7fffffffffffffff.
-    ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
-    ** to provide the constant while making all compilers happy.
-    */
-#   define MAX_ROWID  ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
-#endif
-
-    if( !pC->useRandomRowid ){
-      if( pC->nextRowidValid ){
-        v = pC->nextRowid;
-      }else{
-        rc = sqlite3BtreeLast(pC->pCursor, &res);
-        if( rc!=SQLITE_OK ){
-          goto abort_due_to_error;
-        }
-        if( res ){
-          v = 1;
-        }else{
-          sqlite3BtreeKeySize(pC->pCursor, &v);
-          v = keyToInt(v);
-          if( v==MAX_ROWID ){
-            pC->useRandomRowid = 1;
-          }else{
-            v++;
-          }
-        }
-      }
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
-      if( pOp->p2 ){
-        Mem *pMem;
-        assert( pOp->p2>0 && pOp->p2<p->nMem );  /* P2 is a valid memory cell */
-        pMem = &p->aMem[pOp->p2];
-        sqlite3VdbeMemIntegerify(pMem);
-        assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P2) holds an integer */
-        if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
-          rc = SQLITE_FULL;
-          goto abort_due_to_error;
-        }
-        if( v<pMem->u.i+1 ){
-          v = pMem->u.i + 1;
-        }
-        pMem->u.i = v;
-      }
-#endif
-
-      if( v<MAX_ROWID ){
-        pC->nextRowidValid = 1;
-        pC->nextRowid = v+1;
-      }else{
-        pC->nextRowidValid = 0;
-      }
-    }
-    if( pC->useRandomRowid ){
-      assert( pOp->p2==0 );  /* SQLITE_FULL must have occurred prior to this */
-      v = db->priorNewRowid;
-      cnt = 0;
-      do{
-        if( v==0 || cnt>2 ){
-          sqlite3Randomness(sizeof(v), &v);
-          if( cnt<5 ) v &= 0xffffff;
-        }else{
-          unsigned char r;
-          sqlite3Randomness(1, &r);
-          v += r + 1;
-        }
-        if( v==0 ) continue;
-        x = intToKey(v);
-        rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, 0, &res);
-        cnt++;
-      }while( cnt<1000 && rx==SQLITE_OK && res==0 );
-      db->priorNewRowid = v;
-      if( rx==SQLITE_OK && res==0 ){
-        rc = SQLITE_FULL;
-        goto abort_due_to_error;
-      }
-    }
-    pC->rowidIsValid = 0;
-    pC->deferredMoveto = 0;
-    pC->cacheStatus = CACHE_STALE;
-  }
-  pTos++;
-  pTos->u.i = v;
-  pTos->flags = MEM_Int;
-  break;
-}
-
-/* Opcode: Insert P1 P2 P3
-**
-** Write an entry into the table of cursor P1.  A new entry is
-** created if it doesn't already exist or the data for an existing
-** entry is overwritten.  The data is the value on the top of the
-** stack.  The key is the next value down on the stack.  The key must
-** be an integer.  The stack is popped twice by this instruction.
-**
-** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
-** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P2 is set,
-** then rowid is stored for subsequent return by the
-** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
-**
-** Parameter P3 may point to a string containing the table-name, or
-** may be NULL. If it is not NULL, then the update-hook 
-** (sqlite3.xUpdateCallback) is invoked following a successful insert.
-**
-** This instruction only works on tables.  The equivalent instruction
-** for indices is OP_IdxInsert.
-*/
-case OP_Insert: {         /* no-push */
-  Mem *pNos = &pTos[-1];
-  int i = pOp->p1;
-  Cursor *pC;
-  assert( pNos>=p->aStack );
-  assert( i>=0 && i<p->nCursor );
-  assert( p->apCsr[i]!=0 );
-  if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){
-    i64 iKey;   /* The integer ROWID or key for the record to be inserted */
-
-    assert( pNos->flags & MEM_Int );
-    assert( pC->isTable );
-    iKey = intToKey(pNos->u.i);
-
-    if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
-    if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->u.i;
-    if( pC->nextRowidValid && pNos->u.i>=pC->nextRowid ){
-      pC->nextRowidValid = 0;
-    }
-    if( pTos->flags & MEM_Null ){
-      pTos->z = 0;
-      pTos->n = 0;
-    }else{
-      assert( pTos->flags & (MEM_Blob|MEM_Str) );
-    }
-    if( pC->pseudoTable ){
-      sqlite3_free(pC->pData);
-      pC->iKey = iKey;
-      pC->nData = pTos->n;
-      if( pTos->flags & MEM_Dyn ){
-        pC->pData = pTos->z;
-        pTos->flags = MEM_Null;
-      }else{
-        pC->pData = (char*)sqlite3_malloc( pC->nData+2 );
-        if( !pC->pData ) goto no_mem;
-        memcpy(pC->pData, pTos->z, pC->nData);
-        pC->pData[pC->nData] = 0;
-        pC->pData[pC->nData+1] = 0;
-      }
-      pC->nullRow = 0;
-    }else{
-      int nZero;
-      if( pTos->flags & MEM_Zero ){
-        nZero = pTos->u.i;
-      }else{
-        nZero = 0;
-      }
-      rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
-                              pTos->z, pTos->n, nZero,
-                              pOp->p2 & OPFLAG_APPEND);
-    }
-    
-    pC->rowidIsValid = 0;
-    pC->deferredMoveto = 0;
-    pC->cacheStatus = CACHE_STALE;
-
-    /* Invoke the update-hook if required. */
-    if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
-      const char *zDb = db->aDb[pC->iDb].zName;
-      const char *zTbl = pOp->p3;
-      int op = ((pOp->p2 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
-      assert( pC->isTable );
-      db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
-      assert( pC->iDb>=0 );
-    }
-  }
-  popStack(&pTos, 2);
-
-  break;
-}
-
-/* Opcode: Delete P1 P2 P3
-**
-** Delete the record at which the P1 cursor is currently pointing.
-**
-** The cursor will be left pointing at either the next or the previous
-** record in the table. If it is left pointing at the next record, then
-** the next Next instruction will be a no-op.  Hence it is OK to delete
-** a record from within an Next loop.
-**
-** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
-** incremented (otherwise not).
-**
-** If P1 is a pseudo-table, then this instruction is a no-op.
-*/
-case OP_Delete: {        /* no-push */
-  int i = pOp->p1;
-  Cursor *pC;
-  assert( i>=0 && i<p->nCursor );
-  pC = p->apCsr[i];
-  assert( pC!=0 );
-  if( pC->pCursor!=0 ){
-    i64 iKey;
-
-    /* If the update-hook will be invoked, set iKey to the rowid of the
-    ** row being deleted.
-    */
-    if( db->xUpdateCallback && pOp->p3 ){
-      assert( pC->isTable );
-      if( pC->rowidIsValid ){
-        iKey = pC->lastRowid;
-      }else{
-        rc = sqlite3BtreeKeySize(pC->pCursor, &iKey);
-        if( rc ){
-          goto abort_due_to_error;
-        }
-        iKey = keyToInt(iKey);
-      }
-    }
-
-    rc = sqlite3VdbeCursorMoveto(pC);
-    if( rc ) goto abort_due_to_error;
-    rc = sqlite3BtreeDelete(pC->pCursor);
-    pC->nextRowidValid = 0;
-    pC->cacheStatus = CACHE_STALE;
-
-    /* Invoke the update-hook if required. */
-    if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
-      const char *zDb = db->aDb[pC->iDb].zName;
-      const char *zTbl = pOp->p3;
-      db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
-      assert( pC->iDb>=0 );
-    }
-  }
-  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
-  break;
-}
-
-/* Opcode: ResetCount P1 * *
-**
-** This opcode resets the VMs internal change counter to 0. If P1 is true,
-** then the value of the change counter is copied to the database handle
-** change counter (returned by subsequent calls to sqlite3_changes())
-** before it is reset. This is used by trigger programs.
