engine/sqlite/src/vdbeaux.cpp
changeset 97 3903521a36da
parent 96 87e863f6f840
child 98 5f9e7e14eb11
--- a/engine/sqlite/src/vdbeaux.cpp	Wed May 26 10:44:32 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2260 +0,0 @@
-/*
-** 2003 September 6
-**
-** The author disclaims copyright to this source code.  In place of
-** a legal notice, here is a blessing:
-**
-**    May you do good and not evil.
-**    May you find forgiveness for yourself and forgive others.
-**    May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code used for creating, destroying, and populating
-** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
-** to version 2.8.7, all this code was combined into the vdbe.c source file.
-** But that file was getting too big so this subroutines were split out.
-*/
-#include "sqliteInt.h"
-#include <ctype.h>
-#include "vdbeInt.h"
-
-
-
-/*
-** When debugging the code generator in a symbolic debugger, one can
-** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed
-** as they are added to the instruction stream.
-*/
-#ifdef SQLITE_DEBUG
-int sqlite3_vdbe_addop_trace = 0;
-#endif
-
-
-/*
-** Create a new virtual database engine.
-*/
-Vdbe *sqlite3VdbeCreate(sqlite3 *db){
-  Vdbe *p;
-  p = (Vdbe*)sqlite3DbMallocZero(db, sizeof(Vdbe) );
-  if( p==0 ) return 0;
-  p->db = db;
-  if( db->pVdbe ){
-    db->pVdbe->pPrev = p;
-  }
-  p->pNext = db->pVdbe;
-  p->pPrev = 0;
-  db->pVdbe = p;
-  p->magic = VDBE_MAGIC_INIT;
-  return p;
-}
-
-/*
-** Remember the SQL string for a prepared statement.
-*/
-void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
-  if( p==0 ) return;
-  assert( p->zSql==0 );
-  p->zSql = sqlite3DbStrNDup(p->db, z, n);
-}
-
-/*
-** Return the SQL associated with a prepared statement
-*/
-EXPORT_C const char *sqlite3_sql(sqlite3_stmt *pStmt){
-  return ((Vdbe *)pStmt)->zSql;
-}
-
-/*
-** Swap all content between two VDBE structures.
-*/
-void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
-  Vdbe tmp, *pTmp;
-  char *zTmp;
-  int nTmp;
-  tmp = *pA;
-  *pA = *pB;
-  *pB = tmp;
-  pTmp = pA->pNext;
-  pA->pNext = pB->pNext;
-  pB->pNext = pTmp;
-  pTmp = pA->pPrev;
-  pA->pPrev = pB->pPrev;
-  pB->pPrev = pTmp;
-  zTmp = pA->zSql;
-  pA->zSql = pB->zSql;
-  pB->zSql = zTmp;
-  nTmp = pA->nSql;
-  pA->nSql = pB->nSql;
-  pB->nSql = nTmp;
-}
-
-#ifdef SQLITE_DEBUG
-/*
-** Turn tracing on or off
-*/
-void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
-  p->trace = trace;
-}
-#endif
-
-/*
-** Resize the Vdbe.aOp array so that it contains at least N
-** elements.
-**
-** If an out-of-memory error occurs while resizing the array,
-** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
-** any opcodes already allocated can be correctly deallocated
-** along with the rest of the Vdbe).
-*/
-static void resizeOpArray(Vdbe *p, int N){
-  VdbeOp *pNew;
-  int oldSize = p->nOpAlloc;
-  pNew = (VdbeOp*)sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
-  if( pNew ){
-    p->nOpAlloc = N;
-    p->aOp = pNew;
-    if( N>oldSize ){
-      memset(&p->aOp[oldSize], 0, (N-oldSize)*sizeof(Op));
-    }
-  }
-}
-
-/*
-** Add a new instruction to the list of instructions current in the
-** VDBE.  Return the address of the new instruction.
-**
-** Parameters:
-**
-**    p               Pointer to the VDBE
-**
-**    op              The opcode for this instruction
-**
-**    p1, p2          First two of the three possible operands.
-**
-** Use the sqlite3VdbeResolveLabel() function to fix an address and
-** the sqlite3VdbeChangeP3() function to change the value of the P3
-** operand.
-*/
-int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){
-  int i;
-  VdbeOp *pOp;
-
-  i = p->nOp;
-  assert( p->magic==VDBE_MAGIC_INIT );
-  if( p->nOpAlloc<=i ){
-    resizeOpArray(p, p->nOpAlloc*2 + 100);
-    if( p->db->mallocFailed ){
-      return 0;
-    }
-  }
-  p->nOp++;
-  pOp = &p->aOp[i];
-  pOp->opcode = op;
-  pOp->p1 = p1;
-  pOp->p2 = p2;
-  pOp->p3 = 0;
-  pOp->p3type = P3_NOTUSED;
-  p->expired = 0;
-#ifdef SQLITE_DEBUG
-  if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
-#endif
-  return i;
-}
-
-/*
-** Add an opcode that includes the p3 value.
-*/
-int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){
-  int addr = sqlite3VdbeAddOp(p, op, p1, p2);
-  sqlite3VdbeChangeP3(p, addr, zP3, p3type);
-  return addr;
-}
-
-/*
-** Create a new symbolic label for an instruction that has yet to be
-** coded.  The symbolic label is really just a negative number.  The
-** label can be used as the P2 value of an operation.  Later, when
-** the label is resolved to a specific address, the VDBE will scan
-** through its operation list and change all values of P2 which match
-** the label into the resolved address.
-**
-** The VDBE knows that a P2 value is a label because labels are
-** always negative and P2 values are suppose to be non-negative.
-** Hence, a negative P2 value is a label that has yet to be resolved.
-**
-** Zero is returned if a malloc() fails.
-*/
-int sqlite3VdbeMakeLabel(Vdbe *p){
-  int i;
-  i = p->nLabel++;
-  assert( p->magic==VDBE_MAGIC_INIT );
-  if( i>=p->nLabelAlloc ){
-    p->nLabelAlloc = p->nLabelAlloc*2 + 10;
-    p->aLabel = (int*)sqlite3DbReallocOrFree(p->db, p->aLabel,
-                                    p->nLabelAlloc*sizeof(p->aLabel[0]));
-  }
-  if( p->aLabel ){
-    p->aLabel[i] = -1;
-  }
-  return -1-i;
-}
-
-/*
-** Resolve label "x" to be the address of the next instruction to
-** be inserted.  The parameter "x" must have been obtained from
-** a prior call to sqlite3VdbeMakeLabel().
-*/
-void sqlite3VdbeResolveLabel(Vdbe *p, int x){
-  int j = -1-x;
-  assert( p->magic==VDBE_MAGIC_INIT );
-  assert( j>=0 && j<p->nLabel );
-  if( p->aLabel ){
-    p->aLabel[j] = p->nOp;
-  }
-}
-
-/*
-** Return non-zero if opcode 'op' is guarenteed not to push more values
-** onto the VDBE stack than it pops off.
-*/
-static int opcodeNoPush(u8 op){
-  /* The 10 NOPUSH_MASK_n constants are defined in the automatically
-  ** generated header file opcodes.h. Each is a 16-bit bitmask, one
-  ** bit corresponding to each opcode implemented by the virtual
-  ** machine in vdbe.c. The bit is true if the word "no-push" appears
-  ** in a comment on the same line as the "case OP_XXX:" in 
-  ** sqlite3VdbeExec() in vdbe.c.
-  **
-  ** If the bit is true, then the corresponding opcode is guarenteed not
-  ** to grow the stack when it is executed. Otherwise, it may grow the
-  ** stack by at most one entry.
-  **
-  ** NOPUSH_MASK_0 corresponds to opcodes 0 to 15. NOPUSH_MASK_1 contains
-  ** one bit for opcodes 16 to 31, and so on.
-  **
-  ** 16-bit bitmasks (rather than 32-bit) are specified in opcodes.h 
-  ** because the file is generated by an awk program. Awk manipulates
-  ** all numbers as floating-point and we don't want to risk a rounding
-  ** error if someone builds with an awk that uses (for example) 32-bit 
-  ** IEEE floats.
-  */ 
-  static const u32 masks[5] = {
-    NOPUSH_MASK_0 + (((unsigned)NOPUSH_MASK_1)<<16),
-    NOPUSH_MASK_2 + (((unsigned)NOPUSH_MASK_3)<<16),
-    NOPUSH_MASK_4 + (((unsigned)NOPUSH_MASK_5)<<16),
-    NOPUSH_MASK_6 + (((unsigned)NOPUSH_MASK_7)<<16),
-    NOPUSH_MASK_8 + (((unsigned)NOPUSH_MASK_9)<<16)
-  };
-  assert( op<32*5 );
-  return (masks[op>>5] & (1<<(op&0x1F)));
-}
-
-#ifndef NDEBUG
-int sqlite3VdbeOpcodeNoPush(u8 op){
-  return opcodeNoPush(op);
-}
-#endif
-
-/*
-** Loop through the program looking for P2 values that are negative.
-** Each such value is a label.  Resolve the label by setting the P2
-** value to its correct non-zero value.
-**
-** This routine is called once after all opcodes have been inserted.
