/*+ −
** 2001 September 15+ −
**+ −
** The author disclaims copyright to this source code. In place of+ −
** a legal notice, here is a blessing:+ −
**+ −
** May you do good and not evil.+ −
** May you find forgiveness for yourself and forgive others.+ −
** May you share freely, never taking more than you give.+ −
**+ −
*************************************************************************+ −
** This file contains routines used for analyzing expressions and+ −
** for generating VDBE code that evaluates expressions in SQLite.+ −
**+ −
** $Id: expr.cpp 1282 2008-11-13 09:31:33Z LarsPson $+ −
*/+ −
#include "sqliteInt.h"+ −
#include <ctype.h>+ −
+ −
/*+ −
** Return the 'affinity' of the expression pExpr if any.+ −
**+ −
** If pExpr is a column, a reference to a column via an 'AS' alias,+ −
** or a sub-select with a column as the return value, then the + −
** affinity of that column is returned. Otherwise, 0x00 is returned,+ −
** indicating no affinity for the expression.+ −
**+ −
** i.e. the WHERE clause expresssions in the following statements all+ −
** have an affinity:+ −
**+ −
** CREATE TABLE t1(a);+ −
** SELECT * FROM t1 WHERE a;+ −
** SELECT a AS b FROM t1 WHERE b;+ −
** SELECT * FROM t1 WHERE (select a from t1);+ −
*/+ −
char sqlite3ExprAffinity(Expr *pExpr){+ −
int op = pExpr->op;+ −
if( op==TK_SELECT ){+ −
return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);+ −
}+ −
#ifndef SQLITE_OMIT_CAST+ −
if( op==TK_CAST ){+ −
return sqlite3AffinityType(&pExpr->token);+ −
}+ −
#endif+ −
return pExpr->affinity;+ −
}+ −
+ −
/*+ −
** Set the collating sequence for expression pExpr to be the collating+ −
** sequence named by pToken. Return a pointer to the revised expression.+ −
** The collating sequence is marked as "explicit" using the EP_ExpCollate+ −
** flag. An explicit collating sequence will override implicit+ −
** collating sequences.+ −
*/+ −
Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){+ −
char *zColl = 0; /* Dequoted name of collation sequence */+ −
CollSeq *pColl;+ −
zColl = sqlite3NameFromToken(pParse->db, pName);+ −
if( pExpr && zColl ){+ −
pColl = sqlite3LocateCollSeq(pParse, zColl, -1);+ −
if( pColl ){+ −
pExpr->pColl = pColl;+ −
pExpr->flags |= EP_ExpCollate;+ −
}+ −
}+ −
sqlite3_free(zColl);+ −
return pExpr;+ −
}+ −
+ −
/*+ −
** Return the default collation sequence for the expression pExpr. If+ −
** there is no default collation type, return 0.+ −
*/+ −
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){+ −
CollSeq *pColl = 0;+ −
if( pExpr ){+ −
int op;+ −
pColl = pExpr->pColl;+ −
op = pExpr->op;+ −
if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){+ −
return sqlite3ExprCollSeq(pParse, pExpr->pLeft);+ −
}+ −
}+ −
if( sqlite3CheckCollSeq(pParse, pColl) ){ + −
pColl = 0;+ −
}+ −
return pColl;+ −
}+ −
+ −
/*+ −
** pExpr is an operand of a comparison operator. aff2 is the+ −
** type affinity of the other operand. This routine returns the+ −
** type affinity that should be used for the comparison operator.+ −
*/+ −
char sqlite3CompareAffinity(Expr *pExpr, char aff2){+ −
char aff1 = sqlite3ExprAffinity(pExpr);+ −
if( aff1 && aff2 ){+ −
/* Both sides of the comparison are columns. If one has numeric+ −
** affinity, use that. Otherwise use no affinity.+ −
*/+ −
if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){+ −
return SQLITE_AFF_NUMERIC;+ −
}else{+ −
return SQLITE_AFF_NONE;+ −
}+ −
}else if( !aff1 && !aff2 ){+ −
/* Neither side of the comparison is a column. Compare the+ −
** results directly.+ −
*/+ −
return SQLITE_AFF_NONE;+ −
}else{+ −
/* One side is a column, the other is not. Use the columns affinity. */+ −
assert( aff1==0 || aff2==0 );+ −
return (aff1 + aff2);+ −
}+ −
}+ −
+ −
/*+ −
** pExpr is a comparison operator. Return the type affinity that should+ −
** be applied to both operands prior to doing the comparison.+ −
*/+ −
static char comparisonAffinity(Expr *pExpr){+ −
char aff;+ −
assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||+ −
pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||+ −
pExpr->op==TK_NE );+ −
assert( pExpr->pLeft );+ −
aff = sqlite3ExprAffinity(pExpr->pLeft);+ −
if( pExpr->pRight ){+ −
aff = sqlite3CompareAffinity(pExpr->pRight, aff);+ −
}+ −
else if( pExpr->pSelect ){+ −
aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);+ −
}+ −
else if( !aff ){+ −
aff = SQLITE_AFF_NONE;+ −
}+ −
return aff;+ −
}+ −
+ −
/*+ −
** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.+ −
** idx_affinity is the affinity of an indexed column. Return true+ −
** if the index with affinity idx_affinity may be used to implement+ −
** the comparison in pExpr.+ −
*/+ −
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){+ −
char aff = comparisonAffinity(pExpr);+ −
switch( aff ){+ −
case SQLITE_AFF_NONE:+ −
return 1;+ −
case SQLITE_AFF_TEXT:+ −
return idx_affinity==SQLITE_AFF_TEXT;+ −
default:+ −
return sqlite3IsNumericAffinity(idx_affinity);+ −
}+ −
}+ −
+ −
/*+ −
** Return the P1 value that should be used for a binary comparison+ −
** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.+ −
** If jumpIfNull is true, then set the low byte of the returned+ −
** P1 value to tell the opcode to jump if either expression+ −
** evaluates to NULL.+ −
*/+ −
static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){+ −
char aff = sqlite3ExprAffinity(pExpr2);+ −
return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);+ −
}+ −
+ −
/*+ −
** Return a pointer to the collation sequence that should be used by+ −
** a binary comparison operator comparing pLeft and pRight.+ −
**+ −
** If the left hand expression has a collating sequence type, then it is+ −
** used. Otherwise the collation sequence for the right hand expression+ −
** is used, or the default (BINARY) if neither expression has a collating+ −
** type.+ −
**+ −
** Argument pRight (but not pLeft) may be a null pointer. In this case,+ −
** it is not considered.+ −
*/+ −
CollSeq *sqlite3BinaryCompareCollSeq(+ −
Parse *pParse, + −
Expr *pLeft, + −
Expr *pRight+ −
){+ −
CollSeq *pColl;+ −
assert( pLeft );+ −
if( pLeft->flags & EP_ExpCollate ){+ −
assert( pLeft->pColl );+ −
pColl = pLeft->pColl;+ −
}else if( pRight && pRight->flags & EP_ExpCollate ){+ −
assert( pRight->pColl );+ −
pColl = pRight->pColl;+ −
}else{+ −
pColl = sqlite3ExprCollSeq(pParse, pLeft);+ −
if( !pColl ){+ −
pColl = sqlite3ExprCollSeq(pParse, pRight);+ −
}+ −
}+ −
return pColl;+ −
}+ −
+ −
/*+ −
** Generate code for a comparison operator.+ −
*/+ −
static int codeCompare(+ −
Parse *pParse, /* The parsing (and code generating) context */+ −
Expr *pLeft, /* The left operand */+ −
Expr *pRight, /* The right operand */+ −
int opcode, /* The comparison opcode */+ −
int dest, /* Jump here if true. */+ −
int jumpIfNull /* If true, jump if either operand is NULL */+ −
){+ −
int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);+ −
CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);+ −
return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (const char*)p3, P3_COLLSEQ);+ −
}+ −
+ −
/*+ −
** Construct a new expression node and return a pointer to it. Memory+ −
** for this node is obtained from sqlite3_malloc(). The calling function+ −
** is responsible for making sure the node eventually gets freed.+ −
*/+ −
Expr *sqlite3Expr(+ −
sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */+ −
int op, /* Expression opcode */+ −
Expr *pLeft, /* Left operand */+ −
Expr *pRight, /* Right operand */+ −