-*/
-case OP_ResetCount: {        /* no-push */
-  if( pOp->p1 ){
-    sqlite3VdbeSetChanges(db, p->nChange);
-  }
-  p->nChange = 0;
-  break;
-}
-
-/* Opcode: RowData P1 * *
-**
-** Push onto the stack the complete row data for cursor P1.
-** There is no interpretation of the data.  It is just copied
-** onto the stack exactly as it is found in the database file.
-**
-** If the cursor is not pointing to a valid row, a NULL is pushed
-** onto the stack.
-*/
-/* Opcode: RowKey P1 * *
-**
-** Push onto the stack the complete row key for cursor P1.
-** There is no interpretation of the key.  It is just copied
-** onto the stack exactly as it is found in the database file.
-**
-** If the cursor is not pointing to a valid row, a NULL is pushed
-** onto the stack.
-*/
-case OP_RowKey:
-case OP_RowData: {
-  int i = pOp->p1;
-  Cursor *pC;
-  u32 n;
-
-  /* Note that RowKey and RowData are really exactly the same instruction */
-  pTos++;
-  assert( i>=0 && i<p->nCursor );
-  pC = p->apCsr[i];
-  assert( pC->isTable || pOp->opcode==OP_RowKey );
-  assert( pC->isIndex || pOp->opcode==OP_RowData );
-  assert( pC!=0 );
-  if( pC->nullRow ){
-    pTos->flags = MEM_Null;
-  }else if( pC->pCursor!=0 ){
-    BtCursor *pCrsr = pC->pCursor;
-    rc = sqlite3VdbeCursorMoveto(pC);
-    if( rc ) goto abort_due_to_error;
-    if( pC->nullRow ){
-      pTos->flags = MEM_Null;
-      break;
-    }else if( pC->isIndex ){
-      i64 n64;
-      assert( !pC->isTable );
-      sqlite3BtreeKeySize(pCrsr, &n64);
-      if( n64>SQLITE_MAX_LENGTH ){
-        goto too_big;
-      }
-      n = n64;
-    }else{
-      sqlite3BtreeDataSize(pCrsr, &n);
-    }
-    if( n>SQLITE_MAX_LENGTH ){
-      goto too_big;
-    }
-    pTos->n = n;
-    if( n<=NBFS ){
-      pTos->flags = MEM_Blob | MEM_Short;
-      pTos->z = pTos->zShort;
-    }else{
-      char *z = (char*)sqlite3_malloc( n );
-      if( z==0 ) goto no_mem;
-      pTos->flags = MEM_Blob | MEM_Dyn;
-      pTos->xDel = 0;
-      pTos->z = z;
-    }
-    if( pC->isIndex ){
-      rc = sqlite3BtreeKey(pCrsr, 0, n, pTos->z);
-    }else{
-      rc = sqlite3BtreeData(pCrsr, 0, n, pTos->z);
-    }
-  }else if( pC->pseudoTable ){
-    pTos->n = pC->nData;
-    assert( pC->nData<=SQLITE_MAX_LENGTH );
-    pTos->z = pC->pData;
-    pTos->flags = MEM_Blob|MEM_Ephem;
-  }else{
-    pTos->flags = MEM_Null;
-  }
-  pTos->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
-  break;
-}
-
-/* Opcode: Rowid P1 * *
-**
-** Push onto the stack an integer which is the key of the table entry that
-** P1 is currently point to.
-*/
-case OP_Rowid: {
-  int i = pOp->p1;
-  Cursor *pC;
-  i64 v;
-
-  assert( i>=0 && i<p->nCursor );
-  pC = p->apCsr[i];
-  assert( pC!=0 );
-  rc = sqlite3VdbeCursorMoveto(pC);
-  if( rc ) goto abort_due_to_error;
-  pTos++;
-  if( pC->rowidIsValid ){
-    v = pC->lastRowid;
-  }else if( pC->pseudoTable ){
-    v = keyToInt(pC->iKey);
-  }else if( pC->nullRow || pC->pCursor==0 ){
-    pTos->flags = MEM_Null;
-    break;
-  }else{
-    assert( pC->pCursor!=0 );
-    sqlite3BtreeKeySize(pC->pCursor, &v);
-    v = keyToInt(v);
-  }
-  pTos->u.i = v;
-  pTos->flags = MEM_Int;
-  break;
-}
-
-/* Opcode: NullRow P1 * *
-**
-** Move the cursor P1 to a null row.  Any OP_Column operations
-** that occur while the cursor is on the null row will always push 
-** a NULL onto the stack.
-*/
-case OP_NullRow: {        /* no-push */
-  int i = pOp->p1;
-  Cursor *pC;
-
-  assert( i>=0 && i<p->nCursor );
-  pC = p->apCsr[i];
-  assert( pC!=0 );
-  pC->nullRow = 1;
-  pC->rowidIsValid = 0;
-  break;
-}
-
-/* Opcode: Last P1 P2 *
-**
-** The next use of the Rowid or Column or Next instruction for P1 
-** will refer to the last entry in the database table or index.
-** If the table or index is empty and P2>0, then jump immediately to P2.
-** If P2 is 0 or if the table or index is not empty, fall through
-** to the following instruction.
-*/
-case OP_Last: {        /* no-push */
-  int i = pOp->p1;
-  Cursor *pC;
-  BtCursor *pCrsr;
-
-  assert( i>=0 && i<p->nCursor );
-  pC = p->apCsr[i];
-  assert( pC!=0 );
-  if( (pCrsr = pC->pCursor)!=0 ){
-    int res;
-    rc = sqlite3BtreeLast(pCrsr, &res);
-    pC->nullRow = res;
-    pC->deferredMoveto = 0;
-    pC->cacheStatus = CACHE_STALE;
-    if( res && pOp->p2>0 ){
-      pc = pOp->p2 - 1;
-    }
-  }else{
-    pC->nullRow = 0;
-  }
-  break;
-}
-
-
-/* Opcode: Sort P1 P2 *
-**
-** This opcode does exactly the same thing as OP_Rewind except that
-** it increments an undocumented global variable used for testing.
-**
-** Sorting is accomplished by writing records into a sorting index,
-** then rewinding that index and playing it back from beginning to
-** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
-** rewinding so that the global variable will be incremented and
-** regression tests can determine whether or not the optimizer is
-** correctly optimizing out sorts.
-*/
-case OP_Sort: {        /* no-push */
-#ifdef SQLITE_TEST
-  sqlite3_sort_count++;
-  sqlite3_search_count--;
-#endif
-  /* Fall through into OP_Rewind */
-}
-/* Opcode: Rewind P1 P2 *
-**
-** The next use of the Rowid or Column or Next instruction for P1 
-** will refer to the first entry in the database table or index.
-** If the table or index is empty and P2>0, then jump immediately to P2.
-** If P2 is 0 or if the table or index is not empty, fall through
-** to the following instruction.
-*/
-case OP_Rewind: {        /* no-push */
-  int i = pOp->p1;
-  Cursor *pC;
-  BtCursor *pCrsr;
-  int res;
-
-  assert( i>=0 && i<p->nCursor );
-  pC = p->apCsr[i];
-  assert( pC!=0 );
-  if( (pCrsr = pC->pCursor)!=0 ){
-    rc = sqlite3BtreeFirst(pCrsr, &res);
-    pC->atFirst = res==0;
-    pC->deferredMoveto = 0;
-    pC->cacheStatus = CACHE_STALE;
-  }else{
-    res = 1;
-  }
-  pC->nullRow = res;
-  if( res && pOp->p2>0 ){
-    pc = pOp->p2 - 1;
-  }
-  break;
-}
-
-/* Opcode: Next P1 P2 *
-**
-** Advance cursor P1 so that it points to the next key/data pair in its
-** table or index.  If there are no more key/value pairs then fall through
-** to the following instruction.  But if the cursor advance was successful,
-** jump immediately to P2.
-**
-** See also: Prev
-*/
-/* Opcode: Prev P1 P2 *
-**
-** Back up cursor P1 so that it points to the previous key/data pair in its
-** table or index.  If there is no previous key/value pairs then fall through
-** to the following instruction.  But if the cursor backup was successful,
-** jump immediately to P2.