-**
-** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
-** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 
-** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
-**
-** The integer *pMaxStack is set to the maximum number of vdbe stack
-** entries that static analysis reveals this program might need.
-**
-** This routine also does the following optimization:  It scans for
-** instructions that might cause a statement rollback.  Such instructions
-** are:
-**
-**   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
-**   *  OP_Destroy
-**   *  OP_VUpdate
-**   *  OP_VRename
-**
-** If no such instruction is found, then every Statement instruction 
-** is changed to a Noop.  In this way, we avoid creating the statement 
-** journal file unnecessarily.
-*/
-static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs, int *pMaxStack){
-  int i;
-  int nMaxArgs = 0;
-  int nMaxStack = p->nOp;
-  Op *pOp;
-  int *aLabel = p->aLabel;
-  int doesStatementRollback = 0;
-  int hasStatementBegin = 0;
-  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
-    u8 opcode = pOp->opcode;
-
-    if( opcode==OP_Function || opcode==OP_AggStep 
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-        || opcode==OP_VUpdate
-#endif
-    ){
-      if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
-    }
-    if( opcode==OP_Halt ){
-      if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
-        doesStatementRollback = 1;
-      }
-    }else if( opcode==OP_Statement ){
-      hasStatementBegin = 1;
-    }else if( opcode==OP_Destroy ){
-      doesStatementRollback = 1;
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-    }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
-      doesStatementRollback = 1;
-    }else if( opcode==OP_VFilter ){
-      int n;
-      assert( p->nOp - i >= 3 );
-      assert( pOp[-2].opcode==OP_Integer );
-      n = pOp[-2].p1;
-      if( n>nMaxArgs ) nMaxArgs = n;
-#endif
-    }
-    if( opcodeNoPush(opcode) ){
-      nMaxStack--;
-    }
-
-    if( pOp->p2>=0 ) continue;
-    assert( -1-pOp->p2<p->nLabel );
-    pOp->p2 = aLabel[-1-pOp->p2];
-  }
-  sqlite3_free(p->aLabel);
-  p->aLabel = 0;
-
-  *pMaxFuncArgs = nMaxArgs;
-  *pMaxStack = nMaxStack;
-
-  /* If we never rollback a statement transaction, then statement
-  ** transactions are not needed.  So change every OP_Statement
-  ** opcode into an OP_Noop.  This avoid a call to sqlite3OsOpenExclusive()
-  ** which can be expensive on some platforms.
-  */
-  if( hasStatementBegin && !doesStatementRollback ){
-    for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
-      if( pOp->opcode==OP_Statement ){
-        pOp->opcode = OP_Noop;
-      }
-    }
-  }
-}
-
-/*
-** Return the address of the next instruction to be inserted.
-*/
-int sqlite3VdbeCurrentAddr(Vdbe *p){
-  assert( p->magic==VDBE_MAGIC_INIT );
-  return p->nOp;
-}
-
-/*
-** Add a whole list of operations to the operation stack.  Return the
-** address of the first operation added.
-*/
-int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
-  int addr;
-  assert( p->magic==VDBE_MAGIC_INIT );
-  if( p->nOp + nOp > p->nOpAlloc ){
-    resizeOpArray(p, p->nOp*2 + nOp);
-  }
-  if( p->db->mallocFailed ){
-    return 0;
-  }
-  addr = p->nOp;
-  if( nOp>0 ){
-    int i;
-    VdbeOpList const *pIn = aOp;
-    for(i=0; i<nOp; i++, pIn++){
-      int p2 = pIn->p2;
-      VdbeOp *pOut = &p->aOp[i+addr];
-      pOut->opcode = pIn->opcode;
-      pOut->p1 = pIn->p1;
-      pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
-      pOut->p3 = pIn->p3;
-      pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
-#ifdef SQLITE_DEBUG
-      if( sqlite3_vdbe_addop_trace ){
-        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
-      }
-#endif
-    }
-    p->nOp += nOp;
-  }
-  return addr;
-}
-
-/*
-** Change the value of the P1 operand for a specific instruction.
-** This routine is useful when a large program is loaded from a
-** static array using sqlite3VdbeAddOpList but we want to make a
-** few minor changes to the program.
-*/
-void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
-  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
-  if( p && addr>=0 && p->nOp>addr && p->aOp ){
-    p->aOp[addr].p1 = val;
-  }
-}
-
-/*
-** Change the value of the P2 operand for a specific instruction.
-** This routine is useful for setting a jump destination.
-*/
-void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
-  assert( val>=0 );
-  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
-  if( p && addr>=0 && p->nOp>addr && p->aOp ){
-    p->aOp[addr].p2 = val;
-  }
-}
-
-/*
-** Change the P2 operand of instruction addr so that it points to
-** the address of the next instruction to be coded.
-*/
-void sqlite3VdbeJumpHere(Vdbe *p, int addr){
-  sqlite3VdbeChangeP2(p, addr, p->nOp);
-}
-
-
-/*
-** If the input FuncDef structure is ephemeral, then free it.  If
-** the FuncDef is not ephermal, then do nothing.
-*/
-static void freeEphemeralFunction(FuncDef *pDef){
-  if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
-    sqlite3_free(pDef);
-  }
-}
-
-/*
-** Delete a P3 value if necessary.
-*/
-static void freeP3(int p3type, void *p3){
-  if( p3 ){
-    switch( p3type ){
-      case P3_REAL:
-      case P3_INT64:
-      case P3_MPRINTF:
-      case P3_DYNAMIC:
-      case P3_KEYINFO:
-      case P3_KEYINFO_HANDOFF: {
-        sqlite3_free(p3);
-        break;
-      }
-      case P3_VDBEFUNC: {
-        VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
-        freeEphemeralFunction(pVdbeFunc->pFunc);
-        sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
-        sqlite3_free(pVdbeFunc);
-        break;
-      }
-      case P3_FUNCDEF: {
-        freeEphemeralFunction((FuncDef*)p3);
-        break;
-      }
-      case P3_MEM: {
-        sqlite3ValueFree((sqlite3_value*)p3);
-        break;
-      }
-    }
-  }
-}
-
-
-/*
-** Change N opcodes starting at addr to No-ops.
-*/
-void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
-  if( p && p->aOp ){
-    VdbeOp *pOp = &p->aOp[addr];
-    while( N-- ){
-      freeP3(pOp->p3type, pOp->p3);
-      memset(pOp, 0, sizeof(pOp[0]));
-      pOp->opcode = OP_Noop;
-      pOp++;
-    }
-  }
-}
-
-/*
-** Change the value of the P3 operand for a specific instruction.
-** This routine is useful when a large program is loaded from a
-** static array using sqlite3VdbeAddOpList but we want to make a
-** few minor changes to the program.
-**
-** If n>=0 then the P3 operand is dynamic, meaning that a copy of
-** the string is made into memory obtained from sqlite3_malloc().
-** A value of n==0 means copy bytes of zP3 up to and including the
-** first null byte.  If n>0 then copy n+1 bytes of zP3.
-**
-** If n==P3_KEYINFO it means that zP3 is a pointer to a KeyInfo structure.
-** A copy is made of the KeyInfo structure into memory obtained from
-** sqlite3_malloc, to be freed when the Vdbe is finalized.
-** n==P3_KEYINFO_HANDOFF indicates that zP3 points to a KeyInfo structure
-** stored in memory that the caller has obtained from sqlite3_malloc. The 
-** caller should not free the allocation, it will be freed when the Vdbe is
-** finalized.
-** 
-** Other values of n (P3_STATIC, P3_COLLSEQ etc.) indicate that zP3 points
-** to a string or structure that is guaranteed to exist for the lifetime of
-** the Vdbe. In these cases we can just copy the pointer.
-**
-** If addr<0 then change P3 on the most recently inserted instruction.
-*/
-void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
-  Op *pOp;
-  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
-  if( p==0 || p->aOp==0 || p->db->mallocFailed ){
-    if (n != P3_KEYINFO) {
-      freeP3(n, (void*)*(char**)&zP3);
-    }
-    return;
-  }
-  if( addr<0 || addr>=p->nOp ){
-    addr = p->nOp - 1;
-    if( addr<0 ) return;
-  }
-  pOp = &p->aOp[addr];
-  freeP3(pOp->p3type, pOp->p3);
-  pOp->p3 = 0;
-  if( zP3==0 ){
-    pOp->p3 = 0;
-    pOp->p3type = P3_NOTUSED;
-  }else if( n==P3_KEYINFO ){
-    KeyInfo *pKeyInfo;
-    int nField, nByte;
-
-    nField = ((KeyInfo*)zP3)->nField;
-    nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
-    pKeyInfo = (KeyInfo*)sqlite3_malloc( nByte );
-    pOp->p3 = (char*)pKeyInfo;
-    if( pKeyInfo ){
-      unsigned char *aSortOrder;
-      memcpy(pKeyInfo, zP3, nByte);
-      aSortOrder = pKeyInfo->aSortOrder;
-      if( aSortOrder ){
-        pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
-        memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
-      }
-      pOp->p3type = P3_KEYINFO;
-    }else{
-      p->db->mallocFailed = 1;
-      pOp->p3type = P3_NOTUSED;
-    }
-  }else if( n==P3_KEYINFO_HANDOFF ){
-    pOp->p3 = (char*)zP3;
-    pOp->p3type = P3_KEYINFO;
-  }else if( n<0 ){
-    pOp->p3 = (char*)zP3;
-    pOp->p3type = n;
-  }else{
-    if( n==0 ) n = strlen(zP3);
-    pOp->p3 = sqlite3DbStrNDup(p->db, zP3, n);
-    pOp->p3type = P3_DYNAMIC;
-  }
-}
-
-#ifndef NDEBUG
-/*
-** Replace the P3 field of the most recently coded instruction with
-** comment text.
