engine/inc/sqlite3.h
changeset 83 a2e43aa1ad11
parent 82 d87e984bd8b8
child 84 3b59b88b089e
--- a/engine/inc/sqlite3.h	Sun Apr 04 21:47:56 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,3858 +0,0 @@
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code.  In place of
-** a legal notice, here is a blessing:
-**
-**    May you do good and not evil.
-**    May you find forgiveness for yourself and forgive others.
-**    May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This header file defines the interface that the SQLite library
-** presents to client programs.  If a C-function, structure, datatype,
-** or constant definition does not appear in this file, then it is
-** not a published API of SQLite, is subject to change without
-** notice, and should not be referenced by programs that use SQLite.
-**
-** Some of the definitions that are in this file are marked as
-** "experimental".  Experimental interfaces are normally new
-** features recently added to SQLite.  We do not anticipate changes 
-** to experimental interfaces but reserve to make minor changes if
-** experience from use "in the wild" suggest such changes are prudent.
-**
-** The official C-language API documentation for SQLite is derived
-** from comments in this file.  This file is the authoritative source
-** on how SQLite interfaces are suppose to operate.
-**
-** The name of this file under configuration management is "sqlite.h.in".
-** The makefile makes some minor changes to this file (such as inserting
-** the version number) and changes its name to "sqlite3.h" as
-** part of the build process.
-**
-** @(#) $Id: sqlite3.h 1420 2009-01-13 15:06:30Z teknolog $
-*/
-#ifndef _SQLITE3_H_
-#define _SQLITE3_H_
-
-/*
-** Make sure we can call this stuff from C++.
-*/
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-//#define EXPORT_C
-
-//#define /*IMPORT_C*/
-
-/*
-** Add the ability to override 'extern'
-*/
-#ifndef SQLITE_EXTERN
-# define SQLITE_EXTERN extern
-#endif
-
-/*
-** Make sure these symbols where not defined by some previous header
-** file.
-*/
-#ifdef SQLITE_VERSION
-# undef SQLITE_VERSION
-#endif
-#ifdef SQLITE_VERSION_NUMBER
-# undef SQLITE_VERSION_NUMBER
-#endif
-
-/*
-** CAPI3REF: Compile-Time Library Version Numbers {F10010}
-**
-** {F10011} The #define in the sqlite3.h header file named
-** SQLITE_VERSION resolves to a string literal that identifies
-** the version of the SQLite library in the format "X.Y.Z", where
-** X is the major version number, Y is the minor version number and Z
-** is the release number.  The X.Y.Z might be followed by "alpha" or "beta".
-** {END} For example "3.1.1beta".
-**
-** The X value is always 3 in SQLite.  The X value only changes when
-** backwards compatibility is broken and we intend to never break
-** backwards compatibility.  The Y value only changes when
-** there are major feature enhancements that are forwards compatible
-** but not backwards compatible.  The Z value is incremented with
-** each release but resets back to 0 when Y is incremented.
-**
-** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer
-** with the value  (X*1000000 + Y*1000 + Z) where X, Y, and Z are as
-** with SQLITE_VERSION. {END} For example, for version "3.1.1beta", 
-** SQLITE_VERSION_NUMBER is set to 3001001. To detect if they are using 
-** version 3.1.1 or greater at compile time, programs may use the test 
-** (SQLITE_VERSION_NUMBER>=3001001).
-**
-** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].
-*/
-#define SQLITE_VERSION         "3.5.4"
-#define SQLITE_VERSION_NUMBER 3005004
-
-/*
-** CAPI3REF: Run-Time Library Version Numbers {F10020}
-**
-** {F10021} The sqlite3_libversion_number() interface returns an integer
-** equal to [SQLITE_VERSION_NUMBER].  {END} The value returned
-** by this routine should only be different from the header values
-** if the application is compiled using an sqlite3.h header from a
-** different version of SQLite than library.  Cautious programmers might
-** include a check in their application to verify that 
-** sqlite3_libversion_number() always returns the value 
-** [SQLITE_VERSION_NUMBER].
-**
-** {F10022} The sqlite3_version[] string constant contains the text of the
-** [SQLITE_VERSION] string. {F10023} The sqlite3_libversion() function returns
-** a pointer to the sqlite3_version[] string constant. {END} The 
-** sqlite3_libversion() function
-** is provided for DLL users who can only access functions and not
-** constants within the DLL.
-*/
-const char sqlite3_version[] = SQLITE_VERSION;
-/*IMPORT_C*/ const char *sqlite3_libversion(void);
-/*IMPORT_C*/ int sqlite3_libversion_number(void);
-
-
-void LogMessage(char *message);
-
-/*
-** CAPI3REF: Test To See If The Library Is Threadsafe {F10100}
-**
-** {F10101} The sqlite3_threadsafe() routine returns nonzero
-** if SQLite was compiled with its mutexes enabled or zero if
-** SQLite was compiled with mutexes disabled. {END}  If this
-** routine returns false, then it is not safe for simultaneously
-** running threads to both invoke SQLite interfaces.
-**
-** Really all this routine does is return true if SQLite was
-** compiled with the -DSQLITE_THREADSAFE=1 option and false if
-** compiled with -DSQLITE_THREADSAFE=0.  If SQLite uses an
-** application-defined mutex subsystem, malloc subsystem, collating
-** sequence, VFS, SQL function, progress callback, commit hook,
-** extension, or other accessories and these add-ons are not
-** threadsafe, then clearly the combination will not be threadsafe
-** either.  Hence, this routine never reports that the library
-** is guaranteed to be threadsafe, only when it is guaranteed not
-** to be.
-*/
-/*IMPORT_C*/ int sqlite3_threadsafe(void);
-
-/*
-** CAPI3REF: Database Connection Handle {F12000}
-**
-** Each open SQLite database is represented by pointer to an instance of the
-** opaque structure named "sqlite3".  It is useful to think of an sqlite3
-** pointer as an object.  The [sqlite3_open()], [sqlite3_open16()], and
-** [sqlite3_open_v2()] interfaces are its constructors
-** and [sqlite3_close()] is its destructor.  There are many other interfaces
-** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and
-** [sqlite3_busy_timeout()] to name but three) that are methods on this
-** object.
-*/
-typedef struct sqlite3 sqlite3;
-
-
-/*
-** CAPI3REF: 64-Bit Integer Types {F10200}
-**
-** Because there is no cross-platform way to specify such types
-** SQLite includes typedefs for 64-bit signed and unsigned integers.
-** {F10201} The sqlite_int64 and sqlite3_int64 types specify a
-** 64-bit signed integer. {F10202} The sqlite_uint64 and
-** sqlite3_uint64 types specify a 64-bit unsigned integer. {END}
-**
-** The sqlite3_int64 and sqlite3_uint64 are the preferred type
-** definitions.  The sqlite_int64 and sqlite_uint64 types are
-** supported for backwards compatibility only.
-*/
-#ifdef SQLITE_INT64_TYPE
-  typedef SQLITE_INT64_TYPE sqlite_int64;
-  typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
-#elif defined(_MSC_VER) || defined(__BORLANDC__)
-  typedef __int64 sqlite_int64;
-  typedef unsigned __int64 sqlite_uint64;
-#else
-  typedef long long int sqlite_int64;
-  typedef unsigned long long int sqlite_uint64;
-#endif
-typedef sqlite_int64 sqlite3_int64;
-typedef sqlite_uint64 sqlite3_uint64;
-
-/*
-** If compiling for a processor that lacks floating point support,
-** substitute integer for floating-point
-*/
-#ifdef SQLITE_OMIT_FLOATING_POINT
-# define double sqlite3_int64
-#endif
-
-/*
-** CAPI3REF: Closing A Database Connection {F12010}
-**
-** {F12011} The sqlite3_close() interfaces destroys an [sqlite3] object
-** allocated by a prior call to [sqlite3_open()], [sqlite3_open16()], or
-** [sqlite3_open_v2()]. {F12012} Sqlite3_close() releases all
-** memory used by the connection and closes all open files. {END}.
-**
-** {F12013} If the database connection contains
-** [sqlite3_stmt | prepared statements] that have not been finalized
-** by [sqlite3_finalize()], then sqlite3_close() returns SQLITE_BUSY
-** and leaves the connection open.  {F12014} Giving sqlite3_close()
-** a NULL pointer is a harmless no-op. {END}
-**
-** {U12015} Passing this routine a database connection that has already been
-** closed results in undefined behavior. {U12016} If other interfaces that
-** reference the same database connection are pending (either in the
-** same thread or in different threads) when this routine is called,
-** then the behavior is undefined and is almost certainly undesirable.
-*/
-/*IMPORT_C*/ int sqlite3_close(sqlite3 *);
-
-/*
-** The type for a callback function.
-** This is legacy and deprecated.  It is included for historical
-** compatibility and is not documented.
-*/
-typedef int (*sqlite3_callback)(void*,int,char**, char**);
-
-/*
-** CAPI3REF: One-Step Query Execution Interface {F12100}
-**
-** {F12101} The sqlite3_exec() interface evaluates zero or more 
-** UTF-8 encoded, semicolon-separated SQL statements in the zero-terminated
-** string of its second argument.  {F12102} The SQL
-** statements are evaluated in the context of the database connection
-** specified by in the first argument.
-** {F12103} SQL statements are prepared one by one using
-** [sqlite3_prepare()] or the equivalent, evaluated
-** using one or more calls to [sqlite3_step()], then destroyed
-** using [sqlite3_finalize()]. {F12104} The return value of
-** sqlite3_exec() is SQLITE_OK if all SQL statement run
-** successfully.
-**
-** {F12105} If one or more of the SQL statements handed to
-** sqlite3_exec() are queries, then
-** the callback function specified by the 3rd parameter is
-** invoked once for each row of the query result. {F12106}
-** If the callback returns a non-zero value then the query
-** is aborted, all subsequent SQL statements
-** are skipped and the sqlite3_exec() function returns the [SQLITE_ABORT].
-**
-** {F12107} The 4th parameter to sqlite3_exec() is an arbitrary pointer
-** that is passed through to the callback function as its first parameter.
-**
-** {F12108} The 2nd parameter to the callback function is the number of
-** columns in the query result.  {F12109} The 3rd parameter to the callback
-** is an array of pointers to strings holding the values for each column
-** as extracted using [sqlite3_column_text()].  NULL values in the result
-** set result in a NULL pointer.  All other value are in their UTF-8
-** string representation. {F12117}
-** The 4th parameter to the callback is an array of strings
-** obtained using [sqlite3_column_name()] and holding
-** the names of each column, also in UTF-8.
-**
-** {F12110} The callback function may be NULL, even for queries.  A NULL
-** callback is not an error.  It just means that no callback
-** will be invoked. 
-**
-** {F12112} If an error occurs while parsing or evaluating the SQL
-** then an appropriate error message is written into memory obtained
-** from [sqlite3_malloc()] and *errmsg is made to point to that message
-** assuming errmsg is not NULL.  
-** {U12113} The calling function is responsible for freeing the memory
-** using [sqlite3_free()].
-** {F12116} If [sqlite3_malloc()] fails while attempting to generate
-** the error message, *errmsg is set to NULL.
-** {F12114} If errmsg is NULL then no attempt is made to generate an
-** error message. <todo>Is the return code SQLITE_NOMEM or the original
-** error code?</todo> <todo>What happens if there are multiple errors?
-** Do we get code for the first error, or is the choice of reported
-** error arbitrary?</todo>
-**
-** {F12115} The return value is is SQLITE_OK if there are no errors and
-** some other [SQLITE_OK | return code] if there is an error.  
-** The particular return value depends on the type of error.  {END}
-*/
-/*IMPORT_C*/ int sqlite3_exec(
-  sqlite3*,                                  /* An open database */
-  const char *sql,                           /* SQL to be evaluted */
-  int (*callback)(void*,int,char**,char**),  /* Callback function */
-  void *,                                    /* 1st argument to callback */
-  char **errmsg                              /* Error msg written here */
-);
-
-/*
-** CAPI3REF: Result Codes {F10210}
-** KEYWORDS: SQLITE_OK
-**
-** Many SQLite functions return an integer result code from the set shown
-** above in order to indicates success or failure.
-**
-** {F10211} The result codes shown here are the only ones returned 
-** by SQLite in its default configuration. {F10212} However, the
-** [sqlite3_extended_result_codes()] API can be used to set a database
-** connectoin to return more detailed result codes. {END}
-**
-** See also: [SQLITE_IOERR_READ | extended result codes]
-**
-*/
-#define SQLITE_OK           0   /* Successful result */
-/* beginning-of-error-codes */
-#define SQLITE_ERROR        1   /* SQL error or missing database */
-#define SQLITE_INTERNAL     2   /* Internal logic error in SQLite */
-#define SQLITE_PERM         3   /* Access permission denied */
-#define SQLITE_ABORT        4   /* Callback routine requested an abort */
-#define SQLITE_BUSY         5   /* The database file is locked */
-#define SQLITE_LOCKED       6   /* A table in the database is locked */
-#define SQLITE_NOMEM        7   /* A malloc() failed */
-#define SQLITE_READONLY     8   /* Attempt to write a readonly database */
-#define SQLITE_INTERRUPT    9   /* Operation terminated by sqlite3_interrupt()*/
-#define SQLITE_IOERR       10   /* Some kind of disk I/O error occurred */
-#define SQLITE_CORRUPT     11   /* The database disk image is malformed */
-#define SQLITE_NOTFOUND    12   /* NOT USED. Table or record not found */
-#define SQLITE_FULL        13   /* Insertion failed because database is full */
-#define SQLITE_CANTOPEN    14   /* Unable to open the database file */
-#define SQLITE_PROTOCOL    15   /* NOT USED. Database lock protocol error */
-#define SQLITE_EMPTY       16   /* Database is empty */
-#define SQLITE_SCHEMA      17   /* The database schema changed */
-#define SQLITE_TOOBIG      18   /* String or BLOB exceeds size limit */
-#define SQLITE_CONSTRAINT  19   /* Abort due to constraint violation */
-#define SQLITE_MISMATCH    20   /* Data type mismatch */
-#define SQLITE_MISUSE      21   /* Library used incorrectly */
-#define SQLITE_NOLFS       22   /* Uses OS features not supported on host */
-#define SQLITE_AUTH        23   /* Authorization denied */
-#define SQLITE_FORMAT      24   /* Auxiliary database format error */
-#define SQLITE_RANGE       25   /* 2nd parameter to sqlite3_bind out of range */
-#define SQLITE_NOTADB      26   /* File opened that is not a database file */
-#define SQLITE_ROW         100  /* sqlite3_step() has another row ready */
-#define SQLITE_DONE        101  /* sqlite3_step() has finished executing */
-/* end-of-error-codes */
-
-/*
-** CAPI3REF: Extended Result Codes {F10220}
-**
-** In its default configuration, SQLite API routines return one of 26 integer
-** [SQLITE_OK | result codes].  However, experience has shown that
-** many of these result codes are too course-grained.  They do not provide as
-** much information about problems as programmers might like.  In an effort to
-** address this, newer versions of SQLite (version 3.3.8 and later) include
-** support for additional result codes that provide more detailed information
-** about errors. {F10221} The extended result codes are enabled or disabled
-** for each database connection using the [sqlite3_extended_result_codes()]
-** API. {END}
-** 
-** Some of the available extended result codes are listed above.
-** We expect the number of extended result codes will be expand
-** over time.  {U10422} Software that uses extended result codes should expect
-** to see new result codes in future releases of SQLite. {END}
-** 
-** {F10223} The symbolic name for an extended result code always contains
-** a related primary result code as a prefix. {F10224} Primary result
-** codes contain a single "_" character.  {F10225} Extended result codes
-** contain two or more "_" characters. {F10226} The numeric value of an
-** extended result code can be converted to its
-** corresponding primary result code by masking off the lower 8 bytes. {END}
-**
-** The SQLITE_OK result code will never be extended.  It will always
-** be exactly zero.
-*/
-#define SQLITE_IOERR_READ          (SQLITE_IOERR | (1<<8))
-#define SQLITE_IOERR_SHORT_READ    (SQLITE_IOERR | (2<<8))
-#define SQLITE_IOERR_WRITE         (SQLITE_IOERR | (3<<8))
-#define SQLITE_IOERR_FSYNC         (SQLITE_IOERR | (4<<8))
-#define SQLITE_IOERR_DIR_FSYNC     (SQLITE_IOERR | (5<<8))
-#define SQLITE_IOERR_TRUNCATE      (SQLITE_IOERR | (6<<8))
-#define SQLITE_IOERR_FSTAT         (SQLITE_IOERR | (7<<8))
-#define SQLITE_IOERR_UNLOCK        (SQLITE_IOERR | (8<<8))
-#define SQLITE_IOERR_RDLOCK        (SQLITE_IOERR | (9<<8))
-#define SQLITE_IOERR_DELETE        (SQLITE_IOERR | (10<<8))
-#define SQLITE_IOERR_BLOCKED       (SQLITE_IOERR | (11<<8))
-#define SQLITE_IOERR_NOMEM         (SQLITE_IOERR | (12<<8))
-
-/*
-** CAPI3REF: Flags For File Open Operations {F10230}
-**
-** {F10231} Some combination of the these bit values are used as the
-** third argument to the [sqlite3_open_v2()] interface and
-** as fourth argument to the xOpen method of the
-** [sqlite3_vfs] object.
-*/
-#define SQLITE_OPEN_READONLY         0x00000001
-#define SQLITE_OPEN_READWRITE        0x00000002
-#define SQLITE_OPEN_CREATE           0x00000004
-#define SQLITE_OPEN_DELETEONCLOSE    0x00000008
-#define SQLITE_OPEN_EXCLUSIVE        0x00000010
-#define SQLITE_OPEN_MAIN_DB          0x00000100
-#define SQLITE_OPEN_TEMP_DB          0x00000200
-#define SQLITE_OPEN_TRANSIENT_DB     0x00000400
-#define SQLITE_OPEN_MAIN_JOURNAL     0x00000800
-#define SQLITE_OPEN_TEMP_JOURNAL     0x00001000
-#define SQLITE_OPEN_SUBJOURNAL       0x00002000
-#define SQLITE_OPEN_MASTER_JOURNAL   0x00004000
-
-/*
-** CAPI3REF: Device Characteristics {F10240}
-**
-** {F10241} The xDeviceCapabilities method of the [sqlite3_io_methods]
-** object returns an integer which is a vector of the these
-** bit values expressing I/O characteristics of the mass storage
-** device that holds the file that the [sqlite3_io_methods]
-** refers to. {END}
-**
-** {F10242} The SQLITE_IOCAP_ATOMIC property means that all writes of
-** any size are atomic.  {F10243} The SQLITE_IOCAP_ATOMICnnn values
-** mean that writes of blocks that are nnn bytes in size and
-** are aligned to an address which is an integer multiple of
-** nnn are atomic.  {F10244} The SQLITE_IOCAP_SAFE_APPEND value means
-** that when data is appended to a file, the data is appended
-** first then the size of the file is extended, never the other
-** way around.  {F10245} The SQLITE_IOCAP_SEQUENTIAL property means that
-** information is written to disk in the same order as calls
-** to xWrite().
-*/
-#define SQLITE_IOCAP_ATOMIC          0x00000001
-#define SQLITE_IOCAP_ATOMIC512       0x00000002
-#define SQLITE_IOCAP_ATOMIC1K        0x00000004
-#define SQLITE_IOCAP_ATOMIC2K        0x00000008
-#define SQLITE_IOCAP_ATOMIC4K        0x00000010
-#define SQLITE_IOCAP_ATOMIC8K        0x00000020
-#define SQLITE_IOCAP_ATOMIC16K       0x00000040
-#define SQLITE_IOCAP_ATOMIC32K       0x00000080
-#define SQLITE_IOCAP_ATOMIC64K       0x00000100
-#define SQLITE_IOCAP_SAFE_APPEND     0x00000200
-#define SQLITE_IOCAP_SEQUENTIAL      0x00000400
-
-/*
-** CAPI3REF: File Locking Levels {F10250}
-**
-** {F10251} SQLite uses one of the following integer values as the second
-** argument to calls it makes to the xLock() and xUnlock() methods
-** of an [sqlite3_io_methods] object. {END}
-*/
-#define SQLITE_LOCK_NONE          0
-#define SQLITE_LOCK_SHARED        1
-#define SQLITE_LOCK_RESERVED      2
-#define SQLITE_LOCK_PENDING       3
-#define SQLITE_LOCK_EXCLUSIVE     4
-
-/*
-** CAPI3REF: Synchronization Type Flags {F10260}
-**
-** {F10261} When SQLite invokes the xSync() method of an
-** [sqlite3_io_methods] object it uses a combination of the
-** these integer values as the second argument.