const Token *pToken /* Argument token */+ −
){+ −
Expr *pNew;+ −
pNew = (Expr*)sqlite3DbMallocZero(db, sizeof(Expr));+ −
if( pNew==0 ){+ −
/* When malloc fails, delete pLeft and pRight. Expressions passed to + −
** this function must always be allocated with sqlite3Expr() for this + −
** reason. + −
*/+ −
sqlite3ExprDelete(pLeft);+ −
sqlite3ExprDelete(pRight);+ −
return 0;+ −
}+ −
pNew->op = op;+ −
pNew->pLeft = pLeft;+ −
pNew->pRight = pRight;+ −
pNew->iAgg = -1;+ −
if( pToken ){+ −
assert( pToken->dyn==0 );+ −
pNew->span = pNew->token = *pToken;+ −
}else if( pLeft ){+ −
if( pRight ){+ −
sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);+ −
if( pRight->flags & EP_ExpCollate ){+ −
pNew->flags |= EP_ExpCollate;+ −
pNew->pColl = pRight->pColl;+ −
}+ −
}+ −
if( pLeft->flags & EP_ExpCollate ){+ −
pNew->flags |= EP_ExpCollate;+ −
pNew->pColl = pLeft->pColl;+ −
}+ −
}+ −
+ −
sqlite3ExprSetHeight(pNew);+ −
return pNew;+ −
}+ −
+ −
/*+ −
** Works like sqlite3Expr() except that it takes an extra Parse*+ −
** argument and notifies the associated connection object if malloc fails.+ −
*/+ −
Expr *sqlite3PExpr(+ −
Parse *pParse, /* Parsing context */+ −
int op, /* Expression opcode */+ −
Expr *pLeft, /* Left operand */+ −
Expr *pRight, /* Right operand */+ −
const Token *pToken /* Argument token */+ −
){+ −
return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);+ −
}+ −
+ −
/*+ −
** When doing a nested parse, you can include terms in an expression+ −
** that look like this: #0 #1 #2 ... These terms refer to elements+ −
** on the stack. "#0" means the top of the stack.+ −
** "#1" means the next down on the stack. And so forth.+ −
**+ −
** This routine is called by the parser to deal with on of those terms.+ −
** It immediately generates code to store the value in a memory location.+ −
** The returns an expression that will code to extract the value from+ −
** that memory location as needed.+ −
*/+ −
Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){+ −
Vdbe *v = pParse->pVdbe;+ −
Expr *p;+ −
int depth;+ −
if( pParse->nested==0 ){+ −
sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);+ −
return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);+ −
}+ −
if( v==0 ) return 0;+ −
p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);+ −
if( p==0 ){+ −
return 0; /* Malloc failed */+ −
}+ −
depth = atoi((char*)&pToken->z[1]);+ −
p->iTable = pParse->nMem++;+ −
sqlite3VdbeAddOp(v, OP_Dup, depth, 0);+ −
sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);+ −
return p;+ −
}+ −
+ −
/*+ −
** Join two expressions using an AND operator. If either expression is+ −
** NULL, then just return the other expression.+ −
*/+ −
Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){+ −
if( pLeft==0 ){+ −
return pRight;+ −
}else if( pRight==0 ){+ −
return pLeft;+ −
}else{+ −
return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);+ −
}+ −
}+ −
+ −
/*+ −
** Set the Expr.span field of the given expression to span all+ −
** text between the two given tokens.+ −
*/+ −
void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){+ −
assert( pRight!=0 );+ −
assert( pLeft!=0 );+ −
if( pExpr && pRight->z && pLeft->z ){+ −
assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );+ −
if( pLeft->dyn==0 && pRight->dyn==0 ){+ −
pExpr->span.z = pLeft->z;+ −
pExpr->span.n = pRight->n + (pRight->z - pLeft->z);+ −
}else{+ −
pExpr->span.z = 0;+ −
}+ −
}+ −
}+ −
+ −
/*+ −
** Construct a new expression node for a function with multiple+ −
** arguments.+ −
*/+ −
Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){+ −
Expr *pNew;+ −
assert( pToken );+ −
pNew = (Expr*)sqlite3DbMallocZero(pParse->db, sizeof(Expr) );+ −
if( pNew==0 ){+ −
sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */+ −
return 0;+ −
}+ −
pNew->op = TK_FUNCTION;+ −
pNew->pList = pList;+ −
assert( pToken->dyn==0 );+ −
pNew->token = *pToken;+ −
pNew->span = pNew->token;+ −
+ −
sqlite3ExprSetHeight(pNew);+ −
return pNew;+ −
}+ −
+ −
/*+ −
** Assign a variable number to an expression that encodes a wildcard+ −
** in the original SQL statement. + −
**+ −
** Wildcards consisting of a single "?" are assigned the next sequential+ −
** variable number.+ −
**+ −
** Wildcards of the form "?nnn" are assigned the number "nnn". We make+ −
** sure "nnn" is not too be to avoid a denial of service attack when+ −
** the SQL statement comes from an external source.+ −
**+ −
** Wildcards of the form ":aaa" or "$aaa" are assigned the same number+ −
** as the previous instance of the same wildcard. Or if this is the first+ −
** instance of the wildcard, the next sequenial variable number is+ −
** assigned.+ −
*/+ −
void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){+ −
Token *pToken;+ −
sqlite3 *db = pParse->db;+ −
+ −
if( pExpr==0 ) return;+ −
pToken = &pExpr->token;+ −
assert( pToken->n>=1 );+ −
assert( pToken->z!=0 );+ −
assert( pToken->z[0]!=0 );+ −
if( pToken->n==1 ){+ −
/* Wildcard of the form "?". Assign the next variable number */+ −
pExpr->iTable = ++pParse->nVar;+ −
}else if( pToken->z[0]=='?' ){+ −
/* Wildcard of the form "?nnn". Convert "nnn" to an integer and+ −
** use it as the variable number */+ −
int i;+ −
pExpr->iTable = i = atoi((char*)&pToken->z[1]);+ −
if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){+ −
sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",+ −
SQLITE_MAX_VARIABLE_NUMBER);+ −
}+ −
if( i>pParse->nVar ){+ −
pParse->nVar = i;+ −
}+ −
}else{+ −
/* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable+ −
** number as the prior appearance of the same name, or if the name+ −
** has never appeared before, reuse the same variable number+ −
*/+ −
int i, n;+ −
n = pToken->n;+ −
for(i=0; i<pParse->nVarExpr; i++){+ −
Expr *pE;+ −
if( (pE = pParse->apVarExpr[i])!=0+ −
&& pE->token.n==n+ −
&& memcmp(pE->token.z, pToken->z, n)==0 ){+ −
pExpr->iTable = pE->iTable;+ −
break;+ −
}+ −
}+ −
if( i>=pParse->nVarExpr ){+ −
pExpr->iTable = ++pParse->nVar;+ −
if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){+ −
pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;+ −
pParse->apVarExpr =+ −
(Expr**)sqlite3DbReallocOrFree(+ −
db,+ −
pParse->apVarExpr,+ −
pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])+ −
);+ −
}+ −
if( !db->mallocFailed ){+ −
assert( pParse->apVarExpr!=0 );+ −
pParse->apVarExpr[pParse->nVarExpr++] = pExpr;+ −
}+ −
}+ −
} + −
if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){+ −
sqlite3ErrorMsg(pParse, "too many SQL variables");+ −
}+ −
}+ −
+ −
/*+ −
** Recursively delete an expression tree.+ −
*/+ −
void sqlite3ExprDelete(Expr *p){+ −
if( p==0 ) return;+ −
if( p->span.dyn ) sqlite3_free((char*)p->span.z);+ −
if( p->token.dyn ) sqlite3_free((char*)p->token.z);+ −
sqlite3ExprDelete(p->pLeft);+ −
sqlite3ExprDelete(p->pRight);+ −
sqlite3ExprListDelete(p->pList);+ −
sqlite3SelectDelete(p->pSelect);+ −
sqlite3_free(p);+ −
}+ −
+ −
/*+ −
** The Expr.token field might be a string literal that is quoted.+ −
** If so, remove the quotation marks.+ −
*/+ −
void sqlite3DequoteExpr(sqlite3 *db, Expr *p){+ −
if( ExprHasAnyProperty(p, EP_Dequoted) ){+ −
return;+ −
}+ −
ExprSetProperty(p, EP_Dequoted);+ −
if( p->token.dyn==0 ){+ −
sqlite3TokenCopy(db, &p->token, &p->token);+ −
}+ −
sqlite3Dequote((char*)p->token.z);+ −
}+ −
+ −
+ −
/*+ −