-*/
-case OP_Prev:          /* no-push */
-case OP_Next: {        /* no-push */
-  Cursor *pC;
-  BtCursor *pCrsr;
-
-  CHECK_FOR_INTERRUPT;
-  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
-  pC = p->apCsr[pOp->p1];
-  if( pC==0 ){
-    break;  /* See ticket #2273 */
-  }
-  if( (pCrsr = pC->pCursor)!=0 ){
-    int res;
-    if( pC->nullRow ){
-      res = 1;
-    }else{
-      assert( pC->deferredMoveto==0 );
-      rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
-                                  sqlite3BtreePrevious(pCrsr, &res);
-      pC->nullRow = res;
-      pC->cacheStatus = CACHE_STALE;
-    }
-    if( res==0 ){
-      pc = pOp->p2 - 1;
-#ifdef SQLITE_TEST
-      sqlite3_search_count++;
-#endif
-    }
-  }else{
-    pC->nullRow = 1;
-  }
-  pC->rowidIsValid = 0;
-  break;
-}
-
-/* Opcode: IdxInsert P1 P2 *
-**
-** The top of the stack holds a SQL index key made using either the
-** MakeIdxRec or MakeRecord instructions.  This opcode writes that key
-** into the index P1.  Data for the entry is nil.
-**
-** P2 is a flag that provides a hint to the b-tree layer that this
-** insert is likely to be an append.
-**
-** This instruction only works for indices.  The equivalent instruction
-** for tables is OP_Insert.
-*/
-case OP_IdxInsert: {        /* no-push */
-  int i = pOp->p1;
-  Cursor *pC;
-  BtCursor *pCrsr;
-  assert( pTos>=p->aStack );
-  assert( i>=0 && i<p->nCursor );
-  assert( p->apCsr[i]!=0 );
-  assert( pTos->flags & MEM_Blob );
-  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
-    assert( pC->isTable==0 );
-    rc = ExpandBlob(pTos);
-    if( rc==SQLITE_OK ){
-      int nKey = pTos->n;
-      const char *zKey = pTos->z;
-      rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p2);
-      assert( pC->deferredMoveto==0 );
-      pC->cacheStatus = CACHE_STALE;
-    }
-  }
-  Release(pTos);
-  pTos--;
-  break;
-}
-
-/* Opcode: IdxDelete P1 * *
-**
-** The top of the stack is an index key built using the either the
-** MakeIdxRec or MakeRecord opcodes.
-** This opcode removes that entry from the index.
-*/
-case OP_IdxDelete: {        /* no-push */
-  int i = pOp->p1;
-  Cursor *pC;
-  BtCursor *pCrsr;
-  assert( pTos>=p->aStack );
-  assert( pTos->flags & MEM_Blob );
-  assert( i>=0 && i<p->nCursor );
-  assert( p->apCsr[i]!=0 );
-  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
-    int res;
-    rc = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, 0, &res);
-    if( rc==SQLITE_OK && res==0 ){
-      rc = sqlite3BtreeDelete(pCrsr);
-    }
-    assert( pC->deferredMoveto==0 );
-    pC->cacheStatus = CACHE_STALE;
-  }
-  Release(pTos);
-  pTos--;
-  break;
-}
-
-/* Opcode: IdxRowid P1 * *
-**
-** Push onto the stack an integer which is the last entry in the record at
-** the end of the index key pointed to by cursor P1.  This integer should be
-** the rowid of the table entry to which this index entry points.
-**
-** See also: Rowid, MakeIdxRec.
-*/
-case OP_IdxRowid: {
-  int i = pOp->p1;
-  BtCursor *pCrsr;
-  Cursor *pC;
-
-  assert( i>=0 && i<p->nCursor );
-  assert( p->apCsr[i]!=0 );
-  pTos++;
-  pTos->flags = MEM_Null;
-  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
-    i64 rowid;
-
-    assert( pC->deferredMoveto==0 );
-    assert( pC->isTable==0 );
-    if( pC->nullRow ){
-      pTos->flags = MEM_Null;
-    }else{
-      rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
-      if( rc!=SQLITE_OK ){
-        goto abort_due_to_error;
-      }
-      pTos->flags = MEM_Int;
-      pTos->u.i = rowid;
-    }
-  }
-  break;
-}
-
-/* Opcode: IdxGT P1 P2 *
-**
-** The top of the stack is an index entry that omits the ROWID.  Compare
-** the top of stack against the index that P1 is currently pointing to.
-** Ignore the ROWID on the P1 index.
-**
-** The top of the stack might have fewer columns that P1.
-**
-** If the P1 index entry is greater than the top of the stack
-** then jump to P2.  Otherwise fall through to the next instruction.
-** In either case, the stack is popped once.
-*/
-/* Opcode: IdxGE P1 P2 P3
-**
-** The top of the stack is an index entry that omits the ROWID.  Compare
-** the top of stack against the index that P1 is currently pointing to.
-** Ignore the ROWID on the P1 index.
-**
-** If the P1 index entry is greater than or equal to the top of the stack
-** then jump to P2.  Otherwise fall through to the next instruction.
-** In either case, the stack is popped once.
-**
-** If P3 is the "+" string (or any other non-NULL string) then the
-** index taken from the top of the stack is temporarily increased by
-** an epsilon prior to the comparison.  This make the opcode work
-** like IdxGT except that if the key from the stack is a prefix of
-** the key in the cursor, the result is false whereas it would be
-** true with IdxGT.
-*/
-/* Opcode: IdxLT P1 P2 P3
-**
-** The top of the stack is an index entry that omits the ROWID.  Compare
-** the top of stack against the index that P1 is currently pointing to.
-** Ignore the ROWID on the P1 index.
-**
-** If the P1 index entry is less than  the top of the stack
-** then jump to P2.  Otherwise fall through to the next instruction.
-** In either case, the stack is popped once.
-**
-** If P3 is the "+" string (or any other non-NULL string) then the
-** index taken from the top of the stack is temporarily increased by
-** an epsilon prior to the comparison.  This makes the opcode work
-** like IdxLE.
-*/
-case OP_IdxLT:          /* no-push */
-case OP_IdxGT:          /* no-push */
-case OP_IdxGE: {        /* no-push */
-  int i= pOp->p1;
-  Cursor *pC;
-
-  assert( i>=0 && i<p->nCursor );
-  assert( p->apCsr[i]!=0 );
-  assert( pTos>=p->aStack );
-  if( (pC = p->apCsr[i])->pCursor!=0 ){
-    int res;
- 
-    assert( pTos->flags & MEM_Blob );  /* Created using OP_MakeRecord */
-    assert( pC->deferredMoveto==0 );
-    ExpandBlob(pTos);
-    *pC->pIncrKey = pOp->p3!=0;
-    assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT );
-    rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, (u8*)pTos->z, &res);
-    *pC->pIncrKey = 0;
-    if( rc!=SQLITE_OK ){
-      break;
-    }
-    if( pOp->opcode==OP_IdxLT ){
-      res = -res;
-    }else if( pOp->opcode==OP_IdxGE ){
-      res++;
-    }
-    if( res>0 ){
-      pc = pOp->p2 - 1 ;
-    }
-  }
-  Release(pTos);
-  pTos--;
-  break;
-}
-
-/* Opcode: Destroy P1 P2 *
-**
-** Delete an entire database table or index whose root page in the database
-** file is given by P1.
-**
-** The table being destroyed is in the main database file if P2==0.  If
-** P2==1 then the table to be clear is in the auxiliary database file
-** that is used to store tables create using CREATE TEMPORARY TABLE.
-**
-** If AUTOVACUUM is enabled then it is possible that another root page
-** might be moved into the newly deleted root page in order to keep all
-** root pages contiguous at the beginning of the database.  The former
-** value of the root page that moved - its value before the move occurred -
-** is pushed onto the stack.  If no page movement was required (because
-** the table being dropped was already the last one in the database) then
-** a zero is pushed onto the stack.  If AUTOVACUUM is disabled
-** then a zero is pushed onto the stack.