-**
-** {F10262} When the SQLITE_SYNC_DATAONLY flag is used, it means that the
-** sync operation only needs to flush data to mass storage.  Inode
-** information need not be flushed. {F10263} The SQLITE_SYNC_NORMAL means 
-** to use normal fsync() semantics. {F10264} The SQLITE_SYNC_FULL flag means 
-** to use Mac OS-X style fullsync instead of fsync().
-*/
-#define SQLITE_SYNC_NORMAL        0x00002
-#define SQLITE_SYNC_FULL          0x00003
-#define SQLITE_SYNC_DATAONLY      0x00010
-
-
-/*
-** CAPI3REF: OS Interface Open File Handle {F11110}
-**
-** An [sqlite3_file] object represents an open file in the OS
-** interface layer.  Individual OS interface implementations will
-** want to subclass this object by appending additional fields
-** for their own use.  The pMethods entry is a pointer to an
-** [sqlite3_io_methods] object that defines methods for performing
-** I/O operations on the open file.
-*/
-typedef struct sqlite3_file sqlite3_file;
-struct sqlite3_file {
-	int isOpen;
-  //const struct sqlite3_io_methods *pMethods;  /* Methods for an open file */
-};
-
-/*
-** CAPI3REF: OS Interface File Virtual Methods Object {F11120}
-**
-** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to
-** an instance of the this object.  This object defines the
-** methods used to perform various operations against the open file.
-**
-** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
-** [SQLITE_SYNC_FULL].  The first choice is the normal fsync().
-*  The second choice is an
-** OS-X style fullsync.  The SQLITE_SYNC_DATA flag may be ORed in to
-** indicate that only the data of the file and not its inode needs to be
-** synced.
-** 
-** The integer values to xLock() and xUnlock() are one of
-** <ul>
-** <li> [SQLITE_LOCK_NONE],
-** <li> [SQLITE_LOCK_SHARED],
-** <li> [SQLITE_LOCK_RESERVED],
-** <li> [SQLITE_LOCK_PENDING], or
-** <li> [SQLITE_LOCK_EXCLUSIVE].
-** </ul>
-** xLock() increases the lock. xUnlock() decreases the lock.  
-** The xCheckReservedLock() method looks
-** to see if any database connection, either in this
-** process or in some other process, is holding an RESERVED,
-** PENDING, or EXCLUSIVE lock on the file.  It returns true
-** if such a lock exists and false if not.
-** 
-** The xFileControl() method is a generic interface that allows custom
-** VFS implementations to directly control an open file using the
-** [sqlite3_file_control()] interface.  The second "op" argument
-** is an integer opcode.   The third
-** argument is a generic pointer which is intended to be a pointer
-** to a structure that may contain arguments or space in which to
-** write return values.  Potential uses for xFileControl() might be
-** functions to enable blocking locks with timeouts, to change the
-** locking strategy (for example to use dot-file locks), to inquire
-** about the status of a lock, or to break stale locks.  The SQLite
-** core reserves opcodes less than 100 for its own use. 
-** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
-** Applications that define a custom xFileControl method should use opcodes 
-** greater than 100 to avoid conflicts.
-**
-** The xSectorSize() method returns the sector size of the
-** device that underlies the file.  The sector size is the
-** minimum write that can be performed without disturbing
-** other bytes in the file.  The xDeviceCharacteristics()
-** method returns a bit vector describing behaviors of the
-** underlying device:
-**
-** <ul>
-** <li> [SQLITE_IOCAP_ATOMIC]
-** <li> [SQLITE_IOCAP_ATOMIC512]
-** <li> [SQLITE_IOCAP_ATOMIC1K]
-** <li> [SQLITE_IOCAP_ATOMIC2K]
-** <li> [SQLITE_IOCAP_ATOMIC4K]
-** <li> [SQLITE_IOCAP_ATOMIC8K]
-** <li> [SQLITE_IOCAP_ATOMIC16K]
-** <li> [SQLITE_IOCAP_ATOMIC32K]
-** <li> [SQLITE_IOCAP_ATOMIC64K]
-** <li> [SQLITE_IOCAP_SAFE_APPEND]
-** <li> [SQLITE_IOCAP_SEQUENTIAL]
-** </ul>
-**
-** The SQLITE_IOCAP_ATOMIC property means that all writes of
-** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
-** mean that writes of blocks that are nnn bytes in size and
-** are aligned to an address which is an integer multiple of
-** nnn are atomic.  The SQLITE_IOCAP_SAFE_APPEND value means
-** that when data is appended to a file, the data is appended
-** first then the size of the file is extended, never the other
-** way around.  The SQLITE_IOCAP_SEQUENTIAL property means that
-** information is written to disk in the same order as calls
-** to xWrite().
-*/
-/*typedef struct sqlite3_io_methods sqlite3_io_methods;
-struct sqlite3_io_methods {
-  int iVersion;
-  int (*xClose)(sqlite3_file*);
-  int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
-  int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
-  int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
-  int (*xSync)(sqlite3_file*, int flags);
-  int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
-  int (*xLock)(sqlite3_file*, int);
-  int (*xUnlock)(sqlite3_file*, int);
-  int (*xCheckReservedLock)(sqlite3_file*);
-  int (*xFileControl)(sqlite3_file*, int op, void *pArg);
-  int (*xSectorSize)(sqlite3_file*);
-  int (*xDeviceCharacteristics)(sqlite3_file*);
-};*/
-
-/*
-** CAPI3REF: Standard File Control Opcodes {F11310}
-**
-** These integer constants are opcodes for the xFileControl method
-** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()]
-** interface.
-**
-** {F11311} The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging.  This
-** opcode cases the xFileControl method to write the current state of
-** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
-** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
-** into an integer that the pArg argument points to. {F11312} This capability
-** is used during testing and only needs to be supported when SQLITE_TEST
-** is defined.
-*/
-#define SQLITE_FCNTL_LOCKSTATE        1
-
-/*
-** CAPI3REF: Mutex Handle {F17110}
-**
-** The mutex module within SQLite defines [sqlite3_mutex] to be an
-** abstract type for a mutex object.  {F17111} The SQLite core never looks
-** at the internal representation of an [sqlite3_mutex]. {END} It only
-** deals with pointers to the [sqlite3_mutex] object.
-**
-** Mutexes are created using [sqlite3_mutex_alloc()].
-*/
-typedef struct sqlite3_mutex sqlite3_mutex;
-
-/*
-** CAPI3REF: OS Interface Object {F11140}
-**
-** An instance of this object defines the interface between the
-** SQLite core and the underlying operating system.  The "vfs"
-** in the name of the object stands for "virtual file system".
-**
-** The iVersion field is initially 1 but may be larger for future
-** versions of SQLite.  Additional fields may be appended to this
-** object when the iVersion value is increased.
-**
-** The szOsFile field is the size of the subclassed [sqlite3_file]
-** structure used by this VFS.  mxPathname is the maximum length of
-** a pathname in this VFS.
-**
-** Registered vfs modules are kept on a linked list formed by
-** the pNext pointer.  The [sqlite3_vfs_register()]
-** and [sqlite3_vfs_unregister()] interfaces manage this list
-** in a thread-safe way.  The [sqlite3_vfs_find()] interface
-** searches the list.
-**
-** The pNext field is the only fields in the sqlite3_vfs 
-** structure that SQLite will ever modify.  SQLite will only access
-** or modify this field while holding a particular static mutex.
-** The application should never modify anything within the sqlite3_vfs
-** object once the object has been registered.
-**
-** The zName field holds the name of the VFS module.  The name must
-** be unique across all VFS modules.
-**
-** {F11141} SQLite will guarantee that the zFilename string passed to
-** xOpen() is a full pathname as generated by xFullPathname() and
-** that the string will be valid and unchanged until xClose() is
-** called.  {END} So the [sqlite3_file] can store a pointer to the
-** filename if it needs to remember the filename for some reason.
-**
-** {F11142} The flags argument to xOpen() includes all bits set in
-** the flags argument to [sqlite3_open_v2()].  Or if [sqlite3_open()]
-** or [sqlite3_open16()] is used, then flags includes at least
-** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END}
-** If xOpen() opens a file read-only then it sets *pOutFlags to
-** include [SQLITE_OPEN_READONLY].  Other bits in *pOutFlags may be
-** set.
-** 
-** {F11143} SQLite will also add one of the following flags to the xOpen()
-** call, depending on the object being opened:
-** 
-** <ul>
-** <li>  [SQLITE_OPEN_MAIN_DB]
-** <li>  [SQLITE_OPEN_MAIN_JOURNAL]
-** <li>  [SQLITE_OPEN_TEMP_DB]
-** <li>  [SQLITE_OPEN_TEMP_JOURNAL]
-** <li>  [SQLITE_OPEN_TRANSIENT_DB]
-** <li>  [SQLITE_OPEN_SUBJOURNAL]
-** <li>  [SQLITE_OPEN_MASTER_JOURNAL]
-** </ul> {END}
-**
-** The file I/O implementation can use the object type flags to
-** changes the way it deals with files.  For example, an application
-** that does not care about crash recovery or rollback, might make
-** the open of a journal file a no-op.  Writes to this journal are
-** also a no-op.  Any attempt to read the journal return SQLITE_IOERR.
-** Or the implementation might recognize the a database file will
-** be doing page-aligned sector reads and writes in a random order
-** and set up its I/O subsystem accordingly.
-** 
-** {F11144} SQLite might also add one of the following flags to the xOpen
-** method:
-** 
-** <ul>
-** <li> [SQLITE_OPEN_DELETEONCLOSE]
-** <li> [SQLITE_OPEN_EXCLUSIVE]
-** </ul>
-** 
-** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
-** deleted when it is closed.  {F11146} The [SQLITE_OPEN_DELETEONCLOSE]
-** will be set for TEMP  databases, journals and for subjournals. 
-** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened
-** for exclusive access.  This flag is set for all files except
-** for the main database file. {END}
-** 
-** {F11148} At least szOsFile bytes of memory is allocated by SQLite 
-** to hold the  [sqlite3_file] structure passed as the third 
-** argument to xOpen.  {END}  The xOpen method does not have to
-** allocate the structure; it should just fill it in.
-** 
-** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] 
-** to test for the existance of a file,
-** or [SQLITE_ACCESS_READWRITE] to test to see
-** if a file is readable and writable, or [SQLITE_ACCESS_READ]
-** to test to see if a file is at least readable.  {END} The file can be a 
-** directory.
-** 
-** {F11150} SQLite will always allocate at least mxPathname+1 byte for
-** the output buffers for xGetTempname and xFullPathname. {F11151} The exact
-** size of the output buffer is also passed as a parameter to both 
-** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN
-** should be returned. As this is handled as a fatal error by SQLite,
-** vfs implementations should endeavor to prevent this by setting 
-** mxPathname to a sufficiently large value.
-** 
-** The xRandomness(), xSleep(), and xCurrentTime() interfaces
-** are not strictly a part of the filesystem, but they are
-** included in the VFS structure for completeness.
-** The xRandomness() function attempts to return nBytes bytes
-** of good-quality randomness into zOut.  The return value is
-** the actual number of bytes of randomness obtained.  The
-** xSleep() method cause the calling thread to sleep for at
-** least the number of microseconds given.  The xCurrentTime()
-** method returns a Julian Day Number for the current date and
-** time.
-*/
-typedef struct sqlite3_vfs sqlite3_vfs;
-struct sqlite3_vfs {
-  int iVersion;            /* Structure version number */
-  int szOsFile;            /* Size of subclassed sqlite3_file */
-  int mxPathname;          /* Maximum file pathname length */
-  sqlite3_vfs *pNext;      /* Next registered VFS */
-  const char *zName;       /* Name of this virtual file system */
-  void *pAppData;          /* Pointer to application-specific data */
-/*  int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
-               int flags, int *pOutFlags);
-  int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
-  int (*xAccess)(sqlite3_vfs*, const char *zName, int flags);
-  int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut);
-  int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
-  void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
-  void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
-  void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol);
-  void (*xDlClose)(sqlite3_vfs*, void*);
-  int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
-  int (*xSleep)(sqlite3_vfs*, int microseconds);
-  int (*xCurrentTime)(sqlite3_vfs*, double*);*/
-  /* New fields may be appended in figure versions.  The iVersion
-  ** value will increment whenever this happens. */
-};
-
-/*
-** CAPI3REF: Flags for the xAccess VFS method {F11190}
-**
-** {F11191} These integer constants can be used as the third parameter to
-** the xAccess method of an [sqlite3_vfs] object. {END}  They determine
-** the kind of what kind of permissions the xAccess method is
-** looking for.  {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method
-** simply checks to see if the file exists. {F11193} With
-** SQLITE_ACCESS_READWRITE, the xAccess method checks to see
-** if the file is both readable and writable.  {F11194} With
-** SQLITE_ACCESS_READ the xAccess method
-** checks to see if the file is readable.
-*/
-#define SQLITE_ACCESS_EXISTS    0
-#define SQLITE_ACCESS_READWRITE 1
-#define SQLITE_ACCESS_READ      2
-
-/*
-** CAPI3REF: Enable Or Disable Extended Result Codes {F12200}
-**
-** {F12201} The sqlite3_extended_result_codes() routine enables or disables the
-** [SQLITE_IOERR_READ | extended result codes] feature on a database
-** connection if its 2nd parameter is
-** non-zero or zero, respectively. {F12202}
-** By default, SQLite API routines return one of only 26 integer
-** [SQLITE_OK | result codes].  {F12203} When extended result codes
-** are enabled by this routine, the repetoire of result codes can be
-** much larger and can (hopefully) provide more detailed information
-** about the cause of an error.
-**
-** {F12204} The second argument is a boolean value that turns extended result
-** codes on and off. {F12205} Extended result codes are off by default for
-** backwards compatibility with older versions of SQLite.
-*/
-/*IMPORT_C*/ int sqlite3_extended_result_codes(sqlite3*, int onoff);
-
-/*
-** CAPI3REF: Last Insert Rowid {F12220}
-**
-** {F12221} Each entry in an SQLite table has a unique 64-bit signed
-** integer key called the "rowid".  {F12222} The rowid is always available
-** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
-** names are not also used by explicitly declared columns. {F12223} If
-** the table has a column of type INTEGER PRIMARY KEY then that column
-** is another an alias for the rowid.
-**
-** {F12224} This routine returns the rowid of the most recent
-** successful INSERT into the database from the database connection
-** shown in the first argument.  {F12225} If no successful inserts
-** have ever occurred on this database connection, zero is returned.
-**
-** {F12226} If an INSERT occurs within a trigger, then the rowid of the
-** inserted row is returned by this routine as long as the trigger
-** is running.  {F12227} But once the trigger terminates, the value returned
-** by this routine reverts to the last value inserted before the
-** trigger fired.
-**
-** {F12228} An INSERT that fails due to a constraint violation is not a
-** successful insert and does not change the value returned by this
-** routine.  {F12229} Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
-** and INSERT OR ABORT make no changes to the return value of this
-** routine when their insertion fails.  {F12231} When INSERT OR REPLACE 
-** encounters a constraint violation, it does not fail.  The
-** INSERT continues to completion after deleting rows that caused
-** the constraint problem so INSERT OR REPLACE will always change
-** the return value of this interface. 
-**
-** {UF12232} If another thread does a new insert on the same database connection
-** while this routine is running and thus changes the last insert rowid,
-** then the return value of this routine is undefined.
-*/
-/*IMPORT_C*/ sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
-
-/*
-** CAPI3REF: Count The Number Of Rows Modified {F12240}
-**
-** {F12241} This function returns the number of database rows that were changed
-** or inserted or deleted by the most recently completed SQL statement
-** on the connection specified by the first parameter. {F12242} Only
-** changes that are directly specified by the INSERT, UPDATE, or
-** DELETE statement are counted.  Auxiliary changes caused by
-** triggers are not counted. {F12243} Use the [sqlite3_total_changes()] function
-** to find the total number of changes including changes caused by triggers.
-**
-** {F12244} Within the body of a trigger, the sqlite3_changes() interface
-** can be called to find the number of
-** changes in the most recently completed INSERT, UPDATE, or DELETE
-** statement within the body of the same trigger.
-**
-** {F12245} All changes are counted, even if they are later undone by a
-** ROLLBACK or ABORT.  {F12246} Except, changes associated with creating and
-** dropping tables are not counted.
-**
-** {F12247} If a callback invokes [sqlite3_exec()] or [sqlite3_step()]
-** recursively, then the changes in the inner, recursive call are
-** counted together with the changes in the outer call.
-**
-** {F12248} SQLite implements the command "DELETE FROM table" without
-** a WHERE clause by dropping and recreating the table.  (This is much
-** faster than going through and deleting individual elements from the
-** table.)  Because of this optimization, the change count for 
-** "DELETE FROM table" will be zero regardless of the number of elements
-** that were originally in the table. {F12251} To get an accurate count
-** of the number of rows deleted, use
-** "DELETE FROM table WHERE 1" instead.
-**
-** {UF12252} If another thread makes changes on the same database connection
-** while this routine is running then the return value of this routine
-** is undefined.
-*/
-/*IMPORT_C*/ int sqlite3_changes(sqlite3*);
-
-/*
-** CAPI3REF: Total Number Of Rows Modified {F12260}
-***
-** {F12261} This function returns the number of database rows that have been
-** modified by INSERT, UPDATE or DELETE statements since the database handle
-** was opened. {F12262} The count includes UPDATE, INSERT and DELETE 
-** statements executed as part of trigger programs.  {F12263} All changes
-** are counted as soon as the statement that makes them is completed 
-** (when the statement handle is passed to [sqlite3_reset()] or 
-** [sqlite3_finalize()]). {END}
-**
-** See also the [sqlite3_change()] interface.
-**
-** {F12265} SQLite implements the command "DELETE FROM table" without
-** a WHERE clause by dropping and recreating the table.  (This is much
-** faster than going
-** through and deleting individual elements form the table.)  Because of
-** this optimization, the change count for "DELETE FROM table" will be
-** zero regardless of the number of elements that were originally in the
-** table. To get an accurate count of the number of rows deleted, use
-** "DELETE FROM table WHERE 1" instead.
-**
-** {U12264} If another thread makes changes on the same database connection
-** while this routine is running then the return value of this routine
-** is undefined. {END}
-*/
-/*IMPORT_C*/ int sqlite3_total_changes(sqlite3*);
-
-/*
-** CAPI3REF: Interrupt A Long-Running Query {F12270}
-**
-** {F12271} This function causes any pending database operation to abort and
-** return at its earliest opportunity. {END} This routine is typically
-** called in response to a user action such as pressing "Cancel"
-** or Ctrl-C where the user wants a long query operation to halt
-** immediately.
-**
-** {F12272} It is safe to call this routine from a thread different from the
-** thread that is currently running the database operation. {U12273} But it
-** is not safe to call this routine with a database connection that
-** is closed or might close before sqlite3_interrupt() returns.
-**
-** If an SQL is very nearly finished at the time when sqlite3_interrupt()
-** is called, then it might not have an opportunity to be interrupted.
-** It might continue to completion.
-** {F12274} The SQL operation that is interrupted will return
-** [SQLITE_INTERRUPT].  {F12275} If the interrupted SQL operation is an
-** INSERT, UPDATE, or DELETE that is inside an explicit transaction, 
-** then the entire transaction will be rolled back automatically.
-** {F12276} A call to sqlite3_interrupt() has no effect on SQL statements
-** that are started after sqlite3_interrupt() returns.
-*/
-/*IMPORT_C*/ void sqlite3_interrupt(sqlite3*);
-
-/*
-** CAPI3REF: Determine If An SQL Statement Is Complete {F10510}
-**
-** These routines are useful for command-line input to determine if the
-** currently entered text seems to form complete a SQL statement or
-** if additional input is needed before sending the text into
-** SQLite for parsing.  These routines return true if the input string
-** appears to be a complete SQL statement.  A statement is judged to be
-** complete if it ends with a semicolon and is not a fragment of a
-** CREATE TRIGGER statement.  These routines do not parse the SQL and
-** so will not detect syntactically incorrect SQL.
-**
-** {F10511} These functions return true if the given input string 
-** ends with a semicolon optionally followed by whitespace or
-** comments. {F10512} For sqlite3_complete(),
-** the parameter must be a zero-terminated UTF-8 string. {F10513} For
-** sqlite3_complete16(), a zero-terminated machine byte order UTF-16 string
-** is required.  {F10514} These routines return false if the terminal
-** semicolon is within a comment, a string literal or a quoted identifier
-** (in other words if the final semicolon is not really a separate token
-** but part of a larger token) or if the final semicolon is
-** in between the BEGIN and END keywords of a CREATE TRIGGER statement.
-** {END}
-*/
-/*IMPORT_C*/ int sqlite3_complete(const char *sql);
-/*IMPORT_C*/ int sqlite3_complete16(const void *sql);
-
-/*
-** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310}
-**
-** {F12311} This routine identifies a callback function that might be
-** invoked whenever an attempt is made to open a database table 
-** that another thread or process has locked.