** The following group of routines make deep copies of expressions,+ −
** expression lists, ID lists, and select statements. The copies can+ −
** be deleted (by being passed to their respective ...Delete() routines)+ −
** without effecting the originals.+ −
**+ −
** The expression list, ID, and source lists return by sqlite3ExprListDup(),+ −
** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded + −
** by subsequent calls to sqlite*ListAppend() routines.+ −
**+ −
** Any tables that the SrcList might point to are not duplicated.+ −
*/+ −
Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){+ −
Expr *pNew;+ −
if( p==0 ) return 0;+ −
pNew = (Expr*)sqlite3DbMallocRaw(db, sizeof(*p) );+ −
if( pNew==0 ) return 0;+ −
memcpy(pNew, p, sizeof(*pNew));+ −
if( p->token.z!=0 ){+ −
pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);+ −
pNew->token.dyn = 1;+ −
}else{+ −
assert( pNew->token.z==0 );+ −
}+ −
pNew->span.z = 0;+ −
pNew->pLeft = sqlite3ExprDup(db, p->pLeft);+ −
pNew->pRight = sqlite3ExprDup(db, p->pRight);+ −
pNew->pList = sqlite3ExprListDup(db, p->pList);+ −
pNew->pSelect = sqlite3SelectDup(db, p->pSelect);+ −
return pNew;+ −
}+ −
void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){+ −
if( pTo->dyn ) sqlite3_free((char*)pTo->z);+ −
if( pFrom->z ){+ −
pTo->n = pFrom->n;+ −
pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);+ −
pTo->dyn = 1;+ −
}else{+ −
pTo->z = 0;+ −
}+ −
}+ −
ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){+ −
ExprList *pNew;+ −
ExprList::ExprList_item *pItem, *pOldItem;+ −
int i;+ −
if( p==0 ) return 0;+ −
pNew = (ExprList*)sqlite3DbMallocRaw(db, sizeof(*pNew) );+ −
if( pNew==0 ) return 0;+ −
pNew->iECursor = 0;+ −
pNew->nExpr = pNew->nAlloc = p->nExpr;+ −
pNew->a = pItem = (ExprList::ExprList_item*)sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );+ −
if( pItem==0 ){+ −
sqlite3_free(pNew);+ −
return 0;+ −
} + −
pOldItem = p->a;+ −
for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){+ −
Expr *pNewExpr, *pOldExpr;+ −
pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);+ −
if( pOldExpr->span.z!=0 && pNewExpr ){+ −
/* Always make a copy of the span for top-level expressions in the+ −
** expression list. The logic in SELECT processing that determines+ −
** the names of columns in the result set needs this information */+ −
sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);+ −
}+ −
assert( pNewExpr==0 || pNewExpr->span.z!=0 + −
|| pOldExpr->span.z==0+ −
|| db->mallocFailed );+ −
pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);+ −
pItem->sortOrder = pOldItem->sortOrder;+ −
pItem->isAgg = pOldItem->isAgg;+ −
pItem->done = 0;+ −
}+ −
return pNew;+ −
}+ −
+ −
/*+ −
** If cursors, triggers, views and subqueries are all omitted from+ −
** the build, then none of the following routines, except for + −
** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes+ −
** called with a NULL argument.+ −
*/+ −
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \+ −
|| !defined(SQLITE_OMIT_SUBQUERY)+ −
SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){+ −
SrcList *pNew;+ −
int i;+ −
int nByte;+ −
if( p==0 ) return 0;+ −
nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);+ −
pNew = (SrcList*)sqlite3DbMallocRaw(db, nByte );+ −
if( pNew==0 ) return 0;+ −
pNew->nSrc = pNew->nAlloc = p->nSrc;+ −
for(i=0; i<p->nSrc; i++){+ −
SrcList::SrcList_item *pNewItem = &pNew->a[i];+ −
SrcList::SrcList_item *pOldItem = &p->a[i];+ −
Table *pTab;+ −
pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);+ −
pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);+ −
pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);+ −
pNewItem->jointype = pOldItem->jointype;+ −
pNewItem->iCursor = pOldItem->iCursor;+ −
pNewItem->isPopulated = pOldItem->isPopulated;+ −
pTab = pNewItem->pTab = pOldItem->pTab;+ −
if( pTab ){+ −
pTab->nRef++;+ −
}+ −
pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);+ −
pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);+ −
pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);+ −
pNewItem->colUsed = pOldItem->colUsed;+ −
}+ −
return pNew;+ −
}+ −
IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){+ −
IdList *pNew;+ −
int i;+ −
if( p==0 ) return 0;+ −
pNew = (IdList*)sqlite3DbMallocRaw(db, sizeof(*pNew) );+ −
if( pNew==0 ) return 0;+ −
pNew->nId = pNew->nAlloc = p->nId;+ −
pNew->a = (IdList::IdList_item*)sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );+ −
if( pNew->a==0 ){+ −
sqlite3_free(pNew);+ −
return 0;+ −
}+ −
for(i=0; i<p->nId; i++){+ −
IdList::IdList_item *pNewItem = &pNew->a[i];+ −
IdList::IdList_item *pOldItem = &p->a[i];+ −
pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);+ −
pNewItem->idx = pOldItem->idx;+ −
}+ −
return pNew;+ −
}+ −
Select *sqlite3SelectDup(sqlite3 *db, Select *p){+ −
Select *pNew;+ −
if( p==0 ) return 0;+ −
pNew = (Select*)sqlite3DbMallocRaw(db, sizeof(*p) );+ −
if( pNew==0 ) return 0;+ −
pNew->isDistinct = p->isDistinct;+ −
pNew->pEList = sqlite3ExprListDup(db, p->pEList);+ −
pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);+ −
pNew->pWhere = sqlite3ExprDup(db, p->pWhere);+ −
pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);+ −
pNew->pHaving = sqlite3ExprDup(db, p->pHaving);+ −
pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);+ −
pNew->op = p->op;+ −
pNew->pPrior = sqlite3SelectDup(db, p->pPrior);+ −
pNew->pLimit = sqlite3ExprDup(db, p->pLimit);+ −
pNew->pOffset = sqlite3ExprDup(db, p->pOffset);+ −
pNew->iLimit = -1;+ −
pNew->iOffset = -1;+ −
pNew->isResolved = p->isResolved;+ −
pNew->isAgg = p->isAgg;+ −
pNew->usesEphm = 0;+ −
pNew->disallowOrderBy = 0;+ −
pNew->pRightmost = 0;+ −
pNew->addrOpenEphm[0] = -1;+ −
pNew->addrOpenEphm[1] = -1;+ −
pNew->addrOpenEphm[2] = -1;+ −
return pNew;+ −
}+ −
#else+ −
Select *sqlite3SelectDup(sqlite3 *db, Select *p){+ −
assert( p==0 );+ −
return 0;+ −
}+ −
#endif+ −
+ −
+ −
/*+ −
** Add a new element to the end of an expression list. If pList is+ −
** initially NULL, then create a new expression list.+ −
*/+ −
ExprList *sqlite3ExprListAppend(+ −
Parse *pParse, /* Parsing context */+ −
ExprList *pList, /* List to which to append. Might be NULL */+ −
Expr *pExpr, /* Expression to be appended */+ −
Token *pName /* AS keyword for the expression */+ −
){+ −
sqlite3 *db = pParse->db;+ −
if( pList==0 ){+ −
pList = (ExprList*)sqlite3DbMallocZero(db, sizeof(ExprList) );+ −
if( pList==0 ){+ −
goto no_mem;+ −
}+ −
assert( pList->nAlloc==0 );+ −
}+ −
if( pList->nAlloc<=pList->nExpr ){+ −
ExprList::ExprList_item *a;+ −
int n = pList->nAlloc*2 + 4;+ −
a = (ExprList::ExprList_item*)sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));+ −
if( a==0 ){+ −
goto no_mem;+ −
}+ −
pList->a = a;+ −
pList->nAlloc = n;+ −
}+ −
assert( pList->a!=0 );+ −
if( pExpr || pName ){+ −
ExprList::ExprList_item *pItem = &pList->a[pList->nExpr++];+ −
memset(pItem, 0, sizeof(*pItem));+ −
pItem->zName = sqlite3NameFromToken(db, pName);+ −
pItem->pExpr = pExpr;+ −
}+ −
return pList;+ −
+ −
no_mem: + −
/* Avoid leaking memory if malloc has failed. */+ −
sqlite3ExprDelete(pExpr);+ −
sqlite3ExprListDelete(pList);+ −
return 0;+ −
}+ −
+ −
/*+ −
** If the expression list pEList contains more than iLimit elements,+ −
** leave an error message in pParse.+ −
*/+ −
void sqlite3ExprListCheckLength(+ −
Parse *pParse,+ −
ExprList *pEList,+ −
int iLimit,+ −
const char *zObject+ −
){+ −
if( pEList && pEList->nExpr>iLimit ){+ −
sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);+ −
}+ −
}+ −
+ −
+ −
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0+ −
/* The following three functions, heightOfExpr(), heightOfExprList()+ −