-**
-** See also: Clear
-*/
-case OP_Destroy: {
-  int iMoved;
-  int iCnt;
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-  Vdbe *pVdbe;
-  iCnt = 0;
-  for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
-    if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
-      iCnt++;
-    }
-  }
-#else
-  iCnt = db->activeVdbeCnt;
-#endif
-  if( iCnt>1 ){
-    rc = SQLITE_LOCKED;
-    p->errorAction = OE_Abort;
-  }else{
-    assert( iCnt==1 );
-    assert( (p->btreeMask & (1<<pOp->p2))!=0 );
-    rc = sqlite3BtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1, &iMoved);
-    pTos++;
-    pTos->flags = MEM_Int;
-    pTos->u.i = iMoved;
-#ifndef SQLITE_OMIT_AUTOVACUUM
-    if( rc==SQLITE_OK && iMoved!=0 ){
-      sqlite3RootPageMoved(&db->aDb[pOp->p2], iMoved, pOp->p1);
-    }
-#endif
-  }
-  break;
-}
-
-/* Opcode: Clear P1 P2 *
-**
-** Delete all contents of the database table or index whose root page
-** in the database file is given by P1.  But, unlike Destroy, do not
-** remove the table or index from the database file.
-**
-** The table being clear is in the main database file if P2==0.  If
-** P2==1 then the table to be clear is in the auxiliary database file
-** that is used to store tables create using CREATE TEMPORARY TABLE.
-**
-** See also: Destroy
-*/
-case OP_Clear: {        /* no-push */
-
-  /* For consistency with the way other features of SQLite operate
-  ** with a truncate, we will also skip the update callback.
-  */
-#if 0
-  Btree *pBt = db->aDb[pOp->p2].pBt;
-  if( db->xUpdateCallback && pOp->p3 ){
-    const char *zDb = db->aDb[pOp->p2].zName;
-    const char *zTbl = pOp->p3;
-    BtCursor *pCur = 0;
-    int fin = 0;
-
-    rc = sqlite3BtreeCursor(pBt, pOp->p1, 0, 0, 0, &pCur);
-    if( rc!=SQLITE_OK ){
-      goto abort_due_to_error;
-    }
-    for(
-      rc=sqlite3BtreeFirst(pCur, &fin); 
-      rc==SQLITE_OK && !fin; 
-      rc=sqlite3BtreeNext(pCur, &fin)
-    ){
-      i64 iKey;
-      rc = sqlite3BtreeKeySize(pCur, &iKey);
-      if( rc ){
-        break;
-      }
-      iKey = keyToInt(iKey);
-      db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
-    }
-    sqlite3BtreeCloseCursor(pCur);
-    if( rc!=SQLITE_OK ){
-      goto abort_due_to_error;
-    }
-  }
-#endif
-  assert( (p->btreeMask & (1<<pOp->p2))!=0 );
-  rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
-  break;
-}
-
-/* Opcode: CreateTable P1 * *
-**
-** Allocate a new table in the main database file if P2==0 or in the
-** auxiliary database file if P2==1.  Push the page number
-** for the root page of the new table onto the stack.
-**
-** The difference between a table and an index is this:  A table must
-** have a 4-byte integer key and can have arbitrary data.  An index
-** has an arbitrary key but no data.
-**
-** See also: CreateIndex
-*/
-/* Opcode: CreateIndex P1 * *
-**
-** Allocate a new index in the main database file if P2==0 or in the
-** auxiliary database file if P2==1.  Push the page number of the
-** root page of the new index onto the stack.
-**
-** See documentation on OP_CreateTable for additional information.
-*/
-case OP_CreateIndex:
-case OP_CreateTable: {
-  int pgno;
-  int flags;
-  Db *pDb;
-  assert( pOp->p1>=0 && pOp->p1<db->nDb );
-  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
-  pDb = &db->aDb[pOp->p1];
-  assert( pDb->pBt!=0 );
-  if( pOp->opcode==OP_CreateTable ){
-    /* flags = BTREE_INTKEY; */
-    flags = BTREE_LEAFDATA|BTREE_INTKEY;
-  }else{
-    flags = BTREE_ZERODATA;
-  }
-  rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
-  pTos++;
-  if( rc==SQLITE_OK ){
-    pTos->u.i = pgno;
-    pTos->flags = MEM_Int;
-  }else{
-    pTos->flags = MEM_Null;
-  }
-  break;
-}
-
-/* Opcode: ParseSchema P1 P2 P3
-**
-** Read and parse all entries from the SQLITE_MASTER table of database P1
-** that match the WHERE clause P3.  P2 is the "force" flag.   Always do
-** the parsing if P2 is true.  If P2 is false, then this routine is a
-** no-op if the schema is not currently loaded.  In other words, if P2
-** is false, the SQLITE_MASTER table is only parsed if the rest of the
-** schema is already loaded into the symbol table.
-**
-** This opcode invokes the parser to create a new virtual machine,
-** then runs the new virtual machine.  It is thus a reentrant opcode.
-*/
-case OP_ParseSchema: {        /* no-push */
-  char *zSql;
-  int iDb = pOp->p1;
-  const char *zMaster;
-  InitData initData;
-
-  assert( iDb>=0 && iDb<db->nDb );
-  if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
-    break;
-  }
-  zMaster = SCHEMA_TABLE(iDb);
-  initData.db = db;
-  initData.iDb = pOp->p1;
-  initData.pzErrMsg = &p->zErrMsg;
-  zSql = sqlite3MPrintf(db,
-     "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
-     db->aDb[iDb].zName, zMaster, pOp->p3);
-  if( zSql==0 ) goto no_mem;
-  sqlite3SafetyOff(db);
-  assert( db->init.busy==0 );
-  db->init.busy = 1;
-  assert( !db->mallocFailed );
-  rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
-  if( rc==SQLITE_ABORT ) rc = initData.rc;
-  sqlite3_free(zSql);
-  db->init.busy = 0;
-  sqlite3SafetyOn(db);
-  if( rc==SQLITE_NOMEM ){
-    goto no_mem;
-  }
-  break;  
-}
-
-#if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
-/* Opcode: LoadAnalysis P1 * *
-**
-** Read the sqlite_stat1 table for database P1 and load the content
-** of that table into the internal index hash table.  This will cause
-** the analysis to be used when preparing all subsequent queries.
-*/
-case OP_LoadAnalysis: {        /* no-push */
-  int iDb = pOp->p1;
-  assert( iDb>=0 && iDb<db->nDb );
-  rc = sqlite3AnalysisLoad(db, iDb);
-  break;  
-}
-#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)  */
-
-/* Opcode: DropTable P1 * P3
-**
-** Remove the internal (in-memory) data structures that describe
-** the table named P3 in database P1.  This is called after a table
-** is dropped in order to keep the internal representation of the
-** schema consistent with what is on disk.
-*/
-case OP_DropTable: {        /* no-push */
-  sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3);
-  break;
-}
-
-/* Opcode: DropIndex P1 * P3
-**
-** Remove the internal (in-memory) data structures that describe
-** the index named P3 in database P1.  This is called after an index
-** is dropped in order to keep the internal representation of the
-** schema consistent with what is on disk.
-*/
-case OP_DropIndex: {        /* no-push */
-  sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3);
-  break;
-}
-
-/* Opcode: DropTrigger P1 * P3
-**
-** Remove the internal (in-memory) data structures that describe
-** the trigger named P3 in database P1.  This is called after a trigger
-** is dropped in order to keep the internal representation of the
-** schema consistent with what is on disk.
-*/
-case OP_DropTrigger: {        /* no-push */
-  sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3);
-  break;
-}
-
-
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK
-/* Opcode: IntegrityCk P1 P2 *
-**
-** Do an analysis of the currently open database.  Push onto the
-** stack the text of an error message describing any problems.