-** {F12312} If the busy callback is NULL, then [SQLITE_BUSY]
-** or [SQLITE_IOERR_BLOCKED]
-** is returned immediately upon encountering the lock.
-** {F12313} If the busy callback is not NULL, then the
-** callback will be invoked with two arguments.  {F12314} The
-** first argument to the handler is a copy of the void* pointer which
-** is the third argument to this routine.  {F12315} The second argument to
-** the handler is the number of times that the busy handler has
-** been invoked for this locking event.  {F12316} If the
-** busy callback returns 0, then no additional attempts are made to
-** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
-** {F12317} If the callback returns non-zero, then another attempt
-** is made to open the database for reading and the cycle repeats.
-**
-** The presence of a busy handler does not guarantee that
-** it will be invoked when there is lock contention. {F12319}
-** If SQLite determines that invoking the busy handler could result in
-** a deadlock, it will go ahead and return [SQLITE_BUSY] or
-** [SQLITE_IOERR_BLOCKED] instead of invoking the
-** busy handler. {END}
-** Consider a scenario where one process is holding a read lock that
-** it is trying to promote to a reserved lock and
-** a second process is holding a reserved lock that it is trying
-** to promote to an exclusive lock.  The first process cannot proceed
-** because it is blocked by the second and the second process cannot
-** proceed because it is blocked by the first.  If both processes
-** invoke the busy handlers, neither will make any progress.  Therefore,
-** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
-** will induce the first process to release its read lock and allow
-** the second process to proceed.
-**
-** {F12321} The default busy callback is NULL. {END}
-**
-** {F12322} The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
-** when SQLite is in the middle of a large transaction where all the
-** changes will not fit into the in-memory cache.  {F12323} SQLite will
-** already hold a RESERVED lock on the database file, but it needs
-** to promote this lock to EXCLUSIVE so that it can spill cache
-** pages into the database file without harm to concurrent
-** readers.  {F12324} If it is unable to promote the lock, then the in-memory
-** cache will be left in an inconsistent state and so the error
-** code is promoted from the relatively benign [SQLITE_BUSY] to
-** the more severe [SQLITE_IOERR_BLOCKED].  {F12325} This error code promotion
-** forces an automatic rollback of the changes. {END} See the
-** <a href="http://www.sqlite.org/cvstrac/wiki?p=CorruptionFollowingBusyError">
-** CorruptionFollowingBusyError</a> wiki page for a discussion of why
-** this is important.
-**	
-** {F12326} Sqlite is re-entrant, so the busy handler may start a new
-** query. {END} (It is not clear why anyone would every want to do this,
-** but it is allowed, in theory.) {U12327} But the busy handler may not
-** close the database.  Closing the database from a busy handler will delete 
-** data structures out from under the executing query and will 
-** probably result in a segmentation fault or other runtime error. {END}
-**
-** {F12328} There can only be a single busy handler defined for each database
-** connection.  Setting a new busy handler clears any previous one. 
-** {F12329} Note that calling [sqlite3_busy_timeout()] will also set or clear
-** the busy handler.
-**
-** {F12331} When operating in [sqlite3_enable_shared_cache | shared cache mode],
-** only a single busy handler can be defined for each database file.
-** So if two database connections share a single cache, then changing
-** the busy handler on one connection will also change the busy
-** handler in the other connection.  {F12332} The busy handler is invoked
-** in the thread that was running when the lock contention occurs.
-*/
-/*IMPORT_C*/ int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
-
-/*
-** CAPI3REF: Set A Busy Timeout {F12340}
-**
-** {F12341} This routine sets a [sqlite3_busy_handler | busy handler]
-** that sleeps for a while when a
-** table is locked.  {F12342} The handler will sleep multiple times until 
-** at least "ms" milliseconds of sleeping have been done. {F12343} After
-** "ms" milliseconds of sleeping, the handler returns 0 which
-** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
-**
-** {F12344} Calling this routine with an argument less than or equal to zero
-** turns off all busy handlers.
-**
-** {F12345} There can only be a single busy handler for a particular database
-** connection.  If another busy handler was defined  
-** (using [sqlite3_busy_handler()]) prior to calling
-** this routine, that other busy handler is cleared.
-*/
-/*IMPORT_C*/ int sqlite3_busy_timeout(sqlite3*, int ms);
-
-/*
-** CAPI3REF: Convenience Routines For Running Queries {F12370}
-**
-** This next routine is a convenience wrapper around [sqlite3_exec()].
-** {F12371} Instead of invoking a user-supplied callback for each row of the
-** result, this routine remembers each row of the result in memory
-** obtained from [sqlite3_malloc()], then returns all of the result after the
-** query has finished. {F12372}
-**
-** As an example, suppose the query result where this table:
-**
-** <blockquote><pre>
-**        Name        | Age
-**        -----------------------
-**        Alice       | 43
-**        Bob         | 28
-**        Cindy       | 21
-** </pre></blockquote>
-**
-** If the 3rd argument were &azResult then after the function returns
-** azResult will contain the following data:
-**
-** <blockquote><pre>
-**        azResult&#91;0] = "Name";
-**        azResult&#91;1] = "Age";
-**        azResult&#91;2] = "Alice";
-**        azResult&#91;3] = "43";
-**        azResult&#91;4] = "Bob";
-**        azResult&#91;5] = "28";
-**        azResult&#91;6] = "Cindy";
-**        azResult&#91;7] = "21";
-** </pre></blockquote>
-**
-** Notice that there is an extra row of data containing the column
-** headers.  But the *nrow return value is still 3.  *ncolumn is
-** set to 2.  In general, the number of values inserted into azResult
-** will be ((*nrow) + 1)*(*ncolumn).
-**
-** {U12374} After the calling function has finished using the result, it should 
-** pass the result data pointer to sqlite3_free_table() in order to 
-** release the memory that was malloc-ed.  Because of the way the 
-** [sqlite3_malloc()] happens, the calling function must not try to call 
-** [sqlite3_free()] directly.  Only [sqlite3_free_table()] is able to release 
-** the memory properly and safely. {END}
-**
-** {F12373} The return value of this routine is the same as
-** from [sqlite3_exec()].
-*/
-/*IMPORT_C*/ int sqlite3_get_table(
-  sqlite3*,              /* An open database */
-  const char *sql,       /* SQL to be executed */
-  char ***resultp,       /* Result written to a char *[]  that this points to */
-  int *nrow,             /* Number of result rows written here */
-  int *ncolumn,          /* Number of result columns written here */
-  char **errmsg          /* Error msg written here */
-);
-/*IMPORT_C*/ void sqlite3_free_table(char **result);
-
-/*
-** CAPI3REF: Formatted String Printing Functions {F17400}
-**
-** These routines are workalikes of the "printf()" family of functions
-** from the standard C library.
-**
-** {F17401} The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
-** results into memory obtained from [sqlite3_malloc()].
-** {U17402} The strings returned by these two routines should be
-** released by [sqlite3_free()]. {F17403}  Both routines return a
-** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
-** memory to hold the resulting string.
-**
-** {F17404} In sqlite3_snprintf() routine is similar to "snprintf()" from
-** the standard C library.  The result is written into the
-** buffer supplied as the second parameter whose size is given by
-** the first parameter. {END} Note that the order of the
-** first two parameters is reversed from snprintf().  This is an
-** historical accident that cannot be fixed without breaking
-** backwards compatibility.  {F17405} Note also that sqlite3_snprintf()
-** returns a pointer to its buffer instead of the number of
-** characters actually written into the buffer. {END} We admit that
-** the number of characters written would be a more useful return
-** value but we cannot change the implementation of sqlite3_snprintf()
-** now without breaking compatibility.
-**
-** {F17406} As long as the buffer size is greater than zero, sqlite3_snprintf()
-** guarantees that the buffer is always zero-terminated. {F17407} The first
-** parameter "n" is the total size of the buffer, including space for
-** the zero terminator.  {END} So the longest string that can be completely
-** written will be n-1 characters.
-**
-** These routines all implement some additional formatting
-** options that are useful for constructing SQL statements.
-** All of the usual printf formatting options apply.  In addition, there
-** is are "%q", "%Q", and "%z" options.
-**
-** {F17410} The %q option works like %s in that it substitutes a null-terminated
-** string from the argument list.  But %q also doubles every '\'' character.
-** %q is designed for use inside a string literal. {END} By doubling each '\''
-** character it escapes that character and allows it to be inserted into
-** the string.
-**
-** For example, so some string variable contains text as follows:
-**
-** <blockquote><pre>
-**  char *zText = "It's a happy day!";
-** </pre></blockquote>
-**
-** One can use this text in an SQL statement as follows:
-**
-** <blockquote><pre>
-**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
-**  sqlite3_exec(db, zSQL, 0, 0, 0);
-**  sqlite3_free(zSQL);
-** </pre></blockquote>
-**
-** Because the %q format string is used, the '\'' character in zText
-** is escaped and the SQL generated is as follows:
-**
-** <blockquote><pre>
-**  INSERT INTO table1 VALUES('It''s a happy day!')
-** </pre></blockquote>
-**
-** This is correct.  Had we used %s instead of %q, the generated SQL
-** would have looked like this:
-**
-** <blockquote><pre>
-**  INSERT INTO table1 VALUES('It's a happy day!');
-** </pre></blockquote>
-**
-** This second example is an SQL syntax error.  As a general rule you
-** should always use %q instead of %s when inserting text into a string 
-** literal.
-**
-** {F17411} The %Q option works like %q except it also adds single quotes around
-** the outside of the total string.  Or if the parameter in the argument
-** list is a NULL pointer, %Q substitutes the text "NULL" (without single
-** quotes) in place of the %Q option. {END}  So, for example, one could say:
-**
-** <blockquote><pre>
-**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
-**  sqlite3_exec(db, zSQL, 0, 0, 0);
-**  sqlite3_free(zSQL);
-** </pre></blockquote>
-**
-** The code above will render a correct SQL statement in the zSQL
-** variable even if the zText variable is a NULL pointer.
-**
-** {F17412} The "%z" formatting option works exactly like "%s" with the
-** addition that after the string has been read and copied into
-** the result, [sqlite3_free()] is called on the input string. {END}
-*/
-/*IMPORT_C*/ char *sqlite3_mprintf(const char*,...);
-/*IMPORT_C*/ char *sqlite3_snprintf(int,char*,const char*, ...);
-
-/*
-** CAPI3REF: Memory Allocation Subsystem {F17300}
-**
-** {F17301} The SQLite core  uses these three routines for all of its own
-** internal memory allocation needs. {END}  "Core" in the previous sentence
-** does not include operating-system specific VFS implementation.  The
-** windows VFS uses native malloc and free for some operations.
-**
-** {F17302} The sqlite3_malloc() routine returns a pointer to a block
-** of memory at least N bytes in length, where N is the parameter.
-** {F17303} If sqlite3_malloc() is unable to obtain sufficient free
-** memory, it returns a NULL pointer.  {F17304} If the parameter N to
-** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
-** a NULL pointer.
-**
-** {F17305} Calling sqlite3_free() with a pointer previously returned
-** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
-** that it might be reused.  {F17306} The sqlite3_free() routine is
-** a no-op if is called with a NULL pointer.  Passing a NULL pointer
-** to sqlite3_free() is harmless.  {U17307} After being freed, memory
-** should neither be read nor written.  Even reading previously freed
-** memory might result in a segmentation fault or other severe error.
-** {U17309} Memory corruption, a segmentation fault, or other severe error
-** might result if sqlite3_free() is called with a non-NULL pointer that
-** was not obtained from sqlite3_malloc() or sqlite3_free().
-**
-** {F17310} The sqlite3_realloc() interface attempts to resize a
-** prior memory allocation to be at least N bytes, where N is the
-** second parameter.  The memory allocation to be resized is the first
-** parameter.  {F17311} If the first parameter to sqlite3_realloc()
-** is a NULL pointer then its behavior is identical to calling
-** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
-** {F17312} If the second parameter to sqlite3_realloc() is zero or
-** negative then the behavior is exactly the same as calling
-** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
-** {F17313} Sqlite3_realloc() returns a pointer to a memory allocation
-** of at least N bytes in size or NULL if sufficient memory is unavailable.
-** {F17314} If M is the size of the prior allocation, then min(N,M) bytes
-** of the prior allocation are copied into the beginning of buffer returned
-** by sqlite3_realloc() and the prior allocation is freed.
-** {F17315} If sqlite3_realloc() returns NULL, then the prior allocation
-** is not freed.
-**
-** {F17316} The memory returned by sqlite3_malloc() and sqlite3_realloc()
-** is always aligned to at least an 8 byte boundary. {END}
-**
-** {F17381} The default implementation
-** of the memory allocation subsystem uses the malloc(), realloc()
-** and free() provided by the standard C library. {F17382} However, if 
-** SQLite is compiled with the following C preprocessor macro
-**
-** <blockquote> SQLITE_MEMORY_SIZE=<i>NNN</i> </blockquote>
-**
-** where <i>NNN</i> is an integer, then SQLite create a static
-** array of at least <i>NNN</i> bytes in size and use that array
-** for all of its dynamic memory allocation needs. {END}  Additional
-** memory allocator options may be added in future releases.
-**
-** In SQLite version 3.5.0 and 3.5.1, it was possible to define
-** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
-** implementation of these routines to be omitted.  That capability
-** is no longer provided.  Only built-in memory allocators can be
-** used.
-**
-** The windows OS interface layer calls
-** the system malloc() and free() directly when converting
-** filenames between the UTF-8 encoding used by SQLite
-** and whatever filename encoding is used by the particular windows
-** installation.  Memory allocation errors are detected, but
-** they are reported back as [SQLITE_CANTOPEN] or
-** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
-*/
-/*IMPORT_C*/ void *sqlite3_malloc(int);
-/*IMPORT_C*/ void *sqlite3_realloc(void*, int);
-/*IMPORT_C*/ void sqlite3_free(void*);
-
-/*
-** CAPI3REF: Memory Allocator Statistics {F17370}
-**
-** In addition to the basic three allocation routines 
-** [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()],
-** the memory allocation subsystem included with the SQLite
-** sources provides the interfaces shown here.
-**
-** {F17371} The sqlite3_memory_used() routine returns the
-** number of bytes of memory currently outstanding (malloced but not freed).
-** {F17372} The value returned by sqlite3_memory_used() includes
-** any overhead added by SQLite, but not overhead added by the
-** library malloc() that backs the sqlite3_malloc() implementation.
-** {F17373} The sqlite3_memory_highwater() routines returns the
-** maximum number of bytes that have been outstanding at any time
-** since the highwater mark was last reset.
-** {F17374} The byte count returned by sqlite3_memory_highwater()
-** uses the same byte counting rules as sqlite3_memory_used(). {END}
-** In other words, overhead added internally by SQLite is counted,
-** but overhead from the underlying system malloc is not.
-** {F17375} If the parameter to sqlite3_memory_highwater() is true,
-** then the highwater mark is reset to the current value of
-** sqlite3_memory_used() and the prior highwater mark (before the
-** reset) is returned.  {F17376}  If the parameter to 
-** sqlite3_memory_highwater() is zero, then the highwater mark is
-** unchanged.
-*/
-/*IMPORT_C*/ sqlite3_int64 sqlite3_memory_used(void);
-/*IMPORT_C*/ sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
-
-/*
-** CAPI3REF: Compile-Time Authorization Callbacks {F12500}
-**
-** {F12501} This routine registers a authorizer callback with a particular
-** database connection, supplied in the first argument. {F12502}
-** The authorizer callback is invoked as SQL statements are being compiled
-** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
-** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()].  {F12503} At various
-** points during the compilation process, as logic is being created
-** to perform various actions, the authorizer callback is invoked to
-** see if those actions are allowed.  The authorizer callback should
-** return SQLITE_OK to allow the action, [SQLITE_IGNORE] to disallow the
-** specific action but allow the SQL statement to continue to be
-** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
-** rejected with an error.  {F12504} If the authorizer callback returns
-** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
-** then [sqlite3_prepare_v2()] or equivalent call that triggered
-** the authorizer shall
-** fail with an SQLITE_ERROR error code and an appropriate error message. {END}
-**
-** When the callback returns [SQLITE_OK], that means the operation
-** requested is ok.  {F12505} When the callback returns [SQLITE_DENY], the
-** [sqlite3_prepare_v2()] or equivalent call that triggered the
-** authorizer shall fail
-** with an SQLITE_ERROR error code and an error message explaining that
-** access is denied. {F12506} If the authorizer code (the 2nd parameter
-** to the authorizer callback is anything other than [SQLITE_READ], then
-** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. 
-** If the authorizer code is [SQLITE_READ] and the callback returns
-** [SQLITE_IGNORE] then the prepared statement is constructed to
-** insert a NULL value in place of the table column that would have
-** been read if [SQLITE_OK] had been returned. {END}
-**
-** {F12510} The first parameter to the authorizer callback is a copy of
-** the third parameter to the sqlite3_set_authorizer() interface.
-** {F12511} The second parameter to the callback is an integer 
-** [SQLITE_COPY | action code] that specifies the particular action
-** to be authorized. {END} The available action codes are
-** [SQLITE_COPY | documented separately].  {F12512} The third through sixth
-** parameters to the callback are zero-terminated strings that contain 
-** additional details about the action to be authorized. {END}
-**
-** An authorizer is used when preparing SQL statements from an untrusted
-** source, to ensure that the SQL statements do not try to access data
-** that they are not allowed to see, or that they do not try to
-** execute malicious statements that damage the database.  For
-** example, an application may allow a user to enter arbitrary
-** SQL queries for evaluation by a database.  But the application does
-** not want the user to be able to make arbitrary changes to the
-** database.  An authorizer could then be put in place while the
-** user-entered SQL is being prepared that disallows everything
-** except SELECT statements.  
-**
-** {F12520} Only a single authorizer can be in place on a database connection
-** at a time.  Each call to sqlite3_set_authorizer overrides the
-** previous call. {F12521}  A NULL authorizer means that no authorization
-** callback is invoked.  {F12522} The default authorizer is NULL. {END}
-**
-** Note that the authorizer callback is invoked only during 
-** [sqlite3_prepare()] or its variants.  {F12523} Authorization is not
-** performed during statement evaluation in [sqlite3_step()]. {END}
-*/
-/*IMPORT_C*/ int sqlite3_set_authorizer(
-  sqlite3*,
-  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
-  void *pUserData
-);
-
-/*
-** CAPI3REF: Authorizer Return Codes {F12590}
-**
-** The [sqlite3_set_authorizer | authorizer callback function] must
-** return either [SQLITE_OK] or one of these two constants in order
-** to signal SQLite whether or not the action is permitted.  See the
-** [sqlite3_set_authorizer | authorizer documentation] for additional
-** information.
-*/
-#define SQLITE_DENY   1   /* Abort the SQL statement with an error */
-#define SQLITE_IGNORE 2   /* Don't allow access, but don't generate an error */
-
-/*
-** CAPI3REF: Authorizer Action Codes {F12550}
-**
-** The [sqlite3_set_authorizer()] interface registers a callback function
-** that is invoked to authorizer certain SQL statement actions.  {F12551} The
-** second parameter to the callback is an integer code that specifies
-** what action is being authorized.  These are the integer action codes that
-** the authorizer callback may be passed. {END}
-**
-** These action code values signify what kind of operation is to be 
-** authorized.  {F12552} The 3rd and 4th parameters to the authorization
-** callback function will be parameters or NULL depending on which of these
-** codes is used as the second parameter. {F12553} The 5th parameter to the
-** authorizer callback is the name of the database ("main", "temp", 
-** etc.) if applicable. {F12554} The 6th parameter to the authorizer callback
-** is the name of the inner-most trigger or view that is responsible for
-** the access attempt or NULL if this access attempt is directly from 
-** top-level SQL code.