** and heightOfSelect(), are used to determine the maximum height+ −
** of any expression tree referenced by the structure passed as the+ −
** first argument.+ −
**+ −
** If this maximum height is greater than the current value pointed+ −
** to by pnHeight, the second parameter, then set *pnHeight to that+ −
** value.+ −
*/+ −
static void heightOfExpr(Expr *p, int *pnHeight){+ −
if( p ){+ −
if( p->nHeight>*pnHeight ){+ −
*pnHeight = p->nHeight;+ −
}+ −
}+ −
}+ −
static void heightOfExprList(ExprList *p, int *pnHeight){+ −
if( p ){+ −
int i;+ −
for(i=0; i<p->nExpr; i++){+ −
heightOfExpr(p->a[i].pExpr, pnHeight);+ −
}+ −
}+ −
}+ −
static void heightOfSelect(Select *p, int *pnHeight){+ −
if( p ){+ −
heightOfExpr(p->pWhere, pnHeight);+ −
heightOfExpr(p->pHaving, pnHeight);+ −
heightOfExpr(p->pLimit, pnHeight);+ −
heightOfExpr(p->pOffset, pnHeight);+ −
heightOfExprList(p->pEList, pnHeight);+ −
heightOfExprList(p->pGroupBy, pnHeight);+ −
heightOfExprList(p->pOrderBy, pnHeight);+ −
heightOfSelect(p->pPrior, pnHeight);+ −
}+ −
}+ −
+ −
/*+ −
** Set the Expr.nHeight variable in the structure passed as an + −
** argument. An expression with no children, Expr.pList or + −
** Expr.pSelect member has a height of 1. Any other expression+ −
** has a height equal to the maximum height of any other + −
** referenced Expr plus one.+ −
*/+ −
void sqlite3ExprSetHeight(Expr *p){+ −
int nHeight = 0;+ −
heightOfExpr(p->pLeft, &nHeight);+ −
heightOfExpr(p->pRight, &nHeight);+ −
heightOfExprList(p->pList, &nHeight);+ −
heightOfSelect(p->pSelect, &nHeight);+ −
p->nHeight = nHeight + 1;+ −
}+ −
+ −
/*+ −
** Return the maximum height of any expression tree referenced+ −
** by the select statement passed as an argument.+ −
*/+ −
int sqlite3SelectExprHeight(Select *p){+ −
int nHeight = 0;+ −
heightOfSelect(p, &nHeight);+ −
return nHeight;+ −
}+ −
#endif+ −
+ −
/*+ −
** Delete an entire expression list.+ −
*/+ −
void sqlite3ExprListDelete(ExprList *pList){+ −
int i;+ −
ExprList::ExprList_item *pItem;+ −
if( pList==0 ) return;+ −
assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );+ −
assert( pList->nExpr<=pList->nAlloc );+ −
for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){+ −
sqlite3ExprDelete(pItem->pExpr);+ −
sqlite3_free(pItem->zName);+ −
}+ −
sqlite3_free(pList->a);+ −
sqlite3_free(pList);+ −
}+ −
+ −
/*+ −
** Walk an expression tree. Call xFunc for each node visited.+ −
**+ −
** The return value from xFunc determines whether the tree walk continues.+ −
** 0 means continue walking the tree. 1 means do not walk children+ −
** of the current node but continue with siblings. 2 means abandon+ −
** the tree walk completely.+ −
**+ −
** The return value from this routine is 1 to abandon the tree walk+ −
** and 0 to continue.+ −
**+ −
** NOTICE: This routine does *not* descend into subqueries.+ −
*/+ −
static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);+ −
static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){+ −
int rc;+ −
if( pExpr==0 ) return 0;+ −
rc = (*xFunc)(pArg, pExpr);+ −
if( rc==0 ){+ −
if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;+ −
if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;+ −
if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;+ −
}+ −
return rc>1;+ −
}+ −
+ −
/*+ −
** Call walkExprTree() for every expression in list p.+ −
*/+ −
static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){+ −
int i;+ −
ExprList::ExprList_item *pItem;+ −
if( !p ) return 0;+ −
for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){+ −
if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;+ −
}+ −
return 0;+ −
}+ −
+ −
/*+ −
** Call walkExprTree() for every expression in Select p, not including+ −
** expressions that are part of sub-selects in any FROM clause or the LIMIT+ −
** or OFFSET expressions..+ −
*/+ −
static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){+ −
walkExprList(p->pEList, xFunc, pArg);+ −
walkExprTree(p->pWhere, xFunc, pArg);+ −
walkExprList(p->pGroupBy, xFunc, pArg);+ −
walkExprTree(p->pHaving, xFunc, pArg);+ −
walkExprList(p->pOrderBy, xFunc, pArg);+ −
if( p->pPrior ){+ −
walkSelectExpr(p->pPrior, xFunc, pArg);+ −
}+ −
return 0;+ −
}+ −
+ −
+ −
/*+ −
** This routine is designed as an xFunc for walkExprTree().+ −
**+ −
** pArg is really a pointer to an integer. If we can tell by looking+ −
** at pExpr that the expression that contains pExpr is not a constant+ −
** expression, then set *pArg to 0 and return 2 to abandon the tree walk.+ −
** If pExpr does does not disqualify the expression from being a constant+ −
** then do nothing.+ −
**+ −
** After walking the whole tree, if no nodes are found that disqualify+ −
** the expression as constant, then we assume the whole expression+ −
** is constant. See sqlite3ExprIsConstant() for additional information.+ −
*/+ −
static int exprNodeIsConstant(void *pArg, Expr *pExpr){+ −
int *pN = (int*)pArg;+ −
+ −
/* If *pArg is 3 then any term of the expression that comes from+ −
** the ON or USING clauses of a join disqualifies the expression+ −
** from being considered constant. */+ −
if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){+ −
*pN = 0;+ −
return 2;+ −
}+ −
+ −
switch( pExpr->op ){+ −
/* Consider functions to be constant if all their arguments are constant+ −
** and *pArg==2 */+ −
case TK_FUNCTION:+ −
if( (*pN)==2 ) return 0;+ −
/* Fall through */+ −
case TK_ID:+ −
case TK_COLUMN:+ −
case TK_DOT:+ −
case TK_AGG_FUNCTION:+ −
case TK_AGG_COLUMN:+ −
#ifndef SQLITE_OMIT_SUBQUERY+ −
case TK_SELECT:+ −
case TK_EXISTS:+ −
#endif+ −
*pN = 0;+ −
return 2;+ −
case TK_IN:+ −
if( pExpr->pSelect ){+ −
*pN = 0;+ −
return 2;+ −
}+ −
default:+ −
return 0;+ −
}+ −
}+ −
+ −
/*+ −
** Walk an expression tree. Return 1 if the expression is constant+ −
** and 0 if it involves variables or function calls.+ −
**+ −
** For the purposes of this function, a double-quoted string (ex: "abc")+ −
** is considered a variable but a single-quoted string (ex: 'abc') is+ −
** a constant.+ −
*/+ −
int sqlite3ExprIsConstant(Expr *p){+ −
int isConst = 1;+ −
walkExprTree(p, exprNodeIsConstant, &isConst);+ −
return isConst;+ −
}+ −
+ −
/*+ −
** Walk an expression tree. Return 1 if the expression is constant+ −
** that does no originate from the ON or USING clauses of a join.+ −
** Return 0 if it involves variables or function calls or terms from+ −
** an ON or USING clause.+ −
*/+ −
int sqlite3ExprIsConstantNotJoin(Expr *p){+ −
int isConst = 3;+ −
walkExprTree(p, exprNodeIsConstant, &isConst);+ −
return isConst!=0;+ −
}+ −
+ −
/*+ −
** Walk an expression tree. Return 1 if the expression is constant+ −
** or a function call with constant arguments. Return and 0 if there+ −
** are any variables.+ −
**+ −
** For the purposes of this function, a double-quoted string (ex: "abc")+ −
** is considered a variable but a single-quoted string (ex: 'abc') is+ −
** a constant.+ −
*/+ −
int sqlite3ExprIsConstantOrFunction(Expr *p){+ −
int isConst = 2;+ −
walkExprTree(p, exprNodeIsConstant, &isConst);+ −
return isConst!=0;+ −
}+ −
+ −
/*+ −
** If the expression p codes a constant integer that is small enough+ −
** to fit in a 32-bit integer, return 1 and put the value of the integer+ −
** in *pValue. If the expression is not an integer or if it is too big+ −
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.+ −
*/+ −
int sqlite3ExprIsInteger(Expr *p, int *pValue){+ −
switch( p->op ){+ −
case TK_INTEGER: {+ −