-** If no problems are found, push a NULL onto the stack.
-**
-** P1 is the address of a memory cell that contains the maximum
-** number of allowed errors.  At most mem[P1] errors will be reported.
-** In other words, the analysis stops as soon as mem[P1] errors are 
-** seen.  Mem[P1] is updated with the number of errors remaining.
-**
-** The root page numbers of all tables in the database are integer
-** values on the stack.  This opcode pulls as many integers as it
-** can off of the stack and uses those numbers as the root pages.
-**
-** If P2 is not zero, the check is done on the auxiliary database
-** file, not the main database file.
-**
-** This opcode is used to implement the integrity_check pragma.
-*/
-case OP_IntegrityCk: {
-  int nRoot;
-  int *aRoot;
-  int j;
-  int nErr;
-  char *z;
-  Mem *pnErr;
-
-  for(nRoot=0; &pTos[-nRoot]>=p->aStack; nRoot++){
-    if( (pTos[-nRoot].flags & MEM_Int)==0 ) break;
-  }
-  assert( nRoot>0 );
-  aRoot = (int*)sqlite3_malloc( sizeof(int)*(nRoot+1) );
-  if( aRoot==0 ) goto no_mem;
-  j = pOp->p1;
-  assert( j>=0 && j<p->nMem );
-  pnErr = &p->aMem[j];
-  assert( (pnErr->flags & MEM_Int)!=0 );
-  for(j=0; j<nRoot; j++){
-    aRoot[j] = (pTos-j)->u.i;
-  }
-  aRoot[j] = 0;
-  popStack(&pTos, nRoot);
-  pTos++;
-  assert( pOp->p2>=0 && pOp->p2<db->nDb );
-  assert( (p->btreeMask & (1<<pOp->p2))!=0 );
-  z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot,
-                                 pnErr->u.i, &nErr);
-  pnErr->u.i -= nErr;
-  if( nErr==0 ){
-    assert( z==0 );
-    pTos->flags = MEM_Null;
-  }else{
-    pTos->z = z;
-    pTos->n = strlen(z);
-    pTos->flags = MEM_Str | MEM_Dyn | MEM_Term;
-    pTos->xDel = 0;
-  }
-  pTos->enc = SQLITE_UTF8;
-  sqlite3VdbeChangeEncoding(pTos, encoding);
-  sqlite3_free(aRoot);
-  break;
-}
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
-
-/* Opcode: FifoWrite * * *
-**
-** Write the integer on the top of the stack
-** into the Fifo.
-*/
-case OP_FifoWrite: {        /* no-push */
-  assert( pTos>=p->aStack );
-  sqlite3VdbeMemIntegerify(pTos);
-  if( sqlite3VdbeFifoPush(&p->sFifo, pTos->u.i)==SQLITE_NOMEM ){
-    goto no_mem;
-  }
-  assert( (pTos->flags & MEM_Dyn)==0 );
-  pTos--;
-  break;
-}
-
-/* Opcode: FifoRead * P2 *
-**
-** Attempt to read a single integer from the Fifo
-** and push it onto the stack.  If the Fifo is empty
-** push nothing but instead jump to P2.
-*/
-case OP_FifoRead: {
-  i64 v;
-  CHECK_FOR_INTERRUPT;
-  if( sqlite3VdbeFifoPop(&p->sFifo, &v)==SQLITE_DONE ){
-    pc = pOp->p2 - 1;
-  }else{
-    pTos++;
-    pTos->u.i = v;
-    pTos->flags = MEM_Int;
-  }
-  break;
-}
-
-#ifndef SQLITE_OMIT_TRIGGER
-/* Opcode: ContextPush * * * 
-**
-** Save the current Vdbe context such that it can be restored by a ContextPop
-** opcode. The context stores the last insert row id, the last statement change
-** count, and the current statement change count.
-*/
-case OP_ContextPush: {        /* no-push */
-  int i = p->contextStackTop++;
-  Context *pContext;
-
-  assert( i>=0 );
-  /* FIX ME: This should be allocated as part of the vdbe at compile-time */
-  if( i>=p->contextStackDepth ){
-    p->contextStackDepth = i+1;
-    p->contextStack = (Context*)sqlite3DbReallocOrFree(db, p->contextStack,
-                                          sizeof(Context)*(i+1));
-    if( p->contextStack==0 ) goto no_mem;
-  }
-  pContext = &p->contextStack[i];
-  pContext->lastRowid = db->lastRowid;
-  pContext->nChange = p->nChange;
-  pContext->sFifo = p->sFifo;
-  sqlite3VdbeFifoInit(&p->sFifo);
-  break;
-}
-
-/* Opcode: ContextPop * * * 
-**
-** Restore the Vdbe context to the state it was in when contextPush was last
-** executed. The context stores the last insert row id, the last statement
-** change count, and the current statement change count.
-*/
-case OP_ContextPop: {        /* no-push */
-  Context *pContext = &p->contextStack[--p->contextStackTop];
-  assert( p->contextStackTop>=0 );
-  db->lastRowid = pContext->lastRowid;
-  p->nChange = pContext->nChange;
-  sqlite3VdbeFifoClear(&p->sFifo);
-  p->sFifo = pContext->sFifo;
-  break;
-}
-#endif /* #ifndef SQLITE_OMIT_TRIGGER */
-
-/* Opcode: MemStore P1 P2 *
-**
-** Write the top of the stack into memory location P1.
-** P1 should be a small integer since space is allocated
-** for all memory locations between 0 and P1 inclusive.
-**
-** After the data is stored in the memory location, the
-** stack is popped once if P2 is 1.  If P2 is zero, then
-** the original data remains on the stack.
-*/
-case OP_MemStore: {        /* no-push */
-  assert( pTos>=p->aStack );
-  assert( pOp->p1>=0 && pOp->p1<p->nMem );
-  rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos);
-  pTos--;
-
-  /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will
-  ** restore the top of the stack to its original value.
-  */
-  if( pOp->p2 ){
-    break;
-  }
-}
-/* Opcode: MemLoad P1 * *
-**
-** Push a copy of the value in memory location P1 onto the stack.
-**
-** If the value is a string, then the value pushed is a pointer to
-** the string that is stored in the memory location.  If the memory
-** location is subsequently changed (using OP_MemStore) then the
-** value pushed onto the stack will change too.
-*/
-case OP_MemLoad: {
-  int i = pOp->p1;
-  assert( i>=0 && i<p->nMem );
-  pTos++;
-  sqlite3VdbeMemShallowCopy(pTos, &p->aMem[i], MEM_Ephem);
-  break;
-}
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
-/* Opcode: MemMax P1 * *
-**
-** Set the value of memory cell P1 to the maximum of its current value
-** and the value on the top of the stack.  The stack is unchanged.
-**
-** This instruction throws an error if the memory cell is not initially
-** an integer.
-*/
-case OP_MemMax: {        /* no-push */
-  int i = pOp->p1;
-  Mem *pMem;
-  assert( pTos>=p->aStack );
-  assert( i>=0 && i<p->nMem );
-  pMem = &p->aMem[i];
-  sqlite3VdbeMemIntegerify(pMem);
-  sqlite3VdbeMemIntegerify(pTos);
-  if( pMem->u.i<pTos->u.i){
-    pMem->u.i = pTos->u.i;
-  }
-  break;
-}
-#endif /* SQLITE_OMIT_AUTOINCREMENT */
-
-/* Opcode: MemIncr P1 P2 *
-**
-** Increment the integer valued memory cell P2 by the value in P1.
-**
-** It is illegal to use this instruction on a memory cell that does
-** not contain an integer.  An assertion fault will result if you try.
-*/
-case OP_MemIncr: {        /* no-push */
-  int i = pOp->p2;
-  Mem *pMem;
-  assert( i>=0 && i<p->nMem );
-  pMem = &p->aMem[i];
-  assert( pMem->flags==MEM_Int );
-  pMem->u.i += pOp->p1;
-  break;
-}
-
-/* Opcode: IfMemPos P1 P2 *
-**
-** If the value of memory cell P1 is 1 or greater, jump to P2.