-*/
-/******************************************* 3rd ************ 4th ***********/
-#define SQLITE_CREATE_INDEX          1   /* Index Name      Table Name      */
-#define SQLITE_CREATE_TABLE          2   /* Table Name      NULL            */
-#define SQLITE_CREATE_TEMP_INDEX     3   /* Index Name      Table Name      */
-#define SQLITE_CREATE_TEMP_TABLE     4   /* Table Name      NULL            */
-#define SQLITE_CREATE_TEMP_TRIGGER   5   /* Trigger Name    Table Name      */
-#define SQLITE_CREATE_TEMP_VIEW      6   /* View Name       NULL            */
-#define SQLITE_CREATE_TRIGGER        7   /* Trigger Name    Table Name      */
-#define SQLITE_CREATE_VIEW           8   /* View Name       NULL            */
-#define SQLITE_DELETE                9   /* Table Name      NULL            */
-#define SQLITE_DROP_INDEX           10   /* Index Name      Table Name      */
-#define SQLITE_DROP_TABLE           11   /* Table Name      NULL            */
-#define SQLITE_DROP_TEMP_INDEX      12   /* Index Name      Table Name      */
-#define SQLITE_DROP_TEMP_TABLE      13   /* Table Name      NULL            */
-#define SQLITE_DROP_TEMP_TRIGGER    14   /* Trigger Name    Table Name      */
-#define SQLITE_DROP_TEMP_VIEW       15   /* View Name       NULL            */
-#define SQLITE_DROP_TRIGGER         16   /* Trigger Name    Table Name      */
-#define SQLITE_DROP_VIEW            17   /* View Name       NULL            */
-#define SQLITE_INSERT               18   /* Table Name      NULL            */
-#define SQLITE_PRAGMA               19   /* Pragma Name     1st arg or NULL */
-#define SQLITE_READ                 20   /* Table Name      Column Name     */
-#define SQLITE_SELECT               21   /* NULL            NULL            */
-#define SQLITE_TRANSACTION          22   /* NULL            NULL            */
-#define SQLITE_UPDATE               23   /* Table Name      Column Name     */
-#define SQLITE_ATTACH               24   /* Filename        NULL            */
-#define SQLITE_DETACH               25   /* Database Name   NULL            */
-#define SQLITE_ALTER_TABLE          26   /* Database Name   Table Name      */
-#define SQLITE_REINDEX              27   /* Index Name      NULL            */
-#define SQLITE_ANALYZE              28   /* Table Name      NULL            */
-#define SQLITE_CREATE_VTABLE        29   /* Table Name      Module Name     */
-#define SQLITE_DROP_VTABLE          30   /* Table Name      Module Name     */
-#define SQLITE_FUNCTION             31   /* Function Name   NULL            */
-#define SQLITE_COPY                  0   /* No longer used */
-
-/*
-** CAPI3REF: Tracing And Profiling Functions {F12280}
-**
-** These routines register callback functions that can be used for
-** tracing and profiling the execution of SQL statements.
-**
-** {F12281} The callback function registered by sqlite3_trace() is invoked
-** at the first [sqlite3_step()] for the evaluation of an SQL statement.
-** {F12282} Only a single trace callback can be registered at a time.
-** Each call to sqlite3_trace() overrides the previous.  {F12283} A
-** NULL callback for sqlite3_trace() disables tracing.  {F12284} The
-** first argument to the trace callback is a copy of the pointer which
-** was the 3rd argument to sqlite3_trace.  {F12285} The second argument
-** to the trace callback is a zero-terminated UTF8 string containing
-** the original text of the SQL statement as it was passed into
-** [sqlite3_prepare_v2()] or the equivalent. {END}  Note that the
-** host parameter are not expanded in the SQL statement text.
-**
-** {F12287} The callback function registered by sqlite3_profile() is invoked
-** as each SQL statement finishes.  {F12288} The first parameter to the
-** profile callback is a copy of the 3rd parameter to sqlite3_profile().
-** {F12289} The second parameter to the profile callback is a
-** zero-terminated UTF-8 string that contains the complete text of
-** the SQL statement as it was processed by [sqlite3_prepare_v2()] or
-** the equivalent.  {F12290} The third parameter to the profile 
-** callback is an estimate of the number of nanoseconds of
-** wall-clock time required to run the SQL statement from start
-** to finish. {END}  
-**
-** The sqlite3_profile() API is currently considered experimental and
-** is subject to change.
-*/
-/*IMPORT_C*/ void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
-/*IMPORT_C*/ void *sqlite3_profile(sqlite3*,
-   void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
-
-/*
-** CAPI3REF: Query Progress Callbacks {F12910}
-**
-** {F12911} This routine configures a callback function - the
-** progress callback - that is invoked periodically during long
-** running calls to [sqlite3_exec()], [sqlite3_step()] and
-** [sqlite3_get_table()]. {END}  An example use for this 
-** interface is to keep a GUI updated during a large query.
-**
-** {F12912} The progress callback is invoked once for every N virtual
-** machine opcodes, where N is the second argument to this function.
-** {F12913} The progress callback itself is identified by the third
-** argument to this function. {F12914} The fourth argument to this
-** function is a void pointer passed to the progress callback
-** function each time it is invoked. {END}
-**
-** {F12915} If a call to [sqlite3_exec()], [sqlite3_step()], or
-** [sqlite3_get_table()] results in fewer than N opcodes being executed,
-** then the progress callback is never invoked. {END}
-** 
-** {F12916} Only a single progress callback function may be registered for each
-** open database connection.  Every call to sqlite3_progress_handler()
-** overwrites the results of the previous call. {F12917}
-** To remove the progress callback altogether, pass NULL as the third
-** argument to this function. {END}
-**
-** {F12918} If the progress callback returns a result other than 0, then
-** the current query is immediately terminated and any database changes
-** rolled back. {F12919}
-** The containing [sqlite3_exec()], [sqlite3_step()], or
-** [sqlite3_get_table()] call returns SQLITE_INTERRUPT. {END}  This feature
-** can be used, for example, to implement the "Cancel" button on a
-** progress dialog box in a GUI.
-*/
-/*IMPORT_C*/ void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
-
-/*
-** CAPI3REF: Opening A New Database Connection {F12700}
-**
-** {F12701} These routines open an SQLite database file whose name
-** is given by the filename argument.
-** {F12702} The filename argument is interpreted as UTF-8
-** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
-** in the native byte order for [sqlite3_open16()].
-** {F12703} An [sqlite3*] handle is returned in *ppDb, even
-** if an error occurs.  {F12723} (Exception: if SQLite is unable
-** to allocate memory to hold the [sqlite3] object, a NULL will
-** be written into *ppDb instead of a pointer to the [sqlite3] object.)
-** {F12704} If the database is opened (and/or created)
-** successfully, then [SQLITE_OK] is returned.  {F12705} Otherwise an
-** error code is returned.  {F12706} The
-** [sqlite3_errmsg()] or [sqlite3_errmsg16()]  routines can be used to obtain
-** an English language description of the error.
-**
-** {F12707} The default encoding for the database will be UTF-8 if
-** [sqlite3_open()] or [sqlite3_open_v2()] is called and
-** UTF-16 in the native byte order if [sqlite3_open16()] is used.
-**
-** {F12708} Whether or not an error occurs when it is opened, resources
-** associated with the [sqlite3*] handle should be released by passing it
-** to [sqlite3_close()] when it is no longer required.
-**
-** {F12709} The [sqlite3_open_v2()] interface works like [sqlite3_open()] 
-** except that it acccepts two additional parameters for additional control
-** over the new database connection.  {F12710} The flags parameter can be
-** one of:
-**
-** <ol>
-** <li>  [SQLITE_OPEN_READONLY]
-** <li>  [SQLITE_OPEN_READWRITE]
-** <li>  [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
-** </ol>
-**
-** {F12711} The first value opens the database read-only. 
-** {F12712} If the database does not previously exist, an error is returned.
-** {F12713} The second option opens
-** the database for reading and writing if possible, or reading only if
-** if the file is write protected.  {F12714} In either case the database
-** must already exist or an error is returned.  {F12715} The third option
-** opens the database for reading and writing and creates it if it does
-** not already exist. {F12716}
-** The third options is behavior that is always used for [sqlite3_open()]
-** and [sqlite3_open16()].
-**
-** {F12717} If the filename is ":memory:", then an private
-** in-memory database is created for the connection. {F12718} This in-memory
-** database will vanish when the database connection is closed. {END}  Future
-** version of SQLite might make use of additional special filenames
-** that begin with the ":" character.  It is recommended that 
-** when a database filename really does begin with
-** ":" that you prefix the filename with a pathname like "./" to
-** avoid ambiguity.
-**
-** {F12719} If the filename is an empty string, then a private temporary
-** on-disk database will be created.  {F12720} This private database will be
-** automatically deleted as soon as the database connection is closed.
-**
-** {F12721} The fourth parameter to sqlite3_open_v2() is the name of the
-** [sqlite3_vfs] object that defines the operating system 
-** interface that the new database connection should use.  {F12722} If the
-** fourth parameter is a NULL pointer then the default [sqlite3_vfs]
-** object is used. {END}
-**
-** <b>Note to windows users:</b>  The encoding used for the filename argument
-** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever
-** codepage is currently defined.  Filenames containing international
-** characters must be converted to UTF-8 prior to passing them into
-** [sqlite3_open()] or [sqlite3_open_v2()].
-*/
-/*IMPORT_C*/ int sqlite3_open(
-  const char *filename,   /* Database filename (UTF-8) */
-  sqlite3 **ppDb          /* OUT: SQLite db handle */
-);
-/*IMPORT_C*/ int sqlite3_open16(
-  const void *filename,   /* Database filename (UTF-16) */
-  sqlite3 **ppDb          /* OUT: SQLite db handle */
-);
-/*IMPORT_C*/ int sqlite3_open_v2(
-  const char *filename,   /* Database filename (UTF-8) */
-  sqlite3 **ppDb,         /* OUT: SQLite db handle */
-  int flags,              /* Flags */
-  const char *zVfs        /* Name of VFS module to use */
-);
-
-/*
-** CAPI3REF: Error Codes And Messages {F12800}
-**
-** {F12801} The sqlite3_errcode() interface returns the numeric
-** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code]
-** for the most recent failed sqlite3_* API call associated
-** with [sqlite3] handle 'db'. {U12802} If a prior API call failed but the
-** most recent API call succeeded, the return value from sqlite3_errcode()
-** is undefined. {END}
-**
-** {F12803} The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
-** text that describes the error, as either UTF8 or UTF16 respectively.
-** {F12804} Memory to hold the error message string is managed internally.
-** {U12805} The 
-** string may be overwritten or deallocated by subsequent calls to SQLite
-** interface functions. {END}
-**
-** {F12806} Calls to many sqlite3_* functions set the error code and
-** string returned by [sqlite3_errcode()], [sqlite3_errmsg()], and
-** [sqlite3_errmsg16()] overwriting the previous values.  {F12807}
-** Except, calls to [sqlite3_errcode()],
-** [sqlite3_errmsg()], and [sqlite3_errmsg16()] themselves do not affect the
-** results of future invocations.  {F12808} Calls to API routines that
-** do not return an error code (example: [sqlite3_data_count()]) do not
-** change the error code returned by this routine.  {F12809} Interfaces that
-** are not associated with a specific database connection (examples:
-** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()] do not change
-** the return code. {END}
-**
-** {F12810} Assuming no other intervening sqlite3_* API calls are made,
-** the error code returned by this function is associated with the same
-** error as the strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()].
-*/
-/*IMPORT_C*/ int sqlite3_errcode(sqlite3 *db);
-/*IMPORT_C*/ const char *sqlite3_errmsg(sqlite3*);
-/*IMPORT_C*/ const void *sqlite3_errmsg16(sqlite3*);
-
-/*
-** CAPI3REF: SQL Statement Object {F13000}
-**
-** An instance of this object represent single SQL statements.  This
-** object is variously known as a "prepared statement" or a 
-** "compiled SQL statement" or simply as a "statement".
-** 
-** The life of a statement object goes something like this:
-**
-** <ol>
-** <li> Create the object using [sqlite3_prepare_v2()] or a related
-**      function.
-** <li> Bind values to host parameters using
-**      [sqlite3_bind_blob | sqlite3_bind_* interfaces].
-** <li> Run the SQL by calling [sqlite3_step()] one or more times.
-** <li> Reset the statement using [sqlite3_reset()] then go back
-**      to step 2.  Do this zero or more times.
-** <li> Destroy the object using [sqlite3_finalize()].
-** </ol>
-**
-** Refer to documentation on individual methods above for additional
-** information.
-*/
-typedef struct sqlite3_stmt sqlite3_stmt;
-
-/*
-** CAPI3REF: Compiling An SQL Statement {F13010}
-**
-** To execute an SQL query, it must first be compiled into a byte-code
-** program using one of these routines. 
-**
-** {F13011} The first argument "db" is an [sqlite3 | SQLite database handle] 
-** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()]
-** or [sqlite3_open16()]. {F13012}
-** The second argument "zSql" is the statement to be compiled, encoded
-** as either UTF-8 or UTF-16.  The sqlite3_prepare() and sqlite3_prepare_v2()
-** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2()
-** use UTF-16. {END}
-**
-** {F13013} If the nByte argument is less
-** than zero, then zSql is read up to the first zero terminator.
-** {F13014} If nByte is non-negative, then it is the maximum number of 
-** bytes read from zSql.  When nByte is non-negative, the
-** zSql string ends at either the first '\000' or '\u0000' character or 
-** until the nByte-th byte, whichever comes first. {END}
-**
-** {F13015} *pzTail is made to point to the first byte past the end of the
-** first SQL statement in zSql.  These routines only compiles the first
-** statement in zSql, so *pzTail is left pointing to what remains
-** uncompiled. {END}
-**
-** {F13016} *ppStmt is left pointing to a compiled 
-** [sqlite3_stmt | SQL statement structure] that can be
-** executed using [sqlite3_step()].  Or if there is an error, *ppStmt may be
-** set to NULL.  {F13017} If the input text contains no SQL (if the input
-** is and empty string or a comment) then *ppStmt is set to NULL.
-** {U13018} The calling procedure is responsible for deleting the
-** compiled SQL statement
-** using [sqlite3_finalize()] after it has finished with it.
-**
-** {F13019} On success, [SQLITE_OK] is returned.  Otherwise an 
-** [SQLITE_ERROR | error code] is returned. {END}
-**
-** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
-** recommended for all new programs. The two older interfaces are retained
-** for backwards compatibility, but their use is discouraged.
-** {F13020} In the "v2" interfaces, the prepared statement
-** that is returned (the [sqlite3_stmt] object) contains a copy of the 
-** original SQL text. {END} This causes the [sqlite3_step()] interface to
-** behave a differently in two ways:
-**
-** <ol>
-** <li>{F13022}
-** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
-** always used to do, [sqlite3_step()] will automatically recompile the SQL
-** statement and try to run it again. {F12023} If the schema has changed in
-** a way that makes the statement no longer valid, [sqlite3_step()] will still
-** return [SQLITE_SCHEMA].  {END} But unlike the legacy behavior, 
-** [SQLITE_SCHEMA] is now a fatal error.  {F12024} Calling
-** [sqlite3_prepare_v2()] again will not make the
-** error go away.  {F12025} Note: use [sqlite3_errmsg()] to find the text
-** of the parsing error that results in an [SQLITE_SCHEMA] return. {END}
-** </li>
-**
-** <li>
-** {F13030} When an error occurs, 
-** [sqlite3_step()] will return one of the detailed 
-** [SQLITE_ERROR | result codes] or
-** [SQLITE_IOERR_READ | extended result codes].  {F13031}
-** The legacy behavior was that [sqlite3_step()] would only return a generic
-** [SQLITE_ERROR] result code and you would have to make a second call to
-** [sqlite3_reset()] in order to find the underlying cause of the problem.
-** {F13032}
-** With the "v2" prepare interfaces, the underlying reason for the error is
-** returned immediately. {END}
-** </li>
-** </ol>
-*/
-/*IMPORT_C*/ int sqlite3_prepare(
-  sqlite3 *db,            /* Database handle */
-  const char *zSql,       /* SQL statement, UTF-8 encoded */
-  int nByte,              /* Maximum length of zSql in bytes. */
-  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
-  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
-);
-/*IMPORT_C*/ int sqlite3_prepare_v2(
-  sqlite3 *db,            /* Database handle */
-  const char *zSql,       /* SQL statement, UTF-8 encoded */
-  int nByte,              /* Maximum length of zSql in bytes. */
-  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
-  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
-);
-/*IMPORT_C*/ int sqlite3_prepare16(
-  sqlite3 *db,            /* Database handle */
-  const void *zSql,       /* SQL statement, UTF-16 encoded */
-  int nByte,              /* Maximum length of zSql in bytes. */
-  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
-  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
-);
-/*IMPORT_C*/ int sqlite3_prepare16_v2(
-  sqlite3 *db,            /* Database handle */
-  const void *zSql,       /* SQL statement, UTF-16 encoded */
-  int nByte,              /* Maximum length of zSql in bytes. */
-  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
-  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
-);
-
-/*
-** CAPIREF: Retrieving Statement SQL {F13100}
-**
-** {F13101} If the compiled SQL statement passed as an argument was
-** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()],
-** then this function returns a pointer to a zero-terminated string
-** containing a copy of the original SQL statement. {F13102} The
-** pointer is valid until the statement
-** is deleted using sqlite3_finalize().
-** {F13103} The string returned by sqlite3_sql() is always UTF8 even
-** if a UTF16 string was originally entered using [sqlite3_prepare16_v2()]
-** or the equivalent.
-**
-** {F13104} If the statement was compiled using either of the legacy
-** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this
-** function returns NULL.
-*/
-/*IMPORT_C*/ const char *sqlite3_sql(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF:  Dynamically Typed Value Object  {F15000}
-**
-** {F15001} SQLite uses the sqlite3_value object to represent all values
-** that are or can be stored in a database table. {END}
-** SQLite uses dynamic typing for the values it stores.  
-** {F15002} Values stored in sqlite3_value objects can be
-** be integers, floating point values, strings, BLOBs, or NULL.
-*/
-typedef struct Mem sqlite3_value;
-
-/*
-** CAPI3REF:  SQL Function Context Object {F16001}
-**
-** The context in which an SQL function executes is stored in an
-** sqlite3_context object.  {F16002} A pointer to an sqlite3_context
-** object is always first parameter to application-defined SQL functions.
-*/
-typedef struct sqlite3_context sqlite3_context;
-
-/*
-** CAPI3REF:  Binding Values To Prepared Statements {F13500}
-**
-** {F13501} In the SQL strings input to [sqlite3_prepare_v2()] and its
-** variants, literals may be replace by a parameter in one
-** of these forms:
-**
-** <ul>
-** <li>  ?
-** <li>  ?NNN
-** <li>  :AAA
-** <li>  @AAA
-** <li>  $VVV
-** </ul>
-**
-** In the parameter forms shown above NNN is an integer literal,
-** AAA is an alphanumeric identifier and VVV is a variable name according
-** to the syntax rules of the TCL programming language. {END}
-** The values of these parameters (also called "host parameter names")
-** can be set using the sqlite3_bind_*() routines defined here.
-**
-** {F13502} The first argument to the sqlite3_bind_*() routines always
-** is a pointer to the [sqlite3_stmt] object returned from
-** [sqlite3_prepare_v2()] or its variants.  {F13503} The second
-** argument is the index of the parameter to be set.  {F13504} The
-** first parameter has an index of 1.  {F13505} When the same named
-** parameter is used more than once, second and subsequent
-** occurrences have the same index as the first occurrence. 
-** {F13506} The index for named parameters can be looked up using the
-** [sqlite3_bind_parameter_name()] API if desired.  {F13507} The index
-** for "?NNN" parameters is the value of NNN.
-** {F13508} The NNN value must be between 1 and the compile-time
-** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999). {END}
-** See <a href="limits.html">limits.html</a> for additional information.
-**
-** {F13509} The third argument is the value to bind to the parameter. {END}
-**
-** {F13510} In those
-** routines that have a fourth argument, its value is the number of bytes
-** in the parameter.  To be clear: the value is the number of bytes in the
-** string, not the number of characters. {F13511}  The number
-** of bytes does not include the zero-terminator at the end of strings.
-** {F13512}
-** If the fourth parameter is negative, the length of the string is
-** number of bytes up to the first zero terminator. {END}
-**
-** {F13513}
-** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
-** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
-** text after SQLite has finished with it. {F13514} If the fifth argument is
-** the special value [SQLITE_STATIC], then the library assumes that the
-** information is in static, unmanaged space and does not need to be freed.
-** {F13515} If the fifth argument has the value [SQLITE_TRANSIENT], then
-** SQLite makes its own private copy of the data immediately, before
-** the sqlite3_bind_*() routine returns. {END}
-**
-** {F13520} The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
-** is filled with zeros.  {F13521} A zeroblob uses a fixed amount of memory
-** (just an integer to hold it size) while it is being processed. {END}
-** Zeroblobs are intended to serve as place-holders for BLOBs whose
-** content is later written using 
-** [sqlite3_blob_open | increment BLOB I/O] routines. {F13522} A negative
-** value for the zeroblob results in a zero-length BLOB. {END}
-**
-** {F13530} The sqlite3_bind_*() routines must be called after
-** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and
-** before [sqlite3_step()]. {F13531}
-** Bindings are not cleared by the [sqlite3_reset()] routine.
-** {F13532} Unbound parameters are interpreted as NULL. {END}
-**
-** {F13540} These routines return [SQLITE_OK] on success or an error code if
-** anything goes wrong.  {F13541} [SQLITE_RANGE] is returned if the parameter
-** index is out of range.  {F13542} [SQLITE_NOMEM] is returned if malloc fails.