if( sqlite3GetInt32((char*)p->token.z, pValue) ){+ −
return 1;+ −
}+ −
break;+ −
}+ −
case TK_UPLUS: {+ −
return sqlite3ExprIsInteger(p->pLeft, pValue);+ −
}+ −
case TK_UMINUS: {+ −
int v;+ −
if( sqlite3ExprIsInteger(p->pLeft, &v) ){+ −
*pValue = -v;+ −
return 1;+ −
}+ −
break;+ −
}+ −
default: break;+ −
}+ −
return 0;+ −
}+ −
+ −
/*+ −
** Return TRUE if the given string is a row-id column name.+ −
*/+ −
int sqlite3IsRowid(const char *z){+ −
if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;+ −
if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;+ −
if( sqlite3StrICmp(z, "OID")==0 ) return 1;+ −
return 0;+ −
}+ −
+ −
/*+ −
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up+ −
** that name in the set of source tables in pSrcList and make the pExpr + −
** expression node refer back to that source column. The following changes+ −
** are made to pExpr:+ −
**+ −
** pExpr->iDb Set the index in db->aDb[] of the database holding+ −
** the table.+ −
** pExpr->iTable Set to the cursor number for the table obtained+ −
** from pSrcList.+ −
** pExpr->iColumn Set to the column number within the table.+ −
** pExpr->op Set to TK_COLUMN.+ −
** pExpr->pLeft Any expression this points to is deleted+ −
** pExpr->pRight Any expression this points to is deleted.+ −
**+ −
** The pDbToken is the name of the database (the "X"). This value may be+ −
** NULL meaning that name is of the form Y.Z or Z. Any available database+ −
** can be used. The pTableToken is the name of the table (the "Y"). This+ −
** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it+ −
** means that the form of the name is Z and that columns from any table+ −
** can be used.+ −
**+ −
** If the name cannot be resolved unambiguously, leave an error message+ −
** in pParse and return non-zero. Return zero on success.+ −
*/+ −
static int lookupName(+ −
Parse *pParse, /* The parsing context */+ −
Token *pDbToken, /* Name of the database containing table, or NULL */+ −
Token *pTableToken, /* Name of table containing column, or NULL */+ −
Token *pColumnToken, /* Name of the column. */+ −
NameContext *pNC, /* The name context used to resolve the name */+ −
Expr *pExpr /* Make this EXPR node point to the selected column */+ −
){+ −
char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */+ −
char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */+ −
char *zCol = 0; /* Name of the column. The "Z" */+ −
int i, j; /* Loop counters */+ −
int cnt = 0; /* Number of matching column names */+ −
int cntTab = 0; /* Number of matching table names */+ −
sqlite3 *db = pParse->db; /* The database */+ −
SrcList::SrcList_item *pItem; /* Use for looping over pSrcList items */+ −
SrcList::SrcList_item *pMatch = 0; /* The matching pSrcList item */+ −
NameContext *pTopNC = pNC; /* First namecontext in the list */+ −
Schema *pSchema = 0; /* Schema of the expression */+ −
+ −
assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */+ −
zDb = sqlite3NameFromToken(db, pDbToken);+ −
zTab = sqlite3NameFromToken(db, pTableToken);+ −
zCol = sqlite3NameFromToken(db, pColumnToken);+ −
if( db->mallocFailed ){+ −
goto lookupname_end;+ −
}+ −
+ −
pExpr->iTable = -1;+ −
while( pNC && cnt==0 ){+ −
ExprList *pEList;+ −
SrcList *pSrcList = pNC->pSrcList;+ −
+ −
if( pSrcList ){+ −
for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){+ −
Table *pTab;+ −
int iDb;+ −
Column *pCol;+ −
+ −
pTab = pItem->pTab;+ −
assert( pTab!=0 );+ −
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);+ −
assert( pTab->nCol>0 );+ −
if( zTab ){+ −
if( pItem->zAlias ){+ −
char *zTabName = pItem->zAlias;+ −
if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;+ −
}else{+ −
char *zTabName = pTab->zName;+ −
if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;+ −
if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){+ −
continue;+ −
}+ −
}+ −
}+ −
if( 0==(cntTab++) ){+ −
pExpr->iTable = pItem->iCursor;+ −
pSchema = pTab->pSchema;+ −
pMatch = pItem;+ −
}+ −
for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){+ −
if( sqlite3StrICmp(pCol->zName, zCol)==0 ){+ −
const char *zColl = pTab->aCol[j].zColl;+ −
IdList *pUsing;+ −
cnt++;+ −
pExpr->iTable = pItem->iCursor;+ −
pMatch = pItem;+ −
pSchema = pTab->pSchema;+ −
/* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */+ −
pExpr->iColumn = j==pTab->iPKey ? -1 : j;+ −
pExpr->affinity = pTab->aCol[j].affinity;+ −
if( (pExpr->flags & EP_ExpCollate)==0 ){+ −
pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);+ −
}+ −
if( i<pSrcList->nSrc-1 ){+ −
if( pItem[1].jointype & JT_NATURAL ){+ −
/* If this match occurred in the left table of a natural join,+ −
** then skip the right table to avoid a duplicate match */+ −
pItem++;+ −
i++;+ −
}else if( (pUsing = pItem[1].pUsing)!=0 ){+ −
/* If this match occurs on a column that is in the USING clause+ −
** of a join, skip the search of the right table of the join+ −
** to avoid a duplicate match there. */+ −
int k;+ −
for(k=0; k<pUsing->nId; k++){+ −
if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){+ −
pItem++;+ −
i++;+ −
break;+ −
}+ −
}+ −
}+ −
}+ −
break;+ −
}+ −
}+ −
}+ −
}+ −
+ −
#ifndef SQLITE_OMIT_TRIGGER+ −
/* If we have not already resolved the name, then maybe + −
** it is a new.* or old.* trigger argument reference+ −
*/+ −
if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){+ −
TriggerStack *pTriggerStack = pParse->trigStack;+ −
Table *pTab = 0;+ −
if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){+ −
pExpr->iTable = pTriggerStack->newIdx;+ −
assert( pTriggerStack->pTab );+ −
pTab = pTriggerStack->pTab;+ −
}else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){+ −
pExpr->iTable = pTriggerStack->oldIdx;+ −
assert( pTriggerStack->pTab );+ −
pTab = pTriggerStack->pTab;+ −
}+ −
+ −
if( pTab ){ + −
int iCol;+ −
Column *pCol = pTab->aCol;+ −
+ −
pSchema = pTab->pSchema;+ −
cntTab++;+ −
for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {+ −
if( sqlite3StrICmp(pCol->zName, zCol)==0 ){+ −
const char *zColl = pTab->aCol[iCol].zColl;+ −
cnt++;+ −
pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;+ −
pExpr->affinity = pTab->aCol[iCol].affinity;+ −
if( (pExpr->flags & EP_ExpCollate)==0 ){+ −
pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);+ −
}+ −
pExpr->pTab = pTab;+ −
break;+ −
}+ −
}+ −
}+ −
}+ −
#endif /* !defined(SQLITE_OMIT_TRIGGER) */+ −
+ −
/*+ −
** Perhaps the name is a reference to the ROWID+ −
*/+ −
if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){+ −
cnt = 1;+ −
pExpr->iColumn = -1;+ −
pExpr->affinity = SQLITE_AFF_INTEGER;+ −
}+ −
+ −
/*+ −
** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z+ −
** might refer to an result-set alias. This happens, for example, when+ −
** we are resolving names in the WHERE clause of the following command:+ −
**+ −
** SELECT a+b AS x FROM table WHERE x<10;+ −
**+ −
** In cases like this, replace pExpr with a copy of the expression that+ −
** forms the result set entry ("a+b" in the example) and return immediately.+ −
** Note that the expression in the result set should have already been+ −
** resolved by the time the WHERE clause is resolved.+ −
*/+ −
if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){+ −
for(j=0; j<pEList->nExpr; j++){+ −
char *zAs = pEList->a[j].zName;+ −
if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){+ −
Expr *pDup, *pOrig;+ −
assert( pExpr->pLeft==0 && pExpr->pRight==0 );+ −
assert( pExpr->pList==0 );+ −
assert( pExpr->pSelect==0 );+ −
pOrig = pEList->a[j].pExpr;+ −