-**
-** It is illegal to use this instruction on a memory cell that does
-** not contain an integer.  An assertion fault will result if you try.
-*/
-case OP_IfMemPos: {        /* no-push */
-  int i = pOp->p1;
-  Mem *pMem;
-  assert( i>=0 && i<p->nMem );
-  pMem = &p->aMem[i];
-  assert( pMem->flags==MEM_Int );
-  if( pMem->u.i>0 ){
-     pc = pOp->p2 - 1;
-  }
-  break;
-}
-
-/* Opcode: IfMemNeg P1 P2 *
-**
-** If the value of memory cell P1 is less than zero, jump to P2. 
-**
-** It is illegal to use this instruction on a memory cell that does
-** not contain an integer.  An assertion fault will result if you try.
-*/
-case OP_IfMemNeg: {        /* no-push */
-  int i = pOp->p1;
-  Mem *pMem;
-  assert( i>=0 && i<p->nMem );
-  pMem = &p->aMem[i];
-  assert( pMem->flags==MEM_Int );
-  if( pMem->u.i<0 ){
-     pc = pOp->p2 - 1;
-  }
-  break;
-}
-
-/* Opcode: IfMemZero P1 P2 *
-**
-** If the value of memory cell P1 is exactly 0, jump to P2. 
-**
-** It is illegal to use this instruction on a memory cell that does
-** not contain an integer.  An assertion fault will result if you try.
-*/
-case OP_IfMemZero: {        /* no-push */
-  int i = pOp->p1;
-  Mem *pMem;
-  assert( i>=0 && i<p->nMem );
-  pMem = &p->aMem[i];
-  assert( pMem->flags==MEM_Int );
-  if( pMem->u.i==0 ){
-     pc = pOp->p2 - 1;
-  }
-  break;
-}
-
-/* Opcode: MemNull P1 * *
-**
-** Store a NULL in memory cell P1
-*/
-case OP_MemNull: {
-  assert( pOp->p1>=0 && pOp->p1<p->nMem );
-  sqlite3VdbeMemSetNull(&p->aMem[pOp->p1]);
-  break;
-}
-
-/* Opcode: MemInt P1 P2 *
-**
-** Store the integer value P1 in memory cell P2.
-*/
-case OP_MemInt: {
-  assert( pOp->p2>=0 && pOp->p2<p->nMem );
-  sqlite3VdbeMemSetInt64(&p->aMem[pOp->p2], pOp->p1);
-  break;
-}
-
-/* Opcode: MemMove P1 P2 *
-**
-** Move the content of memory cell P2 over to memory cell P1.
-** Any prior content of P1 is erased.  Memory cell P2 is left
-** containing a NULL.
-*/
-case OP_MemMove: {
-  assert( pOp->p1>=0 && pOp->p1<p->nMem );
-  assert( pOp->p2>=0 && pOp->p2<p->nMem );
-  rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], &p->aMem[pOp->p2]);
-  break;
-}
-
-/* Opcode: AggStep P1 P2 P3
-**
-** Execute the step function for an aggregate.  The
-** function has P2 arguments.  P3 is a pointer to the FuncDef
-** structure that specifies the function.  Use memory location
-** P1 as the accumulator.
-**
-** The P2 arguments are popped from the stack.
-*/
-case OP_AggStep: {        /* no-push */
-  int n = pOp->p2;
-  int i;
-  Mem *pMem, *pRec;
-  sqlite3_context ctx;
-  sqlite3_value **apVal;
-
-  assert( n>=0 );
-  pRec = &pTos[1-n];
-  assert( pRec>=p->aStack );
-  apVal = p->apArg;
-  assert( apVal || n==0 );
-  for(i=0; i<n; i++, pRec++){
-    apVal[i] = pRec;
-    storeTypeInfo(pRec, encoding);
-  }
-  ctx.pFunc = (FuncDef*)pOp->p3;
-  assert( pOp->p1>=0 && pOp->p1<p->nMem );
-  ctx.pMem = pMem = &p->aMem[pOp->p1];
-  pMem->n++;
-  ctx.s.flags = MEM_Null;
-  ctx.s.z = 0;
-  ctx.s.xDel = 0;
-  ctx.s.db = db;
-  ctx.isError = 0;
-  ctx.pColl = 0;
-  if( ctx.pFunc->needCollSeq ){
-    assert( pOp>p->aOp );
-    assert( pOp[-1].p3type==P3_COLLSEQ );
-    assert( pOp[-1].opcode==OP_CollSeq );
-    ctx.pColl = (CollSeq *)pOp[-1].p3;
-  }
-  (ctx.pFunc->xStep)(&ctx, n, apVal);
-  popStack(&pTos, n);
-  if( ctx.isError ){
-    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
-    rc = SQLITE_ERROR;
-  }
-  sqlite3VdbeMemRelease(&ctx.s);
-  break;
-}
-
-/* Opcode: AggFinal P1 P2 P3
-**
-** Execute the finalizer function for an aggregate.  P1 is
-** the memory location that is the accumulator for the aggregate.
-**
-** P2 is the number of arguments that the step function takes and
-** P3 is a pointer to the FuncDef for this function.  The P2
-** argument is not used by this opcode.  It is only there to disambiguate
-** functions that can take varying numbers of arguments.  The
-** P3 argument is only needed for the degenerate case where
-** the step function was not previously called.
-*/
-case OP_AggFinal: {        /* no-push */
-  Mem *pMem;
-  assert( pOp->p1>=0 && pOp->p1<p->nMem );
-  pMem = &p->aMem[pOp->p1];
-  assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
-  rc = sqlite3VdbeMemFinalize(pMem, (FuncDef*)pOp->p3);
-  if( rc==SQLITE_ERROR ){
-    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
-  }
-  if( sqlite3VdbeMemTooBig(pMem) ){
-    goto too_big;
-  }
-  break;
-}
-
-
-#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
-/* Opcode: Vacuum * * *
-**
-** Vacuum the entire database.  This opcode will cause other virtual
-** machines to be created and run.  It may not be called from within
-** a transaction.
-*/
-case OP_Vacuum: {        /* no-push */
-  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 
-  rc = sqlite3RunVacuum(&p->zErrMsg, db);
-  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
-  break;
-}
-#endif
-
-#if !defined(SQLITE_OMIT_AUTOVACUUM)
-/* Opcode: IncrVacuum P1 P2 *
-**
-** Perform a single step of the incremental vacuum procedure on
-** the P1 database. If the vacuum has finished, jump to instruction
-** P2. Otherwise, fall through to the next instruction.
-*/
-case OP_IncrVacuum: {        /* no-push */
-  Btree *pBt;
-
-  assert( pOp->p1>=0 && pOp->p1<db->nDb );
-  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
-  pBt = db->aDb[pOp->p1].pBt;
-  rc = sqlite3BtreeIncrVacuum(pBt);
-  if( rc==SQLITE_DONE ){
-    pc = pOp->p2 - 1;
-    rc = SQLITE_OK;
-  }
-  break;
-}
-#endif
-
-/* Opcode: Expire P1 * *
-**
-** Cause precompiled statements to become expired. An expired statement
-** fails with an error code of SQLITE_SCHEMA if it is ever executed 
-** (via sqlite3_step()).
-** 
-** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
-** then only the currently executing statement is affected. 
-*/
-case OP_Expire: {        /* no-push */
-  if( !pOp->p1 ){
-    sqlite3ExpirePreparedStatements(db);
-  }else{
-    p->expired = 1;
-  }
-  break;
-}
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/* Opcode: TableLock P1 P2 P3
-**
-** Obtain a lock on a particular table. This instruction is only used when
-** the shared-cache feature is enabled. 
-**
-** If P1 is not negative, then it is the index of the database
-** in sqlite3.aDb[] and a read-lock is required. If P1 is negative, a 
-** write-lock is required. In this case the index of the database is the 
-** absolute value of P1 minus one (iDb = abs(P1) - 1;) and a write-lock is
-** required. 