-** {F13543} [SQLITE_MISUSE] is returned if these routines are called on a
-** virtual machine that is the wrong state or which has already been finalized.
-*/
-/*IMPORT_C*/ int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
-/*IMPORT_C*/ int sqlite3_bind_double(sqlite3_stmt*, int, double);
-/*IMPORT_C*/ int sqlite3_bind_int(sqlite3_stmt*, int, int);
-/*IMPORT_C*/ int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
-/*IMPORT_C*/ int sqlite3_bind_null(sqlite3_stmt*, int);
-/*IMPORT_C*/ int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
-/*IMPORT_C*/ int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
-/*IMPORT_C*/ int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
-/*IMPORT_C*/ int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
-
-/*
-** CAPI3REF: Number Of Host Parameters {F13600}
-**
-** {F13601} Return the largest host parameter index in the precompiled
-** statement given as the argument. {F13602} When the host parameters
-** are of the forms like ":AAA", "$VVV", "@AAA", or "?",
-** then they are assigned sequential increasing numbers beginning
-** with one, so the value returned is the number of parameters.
-** {F13603} However
-** if the same host parameter name is used multiple times, each occurrance
-** is given the same number, so the value returned in that case is the number
-** of unique host parameter names. {F13604} If host parameters of the
-** form "?NNN" are used (where NNN is an integer) then there might be
-** gaps in the numbering and the value returned by this interface is
-** the index of the host parameter with the largest index value. {END}
-**
-** {U13605} The prepared statement must not be [sqlite3_finalize | finalized]
-** prior to this routine returning.  Otherwise the results are undefined
-** and probably undesirable.
-*/
-/*IMPORT_C*/ int sqlite3_bind_parameter_count(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Name Of A Host Parameter {F13620}
-**
-** {F13621} This routine returns a pointer to the name of the n-th
-** parameter in a [sqlite3_stmt | prepared statement]. {F13622}
-** Host parameters of the form ":AAA" or "@AAA" or "$VVV" have a name
-** which is the string ":AAA" or "@AAA" or "$VVV". 
-** In other words, the initial ":" or "$" or "@"
-** is included as part of the name.  {F13626}
-** Parameters of the form "?" or "?NNN" have no name.
-**
-** {F13623} The first host parameter has an index of 1, not 0.
-**
-** {F13624} If the value n is out of range or if the n-th parameter is
-** nameless, then NULL is returned.  {F13625} The returned string is
-** always in the UTF-8 encoding even if the named parameter was
-** originally specified as UTF-16 in [sqlite3_prepare16()] or
-** [sqlite3_prepare16_v2()].
-*/
-/*IMPORT_C*/ const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
-
-/*
-** CAPI3REF: Index Of A Parameter With A Given Name {F13640}
-**
-** {F13641} This routine returns the index of a host parameter with the
-** given name.  {F13642} The name must match exactly.  {F13643}
-** If no parameter with the given name is found, return 0.
-** {F13644} Parameter names must be UTF8.
-*/
-/*IMPORT_C*/ int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
-
-/*
-** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660}
-**
-** {F13661} Contrary to the intuition of many, [sqlite3_reset()] does not
-** reset the [sqlite3_bind_blob | bindings] on a 
-** [sqlite3_stmt | prepared statement]. {F13662} Use this routine to
-** reset all host parameters to NULL.
-*/
-/*IMPORT_C*/ int sqlite3_clear_bindings(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Number Of Columns In A Result Set {F13710}
-**
-** {F13711} Return the number of columns in the result set returned by the 
-** [sqlite3_stmt | compiled SQL statement]. {F13712} This routine returns 0
-** if pStmt is an SQL statement that does not return data (for 
-** example an UPDATE).
-*/
-/*IMPORT_C*/ int sqlite3_column_count(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Column Names In A Result Set {F13720}
-**
-** {F13721} These routines return the name assigned to a particular column
-** in the result set of a SELECT statement.  {F13722} The sqlite3_column_name()
-** interface returns a pointer to a zero-terminated UTF8 string
-** and sqlite3_column_name16() returns a pointer to a zero-terminated
-** UTF16 string. {F13723}  The first parameter is the
-** [sqlite3_stmt | prepared statement] that implements the SELECT statement.
-** The second parameter is the column number.  The left-most column is
-** number 0.
-**
-** {F13724} The returned string pointer is valid until either the 
-** [sqlite3_stmt | prepared statement] is destroyed by [sqlite3_finalize()]
-** or until the next call sqlite3_column_name() or sqlite3_column_name16()
-** on the same column.
-**
-** {F13725} If sqlite3_malloc() fails during the processing of either routine
-** (for example during a conversion from UTF-8 to UTF-16) then a
-** NULL pointer is returned.
-*/
-/*IMPORT_C*/ const char *sqlite3_column_name(sqlite3_stmt*, int N);
-/*IMPORT_C*/ const void *sqlite3_column_name16(sqlite3_stmt*, int N);
-
-/*
-** CAPI3REF: Source Of Data In A Query Result {F13740}
-**
-** {F13741} These routines provide a means to determine what column of what
-** table in which database a result of a SELECT statement comes from.
-** {F13742} The name of the database or table or column can be returned as
-** either a UTF8 or UTF16 string.  {F13743} The _database_ routines return
-** the database name, the _table_ routines return the table name, and
-** the origin_ routines return the column name. {F13744}
-** The returned string is valid until
-** the [sqlite3_stmt | prepared statement] is destroyed using
-** [sqlite3_finalize()] or until the same information is requested
-** again in a different encoding.
-**
-** {F13745} The names returned are the original un-aliased names of the
-** database, table, and column.
-**
-** {F13746} The first argument to the following calls is a 
-** [sqlite3_stmt | compiled SQL statement].
-** {F13747} These functions return information about the Nth column returned by 
-** the statement, where N is the second function argument.
-**
-** {F13748} If the Nth column returned by the statement is an expression
-** or subquery and is not a column value, then all of these functions
-** return NULL.  {F13749} Otherwise, they return the 
-** name of the attached database, table and column that query result
-** column was extracted from.
-**
-** {F13750} As with all other SQLite APIs, those postfixed with "16" return
-** UTF-16 encoded strings, the other functions return UTF-8. {END}
-**
-** These APIs are only available if the library was compiled with the 
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
-**
-** {U13751}
-** If two or more threads call one or more of these routines against the same
-** prepared statement and column at the same time then the results are
-** undefined.
-*/
-/*IMPORT_C*/ const char *sqlite3_column_database_name(sqlite3_stmt*,int);
-/*IMPORT_C*/ const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
-/*IMPORT_C*/ const char *sqlite3_column_table_name(sqlite3_stmt*,int);
-/*IMPORT_C*/ const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
-/*IMPORT_C*/ const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
-/*IMPORT_C*/ const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
-
-/*
-** CAPI3REF: Declared Datatype Of A Query Result {F13760}
-**
-** The first parameter is a [sqlite3_stmt | compiled SQL statement]. 
-** {F13761} If this statement is a SELECT statement and the Nth column of the 
-** returned result set of that SELECT is a table column (not an
-** expression or subquery) then the declared type of the table
-** column is returned.  {F13762} If the Nth column of the result set is an
-** expression or subquery, then a NULL pointer is returned.
-** {F13763} The returned string is always UTF-8 encoded.  {END} 
-** For example, in the database schema:
-**
-** CREATE TABLE t1(c1 VARIANT);
-**
-** And the following statement compiled:
-**
-** SELECT c1 + 1, c1 FROM t1;
-**
-** Then this routine would return the string "VARIANT" for the second
-** result column (i==1), and a NULL pointer for the first result column
-** (i==0).
-**
-** SQLite uses dynamic run-time typing.  So just because a column
-** is declared to contain a particular type does not mean that the
-** data stored in that column is of the declared type.  SQLite is
-** strongly typed, but the typing is dynamic not static.  Type
-** is associated with individual values, not with the containers
-** used to hold those values.
-*/
-/*IMPORT_C*/ const char *sqlite3_column_decltype(sqlite3_stmt *, int i);
-/*IMPORT_C*/ const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
-
-/* 
-** CAPI3REF:  Evaluate An SQL Statement {F13200}
-**
-** After an [sqlite3_stmt | SQL statement] has been prepared with a call
-** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of
-** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()],
-** then this function must be called one or more times to evaluate the 
-** statement.
-**
-** The details of the behavior of this sqlite3_step() interface depend
-** on whether the statement was prepared using the newer "v2" interface
-** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
-** interface [sqlite3_prepare()] and [sqlite3_prepare16()].  The use of the
-** new "v2" interface is recommended for new applications but the legacy
-** interface will continue to be supported.
-**
-** In the lagacy interface, the return value will be either [SQLITE_BUSY], 
-** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
-** With the "v2" interface, any of the other [SQLITE_OK | result code]
-** or [SQLITE_IOERR_READ | extended result code] might be returned as
-** well.
-**
-** [SQLITE_BUSY] means that the database engine was unable to acquire the
-** database locks it needs to do its job.  If the statement is a COMMIT
-** or occurs outside of an explicit transaction, then you can retry the
-** statement.  If the statement is not a COMMIT and occurs within a
-** explicit transaction then you should rollback the transaction before
-** continuing.
-**
-** [SQLITE_DONE] means that the statement has finished executing
-** successfully.  sqlite3_step() should not be called again on this virtual
-** machine without first calling [sqlite3_reset()] to reset the virtual
-** machine back to its initial state.
-**
-** If the SQL statement being executed returns any data, then 
-** [SQLITE_ROW] is returned each time a new row of data is ready
-** for processing by the caller. The values may be accessed using
-** the [sqlite3_column_int | column access functions].
-** sqlite3_step() is called again to retrieve the next row of data.
-** 
-** [SQLITE_ERROR] means that a run-time error (such as a constraint
-** violation) has occurred.  sqlite3_step() should not be called again on
-** the VM. More information may be found by calling [sqlite3_errmsg()].
-** With the legacy interface, a more specific error code (example:
-** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
-** can be obtained by calling [sqlite3_reset()] on the
-** [sqlite3_stmt | prepared statement].  In the "v2" interface,
-** the more specific error code is returned directly by sqlite3_step().
-**
-** [SQLITE_MISUSE] means that the this routine was called inappropriately.
-** Perhaps it was called on a [sqlite3_stmt | prepared statement] that has
-** already been [sqlite3_finalize | finalized] or on one that had 
-** previously returned [SQLITE_ERROR] or [SQLITE_DONE].  Or it could
-** be the case that the same database connection is being used by two or
-** more threads at the same moment in time.
-**
-** <b>Goofy Interface Alert:</b>
-** In the legacy interface, 
-** the sqlite3_step() API always returns a generic error code,
-** [SQLITE_ERROR], following any error other than [SQLITE_BUSY]
-** and [SQLITE_MISUSE].  You must call [sqlite3_reset()] or
-** [sqlite3_finalize()] in order to find one of the specific
-** [SQLITE_ERROR | result codes] that better describes the error.
-** We admit that this is a goofy design.  The problem has been fixed
-** with the "v2" interface.  If you prepare all of your SQL statements
-** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
-** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the 
-** more specific [SQLITE_ERROR | result codes] are returned directly
-** by sqlite3_step().  The use of the "v2" interface is recommended.
-*/
-/*IMPORT_C*/ int sqlite3_step(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Number of columns in a result set {F13770}
-**
-** Return the number of values in the current row of the result set.
-**
-** {F13771} After a call to [sqlite3_step()] that returns [SQLITE_ROW],
-** this routine
-** will return the same value as the [sqlite3_column_count()] function.
-** {F13772}
-** After [sqlite3_step()] has returned an [SQLITE_DONE], [SQLITE_BUSY], or
-** a [SQLITE_ERROR | error code], or before [sqlite3_step()] has been 
-** called on the [sqlite3_stmt | prepared statement] for the first time,
-** this routine returns zero.
-*/
-/*IMPORT_C*/ int sqlite3_data_count(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Fundamental Datatypes {F10265}
-**
-** {F10266}Every value in SQLite has one of five fundamental datatypes:
-**
-** <ul>
-** <li> 64-bit signed integer
-** <li> 64-bit IEEE floating point number
-** <li> string
-** <li> BLOB
-** <li> NULL
-** </ul> {END}
-**
-** These constants are codes for each of those types.
-**
-** Note that the SQLITE_TEXT constant was also used in SQLite version 2
-** for a completely different meaning.  Software that links against both
-** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not
-** SQLITE_TEXT.
-*/
-#define SQLITE_INTEGER  1
-#define SQLITE_FLOAT    2
-#define SQLITE_BLOB     4
-#define SQLITE_NULL     5
-#ifdef SQLITE_TEXT
-# undef SQLITE_TEXT
-#else
-# define SQLITE_TEXT     3
-#endif
-#define SQLITE3_TEXT     3
-
-/*
-** CAPI3REF: Results Values From A Query {F13800}
-**
-** These routines return information about
-** a single column of the current result row of a query.  In every
-** case the first argument is a pointer to the 
-** [sqlite3_stmt | SQL statement] that is being
-** evaluated (the [sqlite3_stmt*] that was returned from 
-** [sqlite3_prepare_v2()] or one of its variants) and
-** the second argument is the index of the column for which information 
-** should be returned.  The left-most column of the result set
-** has an index of 0.
-**
-** If the SQL statement is not currently point to a valid row, or if the
-** the column index is out of range, the result is undefined. 
-** These routines may only be called when the most recent call to
-** [sqlite3_step()] has returned [SQLITE_ROW] and neither
-** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently.
-** If any of these routines are called after [sqlite3_reset()] or
-** [sqlite3_finalize()] or after [sqlite3_step()] has returned
-** something other than [SQLITE_ROW], the results are undefined.
-** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
-** are called from a different thread while any of these routines
-** are pending, then the results are undefined.  
-**
-** The sqlite3_column_type() routine returns 
-** [SQLITE_INTEGER | datatype code] for the initial data type
-** of the result column.  The returned value is one of [SQLITE_INTEGER],
-** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].  The value
-** returned by sqlite3_column_type() is only meaningful if no type
-** conversions have occurred as described below.  After a type conversion,
-** the value returned by sqlite3_column_type() is undefined.  Future
-** versions of SQLite may change the behavior of sqlite3_column_type()
-** following a type conversion.
-**
-** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() 
-** routine returns the number of bytes in that BLOB or string.
-** If the result is a UTF-16 string, then sqlite3_column_bytes() converts
-** the string to UTF-8 and then returns the number of bytes.
-** If the result is a numeric value then sqlite3_column_bytes() uses
-** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
-** the number of bytes in that string.
-** The value returned does not include the zero terminator at the end
-** of the string.  For clarity: the value returned is the number of
-** bytes in the string, not the number of characters.
-**
-** Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
-** even zero-length strings, are always zero terminated.  The return
-** value from sqlite3_column_blob() for a zero-length blob is an arbitrary
-** pointer, possibly even a NULL pointer.
-**
-** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
-** but leaves the result in UTF-16 instead of UTF-8.  
-** The zero terminator is not included in this count.
-**
-** These routines attempt to convert the value where appropriate.  For
-** example, if the internal representation is FLOAT and a text result
-** is requested, [sqlite3_snprintf()] is used internally to do the conversion
-** automatically.  The following table details the conversions that
-** are applied:
-**
-** <blockquote>
-** <table border="1">
-** <tr><th> Internal<br>Type <th> Requested<br>Type <th>  Conversion
-**
-** <tr><td>  NULL    <td> INTEGER   <td> Result is 0
-** <tr><td>  NULL    <td>  FLOAT    <td> Result is 0.0
-** <tr><td>  NULL    <td>   TEXT    <td> Result is NULL pointer
-** <tr><td>  NULL    <td>   BLOB    <td> Result is NULL pointer
-** <tr><td> INTEGER  <td>  FLOAT    <td> Convert from integer to float
-** <tr><td> INTEGER  <td>   TEXT    <td> ASCII rendering of the integer
-** <tr><td> INTEGER  <td>   BLOB    <td> Same as for INTEGER->TEXT
-** <tr><td>  FLOAT   <td> INTEGER   <td> Convert from float to integer
-** <tr><td>  FLOAT   <td>   TEXT    <td> ASCII rendering of the float
-** <tr><td>  FLOAT   <td>   BLOB    <td> Same as FLOAT->TEXT
-** <tr><td>  TEXT    <td> INTEGER   <td> Use atoi()
-** <tr><td>  TEXT    <td>  FLOAT    <td> Use atof()
-** <tr><td>  TEXT    <td>   BLOB    <td> No change
-** <tr><td>  BLOB    <td> INTEGER   <td> Convert to TEXT then use atoi()
-** <tr><td>  BLOB    <td>  FLOAT    <td> Convert to TEXT then use atof()
-** <tr><td>  BLOB    <td>   TEXT    <td> Add a zero terminator if needed
-** </table>
-** </blockquote>
-**
-** The table above makes reference to standard C library functions atoi()
-** and atof().  SQLite does not really use these functions.  It has its
-** on equavalent internal routines.  The atoi() and atof() names are
-** used in the table for brevity and because they are familiar to most
-** C programmers.
-**
-** Note that when type conversions occur, pointers returned by prior
-** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
-** sqlite3_column_text16() may be invalidated. 
-** Type conversions and pointer invalidations might occur
-** in the following cases:
-**
-** <ul>
-** <li><p>  The initial content is a BLOB and sqlite3_column_text() 
-**          or sqlite3_column_text16() is called.  A zero-terminator might
-**          need to be added to the string.</p></li>
-**
-** <li><p>  The initial content is UTF-8 text and sqlite3_column_bytes16() or
-**          sqlite3_column_text16() is called.  The content must be converted
-**          to UTF-16.</p></li>
-**
-** <li><p>  The initial content is UTF-16 text and sqlite3_column_bytes() or
-**          sqlite3_column_text() is called.  The content must be converted
-**          to UTF-8.</p></li>
-** </ul>
-**
-** Conversions between UTF-16be and UTF-16le are always done in place and do
-** not invalidate a prior pointer, though of course the content of the buffer
-** that the prior pointer points to will have been modified.  Other kinds
-** of conversion are done in place when it is possible, but sometime it is
-** not possible and in those cases prior pointers are invalidated.  
-**
-** The safest and easiest to remember policy is to invoke these routines
-** in one of the following ways:
-**
-**  <ul>
-**  <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
-**  <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
-**  <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
-**  </ul>
-**
-** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(),
-** or sqlite3_column_text16() first to force the result into the desired
-** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to
-** find the size of the result.  Do not mix call to sqlite3_column_text() or
-** sqlite3_column_blob() with calls to sqlite3_column_bytes16().  And do not
-** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes().
-**
-** The pointers returned are valid until a type conversion occurs as
-** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
-** [sqlite3_finalize()] is called.  The memory space used to hold strings
-** and blobs is freed automatically.  Do <b>not</b> pass the pointers returned
-** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into 
-** [sqlite3_free()].
-**
-** If a memory allocation error occurs during the evaluation of any
-** of these routines, a default value is returned.  The default value
-** is either the integer 0, the floating point number 0.0, or a NULL
-** pointer.  Subsequent calls to [sqlite3_errcode()] will return
-** [SQLITE_NOMEM].
-*/
-/*IMPORT_C*/ const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
-/*IMPORT_C*/ int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
-/*IMPORT_C*/ int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
-/*IMPORT_C*/ double sqlite3_column_double(sqlite3_stmt*, int iCol);
-/*IMPORT_C*/ int sqlite3_column_int(sqlite3_stmt*, int iCol);
-/*IMPORT_C*/ sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
-/*IMPORT_C*/ const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
-/*IMPORT_C*/ const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
-/*IMPORT_C*/ int sqlite3_column_type(sqlite3_stmt*, int iCol);
-/*IMPORT_C*/ sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
-
-/*
-** CAPI3REF: Destroy A Prepared Statement Object {F13300}
-**
-** The sqlite3_finalize() function is called to delete a 
-** [sqlite3_stmt | compiled SQL statement]. If the statement was
-** executed successfully, or not executed at all, then SQLITE_OK is returned.
-** If execution of the statement failed then an 
-** [SQLITE_ERROR | error code] or [SQLITE_IOERR_READ | extended error code]
-** is returned. 
-**
-** This routine can be called at any point during the execution of the
-** [sqlite3_stmt | virtual machine].  If the virtual machine has not 
-** completed execution when this routine is called, that is like
-** encountering an error or an interrupt.  (See [sqlite3_interrupt()].) 
-** Incomplete updates may be rolled back and transactions cancelled,  
-** depending on the circumstances, and the 
-** [SQLITE_ERROR | result code] returned will be [SQLITE_ABORT].
-*/
-/*IMPORT_C*/ int sqlite3_finalize(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Reset A Prepared Statement Object {F13330}
-**
-** The sqlite3_reset() function is called to reset a 
-** [sqlite3_stmt | compiled SQL statement] object.
-** back to its initial state, ready to be re-executed.