if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){+ −
sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);+ −
sqlite3_free(zCol);+ −
return 2;+ −
}+ −
pDup = sqlite3ExprDup(db, pOrig);+ −
if( pExpr->flags & EP_ExpCollate ){+ −
pDup->pColl = pExpr->pColl;+ −
pDup->flags |= EP_ExpCollate;+ −
}+ −
if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z);+ −
if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z);+ −
memcpy(pExpr, pDup, sizeof(*pExpr));+ −
sqlite3_free(pDup);+ −
cnt = 1;+ −
pMatch = 0;+ −
assert( zTab==0 && zDb==0 );+ −
goto lookupname_end_2;+ −
}+ −
} + −
}+ −
+ −
/* Advance to the next name context. The loop will exit when either+ −
** we have a match (cnt>0) or when we run out of name contexts.+ −
*/+ −
if( cnt==0 ){+ −
pNC = pNC->pNext;+ −
}+ −
}+ −
+ −
/*+ −
** If X and Y are NULL (in other words if only the column name Z is+ −
** supplied) and the value of Z is enclosed in double-quotes, then+ −
** Z is a string literal if it doesn't match any column names. In that+ −
** case, we need to return right away and not make any changes to+ −
** pExpr.+ −
**+ −
** Because no reference was made to outer contexts, the pNC->nRef+ −
** fields are not changed in any context.+ −
*/+ −
if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){+ −
sqlite3_free(zCol);+ −
return 0;+ −
}+ −
+ −
/*+ −
** cnt==0 means there was not match. cnt>1 means there were two or+ −
** more matches. Either way, we have an error.+ −
*/+ −
if( cnt!=1 ){+ −
char *z = 0;+ −
char *zErr;+ −
zErr = (char*)(cnt==0 ? "no such column: %s" : "ambiguous column name: %s");+ −
if( zDb ){+ −
sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0);+ −
}else if( zTab ){+ −
sqlite3SetString(&z, zTab, ".", zCol, (char*)0);+ −
}else{+ −
z = sqlite3StrDup(zCol);+ −
}+ −
if( z ){+ −
sqlite3ErrorMsg(pParse, zErr, z);+ −
sqlite3_free(z);+ −
pTopNC->nErr++;+ −
}else{+ −
db->mallocFailed = 1;+ −
}+ −
}+ −
+ −
/* If a column from a table in pSrcList is referenced, then record+ −
** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes+ −
** bit 0 to be set. Column 1 sets bit 1. And so forth. If the+ −
** column number is greater than the number of bits in the bitmask+ −
** then set the high-order bit of the bitmask.+ −
*/+ −
if( pExpr->iColumn>=0 && pMatch!=0 ){+ −
int n = pExpr->iColumn;+ −
if( n>=sizeof(Bitmask)*8 ){+ −
n = sizeof(Bitmask)*8-1;+ −
}+ −
assert( pMatch->iCursor==pExpr->iTable );+ −
pMatch->colUsed |= ((Bitmask)1)<<n;+ −
}+ −
+ −
lookupname_end:+ −
/* Clean up and return+ −
*/+ −
sqlite3_free(zDb);+ −
sqlite3_free(zTab);+ −
sqlite3ExprDelete(pExpr->pLeft);+ −
pExpr->pLeft = 0;+ −
sqlite3ExprDelete(pExpr->pRight);+ −
pExpr->pRight = 0;+ −
pExpr->op = TK_COLUMN;+ −
lookupname_end_2:+ −
sqlite3_free(zCol);+ −
if( cnt==1 ){+ −
assert( pNC!=0 );+ −
sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);+ −
if( pMatch && !pMatch->pSelect ){+ −
pExpr->pTab = pMatch->pTab;+ −
}+ −
/* Increment the nRef value on all name contexts from TopNC up to+ −
** the point where the name matched. */+ −
for(;;){+ −
assert( pTopNC!=0 );+ −
pTopNC->nRef++;+ −
if( pTopNC==pNC ) break;+ −
pTopNC = pTopNC->pNext;+ −
}+ −
return 0;+ −
} else {+ −
return 1;+ −
}+ −
}+ −
+ −
/*+ −
** This routine is designed as an xFunc for walkExprTree().+ −
**+ −
** Resolve symbolic names into TK_COLUMN operators for the current+ −
** node in the expression tree. Return 0 to continue the search down+ −
** the tree or 2 to abort the tree walk.+ −
**+ −
** This routine also does error checking and name resolution for+ −
** function names. The operator for aggregate functions is changed+ −
** to TK_AGG_FUNCTION.+ −
*/+ −
static int nameResolverStep(void *pArg, Expr *pExpr){+ −
NameContext *pNC = (NameContext*)pArg;+ −
Parse *pParse;+ −
+ −
if( pExpr==0 ) return 1;+ −
assert( pNC!=0 );+ −
pParse = pNC->pParse;+ −
+ −
if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;+ −
ExprSetProperty(pExpr, EP_Resolved);+ −
#ifndef NDEBUG+ −
if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){+ −
SrcList *pSrcList = pNC->pSrcList;+ −
int i;+ −
for(i=0; i<pNC->pSrcList->nSrc; i++){+ −
assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);+ −
}+ −
}+ −
#endif+ −
switch( pExpr->op ){+ −
/* Double-quoted strings (ex: "abc") are used as identifiers if+ −
** possible. Otherwise they remain as strings. Single-quoted+ −
** strings (ex: 'abc') are always string literals.+ −
*/+ −
case TK_STRING: {+ −
if( pExpr->token.z[0]=='\'' ) break;+ −
/* Fall thru into the TK_ID case if this is a double-quoted string */+ −
}+ −
/* A lone identifier is the name of a column.+ −
*/+ −
case TK_ID: {+ −
lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);+ −
return 1;+ −
}+ −
+ −
/* A table name and column name: ID.ID+ −
** Or a database, table and column: ID.ID.ID+ −
*/+ −
case TK_DOT: {+ −
Token *pColumn;+ −
Token *pTable;+ −
Token *pDb;+ −
Expr *pRight;+ −
+ −
/* if( pSrcList==0 ) break; */+ −
pRight = pExpr->pRight;+ −
if( pRight->op==TK_ID ){+ −
pDb = 0;+ −
pTable = &pExpr->pLeft->token;+ −
pColumn = &pRight->token;+ −
}else{+ −
assert( pRight->op==TK_DOT );+ −
pDb = &pExpr->pLeft->token;+ −
pTable = &pRight->pLeft->token;+ −
pColumn = &pRight->pRight->token;+ −
}+ −
lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);+ −
return 1;+ −
}+ −
+ −
/* Resolve function names+ −
*/+ −
case TK_CONST_FUNC:+ −
case TK_FUNCTION: {+ −
ExprList *pList = pExpr->pList; /* The argument list */+ −
int n = pList ? pList->nExpr : 0; /* Number of arguments */+ −
int no_such_func = 0; /* True if no such function exists */+ −
int wrong_num_args = 0; /* True if wrong number of arguments */+ −
int is_agg = 0; /* True if is an aggregate function */+ −
int i;+ −
int auth; /* Authorization to use the function */+ −
int nId; /* Number of characters in function name */+ −
const char *zId; /* The function name. */+ −
FuncDef *pDef; /* Information about the function */+ −
int enc = ENC(pParse->db); /* The database encoding */+ −
+ −
zId = (char*)pExpr->token.z;+ −
nId = pExpr->token.n;+ −
pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);+ −
if( pDef==0 ){+ −
pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);+ −
if( pDef==0 ){+ −
no_such_func = 1;+ −
}else{+ −
wrong_num_args = 1;+ −
}+ −
}else{+ −
is_agg = pDef->xFunc==0;+ −
}+ −
#ifndef SQLITE_OMIT_AUTHORIZATION+ −
if( pDef ){+ −
auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);+ −
if( auth!=SQLITE_OK ){+ −
if( auth==SQLITE_DENY ){+ −
sqlite3ErrorMsg(pParse, "not authorized to use function: %s",+ −
pDef->zName);+ −
pNC->nErr++;+ −
}+ −
pExpr->op = TK_NULL;+ −
return 1;+ −
}+ −
}+ −
#endif+ −
if( is_agg && !pNC->allowAgg ){+ −
sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);+ −
pNC->nErr++;+ −
is_agg = 0;+ −
}else if( no_such_func ){+ −
sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);+ −
pNC->nErr++;+ −
}else if( wrong_num_args ){+ −
sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",+ −
nId, zId);+ −
pNC->nErr++;+ −
}+ −
if( is_agg ){+ −
pExpr->op = TK_AGG_FUNCTION;+ −
pNC->hasAgg = 1;+ −
}+ −
if( is_agg ) pNC->allowAgg = 0;+ −
for(i=0; pNC->nErr==0 && i<n; i++){+ −
walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);+ −
}+ −
if( is_agg ) pNC->allowAgg = 1;+ −
/* FIX ME: Compute pExpr->affinity based on the expected return+ −
** type of the function + −
*/+ −
return is_agg;+ −
}+ −
#ifndef SQLITE_OMIT_SUBQUERY+ −
case TK_SELECT:+ −
case TK_EXISTS:+ −
#endif+ −
case TK_IN: {+ −