-*/
-void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
-  va_list ap;
-  assert( p->nOp>0 || p->aOp==0 );
-  assert( p->aOp==0 || p->aOp[p->nOp-1].p3==0 || p->db->mallocFailed );
-  va_start(ap, zFormat);
-  sqlite3VdbeChangeP3(p, -1, sqlite3VMPrintf(p->db, zFormat, ap), P3_DYNAMIC);
-  va_end(ap);
-}
-#endif
-
-/*
-** Return the opcode for a given address.
-*/
-VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
-  assert( p->magic==VDBE_MAGIC_INIT );
-  assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
-  return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
-}
-
-#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
-     || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
-/*
-** Compute a string that describes the P3 parameter for an opcode.
-** Use zTemp for any required temporary buffer space.
-*/
-static char *displayP3(Op *pOp, char *zTemp, int nTemp){
-  char *zP3;
-  assert( nTemp>=20 );
-  switch( pOp->p3type ){
-    case P3_KEYINFO: {
-      int i, j;
-      KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
-      sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
-      i = strlen(zTemp);
-      for(j=0; j<pKeyInfo->nField; j++){
-        CollSeq *pColl = pKeyInfo->aColl[j];
-        if( pColl ){
-          int n = strlen(pColl->zName);
-          if( i+n>nTemp-6 ){
-            memcpy(&zTemp[i],",...",4);
-            break;
-          }
-          zTemp[i++] = ',';
-          if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
-            zTemp[i++] = '-';
-          }
-          memcpy(&zTemp[i], pColl->zName,n+1);
-          i += n;
-        }else if( i+4<nTemp-6 ){
-          memcpy(&zTemp[i],",nil",4);
-          i += 4;
-        }
-      }
-      zTemp[i++] = ')';
-      zTemp[i] = 0;
-      assert( i<nTemp );
-      zP3 = zTemp;
-      break;
-    }
-    case P3_COLLSEQ: {
-      CollSeq *pColl = (CollSeq*)pOp->p3;
-      sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
-      zP3 = zTemp;
-      break;
-    }
-    case P3_FUNCDEF: {
-      FuncDef *pDef = (FuncDef*)pOp->p3;
-      sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
-      zP3 = zTemp;
-      break;
-    }
-    case P3_INT64: {
-      sqlite3_snprintf(nTemp, zTemp, "%lld", *(sqlite3_int64*)pOp->p3);
-      zP3 = zTemp;
-      break;
-    }
-    case P3_REAL: {
-      sqlite3_snprintf(nTemp, zTemp, "%.16g", *(double*)pOp->p3);
-      zP3 = zTemp;
-      break;
-    }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-    case P3_VTAB: {
-      sqlite3_vtab *pVtab = (sqlite3_vtab*)pOp->p3;
-      sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
-      zP3 = zTemp;
-      break;
-    }
-#endif
-    default: {
-      zP3 = pOp->p3;
-      if( zP3==0 || pOp->opcode==OP_Noop ){
-        zP3 = "";
-      }
-    }
-  }
-  assert( zP3!=0 );
-  return zP3;
-}
-#endif
-
-/*
-** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
-**
-*/
-void sqlite3VdbeUsesBtree(Vdbe *p, int i){
-  int mask;
-  assert( i>=0 && i<p->db->nDb );
-  assert( i<sizeof(p->btreeMask)*8 );
-  mask = 1<<i;
-  if( (p->btreeMask & mask)==0 ){
-    p->btreeMask |= mask;
-    sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
-  }
-}
-
-
-#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
-/*
-** Print a single opcode.  This routine is used for debugging only.
-*/
-void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
-  char *zP3;
-  char zPtr[50];
-  static const char *zFormat1 = "%4d %-13s %4d %4d %s\n";
-  if( pOut==0 ) pOut = stdout;
-  zP3 = displayP3(pOp, zPtr, sizeof(zPtr));
-  fprintf(pOut, zFormat1,
-      pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, zP3);
-  fflush(pOut);
-}
-#endif
-
-/*
-** Release an array of N Mem elements
-*/
-static void releaseMemArray(Mem *p, int N){
-  if( p ){
-    while( N-->0 ){
-      assert( N<2 || p[0].db==p[1].db );
-      sqlite3VdbeMemRelease(p++);
-    }
-  }
-}
-
-#ifndef SQLITE_OMIT_EXPLAIN
-/*
-** Give a listing of the program in the virtual machine.
-**
-** The interface is the same as sqlite3VdbeExec().  But instead of
-** running the code, it invokes the callback once for each instruction.
-** This feature is used to implement "EXPLAIN".
-*/
-int sqlite3VdbeList(
-  Vdbe *p                   /* The VDBE */
-){
-  sqlite3 *db = p->db;
-  int i;
-  int rc = SQLITE_OK;
-
-  assert( p->explain );
-  if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
-  assert( db->magic==SQLITE_MAGIC_BUSY );
-  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
-
-  /* Even though this opcode does not put dynamic strings onto the
-  ** the stack, they may become dynamic if the user calls
-  ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
-  */
-  if( p->pTos==&p->aStack[4] ){
-    releaseMemArray(p->aStack, 5);
-  }
-  p->resOnStack = 0;
-
-  do{
-    i = p->pc++;
-  }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
-  if( i>=p->nOp ){
-    p->rc = SQLITE_OK;
-    rc = SQLITE_DONE;
-  }else if( db->u1.isInterrupted ){
-    p->rc = SQLITE_INTERRUPT;
-    rc = SQLITE_ERROR;
-    sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
-  }else{
-    Op *pOp = &p->aOp[i];
-    Mem *pMem = p->aStack;
-    pMem->flags = MEM_Int;
-    pMem->type = SQLITE_INTEGER;
-    pMem->u.i = i;                                /* Program counter */
-    pMem++;
-
-    pMem->flags = MEM_Static|MEM_Str|MEM_Term;
-    pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */
-    assert( pMem->z!=0 );
-    pMem->n = strlen(pMem->z);
-    pMem->type = SQLITE_TEXT;
-    pMem->enc = SQLITE_UTF8;
-    pMem++;
-
-    pMem->flags = MEM_Int;
-    pMem->u.i = pOp->p1;                          /* P1 */
-    pMem->type = SQLITE_INTEGER;
-    pMem++;
-
-    pMem->flags = MEM_Int;
-    pMem->u.i = pOp->p2;                          /* P2 */
-    pMem->type = SQLITE_INTEGER;
-    pMem++;
-
-    pMem->flags = MEM_Ephem|MEM_Str|MEM_Term;   /* P3 */
-    pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort));
-    assert( pMem->z!=0 );
-    pMem->n = strlen(pMem->z);
-    pMem->type = SQLITE_TEXT;
-    pMem->enc = SQLITE_UTF8;
-
-    p->nResColumn = 5 - 2*(p->explain-1);
-    p->pTos = pMem;
-    p->rc = SQLITE_OK;
-    p->resOnStack = 1;
-    rc = SQLITE_ROW;
-  }
-  return rc;
-}
-#endif /* SQLITE_OMIT_EXPLAIN */
-
-#ifdef SQLITE_DEBUG
-/*
-** Print the SQL that was used to generate a VDBE program.
-*/
-void sqlite3VdbePrintSql(Vdbe *p){
-  int nOp = p->nOp;
-  VdbeOp *pOp;
-  if( nOp<1 ) return;
-  pOp = &p->aOp[nOp-1];
-  if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
-    const char *z = pOp->p3;
-    while( isspace(*(u8*)z) ) z++;
-    printf("SQL: [%s]\n", z);
-  }
-}
-#endif
-
-#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
-/*
-** Print an IOTRACE message showing SQL content.
-*/
-void sqlite3VdbeIOTraceSql(Vdbe *p){
-  int nOp = p->nOp;
-  VdbeOp *pOp;
-  if( sqlite3_io_trace==0 ) return;
-  if( nOp<1 ) return;
-  pOp = &p->aOp[nOp-1];
-  if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
-    int i, j;
-    char z[1000];
-    sqlite3_snprintf(sizeof(z), z, "%s", pOp->p3);
-    for(i=0; isspace((unsigned char)z[i]); i++){}
-    for(j=0; z[i]; i++){
-      if( isspace((unsigned char)z[i]) ){
-        if( z[i-1]!=' ' ){
-          z[j++] = ' ';
-        }
-      }else{
-        z[j++] = z[i];
-      }
-    }
-    z[j] = 0;
-    sqlite3_io_trace("SQL %s\n", z);
-  }
-}
-#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
-
-
-/*
-** Prepare a virtual machine for execution.  This involves things such
-** as allocating stack space and initializing the program counter.