-** Any SQL statement variables that had values bound to them using
-** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
-** Use [sqlite3_clear_bindings()] to reset the bindings.
-*/
-/*IMPORT_C*/ int sqlite3_reset(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Create Or Redefine SQL Functions {F16100}
-**
-** The following two functions are used to add SQL functions or aggregates
-** or to redefine the behavior of existing SQL functions or aggregates.  The
-** difference only between the two is that the second parameter, the
-** name of the (scalar) function or aggregate, is encoded in UTF-8 for
-** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
-**
-** The first argument is the [sqlite3 | database handle] that holds the
-** SQL function or aggregate is to be added or redefined. If a single
-** program uses more than one database handle internally, then SQL
-** functions or aggregates must be added individually to each database
-** handle with which they will be used.
-**
-** The second parameter is the name of the SQL function to be created
-** or redefined.
-** The length of the name is limited to 255 bytes, exclusive of the 
-** zero-terminator.  Note that the name length limit is in bytes, not
-** characters.  Any attempt to create a function with a longer name
-** will result in an SQLITE_ERROR error.
-**
-** The third parameter is the number of arguments that the SQL function or
-** aggregate takes. If this parameter is negative, then the SQL function or
-** aggregate may take any number of arguments.
-**
-** The fourth parameter, eTextRep, specifies what 
-** [SQLITE_UTF8 | text encoding] this SQL function prefers for
-** its parameters.  Any SQL function implementation should be able to work
-** work with UTF-8, UTF-16le, or UTF-16be.  But some implementations may be
-** more efficient with one encoding than another.  It is allowed to
-** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
-** times with the same function but with different values of eTextRep.
-** When multiple implementations of the same function are available, SQLite
-** will pick the one that involves the least amount of data conversion.
-** If there is only a single implementation which does not care what
-** text encoding is used, then the fourth argument should be
-** [SQLITE_ANY].
-**
-** The fifth parameter is an arbitrary pointer.  The implementation
-** of the function can gain access to this pointer using
-** [sqlite3_user_data()].
-**
-** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
-** pointers to C-language functions that implement the SQL
-** function or aggregate. A scalar SQL function requires an implementation of
-** the xFunc callback only, NULL pointers should be passed as the xStep
-** and xFinal parameters. An aggregate SQL function requires an implementation
-** of xStep and xFinal and NULL should be passed for xFunc. To delete an
-** existing SQL function or aggregate, pass NULL for all three function
-** callback.
-**
-** It is permitted to register multiple implementations of the same
-** functions with the same name but with either differing numbers of
-** arguments or differing perferred text encodings.  SQLite will use
-** the implementation most closely matches the way in which the
-** SQL function is used.
-*/
-/*IMPORT_C*/ int sqlite3_create_function(
-  sqlite3 *,
-  const char *zFunctionName,
-  int nArg,
-  int eTextRep,
-  void*,
-  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
-  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
-  void (*xFinal)(sqlite3_context*)
-);
-/*IMPORT_C*/ int sqlite3_create_function16(
-  sqlite3*,
-  const void *zFunctionName,
-  int nArg,
-  int eTextRep,
-  void*,
-  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
-  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
-  void (*xFinal)(sqlite3_context*)
-);
-
-/*
-** CAPI3REF: Text Encodings {F10267}
-**
-** These constant define integer codes that represent the various
-** text encodings supported by SQLite.
-*/
-#define SQLITE_UTF8           1
-#define SQLITE_UTF16LE        2
-#define SQLITE_UTF16BE        3
-#define SQLITE_UTF16          4    /* Use native byte order */
-#define SQLITE_ANY            5    /* sqlite3_create_function only */
-#define SQLITE_UTF16_ALIGNED  8    /* sqlite3_create_collation only */
-
-/*
-** CAPI3REF: Obsolete Functions
-**
-** These functions are all now obsolete.  In order to maintain
-** backwards compatibility with older code, we continue to support
-** these functions.  However, new development projects should avoid
-** the use of these functions.  To help encourage people to avoid
-** using these functions, we are not going to tell you want they do.
-*/
-/*IMPORT_C*/ int sqlite3_aggregate_count(sqlite3_context*);
-/*IMPORT_C*/ int sqlite3_expired(sqlite3_stmt*);
-/*IMPORT_C*/ int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
-/*IMPORT_C*/ int sqlite3_global_recover(void);
-/*IMPORT_C*/ void sqlite3_thread_cleanup(void);
-/*IMPORT_C*/ int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
-
-/*
-** CAPI3REF: Obtaining SQL Function Parameter Values {F15100}
-**
-** The C-language implementation of SQL functions and aggregates uses
-** this set of interface routines to access the parameter values on
-** the function or aggregate.
-**
-** The xFunc (for scalar functions) or xStep (for aggregates) parameters
-** to [sqlite3_create_function()] and [sqlite3_create_function16()]
-** define callbacks that implement the SQL functions and aggregates.
-** The 4th parameter to these callbacks is an array of pointers to
-** [sqlite3_value] objects.  There is one [sqlite3_value] object for
-** each parameter to the SQL function.  These routines are used to
-** extract values from the [sqlite3_value] objects.
-**
-** These routines work just like the corresponding 
-** [sqlite3_column_blob | sqlite3_column_* routines] except that 
-** these routines take a single [sqlite3_value*] pointer instead
-** of an [sqlite3_stmt*] pointer and an integer column number.
-**
-** The sqlite3_value_text16() interface extracts a UTF16 string
-** in the native byte-order of the host machine.  The
-** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
-** extract UTF16 strings as big-endian and little-endian respectively.
-**
-** The sqlite3_value_numeric_type() interface attempts to apply
-** numeric affinity to the value.  This means that an attempt is
-** made to convert the value to an integer or floating point.  If
-** such a conversion is possible without loss of information (in other
-** words if the value is a string that looks like a number)
-** then the conversion is done.  Otherwise no conversion occurs.  The 
-** [SQLITE_INTEGER | datatype] after conversion is returned.
-**
-** Please pay particular attention to the fact that the pointer that
-** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or
-** [sqlite3_value_text16()] can be invalidated by a subsequent call to
-** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
-** or [sqlite3_value_text16()].  
-**
-** These routines must be called from the same thread as
-** the SQL function that supplied the sqlite3_value* parameters.
-** Or, if the sqlite3_value* argument comes from the [sqlite3_column_value()]
-** interface, then these routines should be called from the same thread
-** that ran [sqlite3_column_value()].
-**
-*/
-/*IMPORT_C*/ const void *sqlite3_value_blob(sqlite3_value*);
-/*IMPORT_C*/ int sqlite3_value_bytes(sqlite3_value*);
-/*IMPORT_C*/ int sqlite3_value_bytes16(sqlite3_value*);
-/*IMPORT_C*/ double sqlite3_value_double(sqlite3_value*);
-/*IMPORT_C*/ int sqlite3_value_int(sqlite3_value*);
-/*IMPORT_C*/ sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
-/*IMPORT_C*/ const unsigned char *sqlite3_value_text(sqlite3_value*);
-/*IMPORT_C*/ const void *sqlite3_value_text16(sqlite3_value*);
-/*IMPORT_C*/ const void *sqlite3_value_text16le(sqlite3_value*);
-/*IMPORT_C*/ const void *sqlite3_value_text16be(sqlite3_value*);
-/*IMPORT_C*/ int sqlite3_value_type(sqlite3_value*);
-/*IMPORT_C*/ int sqlite3_value_numeric_type(sqlite3_value*);
-
-/*
-** CAPI3REF: Obtain Aggregate Function Context {F16210}
-**
-** The implementation of aggregate SQL functions use this routine to allocate
-** a structure for storing their state.  
-** {F16211} The first time the sqlite3_aggregate_context() routine is
-** is called for a particular aggregate, SQLite allocates nBytes of memory
-** zeros that memory, and returns a pointer to it.
-** {F16212} On second and subsequent calls to sqlite3_aggregate_context()
-** for the same aggregate function index, the same buffer is returned. {END}
-** The implementation
-** of the aggregate can use the returned buffer to accumulate data.
-**
-** {F16213} SQLite automatically frees the allocated buffer when the aggregate
-** query concludes. {END}
-**
-** The first parameter should be a copy of the 
-** [sqlite3_context | SQL function context] that is the first
-** parameter to the callback routine that implements the aggregate
-** function.
-**
-** This routine must be called from the same thread in which
-** the aggregate SQL function is running.
-*/
-/*IMPORT_C*/ void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
-
-/*
-** CAPI3REF: User Data For Functions {F16240}
-**
-** {F16241} The sqlite3_user_data() interface returns a copy of
-** the pointer that was the pUserData parameter (the 5th parameter)
-** of the the [sqlite3_create_function()]
-** and [sqlite3_create_function16()] routines that originally
-** registered the application defined function. {END}
-**
-** {U16243} This routine must be called from the same thread in which
-** the application-defined function is running.
-*/
-/*IMPORT_C*/ void *sqlite3_user_data(sqlite3_context*);
-
-/*
-** CAPI3REF: Function Auxiliary Data {F16270}
-**
-** The following two functions may be used by scalar SQL functions to
-** associate meta-data with argument values. If the same value is passed to
-** multiple invocations of the same SQL function during query execution, under
-** some circumstances the associated meta-data may be preserved. This may
-** be used, for example, to add a regular-expression matching scalar
-** function. The compiled version of the regular expression is stored as
-** meta-data associated with the SQL value passed as the regular expression
-** pattern.  The compiled regular expression can be reused on multiple
-** invocations of the same function so that the original pattern string
-** does not need to be recompiled on each invocation.
-**
-** {F16271}
-** The sqlite3_get_auxdata() interface returns a pointer to the meta-data
-** associated by the sqlite3_set_auxdata() function with the Nth argument
-** value to the application-defined function.
-** {F16272} If no meta-data has been ever been set for the Nth
-** argument of the function, or if the cooresponding function parameter
-** has changed since the meta-data was set, then sqlite3_get_auxdata()
-** returns a NULL pointer.
-**
-** {F16275} The sqlite3_set_auxdata() interface saves the meta-data
-** pointed to by its 3rd parameter as the meta-data for the N-th
-** argument of the application-defined function. {END} Subsequent
-** calls to sqlite3_get_auxdata() might return this data, if it has
-** not been destroyed. 
-** {F16277} If it is not NULL, SQLite will invoke the destructor 
-** function given by the 4th parameter to sqlite3_set_auxdata() on
-** the meta-data when the corresponding function parameter changes
-** or when the SQL statement completes, whichever comes first. {END}
-**
-** In practice, meta-data is preserved between function calls for
-** expressions that are constant at compile time. This includes literal
-** values and SQL variables.
-**
-** These routines must be called from the same thread in which
-** the SQL function is running.
-*/
-/*IMPORT_C*/ void *sqlite3_get_auxdata(sqlite3_context*, int N);
-/*IMPORT_C*/ void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
-
-
-/*
-** CAPI3REF: Constants Defining Special Destructor Behavior {F10280}
-**
-** These are special value for the destructor that is passed in as the
-** final argument to routines like [sqlite3_result_blob()].  If the destructor
-** argument is SQLITE_STATIC, it means that the content pointer is constant
-** and will never change.  It does not need to be destroyed.  The 
-** SQLITE_TRANSIENT value means that the content will likely change in
-** the near future and that SQLite should make its own private copy of
-** the content before returning.
-**
-** The typedef is necessary to work around problems in certain
-** C++ compilers.  See ticket #2191.
-*/
-typedef void (*sqlite3_destructor_type)(void*);
-#define SQLITE_STATIC      ((sqlite3_destructor_type)0)
-#define SQLITE_TRANSIENT   ((sqlite3_destructor_type)-1)
-
-/*
-** CAPI3REF: Setting The Result Of An SQL Function {F16400}
-**
-** These routines are used by the xFunc or xFinal callbacks that
-** implement SQL functions and aggregates.  See
-** [sqlite3_create_function()] and [sqlite3_create_function16()]
-** for additional information.
-**
-** These functions work very much like the 
-** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used
-** to bind values to host parameters in prepared statements.
-** Refer to the
-** [sqlite3_bind_blob | sqlite3_bind_* documentation] for
-** additional information.
-**
-** {F16402} The sqlite3_result_blob() interface sets the result from
-** an application defined function to be the BLOB whose content is pointed
-** to by the second parameter and which is N bytes long where N is the
-** third parameter. 
-** {F16403} The sqlite3_result_zeroblob() inerfaces set the result of
-** the application defined function to be a BLOB containing all zero
-** bytes and N bytes in size, where N is the value of the 2nd parameter.
-**
-** {F16407} The sqlite3_result_double() interface sets the result from
-** an application defined function to be a floating point value specified
-** by its 2nd argument.
-**
-** {F16409} The sqlite3_result_error() and sqlite3_result_error16() functions
-** cause the implemented SQL function to throw an exception.
-** {F16411} SQLite uses the string pointed to by the
-** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
-** as the text of an error message. {F16412} SQLite interprets the error
-** message string from sqlite3_result_error() as UTF8.  {F16413} SQLite
-** interprets the string from sqlite3_result_error16() as UTF16 in native
-** byte order.  {F16414} If the third parameter to sqlite3_result_error()
-** or sqlite3_result_error16() is negative then SQLite takes as the error
-** message all text up through the first zero character.
-** {F16415} If the third parameter to sqlite3_result_error() or
-** sqlite3_result_error16() is non-negative then SQLite takes that many
-** bytes (not characters) from the 2nd parameter as the error message.
-** {F16417} The sqlite3_result_error() and sqlite3_result_error16()
-** routines make a copy private copy of the error message text before
-** they return.  {END} Hence, the calling function can deallocate or
-** modify the text after they return without harm.
-**
-** {F16421} The sqlite3_result_toobig() interface causes SQLite
-** to throw an error indicating that a string or BLOB is to long
-** to represent.  {F16422} The sqlite3_result_nomem() interface
-** causes SQLite to throw an exception indicating that the a
-** memory allocation failed.
-**
-** {F16431} The sqlite3_result_int() interface sets the return value
-** of the application-defined function to be the 32-bit signed integer
-** value given in the 2nd argument.
-** {F16432} The sqlite3_result_int64() interface sets the return value
-** of the application-defined function to be the 64-bit signed integer
-** value given in the 2nd argument.
-**
-** {F16437} The sqlite3_result_null() interface sets the return value
-** of the application-defined function to be NULL.
-**
-** {F16441} The sqlite3_result_text(), sqlite3_result_text16(), 
-** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
-** set the return value of the application-defined function to be
-** a text string which is represented as UTF-8, UTF-16 native byte order,
-** UTF-16 little endian, or UTF-16 big endian, respectively.
-** {F16442} SQLite takes the text result from the application from
-** the 2nd parameter of the sqlite3_result_text* interfaces.
-** {F16444} If the 3rd parameter to the sqlite3_result_text* interfaces
-** is negative, then SQLite takes result text from the 2nd parameter 
-** through the first zero character.
-** {F16447} If the 3rd parameter to the sqlite3_result_text* interfaces
-** is non-negative, then as many bytes (not characters) of the text
-** pointed to by the 2nd parameter are taken as the application-defined
-** function result.
-** {F16451} If the 4th parameter to the sqlite3_result_text* interfaces
-** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
-** function as the destructor on the text or blob result when it has
-** finished using that result.
-** {F16453} If the 4th parameter to the sqlite3_result_text* interfaces
-** or sqlite3_result_blob is the special constant SQLITE_STATIC, then
-** SQLite assumes that the text or blob result is constant space and
-** does not copy the space or call a destructor when it has
-** finished using that result.
-** {F16454} If the 4th parameter to the sqlite3_result_text* interfaces
-** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
-** then SQLite makes a copy of the result into space obtained from
-** from [sqlite3_malloc()] before it returns.
-**
-** {F16461} The sqlite3_result_value() interface sets the result of
-** the application-defined function to be a copy the [sqlite3_value]
-** object specified by the 2nd parameter.  {F16463} The
-** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
-** so that [sqlite3_value] specified in the parameter may change or
-** be deallocated after sqlite3_result_value() returns without harm.
-**
-** {U16491} These routines are called from within the different thread 
-** than the one containing the application-defined function that recieved
-** the [sqlite3_context] pointer, the results are undefined.
-*/
-/*IMPORT_C*/ void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
-/*IMPORT_C*/ void sqlite3_result_double(sqlite3_context*, double);
-/*IMPORT_C*/ void sqlite3_result_error(sqlite3_context*, const char*, int);
-/*IMPORT_C*/ void sqlite3_result_error16(sqlite3_context*, const void*, int);
-/*IMPORT_C*/ void sqlite3_result_error_toobig(sqlite3_context*);
-/*IMPORT_C*/ void sqlite3_result_error_nomem(sqlite3_context*);
-/*IMPORT_C*/ void sqlite3_result_int(sqlite3_context*, int);
-/*IMPORT_C*/ void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
-/*IMPORT_C*/ void sqlite3_result_null(sqlite3_context*);
-/*IMPORT_C*/ void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
-/*IMPORT_C*/ void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
-/*IMPORT_C*/ void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
-/*IMPORT_C*/ void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
-/*IMPORT_C*/ void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
-/*IMPORT_C*/ void sqlite3_result_zeroblob(sqlite3_context*, int n);
-
-/*
-** CAPI3REF: Define New Collating Sequences {F16600}
-**
-** {F16601}
-** These functions are used to add new collation sequences to the
-** [sqlite3*] handle specified as the first argument. 
-**
-** {F16602}
-** The name of the new collation sequence is specified as a UTF-8 string
-** for sqlite3_create_collation() and sqlite3_create_collation_v2()
-** and a UTF-16 string for sqlite3_create_collation16(). {F16603} In all cases
-** the name is passed as the second function argument.
-**
-** {F16604}
-** The third argument may be one of the constants [SQLITE_UTF8],
-** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied
-** routine expects to be passed pointers to strings encoded using UTF-8,
-** UTF-16 little-endian or UTF-16 big-endian respectively. {F16605} The
-** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that
-** the routine expects pointers to 16-bit word aligned strings
-** of UTF16 in the native byte order of the host computer.
-**
-** {F16607}
-** A pointer to the user supplied routine must be passed as the fifth
-** argument. {F16609} If it is NULL, this is the same as deleting the collation
-** sequence (so that SQLite cannot call it anymore).
-** {F16611} Each time the application
-** supplied function is invoked, it is passed a copy of the void* passed as
-** the fourth argument to sqlite3_create_collation() or
-** sqlite3_create_collation16() as its first parameter.
-**
-** {F16612}
-** The remaining arguments to the application-supplied routine are two strings,
-** each represented by a [length, data] pair and encoded in the encoding
-** that was passed as the third argument when the collation sequence was
-** registered. {END} The application defined collation routine should
-** return negative, zero or positive if
-** the first string is less than, equal to, or greater than the second
-** string. i.e. (STRING1 - STRING2).
-**
-** {F16615}
-** The sqlite3_create_collation_v2() works like sqlite3_create_collation()
-** excapt that it takes an extra argument which is a destructor for
-** the collation.  {F16617} The destructor is called when the collation is
-** destroyed and is passed a copy of the fourth parameter void* pointer
-** of the sqlite3_create_collation_v2().
-** {F16618}  Collations are destroyed when
-** they are overridden by later calls to the collation creation functions
-** or when the [sqlite3*] database handle is closed using [sqlite3_close()].
-*/
-/*IMPORT_C*/ int sqlite3_create_collation(
-  sqlite3*, 
-  const char *zName, 
-  int eTextRep, 
-  void*,
-  int(*xCompare)(void*,int,const void*,int,const void*)
-);
-/*IMPORT_C*/ int sqlite3_create_collation_v2(
-  sqlite3*, 
-  const char *zName, 
-  int eTextRep, 
-  void*,
-  int(*xCompare)(void*,int,const void*,int,const void*),
-  void(*xDestroy)(void*)
-);
-/*IMPORT_C*/ int sqlite3_create_collation16(
-  sqlite3*, 
-  const char *zName, 
-  int eTextRep, 
-  void*,
-  int(*xCompare)(void*,int,const void*,int,const void*)
-);
-
-/*
-** CAPI3REF: Collation Needed Callbacks {F16700}
-**
-** {F16701}
-** To avoid having to register all collation sequences before a database
-** can be used, a single callback function may be registered with the
-** database handle to be called whenever an undefined collation sequence is
-** required.
-**
-** {F16702}
-** If the function is registered using the sqlite3_collation_needed() API,
-** then it is passed the names of undefined collation sequences as strings
-** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names
-** are passed as UTF-16 in machine native byte order. {F16704} A call to either
-** function replaces any existing callback.
-**
-** {F16705} When the callback is invoked, the first argument passed is a copy
-** of the second argument to sqlite3_collation_needed() or
-** sqlite3_collation_needed16(). {F16706} The second argument is the database
-** handle.  {F16707} The third argument is one of [SQLITE_UTF8],
-** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most
-** desirable form of the collation sequence function required.