-**
-** P2 contains the root-page of the table to lock.
-**
-** P3 contains a pointer to the name of the table being locked. This is only
-** used to generate an error message if the lock cannot be obtained.
-*/
-case OP_TableLock: {        /* no-push */
-  int p1 = pOp->p1; 
-  u8 isWriteLock = (p1<0);
-  if( isWriteLock ){
-    p1 = (-1*p1)-1;
-  }
-  assert( p1>=0 && p1<db->nDb );
-  assert( (p->btreeMask & (1<<p1))!=0 );
-  rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
-  if( rc==SQLITE_LOCKED ){
-    const char *z = (const char *)pOp->p3;
-    sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
-  }
-  break;
-}
-#endif /* SQLITE_OMIT_SHARED_CACHE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VBegin * * P3
-**
-** P3 a pointer to an sqlite3_vtab structure. Call the xBegin method 
-** for that table.
-*/
-case OP_VBegin: {   /* no-push */
-  rc = sqlite3VtabBegin(db, (sqlite3_vtab *)pOp->p3);
-  break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VCreate P1 * P3
-**
-** P3 is the name of a virtual table in database P1. Call the xCreate method
-** for that table.
-*/
-case OP_VCreate: {   /* no-push */
-  rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p3, &p->zErrMsg);
-  break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VDestroy P1 * P3
-**
-** P3 is the name of a virtual table in database P1.  Call the xDestroy method
-** of that table.
-*/
-case OP_VDestroy: {   /* no-push */
-  p->inVtabMethod = 2;
-  rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p3);
-  p->inVtabMethod = 0;
-  break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VOpen P1 * P3
-**
-** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
-** P1 is a cursor number.  This opcode opens a cursor to the virtual
-** table and stores that cursor in P1.
-*/
-case OP_VOpen: {   /* no-push */
-  Cursor *pCur = 0;
-  sqlite3_vtab_cursor *pVtabCursor = 0;
-
-  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
-  sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
-
-  assert(pVtab && pModule);
-  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
-  rc = pModule->xOpen(pVtab, &pVtabCursor);
-  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
-  if( SQLITE_OK==rc ){
-    /* Initialise sqlite3_vtab_cursor base class */
-    pVtabCursor->pVtab = pVtab;
-
-    /* Initialise vdbe cursor object */
-    pCur = allocateCursor(p, pOp->p1, -1);
-    if( pCur ){
-      pCur->pVtabCursor = pVtabCursor;
-      pCur->pModule = pVtabCursor->pVtab->pModule;
-    }else{
-      db->mallocFailed = 1;
-      pModule->xClose(pVtabCursor);
-    }
-  }
-  break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VFilter P1 P2 P3
-**
-** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
-** the filtered result set is empty.
-**
-** P3 is either NULL or a string that was generated by the xBestIndex
-** method of the module.  The interpretation of the P3 string is left
-** to the module implementation.
-**
-** This opcode invokes the xFilter method on the virtual table specified
-** by P1.  The integer query plan parameter to xFilter is the top of the
-** stack.  Next down on the stack is the argc parameter.  Beneath the
-** next of stack are argc additional parameters which are passed to
-** xFilter as argv. The topmost parameter (i.e. 3rd element popped from
-** the stack) becomes argv[argc-1] when passed to xFilter.
-**
-** The integer query plan parameter, argc, and all argv stack values 
-** are popped from the stack before this instruction completes.
-**
-** A jump is made to P2 if the result set after filtering would be 
-** empty.
-*/
-case OP_VFilter: {   /* no-push */
-  int nArg;
-
-  const sqlite3_module *pModule;
-
-  Cursor *pCur = p->apCsr[pOp->p1];
-  assert( pCur->pVtabCursor );
-  pModule = pCur->pVtabCursor->pVtab->pModule;
-
-  /* Grab the index number and argc parameters off the top of the stack. */
-  assert( (&pTos[-1])>=p->aStack );
-  assert( (pTos[0].flags&MEM_Int)!=0 && pTos[-1].flags==MEM_Int );
-  nArg = pTos[-1].u.i;
-
-  /* Invoke the xFilter method */
-  {
-    int res = 0;
-    int i;
-    Mem **apArg = p->apArg;
-    for(i = 0; i<nArg; i++){
-      apArg[i] = &pTos[i+1-2-nArg];
-      storeTypeInfo(apArg[i], 0);
-    }
-
-    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
-    p->inVtabMethod = 1;
-    rc = pModule->xFilter(pCur->pVtabCursor, pTos->u.i, pOp->p3, nArg, apArg);
-    p->inVtabMethod = 0;
-    if( rc==SQLITE_OK ){
-      res = pModule->xEof(pCur->pVtabCursor);
-    }
-    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
-
-    if( res ){
-      pc = pOp->p2 - 1;
-    }
-  }
-
-  /* Pop the index number, argc value and parameters off the stack */
-  popStack(&pTos, 2+nArg);
-  break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VRowid P1 * *
-**
-** Push an integer onto the stack which is the rowid of
-** the virtual-table that the P1 cursor is pointing to.
-*/
-case OP_VRowid: {
-  const sqlite3_module *pModule;
-
-  Cursor *pCur = p->apCsr[pOp->p1];
-  assert( pCur->pVtabCursor );
-  pModule = pCur->pVtabCursor->pVtab->pModule;
-  if( pModule->xRowid==0 ){
-    sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xRowid", 0);
-    rc = SQLITE_ERROR;
-  } else {
-    sqlite_int64 iRow;
-
-    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
-    rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
-    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
-
-    pTos++;
-    pTos->flags = MEM_Int;
-    pTos->u.i = iRow;
-  }
-
-  break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VColumn P1 P2 *
-**
-** Push onto the stack the value of the P2-th column of
-** the row of the virtual-table that the P1 cursor is pointing to.
-*/
-case OP_VColumn: {
-  const sqlite3_module *pModule;
-
-  Cursor *pCur = p->apCsr[pOp->p1];
-  assert( pCur->pVtabCursor );
-  pModule = pCur->pVtabCursor->pVtab->pModule;
-  if( pModule->xColumn==0 ){
-    sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xColumn", 0);
-    rc = SQLITE_ERROR;
-  } else {
-    sqlite3_context sContext;
-    memset(&sContext, 0, sizeof(sContext));
-    sContext.s.flags = MEM_Null;
-    sContext.s.db = db;
-    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
-    rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
-
-    /* Copy the result of the function to the top of the stack. We
-    ** do this regardless of whether or not an error occured to ensure any
-    ** dynamic allocation in sContext.s (a Mem struct) is  released.
-    */
-    sqlite3VdbeChangeEncoding(&sContext.s, encoding);
-    pTos++;
-    pTos->flags = 0;
-    sqlite3VdbeMemMove(pTos, &sContext.s);
-
-    if( sqlite3SafetyOn(db) ){
-      goto abort_due_to_misuse;
-    }
-    if( sqlite3VdbeMemTooBig(pTos) ){
-      goto too_big;
-    }
-  }
-  
-  break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VNext P1 P2 *
-**
-** Advance virtual table P1 to the next row in its result set and
-** jump to instruction P2.  Or, if the virtual table has reached
-** the end of its result set, then fall through to the next instruction.
-*/
-case OP_VNext: {   /* no-push */
-  const sqlite3_module *pModule;
-  int res = 0;
-
-  Cursor *pCur = p->apCsr[pOp->p1];
-  assert( pCur->pVtabCursor );
-  pModule = pCur->pVtabCursor->pVtab->pModule;
-  if( pModule->xNext==0 ){
-    sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xNext", 0);
-    rc = SQLITE_ERROR;
-  } else {
-    /* Invoke the xNext() method of the module. There is no way for the
-    ** underlying implementation to return an error if one occurs during
-    ** xNext(). Instead, if an error occurs, true is returned (indicating that 
-    ** data is available) and the error code returned when xColumn or
-    ** some other method is next invoked on the save virtual table cursor.