if( pExpr->pSelect ){+ −
int nRef = pNC->nRef;+ −
#ifndef SQLITE_OMIT_CHECK+ −
if( pNC->isCheck ){+ −
sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");+ −
}+ −
#endif+ −
sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);+ −
assert( pNC->nRef>=nRef );+ −
if( nRef!=pNC->nRef ){+ −
ExprSetProperty(pExpr, EP_VarSelect);+ −
}+ −
}+ −
break;+ −
}+ −
#ifndef SQLITE_OMIT_CHECK+ −
case TK_VARIABLE: {+ −
if( pNC->isCheck ){+ −
sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");+ −
}+ −
break;+ −
}+ −
#endif+ −
}+ −
return 0;+ −
}+ −
+ −
/*+ −
** This routine walks an expression tree and resolves references to+ −
** table columns. Nodes of the form ID.ID or ID resolve into an+ −
** index to the table in the table list and a column offset. The + −
** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable+ −
** value is changed to the index of the referenced table in pTabList+ −
** plus the "base" value. The base value will ultimately become the+ −
** VDBE cursor number for a cursor that is pointing into the referenced+ −
** table. The Expr.iColumn value is changed to the index of the column + −
** of the referenced table. The Expr.iColumn value for the special+ −
** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an+ −
** alias for ROWID.+ −
**+ −
** Also resolve function names and check the functions for proper+ −
** usage. Make sure all function names are recognized and all functions+ −
** have the correct number of arguments. Leave an error message+ −
** in pParse->zErrMsg if anything is amiss. Return the number of errors.+ −
**+ −
** If the expression contains aggregate functions then set the EP_Agg+ −
** property on the expression.+ −
*/+ −
int sqlite3ExprResolveNames( + −
NameContext *pNC, /* Namespace to resolve expressions in. */+ −
Expr *pExpr /* The expression to be analyzed. */+ −
){+ −
int savedHasAgg;+ −
if( pExpr==0 ) return 0;+ −
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0+ −
if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){+ −
sqlite3ErrorMsg(pNC->pParse, + −
"Expression tree is too large (maximum depth %d)",+ −
SQLITE_MAX_EXPR_DEPTH+ −
);+ −
return 1;+ −
}+ −
pNC->pParse->nHeight += pExpr->nHeight;+ −
#endif+ −
savedHasAgg = pNC->hasAgg;+ −
pNC->hasAgg = 0;+ −
walkExprTree(pExpr, nameResolverStep, pNC);+ −
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0+ −
pNC->pParse->nHeight -= pExpr->nHeight;+ −
#endif+ −
if( pNC->nErr>0 ){+ −
ExprSetProperty(pExpr, EP_Error);+ −
}+ −
if( pNC->hasAgg ){+ −
ExprSetProperty(pExpr, EP_Agg);+ −
}else if( savedHasAgg ){+ −
pNC->hasAgg = 1;+ −
}+ −
return ExprHasProperty(pExpr, EP_Error);+ −
}+ −
+ −
/*+ −
** A pointer instance of this structure is used to pass information+ −
** through walkExprTree into codeSubqueryStep().+ −
*/+ −
typedef struct QueryCoder QueryCoder;+ −
struct QueryCoder {+ −
Parse *pParse; /* The parsing context */+ −
NameContext *pNC; /* Namespace of first enclosing query */+ −
};+ −
+ −
#ifdef SQLITE_TEST+ −
int sqlite3_enable_in_opt = 1;+ −
#else+ −
#define sqlite3_enable_in_opt 1+ −
#endif+ −
+ −
/*+ −
** This function is used by the implementation of the IN (...) operator.+ −
** It's job is to find or create a b-tree structure that may be used+ −
** either to test for membership of the (...) set or to iterate through+ −
** its members, skipping duplicates.+ −
**+ −
** The cursor opened on the structure (database table, database index + −
** or ephermal table) is stored in pX->iTable before this function returns.+ −
** The returned value indicates the structure type, as follows:+ −
**+ −
** IN_INDEX_ROWID - The cursor was opened on a database table.+ −
** IN_INDEX_INDEX - The cursor was opened on a database indec.+ −
** IN_INDEX_EPH - The cursor was opened on a specially created and+ −
** populated epheremal table.+ −
**+ −
** An existing structure may only be used if the SELECT is of the simple+ −
** form:+ −
**+ −
** SELECT <column> FROM <table>+ −
**+ −
** If the mustBeUnique parameter is false, the structure will be used + −
** for fast set membership tests. In this case an epheremal table must + −
** be used unless <column> is an INTEGER PRIMARY KEY or an index can + −
** be found with <column> as its left-most column.+ −
**+ −
** If mustBeUnique is true, then the structure will be used to iterate+ −
** through the set members, skipping any duplicates. In this case an+ −
** epheremal table must be used unless the selected <column> is guaranteed+ −
** to be unique - either because it is an INTEGER PRIMARY KEY or it+ −
** is unique by virtue of a constraint or implicit index.+ −
*/+ −
#ifndef SQLITE_OMIT_SUBQUERY+ −
int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){+ −
Select *p;+ −
int eType = 0;+ −
int iTab = pParse->nTab++;+ −
+ −
/* The follwing if(...) expression is true if the SELECT is of the + −
** simple form:+ −
**+ −
** SELECT <column> FROM <table>+ −
**+ −
** If this is the case, it may be possible to use an existing table+ −
** or index instead of generating an epheremal table.+ −
*/+ −
if( sqlite3_enable_in_opt+ −
&& (p=pX->pSelect) && !p->pPrior+ −
&& !p->isDistinct && !p->isAgg && !p->pGroupBy+ −
&& p->pSrc && p->pSrc->nSrc==1 && !p->pSrc->a[0].pSelect+ −
&& !p->pSrc->a[0].pTab->pSelect + −
&& p->pEList->nExpr==1 && p->pEList->a[0].pExpr->op==TK_COLUMN+ −
&& !p->pLimit && !p->pOffset && !p->pWhere+ −
){+ −
sqlite3 *db = pParse->db;+ −
Index *pIdx;+ −
Expr *pExpr = p->pEList->a[0].pExpr;+ −
int iCol = pExpr->iColumn;+ −
Vdbe *v = sqlite3GetVdbe(pParse);+ −
+ −
/* This function is only called from two places. In both cases the vdbe+ −
** has already been allocated. So assume sqlite3GetVdbe() is always+ −
** successful here.+ −
*/+ −
assert(v);+ −
if( iCol<0 ){+ −
int iMem = pParse->nMem++;+ −
int iAddr;+ −
Table *pTab = p->pSrc->a[0].pTab;+ −
int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);+ −
sqlite3VdbeUsesBtree(v, iDb);+ −
+ −
sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);+ −
iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem);+ −
sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem);+ −
+ −
sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);+ −
eType = IN_INDEX_ROWID;+ −
+ −
sqlite3VdbeJumpHere(v, iAddr);+ −
}else{+ −
/* The collation sequence used by the comparison. If an index is to + −
** be used in place of a temp-table, it must be ordered according+ −
** to this collation sequence.+ −
*/+ −
CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);+ −
+ −
/* Check that the affinity that will be used to perform the + −
** comparison is the same as the affinity of the column. If+ −
** it is not, it is not possible to use any index.+ −
*/+ −
Table *pTab = p->pSrc->a[0].pTab;+ −
char aff = comparisonAffinity(pX);+ −
int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);+ −
+ −
for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){+ −
if( (pIdx->aiColumn[0]==iCol)+ −
&& (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))+ −
&& (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))+ −
){+ −
int iDb;+ −
int iMem = pParse->nMem++;+ −
int iAddr;+ −
char *pKey;+ −
+ −
pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);+ −
iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);+ −
sqlite3VdbeUsesBtree(v, iDb);+ −
+ −
sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);+ −
iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem);+ −
sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem);+ −