-** {F16708} The fourth parameter is the name of the
-** required collation sequence. {END}
-**
-** The callback function should register the desired collation using
-** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
-** [sqlite3_create_collation_v2()].
-*/
-/*IMPORT_C*/ int sqlite3_collation_needed(
-  sqlite3*, 
-  void*, 
-  void(*)(void*,sqlite3*,int eTextRep,const char*)
-);
-/*IMPORT_C*/ int sqlite3_collation_needed16(
-  sqlite3*, 
-  void*,
-  void(*)(void*,sqlite3*,int eTextRep,const void*)
-);
-
-/*
-** Specify the key for an encrypted database.  This routine should be
-** called right after sqlite3_open().
-**
-** The code to implement this API is not available in the public release
-** of SQLite.
-*/
-/*IMPORT_C*/ int sqlite3_key(
-  sqlite3 *db,                   /* Database to be rekeyed */
-  const void *pKey, int nKey     /* The key */
-);
-
-/*
-** Change the key on an open database.  If the current database is not
-** encrypted, this routine will encrypt it.  If pNew==0 or nNew==0, the
-** database is decrypted.
-**
-** The code to implement this API is not available in the public release
-** of SQLite.
-*/
-/*IMPORT_C*/ int sqlite3_rekey(
-  sqlite3 *db,                   /* Database to be rekeyed */
-  const void *pKey, int nKey     /* The new key */
-);
-
-/*
-** CAPI3REF:  Suspend Execution For A Short Time {F10530}
-**
-** {F10531} The sqlite3_sleep() function
-** causes the current thread to suspend execution
-** for at least a number of milliseconds specified in its parameter.
-**
-** {F10532} If the operating system does not support sleep requests with 
-** millisecond time resolution, then the time will be rounded up to 
-** the nearest second. {F10533} The number of milliseconds of sleep actually 
-** requested from the operating system is returned.
-**
-** {F10534} SQLite implements this interface by calling the xSleep()
-** method of the default [sqlite3_vfs] object. {END}
-*/
-/*IMPORT_C*/ int sqlite3_sleep(int);
-
-/*
-** CAPI3REF:  Name Of The Folder Holding Temporary Files {F10310}
-**
-** If this global variable is made to point to a string which is
-** the name of a folder (a.ka. directory), then all temporary files
-** created by SQLite will be placed in that directory.  If this variable
-** is NULL pointer, then SQLite does a search for an appropriate temporary
-** file directory.
-**
-** It is not safe to modify this variable once a database connection
-** has been opened.  It is intended that this variable be set once
-** as part of process initialization and before any SQLite interface
-** routines have been call and remain unchanged thereafter.
-*/
-SQLITE_EXTERN char *sqlite3_temp_directory;
-
-/*
-** CAPI3REF:  Test To See If The Database Is In Auto-Commit Mode {F12930}
-**
-** {F12931} The sqlite3_get_autocommit() interfaces returns non-zero or
-** zero if the given database connection is or is not in autocommit mode,
-** respectively. {F12932}  Autocommit mode is on
-** by default.  {F12933} Autocommit mode is disabled by a BEGIN statement.
-** {F12934} Autocommit mode is reenabled by a COMMIT or ROLLBACK. {END}
-**
-** If certain kinds of errors occur on a statement within a multi-statement
-** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR], 
-** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
-** transaction might be rolled back automatically.  {F12935} The only way to
-** find out if SQLite automatically rolled back the transaction after
-** an error is to use this function. {END}
-**
-** {U12936} If another thread changes the autocommit status of the database
-** connection while this routine is running, then the return value
-** is undefined. {END}
-*/
-/*IMPORT_C*/ int sqlite3_get_autocommit(sqlite3*);
-
-/*
-** CAPI3REF:  Find The Database Handle Of A Prepared Statement {F13120}
-**
-** {F13121} The sqlite3_db_handle interface
-** returns the [sqlite3*] database handle to which a
-** [sqlite3_stmt | prepared statement] belongs.
-** {F13122} the database handle returned by sqlite3_db_handle
-** is the same database handle that was
-** the first argument to the [sqlite3_prepare_v2()] or its variants
-** that was used to create the statement in the first place.
-*/
-/*IMPORT_C*/ sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
-
-
-/*
-** CAPI3REF: Commit And Rollback Notification Callbacks {F12950}
-**
-** {F12951} The sqlite3_commit_hook() interface registers a callback
-** function to be invoked whenever a transaction is committed.
-** {F12952} Any callback set by a previous call to sqlite3_commit_hook()
-** for the same database connection is overridden.
-** {F12953} The sqlite3_rollback_hook() interface registers a callback
-** function to be invoked whenever a transaction is committed.
-** {F12954} Any callback set by a previous call to sqlite3_commit_hook()
-** for the same database connection is overridden.
-** {F12956} The pArg argument is passed through
-** to the callback.  {F12957} If the callback on a commit hook function 
-** returns non-zero, then the commit is converted into a rollback.
-**
-** {F12958} If another function was previously registered, its
-** pArg value is returned.  Otherwise NULL is returned.
-**
-** {F12959} Registering a NULL function disables the callback.
-**
-** {F12961} For the purposes of this API, a transaction is said to have been 
-** rolled back if an explicit "ROLLBACK" statement is executed, or
-** an error or constraint causes an implicit rollback to occur.
-** {F12962} The rollback callback is not invoked if a transaction is
-** automatically rolled back because the database connection is closed.
-** {F12964} The rollback callback is not invoked if a transaction is
-** rolled back because a commit callback returned non-zero.
-** <todo> Check on this </todo> {END}
-**
-** These are experimental interfaces and are subject to change.
-*/
-/*IMPORT_C*/ void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
-/*IMPORT_C*/ void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
-
-/*
-** CAPI3REF: Data Change Notification Callbacks {F12970}
-**
-** {F12971} The sqlite3_update_hook() interface
-** registers a callback function with the database connection identified by the 
-** first argument to be invoked whenever a row is updated, inserted or deleted.
-** {F12972} Any callback set by a previous call to this function for the same 
-** database connection is overridden.
-**
-** {F12974} The second argument is a pointer to the function to invoke when a 
-** row is updated, inserted or deleted. 
-** {F12976} The first argument to the callback is
-** a copy of the third argument to sqlite3_update_hook().
-** {F12977} The second callback 
-** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
-** depending on the operation that caused the callback to be invoked.
-** {F12978} The third and 
-** fourth arguments to the callback contain pointers to the database and 
-** table name containing the affected row.
-** {F12979} The final callback parameter is 
-** the rowid of the row.
-** {F12981} In the case of an update, this is the rowid after 
-** the update takes place.
-**
-** {F12983} The update hook is not invoked when internal system tables are
-** modified (i.e. sqlite_master and sqlite_sequence).
-**
-** {F12984} If another function was previously registered, its pArg value
-** is returned.  {F12985} Otherwise NULL is returned.
-*/
-/*IMPORT_C*/ void *sqlite3_update_hook(
-  sqlite3*, 
-  void(*)(void *,int ,char const *,char const *,sqlite3_int64),
-  void*
-);
-
-/*
-** CAPI3REF:  Enable Or Disable Shared Pager Cache {F10330}
-**
-** {F10331}
-** This routine enables or disables the sharing of the database cache
-** and schema data structures between connections to the same database.
-** {F10332}
-** Sharing is enabled if the argument is true and disabled if the argument
-** is false.
-**
-** {F10333} Cache sharing is enabled and disabled
-** for an entire process. {END} This is a change as of SQLite version 3.5.0.
-** In prior versions of SQLite, sharing was
-** enabled or disabled for each thread separately.
-**
-** {F10334}
-** The cache sharing mode set by this interface effects all subsequent
-** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
-** {F10335} Existing database connections continue use the sharing mode
-** that was in effect at the time they were opened. {END}
-**
-** Virtual tables cannot be used with a shared cache.  {F10336} When shared
-** cache is enabled, the [sqlite3_create_module()] API used to register
-** virtual tables will always return an error. {END}
-**
-** {F10337} This routine returns [SQLITE_OK] if shared cache was
-** enabled or disabled successfully.  {F10338} An [SQLITE_ERROR | error code]
-** is returned otherwise. {END}
-**
-** {F10339} Shared cache is disabled by default. {END} But this might change in
-** future releases of SQLite.  Applications that care about shared
-** cache setting should set it explicitly.
-*/
-/*IMPORT_C*/ int sqlite3_enable_shared_cache(int);
-
-/*
-** CAPI3REF:  Attempt To Free Heap Memory {F17340}
-**
-** {F17341} The sqlite3_release_memory() interface attempts to
-** free N bytes of heap memory by deallocating non-essential memory
-** allocations held by the database labrary. {END}  Memory used
-** to cache database pages to improve performance is an example of
-** non-essential memory.  {F16342} sqlite3_release_memory() returns
-** the number of bytes actually freed, which might be more or less
-** than the amount requested.
-*/
-/*IMPORT_C*/ int sqlite3_release_memory(int);
-
-/*
-** CAPI3REF:  Impose A Limit On Heap Size {F17350}
-**
-** {F16351} The sqlite3_soft_heap_limit() interface
-** places a "soft" limit on the amount of heap memory that may be allocated
-** by SQLite. {F16352} If an internal allocation is requested 
-** that would exceed the soft heap limit, [sqlite3_release_memory()] is
-** invoked one or more times to free up some space before the allocation
-** is made. {END}
-**
-** {F16353} The limit is called "soft", because if
-** [sqlite3_release_memory()] cannot
-** free sufficient memory to prevent the limit from being exceeded,
-** the memory is allocated anyway and the current operation proceeds.
-**
-** {F16354}
-** A negative or zero value for N means that there is no soft heap limit and
-** [sqlite3_release_memory()] will only be called when memory is exhausted.
-** {F16355} The default value for the soft heap limit is zero.
-**
-** SQLite makes a best effort to honor the soft heap limit.  
-** {F16356} But if the soft heap limit cannot honored, execution will
-** continue without error or notification. {END}  This is why the limit is 
-** called a "soft" limit.  It is advisory only.
-**
-** Prior to SQLite version 3.5.0, this routine only constrained the memory
-** allocated by a single thread - the same thread in which this routine
-** runs.  Beginning with SQLite version 3.5.0, the soft heap limit is
-** applied to all threads. {F16357} The value specified for the soft heap limit
-** is an upper bound on the total memory allocation for all threads. {END}  In
-** version 3.5.0 there is no mechanism for limiting the heap usage for
-** individual threads.
-*/
-/*IMPORT_C*/ void sqlite3_soft_heap_limit(int);
-
-/*
-** CAPI3REF:  Extract Metadata About A Column Of A Table {F12850}
-**
-** This routine
-** returns meta-data about a specific column of a specific database
-** table accessible using the connection handle passed as the first function 
-** argument.
-**
-** The column is identified by the second, third and fourth parameters to 
-** this function. The second parameter is either the name of the database
-** (i.e. "main", "temp" or an attached database) containing the specified
-** table or NULL. If it is NULL, then all attached databases are searched
-** for the table using the same algorithm as the database engine uses to 
-** resolve unqualified table references.
-**
-** The third and fourth parameters to this function are the table and column 
-** name of the desired column, respectively. Neither of these parameters 
-** may be NULL.
-**
-** Meta information is returned by writing to the memory locations passed as
-** the 5th and subsequent parameters to this function. Any of these 
-** arguments may be NULL, in which case the corresponding element of meta 
-** information is ommitted.
-**
-** <pre>
-** Parameter     Output Type      Description
-** -----------------------------------
-**
-**   5th         const char*      Data type
-**   6th         const char*      Name of the default collation sequence 
-**   7th         int              True if the column has a NOT NULL constraint
-**   8th         int              True if the column is part of the PRIMARY KEY
-**   9th         int              True if the column is AUTOINCREMENT
-** </pre>
-**
-**
-** The memory pointed to by the character pointers returned for the 
-** declaration type and collation sequence is valid only until the next 
-** call to any sqlite API function.
-**
-** If the specified table is actually a view, then an error is returned.
-**
-** If the specified column is "rowid", "oid" or "_rowid_" and an 
-** INTEGER PRIMARY KEY column has been explicitly declared, then the output 
-** parameters are set for the explicitly declared column. If there is no
-** explicitly declared IPK column, then the output parameters are set as 
-** follows:
-**
-** <pre>
-**     data type: "INTEGER"
-**     collation sequence: "BINARY"
-**     not null: 0
-**     primary key: 1
-**     auto increment: 0
-** </pre>
-**
-** This function may load one or more schemas from database files. If an
-** error occurs during this process, or if the requested table or column
-** cannot be found, an SQLITE error code is returned and an error message
-** left in the database handle (to be retrieved using sqlite3_errmsg()).
-**
-** This API is only available if the library was compiled with the
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
-*/
-/*IMPORT_C*/ int sqlite3_table_column_metadata(
-  sqlite3 *db,                /* Connection handle */
-  const char *zDbName,        /* Database name or NULL */
-  const char *zTableName,     /* Table name */
-  const char *zColumnName,    /* Column name */
-  char const **pzDataType,    /* OUTPUT: Declared data type */
-  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
-  int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
-  int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
-  int *pAutoinc               /* OUTPUT: True if column is auto-increment */
-);
-
-/*
-** CAPI3REF: Load An Extension {F12600}
-**
-** {F12601} The sqlite3_load_extension() interface
-** attempts to load an SQLite extension library contained in the file
-** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0
-** in which case the name of the entry point defaults
-** to "sqlite3_extension_init".
-**
-** {F12604} The sqlite3_load_extension() interface shall
-** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
-**
-** {F12605}
-** If an error occurs and pzErrMsg is not 0, then the
-** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with 
-** error message text stored in memory obtained from [sqlite3_malloc()].
-** {END}  The calling function should free this memory
-** by calling [sqlite3_free()].
-**
-** {F12606}
-** Extension loading must be enabled using [sqlite3_enable_load_extension()]
-** prior to calling this API or an error will be returned.
-*/
-/*IMPORT_C*/ int sqlite3_load_extension(
-  sqlite3 *db,          /* Load the extension into this database connection */
-  const char *zFile,    /* Name of the shared library containing extension */
-  const char *zProc,    /* Entry point.  Derived from zFile if 0 */
-  char **pzErrMsg       /* Put error message here if not 0 */
-);
-
-/*
-** CAPI3REF:  Enable Or Disable Extension Loading {F12620}
-**
-** So as not to open security holes in older applications that are
-** unprepared to deal with extension loading, and as a means of disabling
-** extension loading while evaluating user-entered SQL, the following
-** API is provided to turn the [sqlite3_load_extension()] mechanism on and
-** off.  {F12622} It is off by default. {END} See ticket #1863.
-**
-** {F12621} Call the sqlite3_enable_load_extension() routine
-** with onoff==1 to turn extension loading on
-** and call it with onoff==0 to turn it back off again. {END}
-*/
-/*IMPORT_C*/ int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
-
-/*
-** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640}
-**
-** {F12641} This function
-** registers an extension entry point that is automatically invoked
-** whenever a new database connection is opened using
-** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END}
-**
-** This API can be invoked at program startup in order to register
-** one or more statically linked extensions that will be available
-** to all new database connections.
-**
-** {F12642} Duplicate extensions are detected so calling this routine multiple
-** times with the same extension is harmless.
-**
-** {F12643} This routine stores a pointer to the extension in an array
-** that is obtained from sqlite_malloc(). {END} If you run a memory leak
-** checker on your program and it reports a leak because of this
-** array, then invoke [sqlite3_reset_auto_extension()] prior
-** to shutdown to free the memory.
-**
-** {F12644} Automatic extensions apply across all threads. {END}
-**
-** This interface is experimental and is subject to change or
-** removal in future releases of SQLite.
-*/
-/*IMPORT_C*/ int sqlite3_auto_extension(void *xEntryPoint);
-
-
-/*
-** CAPI3REF: Reset Automatic Extension Loading {F12660}
-**
-** {F12661} This function disables all previously registered
-** automatic extensions. {END}  This
-** routine undoes the effect of all prior [sqlite3_automatic_extension()]
-** calls.
-**
-** {F12662} This call disabled automatic extensions in all threads. {END}
-**
-** This interface is experimental and is subject to change or
-** removal in future releases of SQLite.
-*/
-/*IMPORT_C*/ void sqlite3_reset_auto_extension(void);
-
-
-/*
-****** EXPERIMENTAL - subject to change without notice **************
-**
-** The interface to the virtual-table mechanism is currently considered
-** to be experimental.  The interface might change in incompatible ways.
-** If this is a problem for you, do not use the interface at this time.
-**
-** When the virtual-table mechanism stablizes, we will declare the
-** interface fixed, support it indefinitely, and remove this comment.
-*/
-
-/*
-** Structures used by the virtual table interface
-*/
-typedef struct sqlite3_vtab sqlite3_vtab;
-typedef struct sqlite3_index_info sqlite3_index_info;
-typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
-typedef struct sqlite3_module sqlite3_module;
-
-/*
-** A module is a class of virtual tables.  Each module is defined
-** by an instance of the following structure.  This structure consists
-** mostly of methods for the module.
-*/
-struct sqlite3_module {
-  int iVersion;
-  int (*xCreate)(sqlite3*, void *pAux,
-               int argc, const char *const*argv,
-               sqlite3_vtab **ppVTab, char**);
-  int (*xConnect)(sqlite3*, void *pAux,
-               int argc, const char *const*argv,
-               sqlite3_vtab **ppVTab, char**);
-  int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
-  int (*xDisconnect)(sqlite3_vtab *pVTab);
-  int (*xDestroy)(sqlite3_vtab *pVTab);
-  int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
-  int (*xClose)(sqlite3_vtab_cursor*);
-  int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
-                int argc, sqlite3_value **argv);
-  int (*xNext)(sqlite3_vtab_cursor*);
-  int (*xEof)(sqlite3_vtab_cursor*);
-  int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
-  int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
-  int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
-  int (*xBegin)(sqlite3_vtab *pVTab);
-  int (*xSync)(sqlite3_vtab *pVTab);
-  int (*xCommit)(sqlite3_vtab *pVTab);
-  int (*xRollback)(sqlite3_vtab *pVTab);
-  int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
-                       void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
-                       void **ppArg);
-
-  int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
-};
-
-/*
-** The sqlite3_index_info structure and its substructures is used to
-** pass information into and receive the reply from the xBestIndex
-** method of an sqlite3_module.  The fields under **Inputs** are the
-** inputs to xBestIndex and are read-only.  xBestIndex inserts its
-** results into the **Outputs** fields.
-**
-** The aConstraint[] array records WHERE clause constraints of the
-** form:
-**
-**         column OP expr
-**
-** Where OP is =, &lt;, &lt;=, &gt;, or &gt;=.  
-** The particular operator is stored
-** in aConstraint[].op.  The index of the column is stored in 
-** aConstraint[].iColumn.  aConstraint[].usable is TRUE if the
-** expr on the right-hand side can be evaluated (and thus the constraint
-** is usable) and false if it cannot.
-**
-** The optimizer automatically inverts terms of the form "expr OP column"
-** and makes other simplifications to the WHERE clause in an attempt to
-** get as many WHERE clause terms into the form shown above as possible.
-** The aConstraint[] array only reports WHERE clause terms in the correct
-** form that refer to the particular virtual table being queried.
-**
-** Information about the ORDER BY clause is stored in aOrderBy[].
-** Each term of aOrderBy records a column of the ORDER BY clause.
-**
-** The xBestIndex method must fill aConstraintUsage[] with information
-** about what parameters to pass to xFilter.  If argvIndex>0 then
-** the right-hand side of the corresponding aConstraint[] is evaluated
-** and becomes the argvIndex-th entry in argv.  If aConstraintUsage[].omit
-** is true, then the constraint is assumed to be fully handled by the
-** virtual table and is not checked again by SQLite.
-**
-** The idxNum and idxPtr values are recorded and passed into xFilter.
-** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true.
-**
-** The orderByConsumed means that output from xFilter will occur in
-** the correct order to satisfy the ORDER BY clause so that no separate
-** sorting step is required.
-**
-** The estimatedCost value is an estimate of the cost of doing the
-** particular lookup.  A full scan of a table with N entries should have
-** a cost of N.  A binary search of a table of N entries should have a
-** cost of approximately log(N).