-** After the VDBE has be prepped, it can be executed by one or more
-** calls to sqlite3VdbeExec().  
-**
-** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
-** VDBE_MAGIC_RUN.
-*/
-void sqlite3VdbeMakeReady(
-  Vdbe *p,                       /* The VDBE */
-  int nVar,                      /* Number of '?' see in the SQL statement */
-  int nMem,                      /* Number of memory cells to allocate */
-  int nCursor,                   /* Number of cursors to allocate */
-  int isExplain                  /* True if the EXPLAIN keywords is present */
-){
-  int n;
-  sqlite3 *db = p->db;
-
-  assert( p!=0 );
-  assert( p->magic==VDBE_MAGIC_INIT );
-
-  /* There should be at least one opcode.
-  */
-  assert( p->nOp>0 );
-
-  /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
-   * is because the call to resizeOpArray() below may shrink the
-   * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN 
-   * state.
-   */
-  p->magic = VDBE_MAGIC_RUN;
-
-  /* No instruction ever pushes more than a single element onto the
-  ** stack.  And the stack never grows on successive executions of the
-  ** same loop.  So the total number of instructions is an upper bound
-  ** on the maximum stack depth required.  (Added later:)  The
-  ** resolveP2Values() call computes a tighter upper bound on the
-  ** stack size.
-  **
-  ** Allocation all the stack space we will ever need.
-  */
-  if( p->aStack==0 ){
-    int nArg;       /* Maximum number of args passed to a user function. */
-    int nStack;     /* Maximum number of stack entries required */
-    resolveP2Values(p, &nArg, &nStack);
-    resizeOpArray(p, p->nOp);
-    assert( nVar>=0 );
-    assert( nStack<p->nOp );
-    if( isExplain ){
-      nStack = 10;
-    }
-    p->aStack = (Mem*)sqlite3DbMallocZero(db,
-        nStack*sizeof(p->aStack[0])    /* aStack */
-      + nArg*sizeof(Mem*)              /* apArg */
-      + nVar*sizeof(Mem)               /* aVar */
-      + nVar*sizeof(char*)             /* azVar */
-      + nMem*sizeof(Mem)               /* aMem */
-      + nCursor*sizeof(Cursor*)        /* apCsr */
-    );
-    if( !db->mallocFailed ){
-      p->aMem = &p->aStack[nStack];
-      p->nMem = nMem;
-      p->aVar = &p->aMem[nMem];
-      p->nVar = nVar;
-      p->okVar = 0;
-      p->apArg = (Mem**)&p->aVar[nVar];
-      p->azVar = (char**)&p->apArg[nArg];
-      p->apCsr = (Cursor**)&p->azVar[nVar];
-      p->nCursor = nCursor;
-      for(n=0; n<nVar; n++){
-        p->aVar[n].flags = MEM_Null;
-        p->aVar[n].db = db;
-      }
-      for(n=0; n<nStack; n++){
-        p->aStack[n].db = db;
-      }
-    }
-  }
-  for(n=0; n<p->nMem; n++){
-    p->aMem[n].flags = MEM_Null;
-    p->aMem[n].db = db;
-  }
-
-  p->pTos = &p->aStack[-1];
-  p->pc = -1;
-  p->rc = SQLITE_OK;
-  p->uniqueCnt = 0;
-  p->returnDepth = 0;
-  p->errorAction = OE_Abort;
-  p->popStack =  0;
-  p->explain |= isExplain;
-  p->magic = VDBE_MAGIC_RUN;
-  p->nChange = 0;
-  p->cacheCtr = 1;
-  p->minWriteFileFormat = 255;
-  p->openedStatement = 0;
-#ifdef VDBE_PROFILE
-  {
-    int i;
-    for(i=0; i<p->nOp; i++){
-      p->aOp[i].cnt = 0;
-      p->aOp[i].cycles = 0;
-    }
-  }
-#endif
-}
-
-/*
-** Close a VDBE cursor and release all the resources that cursor happens
-** to hold.
-*/
-void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
-  if( pCx==0 ){
-    return;
-  }
-  if( pCx->pCursor ){
-    sqlite3BtreeCloseCursor(pCx->pCursor);
-  }
-  if( pCx->pBt ){
-    sqlite3BtreeClose(pCx->pBt);
-  }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-  if( pCx->pVtabCursor ){
-    sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
-    const sqlite3_module *pModule = pCx->pModule;
-    p->inVtabMethod = 1;
-    sqlite3SafetyOff(p->db);
-    pModule->xClose(pVtabCursor);
-    sqlite3SafetyOn(p->db);
-    p->inVtabMethod = 0;
-  }
-#endif
-  sqlite3_free(pCx->pData);
-  sqlite3_free(pCx->aType);
-  sqlite3_free(pCx);
-}
-
-/*
-** Close all cursors except for VTab cursors that are currently
-** in use.
-*/
-static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
-  int i;
-  if( p->apCsr==0 ) return;
-  for(i=0; i<p->nCursor; i++){
-    Cursor *pC = p->apCsr[i];
-    if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
-      sqlite3VdbeFreeCursor(p, pC);
-      p->apCsr[i] = 0;
-    }
-  }
-}
-
-/*
-** Clean up the VM after execution.
-**
-** This routine will automatically close any cursors, lists, and/or
-** sorters that were left open.  It also deletes the values of
-** variables in the aVar[] array.
-*/
-static void Cleanup(Vdbe *p){
-  int i;
-  if( p->aStack ){
-    releaseMemArray(p->aStack, 1 + (p->pTos - p->aStack));
-    p->pTos = &p->aStack[-1];
-  }
-  closeAllCursorsExceptActiveVtabs(p);
-  releaseMemArray(p->aMem, p->nMem);
-  sqlite3VdbeFifoClear(&p->sFifo);
-  if( p->contextStack ){
-    for(i=0; i<p->contextStackTop; i++){
-      sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
-    }
-    sqlite3_free(p->contextStack);
-  }
-  p->contextStack = 0;
-  p->contextStackDepth = 0;
-  p->contextStackTop = 0;
-  sqlite3_free(p->zErrMsg);
-  p->zErrMsg = 0;
-  p->resOnStack = 0;
-}
-
-/*
-** Set the number of result columns that will be returned by this SQL
-** statement. This is now set at compile time, rather than during
-** execution of the vdbe program so that sqlite3_column_count() can
-** be called on an SQL statement before sqlite3_step().
-*/
-void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
-  Mem *pColName;
-  int n;
-
-  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
-  sqlite3_free(p->aColName);
-  n = nResColumn*COLNAME_N;
-  p->nResColumn = nResColumn;
-  p->aColName = pColName = (Mem*)sqlite3DbMallocZero(p->db, sizeof(Mem)*n );
-  if( p->aColName==0 ) return;
-  while( n-- > 0 ){
-    pColName->flags = MEM_Null;
-    pColName->db = p->db;
-    pColName++;
-  }
-}
-
-/*
-** Set the name of the idx'th column to be returned by the SQL statement.
-** zName must be a pointer to a nul terminated string.
-**
-** This call must be made after a call to sqlite3VdbeSetNumCols().
-**
-** If N==P3_STATIC  it means that zName is a pointer to a constant static
-** string and we can just copy the pointer. If it is P3_DYNAMIC, then 
-** the string is freed using sqlite3_free() when the vdbe is finished with
-** it. Otherwise, N bytes of zName are copied.
-*/
-int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
-  int rc;
-  Mem *pColName;
-  assert( idx<p->nResColumn );
-  assert( var<COLNAME_N );
-  if( p->db->mallocFailed ) return SQLITE_NOMEM;
-  assert( p->aColName!=0 );
-  pColName = &(p->aColName[idx+var*p->nResColumn]);
-  if( N==P3_DYNAMIC || N==P3_STATIC ){
-    rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
-  }else{
-    rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
-  }
-  if( rc==SQLITE_OK && N==P3_DYNAMIC ){
-    pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
-    pColName->xDel = 0;
-  }
-  return rc;
-}
-
-/*
-** A read or write transaction may or may not be active on database handle
-** db. If a transaction is active, commit it. If there is a
-** write-transaction spanning more than one database file, this routine
-** takes care of the master journal trickery.
-*/
-static int vdbeCommit(sqlite3 *db){
-  int i;
-  int nTrans = 0;  /* Number of databases with an active write-transaction */
-  int rc = SQLITE_OK;
-  int needXcommit = 0;
-
-  /* Before doing anything else, call the xSync() callback for any
-  ** virtual module tables written in this transaction. This has to
-  ** be done before determining whether a master journal file is 
-  ** required, as an xSync() callback may add an attached database
-  ** to the transaction.
-  */
-  rc = sqlite3VtabSync(db, rc);
-  if( rc!=SQLITE_OK ){
-    return rc;
-  }
-
-  /* This loop determines (a) if the commit hook should be invoked and
-  ** (b) how many database files have open write transactions, not 
-  ** including the temp database. (b) is important because if more than 
-  ** one database file has an open write transaction, a master journal
-  ** file is required for an atomic commit.