-    */
-    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
-    p->inVtabMethod = 1;
-    rc = pModule->xNext(pCur->pVtabCursor);
-    p->inVtabMethod = 0;
-    if( rc==SQLITE_OK ){
-      res = pModule->xEof(pCur->pVtabCursor);
-    }
-    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
-
-    if( !res ){
-      /* If there is data, jump to P2 */
-      pc = pOp->p2 - 1;
-    }
-  }
-
-  break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VRename * * P3
-**
-** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
-** This opcode invokes the corresponding xRename method. The value
-** on the top of the stack is popped and passed as the zName argument
-** to the xRename method.
-*/
-case OP_VRename: {   /* no-push */
-  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
-  assert( pVtab->pModule->xRename );
-
-  Stringify(pTos, encoding);
-
-  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
-  sqlite3VtabLock(pVtab);
-  rc = pVtab->pModule->xRename(pVtab, pTos->z);
-  sqlite3VtabUnlock(db, pVtab);
-  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
-
-  popStack(&pTos, 1);
-  break;
-}
-#endif
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VUpdate P1 P2 P3
-**
-** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
-** This opcode invokes the corresponding xUpdate method. P2 values
-** are taken from the stack to pass to the xUpdate invocation. The
-** value on the top of the stack corresponds to the p2th element 
-** of the argv array passed to xUpdate.
-**
-** The xUpdate method will do a DELETE or an INSERT or both.
-** The argv[0] element (which corresponds to the P2-th element down
-** on the stack) is the rowid of a row to delete.  If argv[0] is
-** NULL then no deletion occurs.  The argv[1] element is the rowid
-** of the new row.  This can be NULL to have the virtual table
-** select the new rowid for itself.  The higher elements in the
-** stack are the values of columns in the new row.
-**
-** If P2==1 then no insert is performed.  argv[0] is the rowid of
-** a row to delete.
-**
-** P1 is a boolean flag. If it is set to true and the xUpdate call
-** is successful, then the value returned by sqlite3_last_insert_rowid() 
-** is set to the value of the rowid for the row just inserted.
-*/
-case OP_VUpdate: {   /* no-push */
-  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
-  sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
-  int nArg = pOp->p2;
-  assert( pOp->p3type==P3_VTAB );
-  if( pModule->xUpdate==0 ){
-    sqlite3SetString(&p->zErrMsg, "read-only table", 0);
-    rc = SQLITE_ERROR;
-  }else{
-    int i;
-    sqlite_int64 rowid;
-    Mem **apArg = p->apArg;
-    Mem *pX = &pTos[1-nArg];
-    for(i = 0; i<nArg; i++, pX++){
-      storeTypeInfo(pX, 0);
-      apArg[i] = pX;
-    }
-    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
-    sqlite3VtabLock(pVtab);
-    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
-    sqlite3VtabUnlock(db, pVtab);
-    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
-    if( pOp->p1 && rc==SQLITE_OK ){
-      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
-      db->lastRowid = rowid;
-    }
-  }
-  popStack(&pTos, nArg);
-  break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-/* An other opcode is illegal...
-*/
-default: {
-  assert( 0 );
-  break;
-}
-
-/*****************************************************************************
-** The cases of the switch statement above this line should all be indented
-** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
-** readability.  From this point on down, the normal indentation rules are
-** restored.
-*****************************************************************************/
-    }
-
-    /* Make sure the stack limit was not exceeded */
-    assert( pTos<=pStackLimit );
-
-#ifdef VDBE_PROFILE
-    {
-      long long elapse = hwtime() - start;
-      pOp->cycles += elapse;
-      pOp->cnt++;
-#if 0
-        fprintf(stdout, "%10lld ", elapse);
-        sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
-#endif
-    }
-#endif
-
-#ifdef SQLITE_TEST
-    /* Keep track of the size of the largest BLOB or STR that has appeared
-    ** on the top of the VDBE stack.
-    */
-    if( pTos>=p->aStack && (pTos->flags & (MEM_Blob|MEM_Str))!=0
-         && pTos->n>sqlite3_max_blobsize ){
-      sqlite3_max_blobsize = pTos->n;
-    }
-#endif
-
-    /* The following code adds nothing to the actual functionality
-    ** of the program.  It is only here for testing and debugging.
-    ** On the other hand, it does burn CPU cycles every time through
-    ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
-    */
-#ifndef NDEBUG
-    /* Sanity checking on the top element of the stack. If the previous
-    ** instruction was VNoChange, then the flags field of the top
-    ** of the stack is set to 0. This is technically invalid for a memory
-    ** cell, so avoid calling MemSanity() in this case.
-    */
-    if( pTos>=p->aStack && pTos->flags ){
-      assert( pTos->db==db );
-      sqlite3VdbeMemSanity(pTos);
-      assert( !sqlite3VdbeMemTooBig(pTos) );
-    }
-    assert( pc>=-1 && pc<p->nOp );
-
-#ifdef SQLITE_DEBUG
-    /* Code for tracing the vdbe stack. */
-    if( p->trace && pTos>=p->aStack ){
-      int i;
-      fprintf(p->trace, "Stack:");
-      for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
-        if( pTos[i].flags & MEM_Null ){
-          fprintf(p->trace, " NULL");
-        }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
-          fprintf(p->trace, " si:%lld", pTos[i].u.i);
-        }else if( pTos[i].flags & MEM_Int ){
-          fprintf(p->trace, " i:%lld", pTos[i].u.i);
-        }else if( pTos[i].flags & MEM_Real ){
-          fprintf(p->trace, " r:%g", pTos[i].r);
-        }else{
-          char zBuf[200];
-          sqlite3VdbeMemPrettyPrint(&pTos[i], zBuf);
-          fprintf(p->trace, " ");
-          fprintf(p->trace, "%s", zBuf);
-        }
-      }
-      if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
-      fprintf(p->trace,"\n");
-    }
-#endif  /* SQLITE_DEBUG */
-#endif  /* NDEBUG */
-  }  /* The end of the for(;;) loop the loops through opcodes */
-
-  /* If we reach this point, it means that execution is finished.
-  */
-vdbe_halt:
-  if( rc ){
-    p->rc = rc;
-    rc = SQLITE_ERROR;
-  }else{
-    rc = SQLITE_DONE;
-  }
-  sqlite3VdbeHalt(p);
-  p->pTos = pTos;
-
-  /* This is the only way out of this procedure.  We have to
-  ** release the mutexes on btrees that were acquired at the
-  ** top. */
-vdbe_return:
-  sqlite3BtreeMutexArrayLeave(&p->aMutex);
-  return rc;
-
-  /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
-  ** is encountered.
-  */
-too_big:
-  sqlite3SetString(&p->zErrMsg, "string or blob too big", (char*)0);
-  rc = SQLITE_TOOBIG;
-  goto vdbe_halt;
-
-  /* Jump to here if a malloc() fails.
-  */
-no_mem:
-  db->mallocFailed = 1;
-  sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
-  rc = SQLITE_NOMEM;
-  goto vdbe_halt;
-
-  /* Jump to here for an SQLITE_MISUSE error.
-  */
-abort_due_to_misuse:
-  rc = SQLITE_MISUSE;
-  /* Fall thru into abort_due_to_error */
-
-  /* Jump to here for any other kind of fatal error.  The "rc" variable
-  ** should hold the error number.
-  */
-abort_due_to_error:
-  if( p->zErrMsg==0 ){
-    if( db->mallocFailed ) rc = SQLITE_NOMEM;
-    sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
-  }
-  goto vdbe_halt;
-
-  /* Jump to here if the sqlite3_interrupt() API sets the interrupt
-  ** flag.
-  */
-abort_due_to_interrupt:
-  assert( db->u1.isInterrupted );
-  if( db->magic!=SQLITE_MAGIC_BUSY ){
-    rc = SQLITE_MISUSE;
-  }else{
-    rc = SQLITE_INTERRUPT;
-  }
-  p->rc = rc;
-  sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
-  goto vdbe_halt;
-}