-*/
-struct sqlite3_index_info {
-  /* Inputs */
-  int nConstraint;           /* Number of entries in aConstraint */
-  struct sqlite3_index_constraint {
-     int iColumn;              /* Column on left-hand side of constraint */
-     unsigned char op;         /* Constraint operator */
-     unsigned char usable;     /* True if this constraint is usable */
-     int iTermOffset;          /* Used internally - xBestIndex should ignore */
-  } *aConstraint;            /* Table of WHERE clause constraints */
-  int nOrderBy;              /* Number of terms in the ORDER BY clause */
-  struct sqlite3_index_orderby {
-     int iColumn;              /* Column number */
-     unsigned char desc;       /* True for DESC.  False for ASC. */
-  } *aOrderBy;               /* The ORDER BY clause */
-
-  /* Outputs */
-  struct sqlite3_index_constraint_usage {
-    int argvIndex;           /* if >0, constraint is part of argv to xFilter */
-    unsigned char omit;      /* Do not code a test for this constraint */
-  } *aConstraintUsage;
-  int idxNum;                /* Number used to identify the index */
-  char *idxStr;              /* String, possibly obtained from sqlite3_malloc */
-  int needToFreeIdxStr;      /* Free idxStr using sqlite3_free() if true */
-  int orderByConsumed;       /* True if output is already ordered */
-  double estimatedCost;      /* Estimated cost of using this index */
-};
-#define SQLITE_INDEX_CONSTRAINT_EQ    2
-#define SQLITE_INDEX_CONSTRAINT_GT    4
-#define SQLITE_INDEX_CONSTRAINT_LE    8
-#define SQLITE_INDEX_CONSTRAINT_LT    16
-#define SQLITE_INDEX_CONSTRAINT_GE    32
-#define SQLITE_INDEX_CONSTRAINT_MATCH 64
-
-/*
-** This routine is used to register a new module name with an SQLite
-** connection.  Module names must be registered before creating new
-** virtual tables on the module, or before using preexisting virtual
-** tables of the module.
-*/
-/*IMPORT_C*/ int sqlite3_create_module(
-  sqlite3 *db,               /* SQLite connection to register module with */
-  const char *zName,         /* Name of the module */
-  const sqlite3_module *,    /* Methods for the module */
-  void *                     /* Client data for xCreate/xConnect */
-);
-
-/*
-** This routine is identical to the sqlite3_create_module() method above,
-** except that it allows a destructor function to be specified. It is
-** even more experimental than the rest of the virtual tables API.
-*/
-/*IMPORT_C*/ int sqlite3_create_module_v2(
-  sqlite3 *db,               /* SQLite connection to register module with */
-  const char *zName,         /* Name of the module */
-  const sqlite3_module *,    /* Methods for the module */
-  void *,                    /* Client data for xCreate/xConnect */
-  void(*xDestroy)(void*)     /* Module destructor function */
-);
-
-/*
-** Every module implementation uses a subclass of the following structure
-** to describe a particular instance of the module.  Each subclass will
-** be tailored to the specific needs of the module implementation.   The
-** purpose of this superclass is to define certain fields that are common
-** to all module implementations.
-**
-** Virtual tables methods can set an error message by assigning a
-** string obtained from sqlite3_mprintf() to zErrMsg.  The method should
-** take care that any prior string is freed by a call to sqlite3_free()
-** prior to assigning a new string to zErrMsg.  After the error message
-** is delivered up to the client application, the string will be automatically
-** freed by sqlite3_free() and the zErrMsg field will be zeroed.  Note
-** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
-** since virtual tables are commonly implemented in loadable extensions which
-** do not have access to sqlite3MPrintf() or sqlite3Free().
-*/
-struct sqlite3_vtab {
-  const sqlite3_module *pModule;  /* The module for this virtual table */
-  int nRef;                       /* Used internally */
-  char *zErrMsg;                  /* Error message from sqlite3_mprintf() */
-  /* Virtual table implementations will typically add additional fields */
-};
-
-/* Every module implementation uses a subclass of the following structure
-** to describe cursors that point into the virtual table and are used
-** to loop through the virtual table.  Cursors are created using the
-** xOpen method of the module.  Each module implementation will define
-** the content of a cursor structure to suit its own needs.
-**
-** This superclass exists in order to define fields of the cursor that
-** are common to all implementations.
-*/
-struct sqlite3_vtab_cursor {
-  sqlite3_vtab *pVtab;      /* Virtual table of this cursor */
-  /* Virtual table implementations will typically add additional fields */
-};
-
-/*
-** The xCreate and xConnect methods of a module use the following API
-** to declare the format (the names and datatypes of the columns) of
-** the virtual tables they implement.
-*/
-/*IMPORT_C*/ int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
-
-/*
-** Virtual tables can provide alternative implementations of functions
-** using the xFindFunction method.  But global versions of those functions
-** must exist in order to be overloaded.
-**
-** This API makes sure a global version of a function with a particular
-** name and number of parameters exists.  If no such function exists
-** before this API is called, a new function is created.  The implementation
-** of the new function always causes an exception to be thrown.  So
-** the new function is not good for anything by itself.  Its only
-** purpose is to be a place-holder function that can be overloaded
-** by virtual tables.
-**
-** This API should be considered part of the virtual table interface,
-** which is experimental and subject to change.
-*/
-/*IMPORT_C*/ int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
-
-/*
-** The interface to the virtual-table mechanism defined above (back up
-** to a comment remarkably similar to this one) is currently considered
-** to be experimental.  The interface might change in incompatible ways.
-** If this is a problem for you, do not use the interface at this time.
-**
-** When the virtual-table mechanism stabilizes, we will declare the
-** interface fixed, support it indefinitely, and remove this comment.
-**
-****** EXPERIMENTAL - subject to change without notice **************
-*/
-
-/*
-** CAPI3REF: A Handle To An Open BLOB {F17800}
-**
-** An instance of the following opaque structure is used to 
-** represent an blob-handle.  A blob-handle is created by
-** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()].
-** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
-** can be used to read or write small subsections of the blob.
-** The [sqlite3_blob_bytes()] interface returns the size of the
-** blob in bytes.
-*/
-typedef struct sqlite3_blob sqlite3_blob;
-
-/*
-** CAPI3REF: Open A BLOB For Incremental I/O {F17810}
-**
-** {F17811} This interfaces opens a handle to the blob located
-** in row iRow,, column zColumn, table zTable in database zDb;
-** in other words,  the same blob that would be selected by:
-**
-** <pre>
-**     SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
-** </pre> {END}
-**
-** {F17812} If the flags parameter is non-zero, the blob is opened for 
-** read and write access. If it is zero, the blob is opened for read 
-** access. {END}
-**
-** {F17813} On success, [SQLITE_OK] is returned and the new 
-** [sqlite3_blob | blob handle] is written to *ppBlob. 
-** {F17814} Otherwise an error code is returned and 
-** any value written to *ppBlob should not be used by the caller.
-** {F17815} This function sets the database-handle error code and message
-** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()].
-** <todo>We should go through and mark all interfaces that behave this
-** way with a similar statement</todo>
-*/
-/*IMPORT_C*/ int sqlite3_blob_open(
-  sqlite3*,
-  const char *zDb,
-  const char *zTable,
-  const char *zColumn,
-  sqlite3_int64 iRow,
-  int flags,
-  sqlite3_blob **ppBlob
-);
-
-/*
-** CAPI3REF:  Close A BLOB Handle {F17830}
-**
-** Close an open [sqlite3_blob | blob handle].
-**
-** {F17831} Closing a BLOB shall cause the current transaction to commit
-** if there are no other BLOBs, no pending prepared statements, and the
-** database connection is in autocommit mode.
-** {F17832} If any writes were made to the BLOB, they might be held in cache
-** until the close operation if they will fit. {END}
-** Closing the BLOB often forces the changes
-** out to disk and so if any I/O errors occur, they will likely occur
-** at the time when the BLOB is closed.  {F17833} Any errors that occur during
-** closing are reported as a non-zero return value.
-**
-** {F17839} The BLOB is closed unconditionally.  Even if this routine returns
-** an error code, the BLOB is still closed.
-*/
-/*IMPORT_C*/ int sqlite3_blob_close(sqlite3_blob *);
-
-/*
-** CAPI3REF:  Return The Size Of An Open BLOB {F17805}
-**
-** {F16806} Return the size in bytes of the blob accessible via the open 
-** [sqlite3_blob | blob-handle] passed as an argument.
-*/
-/*IMPORT_C*/ int sqlite3_blob_bytes(sqlite3_blob *);
-
-/*
-** CAPI3REF:  Read Data From A BLOB Incrementally {F17850}
-**
-** This function is used to read data from an open 
-** [sqlite3_blob | blob-handle] into a caller supplied buffer.
-** {F17851} n bytes of data are copied into buffer
-** z from the open blob, starting at offset iOffset.
-**
-** {F17852} If offset iOffset is less than n bytes from the end of the blob, 
-** [SQLITE_ERROR] is returned and no data is read.  {F17853} If n is
-** less than zero [SQLITE_ERROR] is returned and no data is read.
-**
-** {F17854} On success, SQLITE_OK is returned. Otherwise, an 
-** [SQLITE_ERROR | SQLite error code] or an
-** [SQLITE_IOERR_READ | extended error code] is returned.
-*/
-/*IMPORT_C*/ int sqlite3_blob_read(sqlite3_blob *, void *z, int n, int iOffset);
-
-/*
-** CAPI3REF:  Write Data Into A BLOB Incrementally {F17870}
-**
-** This function is used to write data into an open 
-** [sqlite3_blob | blob-handle] from a user supplied buffer.
-** {F17871} n bytes of data are copied from the buffer
-** pointed to by z into the open blob, starting at offset iOffset.
-**
-** {F17872} If the [sqlite3_blob | blob-handle] passed as the first argument
-** was not opened for writing (the flags parameter to [sqlite3_blob_open()]
-*** was zero), this function returns [SQLITE_READONLY].
-**
-** {F17873} This function may only modify the contents of the blob; it is
-** not possible to increase the size of a blob using this API.
-** {F17874} If offset iOffset is less than n bytes from the end of the blob, 
-** [SQLITE_ERROR] is returned and no data is written.  {F17875} If n is
-** less than zero [SQLITE_ERROR] is returned and no data is written.
-**
-** {F17876} On success, SQLITE_OK is returned. Otherwise, an 
-** [SQLITE_ERROR | SQLite error code] or an
-** [SQLITE_IOERR_READ | extended error code] is returned.
-*/
-/*IMPORT_C*/ int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
-
-/*
-** CAPI3REF:  Virtual File System Objects {F11200}
-**
-** A virtual filesystem (VFS) is an [sqlite3_vfs] object
-** that SQLite uses to interact
-** with the underlying operating system.  Most builds come with a
-** single default VFS that is appropriate for the host computer.
-** New VFSes can be registered and existing VFSes can be unregistered.
-** The following interfaces are provided.
-**
-** {F11201} The sqlite3_vfs_find() interface returns a pointer to 
-** a VFS given its name.  {F11202} Names are case sensitive.
-** {F11203} Names are zero-terminated UTF-8 strings.
-** {F11204} If there is no match, a NULL
-** pointer is returned. {F11205} If zVfsName is NULL then the default 
-** VFS is returned. {END}
-**
-** {F11210} New VFSes are registered with sqlite3_vfs_register().
-** {F11211} Each new VFS becomes the default VFS if the makeDflt flag is set.
-** {F11212} The same VFS can be registered multiple times without injury.
-** {F11213} To make an existing VFS into the default VFS, register it again
-** with the makeDflt flag set. {U11214} If two different VFSes with the
-** same name are registered, the behavior is undefined.  {U11215} If a
-** VFS is registered with a name that is NULL or an empty string,
-** then the behavior is undefined.
-** 
-** {F11220} Unregister a VFS with the sqlite3_vfs_unregister() interface.
-** {F11221} If the default VFS is unregistered, another VFS is chosen as
-** the default.  The choice for the new VFS is arbitrary.
-*/
-/*IMPORT_C*/ sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
-/*IMPORT_C*/ int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
-/*IMPORT_C*/ int sqlite3_vfs_unregister(sqlite3_vfs*);
-
-/*
-** CAPI3REF: Mutexes {F17000}
-**
-** The SQLite core uses these routines for thread
-** synchronization.  Though they are intended for internal
-** use by SQLite, code that links against SQLite is
-** permitted to use any of these routines.
-**
-** The SQLite source code contains multiple implementations 
-** of these mutex routines.  An appropriate implementation
-** is selected automatically at compile-time.  The following
-** implementations are available in the SQLite core:
-**
-** <ul>
-** <li>   SQLITE_MUTEX_OS2
-** <li>   SQLITE_MUTEX_PTHREAD
-** <li>   SQLITE_MUTEX_W32
-** <li>   SQLITE_MUTEX_NOOP
-** </ul>
-**
-** The SQLITE_MUTEX_NOOP implementation is a set of routines 
-** that does no real locking and is appropriate for use in 
-** a single-threaded application.  The SQLITE_MUTEX_OS2,
-** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
-** are appropriate for use on os/2, unix, and windows.
-** 
-** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
-** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
-** implementation is included with the library.  The
-** mutex interface routines defined here become external
-** references in the SQLite library for which implementations
-** must be provided by the application.  This facility allows an
-** application that links against SQLite to provide its own mutex
-** implementation without having to modify the SQLite core.
-**
-** {F17011} The sqlite3_mutex_alloc() routine allocates a new
-** mutex and returns a pointer to it. {F17012} If it returns NULL
-** that means that a mutex could not be allocated. {F17013} SQLite
-** will unwind its stack and return an error. {F17014} The argument
-** to sqlite3_mutex_alloc() is one of these integer constants:
-**
-** <ul>
-** <li>  SQLITE_MUTEX_FAST
-** <li>  SQLITE_MUTEX_RECURSIVE
-** <li>  SQLITE_MUTEX_STATIC_MASTER
-** <li>  SQLITE_MUTEX_STATIC_MEM
-** <li>  SQLITE_MUTEX_STATIC_MEM2
-** <li>  SQLITE_MUTEX_STATIC_PRNG
-** <li>  SQLITE_MUTEX_STATIC_LRU
-** </ul> {END}
-**
-** {F17015} The first two constants cause sqlite3_mutex_alloc() to create
-** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
-** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END}
-** The mutex implementation does not need to make a distinction
-** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
-** not want to.  {F17016} But SQLite will only request a recursive mutex in
-** cases where it really needs one.  {END} If a faster non-recursive mutex
-** implementation is available on the host platform, the mutex subsystem
-** might return such a mutex in response to SQLITE_MUTEX_FAST.
-**
-** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return
-** a pointer to a static preexisting mutex. {END}  Four static mutexes are
-** used by the current version of SQLite.  Future versions of SQLite
-** may add additional static mutexes.  Static mutexes are for internal
-** use by SQLite only.  Applications that use SQLite mutexes should
-** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
-** SQLITE_MUTEX_RECURSIVE.
-**
-** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
-** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
-** returns a different mutex on every call.  {F17034} But for the static 
-** mutex types, the same mutex is returned on every call that has
-** the same type number. {END}
-**
-** {F17019} The sqlite3_mutex_free() routine deallocates a previously
-** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every
-** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in 
-** use when they are deallocated. {U17022} Attempting to deallocate a static
-** mutex results in undefined behavior. {F17023} SQLite never deallocates
-** a static mutex. {END}
-**
-** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
-** to enter a mutex. {F17024} If another thread is already within the mutex,
-** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
-** SQLITE_BUSY. {F17025}  The sqlite3_mutex_try() interface returns SQLITE_OK
-** upon successful entry.  {F17026} Mutexes created using
-** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
-** {F17027} In such cases the,
-** mutex must be exited an equal number of times before another thread
-** can enter.  {U17028} If the same thread tries to enter any other
-** kind of mutex more than once, the behavior is undefined.
-** {F17029} SQLite will never exhibit
-** such behavior in its own use of mutexes. {END}
-**
-** Some systems (ex: windows95) do not the operation implemented by
-** sqlite3_mutex_try().  On those systems, sqlite3_mutex_try() will
-** always return SQLITE_BUSY.  {F17030} The SQLite core only ever uses
-** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END}
-**
-** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was
-** previously entered by the same thread.  {U17032} The behavior
-** is undefined if the mutex is not currently entered by the
-** calling thread or is not currently allocated.  {F17033} SQLite will
-** never do either. {END}
-**
-** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
-*/
-/*IMPORT_C*/ sqlite3_mutex *sqlite3_mutex_alloc(int);
-/*IMPORT_C*/ void sqlite3_mutex_free(sqlite3_mutex*);
-/*IMPORT_C*/ void sqlite3_mutex_enter(sqlite3_mutex*);
-/*IMPORT_C*/ int sqlite3_mutex_try(sqlite3_mutex*);
-/*IMPORT_C*/ void sqlite3_mutex_leave(sqlite3_mutex*);
-
-/*
-** CAPI3REF: Mutex Verifcation Routines {F17080}
-**
-** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
-** are intended for use inside assert() statements. {F17081} The SQLite core
-** never uses these routines except inside an assert() and applications
-** are advised to follow the lead of the core.  {F17082} The core only
-** provides implementations for these routines when it is compiled
-** with the SQLITE_DEBUG flag.  {U17087} External mutex implementations
-** are only required to provide these routines if SQLITE_DEBUG is
-** defined and if NDEBUG is not defined.
-**
-** {F17083} These routines should return true if the mutex in their argument
-** is held or not held, respectively, by the calling thread. {END}
-**
-** {X17084} The implementation is not required to provided versions of these
-** routines that actually work.
-** If the implementation does not provide working
-** versions of these routines, it should at least provide stubs
-** that always return true so that one does not get spurious
-** assertion failures. {END}
-**
-** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
-** the routine should return 1.  {END} This seems counter-intuitive since
-** clearly the mutex cannot be held if it does not exist.  But the
-** the reason the mutex does not exist is because the build is not
-** using mutexes.  And we do not want the assert() containing the
-** call to sqlite3_mutex_held() to fail, so a non-zero return is
-** the appropriate thing to do.  {F17086} The sqlite3_mutex_notheld() 
-** interface should also return 1 when given a NULL pointer.
-*/
-/*IMPORT_C*/ int sqlite3_mutex_held(sqlite3_mutex*);
-/*IMPORT_C*/ int sqlite3_mutex_notheld(sqlite3_mutex*);
-
-/*
-** CAPI3REF: Mutex Types {F17001}
-**
-** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument
-** which is one of these integer constants. {END}
-*/
-#define SQLITE_MUTEX_FAST             0
-#define SQLITE_MUTEX_RECURSIVE        1
-#define SQLITE_MUTEX_STATIC_MASTER    2
-#define SQLITE_MUTEX_STATIC_MEM       3  /* sqlite3_malloc() */
-#define SQLITE_MUTEX_STATIC_MEM2      4  /* sqlite3_release_memory() */
-#define SQLITE_MUTEX_STATIC_PRNG      5  /* sqlite3_random() */
-#define SQLITE_MUTEX_STATIC_LRU       6  /* lru page list */
-
-/*
-** CAPI3REF: Low-Level Control Of Database Files {F11300}
-**
-** {F11301} The [sqlite3_file_control()] interface makes a direct call to the
-** xFileControl method for the [sqlite3_io_methods] object associated
-** with a particular database identified by the second argument. {F11302} The
-** name of the database is the name assigned to the database by the
-** <a href="lang_attach.html">ATTACH</a> SQL command that opened the
-** database. {F11303} To control the main database file, use the name "main"
-** or a NULL pointer. {F11304} The third and fourth parameters to this routine
-** are passed directly through to the second and third parameters of
-** the xFileControl method.  {F11305} The return value of the xFileControl
-** method becomes the return value of this routine.
-**
-** {F11306} If the second parameter (zDbName) does not match the name of any
-** open database file, then SQLITE_ERROR is returned. {F11307} This error
-** code is not remembered and will not be recalled by [sqlite3_errcode()]
-** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might
-** also return SQLITE_ERROR.  {U11309} There is no way to distinguish between
-** an incorrect zDbName and an SQLITE_ERROR return from the underlying
-** xFileControl method. {END}
-**
-** See also: [SQLITE_FCNTL_LOCKSTATE]
-*/
-/*IMPORT_C*/ int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
-
-/*IMPORT_C*/ int sqlite3_openTest(
-  const char *zFilename 
-);
-
-/*IMPORT_C*/ int sqlite3_bind_double_ref(sqlite3_stmt *stmt, int iCol, double *val);
-
-/*IMPORT_C*/ int sqlite3_bind_int64_ref(sqlite3_stmt *stmt, int iCol, sqlite_int64 *val);
-
-/*IMPORT_C*/ void sqlite3_column_double_ref(sqlite3_stmt *stmt, int iCol, double *val);
-
-/*IMPORT_C*/ void sqlite3_column_int64_ref(sqlite3_stmt *stmt, int iCol, sqlite_int64 *val);
-
-/*IMPORT_C*/ unsigned int sqlite3_strlen(char *ptr);
-
-/*
-** Undo the hack that converts floating point types to integer for
-** builds on processors without floating point support.
-*/
-#ifdef SQLITE_OMIT_FLOATING_POINT
-# undef double
-#endif
-
-#ifdef __cplusplus
-}  /* End of the 'extern "C"' block */
-#endif
-#endif