-  */ 
-  for(i=0; i<db->nDb; i++){ 
-    Btree *pBt = db->aDb[i].pBt;
-    if( sqlite3BtreeIsInTrans(pBt) ){
-      needXcommit = 1;
-      if( i!=1 ) nTrans++;
-    }
-  }
-
-  /* If there are any write-transactions at all, invoke the commit hook */
-  if( needXcommit && db->xCommitCallback ){
-    sqlite3SafetyOff(db);
-    rc = db->xCommitCallback(db->pCommitArg);
-    sqlite3SafetyOn(db);
-    if( rc ){
-      return SQLITE_CONSTRAINT;
-    }
-  }
-
-  /* The simple case - no more than one database file (not counting the
-  ** TEMP database) has a transaction active.   There is no need for the
-  ** master-journal.
-  **
-  ** If the return value of sqlite3BtreeGetFilename() is a zero length
-  ** string, it means the main database is :memory:.  In that case we do
-  ** not support atomic multi-file commits, so use the simple case then
-  ** too.
-  */
-  if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
-    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
-      Btree *pBt = db->aDb[i].pBt;
-      if( pBt ){
-        rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
-      }
-    }
-
-    /* Do the commit only if all databases successfully complete phase 1. 
-    ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
-    ** IO error while deleting or truncating a journal file. It is unlikely,
-    ** but could happen. In this case abandon processing and return the error.
-    */
-    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
-      Btree *pBt = db->aDb[i].pBt;
-      if( pBt ){
-        rc = sqlite3BtreeCommitPhaseTwo(pBt);
-      }
-    }
-    if( rc==SQLITE_OK ){
-      sqlite3VtabCommit(db);
-    }
-  }
-
-  /* The complex case - There is a multi-file write-transaction active.
-  ** This requires a master journal file to ensure the transaction is
-  ** committed atomicly.
-  */
-#ifndef SQLITE_OMIT_DISKIO
-  else{
-    sqlite3_vfs *pVfs = db->pVfs;
-    int needSync = 0;
-    char *zMaster = 0;   /* File-name for the master journal */
-    char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
-    sqlite3_file *pMaster = 0;
-    i64 offset = 0;
-
-    /* Select a master journal file name */
-    do {
-      u32 random;
-      sqlite3_free(zMaster);
-      sqlite3Randomness(sizeof(random), &random);
-      zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
-      if( !zMaster ){
-        return SQLITE_NOMEM;
-      }
-    }while( sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS) );
-
-    /* Open the master journal. */
-    rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 
-        SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
-        SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
-    );
-    if( rc!=SQLITE_OK ){
-      sqlite3_free(zMaster);
-      return rc;
-    }
- 
-    /* Write the name of each database file in the transaction into the new
-    ** master journal file. If an error occurs at this point close
-    ** and delete the master journal file. All the individual journal files
-    ** still have 'null' as the master journal pointer, so they will roll
-    ** back independently if a failure occurs.
-    */
-    for(i=0; i<db->nDb; i++){
-      Btree *pBt = db->aDb[i].pBt;
-      if( i==1 ) continue;   /* Ignore the TEMP database */
-      if( sqlite3BtreeIsInTrans(pBt) ){
-        char const *zFile = sqlite3BtreeGetJournalname(pBt);
-        if( zFile[0]==0 ) continue;  /* Ignore :memory: databases */
-        if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
-          needSync = 1;
-        }
-        rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
-        offset += strlen(zFile)+1;
-        if( rc!=SQLITE_OK ){
-          sqlite3OsCloseFree(pMaster);
-          sqlite3OsDelete(pVfs, zMaster, 0);
-          sqlite3_free(zMaster);
-          return rc;
-        }
-      }
-    }
-
-    /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
-    ** flag is set this is not required.
-    */
-    zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
-    if( (needSync 
-     && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
-     && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
-      sqlite3OsCloseFree(pMaster);
-      sqlite3OsDelete(pVfs, zMaster, 0);
-      sqlite3_free(zMaster);
-      return rc;
-    }
-
-    /* Sync all the db files involved in the transaction. The same call
-    ** sets the master journal pointer in each individual journal. If
-    ** an error occurs here, do not delete the master journal file.
-    **
-    ** If the error occurs during the first call to
-    ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
-    ** master journal file will be orphaned. But we cannot delete it,
-    ** in case the master journal file name was written into the journal
-    ** file before the failure occured.
-    */
-    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
-      Btree *pBt = db->aDb[i].pBt;
-      if( pBt ){
-        rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
-      }
-    }
-    sqlite3OsCloseFree(pMaster);
-    if( rc!=SQLITE_OK ){
-      sqlite3_free(zMaster);
-      return rc;
-    }
-
-    /* Delete the master journal file. This commits the transaction. After
-    ** doing this the directory is synced again before any individual
-    ** transaction files are deleted.
-    */
-    rc = sqlite3OsDelete(pVfs, zMaster, 1);
-    sqlite3_free(zMaster);
-    zMaster = 0;
-    if( rc ){
-      return rc;
-    }
-
-    /* All files and directories have already been synced, so the following
-    ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
-    ** deleting or truncating journals. If something goes wrong while
-    ** this is happening we don't really care. The integrity of the
-    ** transaction is already guaranteed, but some stray 'cold' journals
-    ** may be lying around. Returning an error code won't help matters.
-    */
-    disable_simulated_io_errors();
-    for(i=0; i<db->nDb; i++){ 
-      Btree *pBt = db->aDb[i].pBt;
-      if( pBt ){
-        sqlite3BtreeCommitPhaseTwo(pBt);
-      }
-    }
-    enable_simulated_io_errors();
-
-    sqlite3VtabCommit(db);
-  }
-#endif
-
-  return rc;
-}
-
-/* 
-** This routine checks that the sqlite3.activeVdbeCnt count variable
-** matches the number of vdbe's in the list sqlite3.pVdbe that are
-** currently active. An assertion fails if the two counts do not match.
-** This is an internal self-check only - it is not an essential processing
-** step.
-**
-** This is a no-op if NDEBUG is defined.
-*/
-#ifndef NDEBUG
-static void checkActiveVdbeCnt(sqlite3 *db){
-  Vdbe *p;
-  int cnt = 0;
-  p = db->pVdbe;
-  while( p ){
-    if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
-      cnt++;
-    }
-    p = p->pNext;
-  }
-  assert( cnt==db->activeVdbeCnt );
-}
-#else
-#define checkActiveVdbeCnt(x)
-#endif
-
-/*
-** For every Btree that in database connection db which 
-** has been modified, "trip" or invalidate each cursor in
-** that Btree might have been modified so that the cursor
-** can never be used again.  This happens when a rollback
-*** occurs.  We have to trip all the other cursors, even
-** cursor from other VMs in different database connections,
-** so that none of them try to use the data at which they
-** were pointing and which now may have been changed due
-** to the rollback.
-**
-** Remember that a rollback can delete tables complete and
-** reorder rootpages.  So it is not sufficient just to save
-** the state of the cursor.  We have to invalidate the cursor
-** so that it is never used again.
-*/
-static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
-  int i;
-  for(i=0; i<db->nDb; i++){
-    Btree *p = db->aDb[i].pBt;
-    if( p && sqlite3BtreeIsInTrans(p) ){
-      sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
-    }
-  }
-}
-
-/*
-** This routine is called the when a VDBE tries to halt.  If the VDBE
-** has made changes and is in autocommit mode, then commit those
-** changes.  If a rollback is needed, then do the rollback.
-**
-** This routine is the only way to move the state of a VM from
-** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
-** call this on a VM that is in the SQLITE_MAGIC_HALT state.
-**
-** Return an error code.  If the commit could not complete because of
-** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
-** means the close did not happen and needs to be repeated.
-*/
-int sqlite3VdbeHalt(Vdbe *p){
-  sqlite3 *db = p->db;
-  int i;
-  int (*xFunc)(Btree *pBt) = 0;  /* Function to call on each btree backend */
-  int isSpecialError;            /* Set to true if SQLITE_NOMEM or IOERR */
-
-  /* This function contains the logic that determines if a statement or
-  ** transaction will be committed or rolled back as a result of the
-  ** execution of this virtual machine. 
-  **
-  ** If any of the following errors occur:
-  **
-  **     SQLITE_NOMEM
-  **     SQLITE_IOERR
-  **     SQLITE_FULL
-  **     SQLITE_INTERRUPT
-  **
-  ** Then the internal cache might have been left in an inconsistent
-  ** state.  We need to rollback the statement transaction, if there is
-  ** one, or the complete transaction if there is no statement transaction.
-  */
-
-  if( p->db->mallocFailed ){
-    p->rc = SQLITE_NOMEM;
-  }
-  closeAllCursorsExceptActiveVtabs(p);
-  if( p->magic!=VDBE_MAGIC_RUN ){
-    return SQLITE_OK;
-  }
-  checkActiveVdbeCnt(db);
-
-  /* No commit or rollback needed if the program never started */
-  if( p->pc>=0 ){
-    int mrc;   /* Primary error code from p->rc */
-
-    /* Lock all btrees used by the statement */
-    sqlite3BtreeMutexArrayEnter(&p->aMutex);
-
-    /* Check for one of the special errors */
-    mrc = p->rc & 0xff;
-    isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
-                     || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
-    if( isSpecialError ){
-      /* This loop does static analysis of the query to see which of the
-      ** following three categories it falls into:
-      **
-      **     Read-only
-      **     Query with statement journal
-      **     Query without statement journal
-      **
-      ** We could do something more elegant than this static analysis (i.e.
-      ** store the type of query as part of the compliation phase), but 
-      ** handling malloc() or IO failure is a fairly obscure edge case so 
-      ** this is probably easier. Todo: Might be an opportunity to reduce 
-      ** code size a very small amount though...
-      */
-      int notReadOnly = 0;
-      int isStatement = 0;
-      assert(p->aOp || p->nOp==0);
-      for(i=0; i<p->nOp; i++){ 
-        switch( p->aOp[i].opcode ){
-          case OP_Transaction:
-            notReadOnly |= p->aOp[i].p2;
-            break;
-          case OP_Statement:
-            isStatement = 1;
-            break;
-        }
-      }
-
-   
-      /* If the query was read-only, we need do no rollback at all. Otherwise,
-      ** proceed with the special handling.
-      */
-      if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
-        if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
-          xFunc = sqlite3BtreeRollbackStmt;
-          p->rc = SQLITE_BUSY;
-        } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
-          xFunc = sqlite3BtreeRollbackStmt;
-        }else{
-          /* We are forced to roll back the active transaction. Before doing
-          ** so, abort any other statements this handle currently has active.
-          */
-          invalidateCursorsOnModifiedBtrees(db);
-          sqlite3RollbackAll(db);
-          db->autoCommit = 1;
-        }
-      }
-    }
-  
-    /* If the auto-commit flag is set and this is the only active vdbe, then
-    ** we do either a commit or rollback of the current transaction. 
-    **
-    ** Note: This block also runs if one of the special errors handled 
-    ** above has occured. 
-    */
-    if( db->autoCommit && db->activeVdbeCnt==1 ){
-      if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
-        /* The auto-commit flag is true, and the vdbe program was 
-        ** successful or hit an 'OR FAIL' constraint. This means a commit 
-        ** is required.
-        */
-        int rc = vdbeCommit(db);
-        if( rc==SQLITE_BUSY ){
-          sqlite3BtreeMutexArrayLeave(&p->aMutex);
-          return SQLITE_BUSY;
-        }else if( rc!=SQLITE_OK ){
-          p->rc = rc;
-          sqlite3RollbackAll(db);
-        }else{
-          sqlite3CommitInternalChanges(db);
-        }
-      }else{
-        sqlite3RollbackAll(db);
-      }
-    }else if( !xFunc ){
-      if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
-        if( p->openedStatement ){
-          xFunc = sqlite3BtreeCommitStmt;
-        } 
-      }else if( p->errorAction==OE_Abort ){
-        xFunc = sqlite3BtreeRollbackStmt;
-      }else{
-        invalidateCursorsOnModifiedBtrees(db);
-        sqlite3RollbackAll(db);
-        db->autoCommit = 1;
-      }
-    }
-  
-    /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
-    ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
-    ** and the return code is still SQLITE_OK, set the return code to the new
-    ** error value.
-    */
-    assert(!xFunc ||
-      xFunc==sqlite3BtreeCommitStmt ||
-      xFunc==sqlite3BtreeRollbackStmt
-    );
-    for(i=0; xFunc && i<db->nDb; i++){ 
-      int rc;
-      Btree *pBt = db->aDb[i].pBt;
-      if( pBt ){
-        rc = xFunc(pBt);
-        if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
-          p->rc = rc;
-          sqlite3SetString(&p->zErrMsg, 0);
-        }
-      }
-    }
-  
-    /* If this was an INSERT, UPDATE or DELETE and the statement was committed, 
-    ** set the change counter. 
-    */
-    if( p->changeCntOn && p->pc>=0 ){
-      if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
-        sqlite3VdbeSetChanges(db, p->nChange);
-      }else{
-        sqlite3VdbeSetChanges(db, 0);
-      }
-      p->nChange = 0;
-    }
-  
-    /* Rollback or commit any schema changes that occurred. */
-    if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
-      sqlite3ResetInternalSchema(db, 0);
-      db->flags = (db->flags | SQLITE_InternChanges);
-    }
-
-    /* Release the locks */
-    sqlite3BtreeMutexArrayLeave(&p->aMutex);
-  }
-
-  /* We have successfully halted and closed the VM.  Record this fact. */
-  if( p->pc>=0 ){
-    db->activeVdbeCnt--;
-  }
-  p->magic = VDBE_MAGIC_HALT;
-  checkActiveVdbeCnt(db);
-  if( p->db->mallocFailed ){
-    p->rc = SQLITE_NOMEM;
-  }
-  checkActiveVdbeCnt(db);
-
-  return SQLITE_OK;
-}
-
-
-/*
-** Each VDBE holds the result of the most recent sqlite3_step() call
-** in p->rc.  This routine sets that result back to SQLITE_OK.
-*/
-void sqlite3VdbeResetStepResult(Vdbe *p){
-  p->rc = SQLITE_OK;
-}
-
-/*
-** Clean up a VDBE after execution but do not delete the VDBE just yet.
-** Write any error messages into *pzErrMsg.  Return the result code.
-**
-** After this routine is run, the VDBE should be ready to be executed
-** again.
-**
-** To look at it another way, this routine resets the state of the
-** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
-** VDBE_MAGIC_INIT.
-*/
-int sqlite3VdbeReset(Vdbe *p){
-  sqlite3 *db;
-  db = p->db;
-
-  /* If the VM did not run to completion or if it encountered an
-  ** error, then it might not have been halted properly.  So halt
-  ** it now.
-  */
-  sqlite3SafetyOn(db);
-  sqlite3VdbeHalt(p);
-  sqlite3SafetyOff(db);
-
-  /* If the VDBE has be run even partially, then transfer the error code
-  ** and error message from the VDBE into the main database structure.  But
-  ** if the VDBE has just been set to run but has not actually executed any
-  ** instructions yet, leave the main database error information unchanged.
-  */
-  if( p->pc>=0 ){
-    if( p->zErrMsg ){
-      sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free);
-      db->errCode = p->rc;
-      p->zErrMsg = 0;
-    }else if( p->rc ){
-      sqlite3Error(db, p->rc, 0);
-    }else{
-      sqlite3Error(db, SQLITE_OK, 0);
-    }
-  }else if( p->rc && p->expired ){
-    /* The expired flag was set on the VDBE before the first call
-    ** to sqlite3_step(). For consistency (since sqlite3_step() was
-    ** called), set the database error in this case as well.
-    */
-    sqlite3Error(db, p->rc, 0);
-    sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3_free);
-    p->zErrMsg = 0;
-  }
-
-  /* Reclaim all memory used by the VDBE
-  */
-  Cleanup(p);
-
-  /* Save profiling information from this VDBE run.
-  */
-  assert( p->pTos<&p->aStack[p->pc<0?0:p->pc] || !p->aStack );
-#ifdef VDBE_PROFILE
-  {
-    FILE *out = fopen("vdbe_profile.out", "a");
-    if( out ){
-      int i;
-      fprintf(out, "---- ");
-      for(i=0; i<p->nOp; i++){
-        fprintf(out, "%02x", p->aOp[i].opcode);
-      }
-      fprintf(out, "\n");
-      for(i=0; i<p->nOp; i++){
-        fprintf(out, "%6d %10lld %8lld ",
-           p->aOp[i].cnt,
-           p->aOp[i].cycles,
-           p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
-        );
-        sqlite3VdbePrintOp(out, i, &p->aOp[i]);
-      }
-      fclose(out);
-    }
-  }
-#endif
-  p->magic = VDBE_MAGIC_INIT;
-  p->aborted = 0;
-  return p->rc & db->errMask;
-}
- 
-/*
-** Clean up and delete a VDBE after execution.  Return an integer which is
-** the result code.  Write any error message text into *pzErrMsg.
-*/
-int sqlite3VdbeFinalize(Vdbe *p){
-  int rc = SQLITE_OK;
-  if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
-    rc = sqlite3VdbeReset(p);
-    assert( (rc & p->db->errMask)==rc );
-  }else if( p->magic!=VDBE_MAGIC_INIT ){
-    return SQLITE_MISUSE;
-  }
-  sqlite3VdbeDelete(p);
-  return rc;
-}
-
-/*
-** Call the destructor for each auxdata entry in pVdbeFunc for which
-** the corresponding bit in mask is clear.  Auxdata entries beyond 31
-** are always destroyed.  To destroy all auxdata entries, call this
-** routine with mask==0.
-*/
-void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
-  int i;
-  for(i=0; i<pVdbeFunc->nAux; i++){
-	  VdbeFunc::AuxData *pAux = &pVdbeFunc->apAux[i];
-    if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
-      if( pAux->xDelete ){
-        pAux->xDelete(pAux->pAux);
-      }
-      pAux->pAux = 0;
-    }
-  }
-}
-
-/*
-** Delete an entire VDBE.
-*/
-void sqlite3VdbeDelete(Vdbe *p){
-  int i;
-  if( p==0 ) return;
-  Cleanup(p);
-  if( p->pPrev ){
-    p->pPrev->pNext = p->pNext;
-  }else{
-    assert( p->db->pVdbe==p );
-    p->db->pVdbe = p->pNext;
-  }
-  if( p->pNext ){
-    p->pNext->pPrev = p->pPrev;
-  }
-  if( p->aOp ){
-    for(i=0; i<p->nOp; i++){
-      Op *pOp = &p->aOp[i];
-      freeP3(pOp->p3type, pOp->p3);
-    }
-    sqlite3_free(p->aOp);
-  }
-  releaseMemArray(p->aVar, p->nVar);
-  sqlite3_free(p->aLabel);
-  sqlite3_free(p->aStack);
-  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
-  sqlite3_free(p->aColName);
-  sqlite3_free(p->zSql);
-  p->magic = VDBE_MAGIC_DEAD;
-  sqlite3_free(p);
-}
-
-/*
-** If a MoveTo operation is pending on the given cursor, then do that
-** MoveTo now.  Return an error code.  If no MoveTo is pending, this
-** routine does nothing and returns SQLITE_OK.
-*/
-int sqlite3VdbeCursorMoveto(Cursor *p){
-  if( p->deferredMoveto ){
-    int res, rc;
-#ifdef SQLITE_TEST
-    extern int sqlite3_search_count;
-#endif
-    assert( p->isTable );
-    rc = sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, 0, &res);
-    if( rc ) return rc;
-    *p->pIncrKey = 0;
-    p->lastRowid = keyToInt(p->movetoTarget);
-    p->rowidIsValid = res==0;
-    if( res<0 ){
-      rc = sqlite3BtreeNext(p->pCursor, &res);
-      if( rc ) return rc;
-    }
-#ifdef SQLITE_TEST
-    sqlite3_search_count++;
-#endif
-    p->deferredMoveto = 0;
-    p->cacheStatus = CACHE_STALE;
-  }
-  return SQLITE_OK;
-}
-
-/*
-** The following functions:
-**
-** sqlite3VdbeSerialType()
-** sqlite3VdbeSerialTypeLen()
-** sqlite3VdbeSerialRead()
-** sqlite3VdbeSerialLen()
-** sqlite3VdbeSerialWrite()
-**
-** encapsulate the code that serializes values for storage in SQLite
-** data and index records. Each serialized value consists of a
-** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
-** integer, stored as a varint.
-**
-** In an SQLite index record, the serial type is stored directly before
-** the blob of data that it corresponds to. In a table record, all serial
-** types are stored at the start of the record, and the blobs of data at
-** the end. Hence these functions allow the caller to handle the
-** serial-type and data blob seperately.
-**
-** The following table describes the various storage classes for data:
-**
-**   serial type        bytes of data      type
-**   --------------     ---------------    ---------------
-**      0                     0            NULL
-**      1                     1            signed integer
-**      2                     2            signed integer
-**      3                     3            signed integer
-**      4                     4            signed integer
-**      5                     6            signed integer
-**      6                     8            signed integer
-**      7                     8            IEEE float
-**      8                     0            Integer constant 0
-**      9                     0            Integer constant 1
-**     10,11                               reserved for expansion
-**    N>=12 and even       (N-12)/2        BLOB
-**    N>=13 and odd        (N-13)/2        text
-**
-** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
-** of SQLite will not understand those serial types.
-*/
-
-/*
-** Return the serial-type for the value stored in pMem.
-*/
-u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
-  int flags = pMem->flags;
-  int n;
-
-  if( flags&MEM_Null ){
-    return 0;
-  }
-  if( flags&MEM_Int ){
-    /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
-#   define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
-    i64 i = pMem->u.i;
-    u64 u;
-    if( file_format>=4 && (i&1)==i ){
-      return 8+i;
-    }
-    u = i<0 ? -i : i;
-    if( u<=127 ) return 1;
-    if( u<=32767 ) return 2;
-    if( u<=8388607 ) return 3;
-    if( u<=2147483647 ) return 4;
-    if( u<=MAX_6BYTE ) return 5;
-    return 6;
-  }
-  if( flags&MEM_Real ){
-    return 7;
-  }
-  assert( flags&(MEM_Str|MEM_Blob) );
-  n = pMem->n;
-  if( flags & MEM_Zero ){
-    n += pMem->u.i;
-  }
-  assert( n>=0 );
-  return ((n*2) + 12 + ((flags&MEM_Str)!=0));
-}
-
-/*
-** Return the length of the data corresponding to the supplied serial-type.
-*/
-int sqlite3VdbeSerialTypeLen(u32 serial_type){
-  if( serial_type>=12 ){
-    return (serial_type-12)/2;
-  }else{
-    static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
-    return aSize[serial_type];
-  }
-}
-
-/*
-** If we are on an architecture with mixed-endian floating 
-** points (ex: ARM7) then swap the lower 4 bytes with the 
-** upper 4 bytes.  Return the result.
-**
-** For most architectures, this is a no-op.
-**
-** (later):  It is reported to me that the mixed-endian problem
-** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
-** that early versions of GCC stored the two words of a 64-bit
-** float in the wrong order.  And that error has been propagated
-** ever since.  The blame is not necessarily with GCC, though.
-** GCC might have just copying the problem from a prior compiler.
-** I am also told that newer versions of GCC that follow a different
-** ABI get the byte order right.
-**
-** Developers using SQLite on an ARM7 should compile and run their
-** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
-** enabled, some asserts below will ensure that the byte order of
-** floating point values is correct.
-**
-** (2007-08-30)  Frank van Vugt has studied this problem closely
-** and has send his findings to the SQLite developers.  Frank
-** writes that some Linux kernels offer floating point hardware
-** emulation that uses only 32-bit mantissas instead of a full 
-** 48-bits as required by the IEEE standard.  (This is the
-** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
-** byte swapping becomes very complicated.  To avoid problems,
-** the necessary byte swapping is carried out using a 64-bit integer
-** rather than a 64-bit float.  Frank assures us that the code here
-** works for him.  We, the developers, have no way to independently
-** verify this, but Frank seems to know what he is talking about
-** so we trust him.
-*/
-#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
-static u64 floatSwap(u64 in){
-  union {
-    u64 r;
-    u32 i[2];
-  } u;
-  u32 t;
-
-  u.r = in;
-  t = u.i[0];
-  u.i[0] = u.i[1];
-  u.i[1] = t;
-  return u.r;
-}
-# define swapMixedEndianFloat(X)  X = floatSwap(X)
-#else
-# define swapMixedEndianFloat(X)
-#endif
-
-/*
-** Write the serialized data blob for the value stored in pMem into 
-** buf. It is assumed that the caller has allocated sufficient space.
-** Return the number of bytes written.
-**
-** nBuf is the amount of space left in buf[].  nBuf must always be
-** large enough to hold the entire field.  Except, if the field is
-** a blob with a zero-filled tail, then buf[] might be just the right
-** size to hold everything except for the zero-filled tail.  If buf[]
-** is only big enough to hold the non-zero prefix, then only write that
-** prefix into buf[].  But if buf[] is large enough to hold both the
-** prefix and the tail then write the prefix and set the tail to all
-** zeros.
-**
-** Return the number of bytes actually written into buf[].  The number
-** of bytes in the zero-filled tail is included in the return value only
-** if those bytes were zeroed in buf[].
-*/ 
-int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
-  u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
-  int len;
-
-  /* Integer and Real */
-  if( serial_type<=7 && serial_type>0 ){
-    u64 v;
-    int i;
-    if( serial_type==7 ){
-      assert( sizeof(v)==sizeof(pMem->r) );
-      memcpy(&v, &pMem->r, sizeof(v));
-      swapMixedEndianFloat(v);
-    }else{
-      v = pMem->u.i;
-    }
-    len = i = sqlite3VdbeSerialTypeLen(serial_type);
-    assert( len<=nBuf );
-    while( i-- ){
-      buf[i] = (v&0xFF);
-      v >>= 8;
-    }
-    return len;
-  }
-
-  /* String or blob */
-  if( serial_type>=12 ){
-    assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
-             == sqlite3VdbeSerialTypeLen(serial_type) );
-    assert( pMem->n<=nBuf );
-    len = pMem->n;
-    memcpy(buf, pMem->z, len);
-    if( pMem->flags & MEM_Zero ){
-      len += pMem->u.i;
-      if( len>nBuf ){
-        len = nBuf;
-      }
-      memset(&buf[pMem->n], 0, len-pMem->n);
-    }
-    return len;
-  }
-
-  /* NULL or constants 0 or 1 */
-  return 0;
-}
-
-/*
-** Deserialize the data blob pointed to by buf as serial type serial_type
-** and store the result in pMem.  Return the number of bytes read.
-*/ 
-int sqlite3VdbeSerialGet(
-  const unsigned char *buf,     /* Buffer to deserialize from */
-  u32 serial_type,              /* Serial type to deserialize */
-  Mem *pMem                     /* Memory cell to write value into */
-){
-  switch( serial_type ){
-    case 10:   /* Reserved for future use */
-    case 11:   /* Reserved for future use */
-    case 0: {  /* NULL */
-      pMem->flags = MEM_Null;
-      break;
-    }
-    case 1: { /* 1-byte signed integer */
-      pMem->u.i = (signed char)buf[0];
-      pMem->flags = MEM_Int;
-      return 1;
-    }
-    case 2: { /* 2-byte signed integer */
-      pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
-      pMem->flags = MEM_Int;
-      return 2;
-    }
-    case 3: { /* 3-byte signed integer */
-      pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
-      pMem->flags = MEM_Int;
-      return 3;
-    }
-    case 4: { /* 4-byte signed integer */
-      pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
-      pMem->flags = MEM_Int;
-      return 4;
-    }
-    case 5: { /* 6-byte signed integer */
-      u64 x = (((signed char)buf[0])<<8) | buf[1];
-      u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
-      x = (x<<32) | y;
-      pMem->u.i = *(i64*)&x;
-      pMem->flags = MEM_Int;
-      return 6;
-    }
-    case 6:   /* 8-byte signed integer */
-    case 7: { /* IEEE floating point */
-      u64 x;
-      u32 y;
-#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
-      /* Verify that integers and floating point values use the same
-      ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
-      ** defined that 64-bit floating point values really are mixed
-      ** endian.
-      */
-      static const u64 t1 = ((u64)0x3ff00000)<<32;
-      static const double r1 = 1.0;
-      u64 t2 = t1;
-      swapMixedEndianFloat(t2);
-      assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
-#endif
-
-      x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
-      y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
-      x = (x<<32) | y;
-      if( serial_type==6 ){
-        pMem->u.i = *(i64*)&x;
-        pMem->flags = MEM_Int;
-      }else{
-        assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
-        swapMixedEndianFloat(x);
-        memcpy(&pMem->r, &x, sizeof(x));
-        pMem->flags = MEM_Real;
-      }
-      return 8;
-    }
-    case 8:    /* Integer 0 */
-    case 9: {  /* Integer 1 */
-      pMem->u.i = serial_type-8;
-      pMem->flags = MEM_Int;
-      return 0;
-    }
-    default: {
-      int len = (serial_type-12)/2;
-      pMem->z = (char *)buf;
-      pMem->n = len;
-      pMem->xDel = 0;
-      if( serial_type&0x01 ){
-        pMem->flags = MEM_Str | MEM_Ephem;
-      }else{
-        pMem->flags = MEM_Blob | MEM_Ephem;
-      }
-      return len;
-    }
-  }
-  return 0;
-}
-
-/*
-** The header of a record consists of a sequence variable-length integers.
-** These integers are almost always small and are encoded as a single byte.
-** The following macro takes advantage this fact to provide a fast decode
-** of the integers in a record header.  It is faster for the common case
-** where the integer is a single byte.  It is a little slower when the
-** integer is two or more bytes.  But overall it is faster.
-**
-** The following expressions are equivalent:
-**
-**     x = sqlite3GetVarint32( A, &B );
-**
-**     x = GetVarint( A, B );
-**
-*/
-#define GetVarint(A,B)  ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
-
-/*
-** This function compares the two table rows or index records specified by 
-** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero
-** or positive integer if {nKey1, pKey1} is less than, equal to or 
-** greater than {nKey2, pKey2}.  Both Key1 and Key2 must be byte strings
-** composed by the OP_MakeRecord opcode of the VDBE.
-*/
-int sqlite3VdbeRecordCompare(
-  void *userData,
-  int nKey1, const void *pKey1, 
-  int nKey2, const void *pKey2
-){
-  KeyInfo *pKeyInfo = (KeyInfo*)userData;
-  u32 d1, d2;          /* Offset into aKey[] of next data element */
-  u32 idx1, idx2;      /* Offset into aKey[] of next header element */
-  u32 szHdr1, szHdr2;  /* Number of bytes in header */
-  int i = 0;
-  int nField;
-  int rc = 0;
-  const unsigned char *aKey1 = (const unsigned char *)pKey1;
-  const unsigned char *aKey2 = (const unsigned char *)pKey2;
-
-  Mem mem1;
-  Mem mem2;
-  mem1.enc = pKeyInfo->enc;
-  mem1.db = pKeyInfo->db;
-  mem2.enc = pKeyInfo->enc;
-  mem2.db = pKeyInfo->db;
-  
-  idx1 = GetVarint(aKey1, szHdr1);
-  d1 = szHdr1;
-  idx2 = GetVarint(aKey2, szHdr2);
-  d2 = szHdr2;
-  nField = pKeyInfo->nField;
-  while( idx1<szHdr1 && idx2<szHdr2 ){
-    u32 serial_type1;
-    u32 serial_type2;
-
-    /* Read the serial types for the next element in each key. */
-    idx1 += GetVarint( aKey1+idx1, serial_type1 );
-    if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
-    idx2 += GetVarint( aKey2+idx2, serial_type2 );
-    if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break;
-
-    /* Extract the values to be compared.
-    */
-    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
-    d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2);
-
-    /* Do the comparison
-    */
-    rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0);
-    if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1);
-    if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2);
-    if( rc!=0 ){
-      break;
-    }
-    i++;
-  }
-
-  /* One of the keys ran out of fields, but all the fields up to that point
-  ** were equal. If the incrKey flag is true, then the second key is
-  ** treated as larger.
-  */
-  if( rc==0 ){
-    if( pKeyInfo->incrKey ){
-      rc = -1;
-    }else if( !pKeyInfo->prefixIsEqual ){
-      if( d1<nKey1 ){
-        rc = 1;
-      }else if( d2<nKey2 ){
-        rc = -1;
-      }
-    }
-  }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
-               && pKeyInfo->aSortOrder[i] ){
-    rc = -rc;
-  }
-
-  return rc;
-}
-
-/*
-** The argument is an index entry composed using the OP_MakeRecord opcode.
-** The last entry in this record should be an integer (specifically
-** an integer rowid).  This routine returns the number of bytes in
-** that integer.
-*/
-int sqlite3VdbeIdxRowidLen(const u8 *aKey){
-  u32 szHdr;        /* Size of the header */
-  u32 typeRowid;    /* Serial type of the rowid */
-
-  sqlite3GetVarint32(aKey, &szHdr);
-  sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
-  return sqlite3VdbeSerialTypeLen(typeRowid);
-}
-  
-
-/*
-** pCur points at an index entry created using the OP_MakeRecord opcode.
-** Read the rowid (the last field in the record) and store it in *rowid.
-** Return SQLITE_OK if everything works, or an error code otherwise.
-*/
-int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
-  i64 nCellKey = 0;
-  int rc;
-  u32 szHdr;        /* Size of the header */
-  u32 typeRowid;    /* Serial type of the rowid */
-  u32 lenRowid;     /* Size of the rowid */
-  Mem m, v;
-
-  sqlite3BtreeKeySize(pCur, &nCellKey);
-  if( nCellKey<=0 ){
-    return SQLITE_CORRUPT_BKPT;
-  }
-  rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
-  if( rc ){
-    return rc;
-  }
-  sqlite3GetVarint32((u8*)m.z, &szHdr);
-  sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
-  lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
-  sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
-  *rowid = v.u.i;
-  sqlite3VdbeMemRelease(&m);
-  return SQLITE_OK;
-}
-
-/*
-** Compare the key of the index entry that cursor pC is point to against
-** the key string in pKey (of length nKey).  Write into *pRes a number
-** that is negative, zero, or positive if pC is less than, equal to,
-** or greater than pKey.  Return SQLITE_OK on success.
-**
-** pKey is either created without a rowid or is truncated so that it
-** omits the rowid at the end.  The rowid at the end of the index entry
-** is ignored as well.
-*/
-int sqlite3VdbeIdxKeyCompare(
-  Cursor *pC,                 /* The cursor to compare against */
-  int nKey, const u8 *pKey,   /* The key to compare */
-  int *res                    /* Write the comparison result here */
-){
-  i64 nCellKey = 0;
-  int rc;
-  BtCursor *pCur = pC->pCursor;
-  int lenRowid;
-  Mem m;
-
-  sqlite3BtreeKeySize(pCur, &nCellKey);
-  if( nCellKey<=0 ){
-    *res = 0;
-    return SQLITE_OK;
-  }
-  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
-  if( rc ){
-    return rc;
-  }
-  lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
-  *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
-  sqlite3VdbeMemRelease(&m);
-  return SQLITE_OK;
-}
-
-/*
-** This routine sets the value to be returned by subsequent calls to
-** sqlite3_changes() on the database handle 'db'. 
-*/
-void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
-  assert( sqlite3_mutex_held(db->mutex) );
-  db->nChange = nChange;
-  db->nTotalChange += nChange;
-}
-
-/*
-** Set a flag in the vdbe to update the change counter when it is finalised
-** or reset.
-*/
-void sqlite3VdbeCountChanges(Vdbe *v){
-  v->changeCntOn = 1;
-}
-
-/*
-** Mark every prepared statement associated with a database connection
-** as expired.
-**
-** An expired statement means that recompilation of the statement is
-** recommend.  Statements expire when things happen that make their
-** programs obsolete.  Removing user-defined functions or collating
-** sequences, or changing an authorization function are the types of
-** things that make prepared statements obsolete.
-*/
-void sqlite3ExpirePreparedStatements(sqlite3 *db){
-  Vdbe *p;
-  for(p = db->pVdbe; p; p=p->pNext){
-    p->expired = 1;
-  }
-}
-
-/*
-** Return the database associated with the Vdbe.
-*/
-sqlite3 *sqlite3VdbeDb(Vdbe *v){
-  return v->db;
-}