+ −
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);+ −
VdbeComment((v, "# %s", pIdx->zName));+ −
sqlite3VdbeOp3(v,OP_OpenRead,iTab,pIdx->tnum,pKey,P3_KEYINFO_HANDOFF);+ −
eType = IN_INDEX_INDEX;+ −
sqlite3VdbeAddOp(v, OP_SetNumColumns, iTab, pIdx->nColumn);+ −
+ −
sqlite3VdbeJumpHere(v, iAddr);+ −
}+ −
}+ −
}+ −
}+ −
+ −
if( eType==0 ){+ −
sqlite3CodeSubselect(pParse, pX);+ −
eType = IN_INDEX_EPH;+ −
}else{+ −
pX->iTable = iTab;+ −
}+ −
return eType;+ −
}+ −
#endif+ −
+ −
/*+ −
** Generate code for scalar subqueries used as an expression+ −
** and IN operators. Examples:+ −
**+ −
** (SELECT a FROM b) -- subquery+ −
** EXISTS (SELECT a FROM b) -- EXISTS subquery+ −
** x IN (4,5,11) -- IN operator with list on right-hand side+ −
** x IN (SELECT a FROM b) -- IN operator with subquery on the right+ −
**+ −
** The pExpr parameter describes the expression that contains the IN+ −
** operator or subquery.+ −
*/+ −
#ifndef SQLITE_OMIT_SUBQUERY+ −
void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){+ −
int testAddr = 0; /* One-time test address */+ −
Vdbe *v = sqlite3GetVdbe(pParse);+ −
if( v==0 ) return;+ −
+ −
+ −
/* This code must be run in its entirety every time it is encountered+ −
** if any of the following is true:+ −
**+ −
** * The right-hand side is a correlated subquery+ −
** * The right-hand side is an expression list containing variables+ −
** * We are inside a trigger+ −
**+ −
** If all of the above are false, then we can run this code just once+ −
** save the results, and reuse the same result on subsequent invocations.+ −
*/+ −
if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){+ −
int mem = pParse->nMem++;+ −
sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);+ −
testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);+ −
assert( testAddr>0 || pParse->db->mallocFailed );+ −
sqlite3VdbeAddOp(v, OP_MemInt, 1, mem);+ −
}+ −
+ −
switch( pExpr->op ){+ −
case TK_IN: {+ −
char affinity;+ −
KeyInfo keyInfo;+ −
int addr; /* Address of OP_OpenEphemeral instruction */+ −
+ −
affinity = sqlite3ExprAffinity(pExpr->pLeft);+ −
+ −
/* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'+ −
** expression it is handled the same way. A virtual table is + −
** filled with single-field index keys representing the results+ −
** from the SELECT or the <exprlist>.+ −
**+ −
** If the 'x' expression is a column value, or the SELECT...+ −
** statement returns a column value, then the affinity of that+ −
** column is used to build the index keys. If both 'x' and the+ −
** SELECT... statement are columns, then numeric affinity is used+ −
** if either column has NUMERIC or INTEGER affinity. If neither+ −
** 'x' nor the SELECT... statement are columns, then numeric affinity+ −
** is used.+ −
*/+ −
pExpr->iTable = pParse->nTab++;+ −
addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0);+ −
memset(&keyInfo, 0, sizeof(keyInfo));+ −
keyInfo.nField = 1;+ −
sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);+ −
+ −
if( pExpr->pSelect ){+ −
/* Case 1: expr IN (SELECT ...)+ −
**+ −
** Generate code to write the results of the select into the temporary+ −
** table allocated and opened above.+ −
*/+ −
int iParm = pExpr->iTable + (((int)affinity)<<16);+ −
ExprList *pEList;+ −
assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );+ −
if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){+ −
return;+ −
}+ −
pEList = pExpr->pSelect->pEList;+ −
if( pEList && pEList->nExpr>0 ){ + −
keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,+ −
pEList->a[0].pExpr);+ −
}+ −
}else if( pExpr->pList ){+ −
/* Case 2: expr IN (exprlist)+ −
**+ −
** For each expression, build an index key from the evaluation and+ −
** store it in the temporary table. If <expr> is a column, then use+ −
** that columns affinity when building index keys. If <expr> is not+ −
** a column, use numeric affinity.+ −
*/+ −
int i;+ −
ExprList *pList = pExpr->pList;+ −
ExprList::ExprList_item *pItem;+ −
+ −
if( !affinity ){+ −
affinity = SQLITE_AFF_NONE;+ −
}+ −
keyInfo.aColl[0] = pExpr->pLeft->pColl;+ −
+ −
/* Loop through each expression in <exprlist>. */+ −
for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){+ −
Expr *pE2 = pItem->pExpr;+ −
+ −
/* If the expression is not constant then we will need to+ −
** disable the test that was generated above that makes sure+ −
** this code only executes once. Because for a non-constant+ −
** expression we need to rerun this code each time.+ −
*/+ −
if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){+ −
sqlite3VdbeChangeToNoop(v, testAddr-1, 3);+ −
testAddr = 0;+ −
}+ −
+ −
/* Evaluate the expression and insert it into the temp table */+ −
sqlite3ExprCode(pParse, pE2);+ −
sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);+ −
sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0);+ −
}+ −
}+ −
sqlite3VdbeChangeP3(v, addr, (const char *)&keyInfo, P3_KEYINFO);+ −
break;+ −
}+ −
+ −
case TK_EXISTS:+ −
case TK_SELECT: {+ −
/* This has to be a scalar SELECT. Generate code to put the+ −
** value of this select in a memory cell and record the number+ −
** of the memory cell in iColumn.+ −
*/+ −
static const Token one = { (u8*)"1", 0, 1 };+ −
Select *pSel;+ −
int iMem;+ −
int sop;+ −
+ −
pExpr->iColumn = iMem = pParse->nMem++;+ −
pSel = pExpr->pSelect;+ −
if( pExpr->op==TK_SELECT ){+ −
sop = SRT_Mem;+ −
sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0);+ −
VdbeComment((v, "# Init subquery result"));+ −
}else{+ −
sop = SRT_Exists;+ −
sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem);+ −
VdbeComment((v, "# Init EXISTS result"));+ −
}+ −
sqlite3ExprDelete(pSel->pLimit);+ −
pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);+ −
if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){+ −
return;+ −
}+ −
break;+ −
}+ −
}+ −
+ −
if( testAddr ){+ −
sqlite3VdbeJumpHere(v, testAddr);+ −
}+ −
+ −
return;+ −
}+ −
#endif /* SQLITE_OMIT_SUBQUERY */+ −
+ −
/*+ −
** Duplicate an 8-byte value+ −
*/+ −
static char *dup8bytes(Vdbe *v, const char *in){+ −
char *out = (char*)sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);+ −
if( out ){+ −
memcpy(out, in, 8);+ −
}+ −
return out;+ −
}+ −
+ −
/*+ −
** Generate an instruction that will put the floating point+ −
** value described by z[0..n-1] on the stack.+ −
**+ −
** The z[] string will probably not be zero-terminated. But the + −
** z[n] character is guaranteed to be something that does not look+ −
** like the continuation of the number.+ −
*/+ −
static void codeReal(Vdbe *v, const char *z, int n, int negateFlag){+ −
assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );+ −
if( z ){+ −
double value;+ −
char *zV;+ −
assert( !isdigit(z[n]) );+ −
sqlite3AtoF(z, &value);+ −
if( negateFlag ) value = -value;+ −
zV = dup8bytes(v, (char*)&value);+ −
sqlite3VdbeOp3(v, OP_Real, 0, 0, zV, P3_REAL);+ −
}+ −
}+ −
+ −
+ −
/*+ −
** Generate an instruction that will put the integer describe by+ −
** text z[0..n-1] on the stack.+ −
**+ −
** The z[] string will probably not be zero-terminated. But the + −
** z[n] character is guaranteed to be something that does not look+ −
** like the continuation of the number.+ −
*/+ −
static void codeInteger(Vdbe *v, const char *z, int n, int negateFlag){+ −
assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );+ −
if( z ){+ −
int i;+ −
assert( !isdigit(z[n]) );+ −
if( sqlite3GetInt32(z, &i) ){+ −
if( negateFlag ) i = -i;+ −
sqlite3VdbeAddOp(v, OP_Integer, i, 0);+ −
}else if( sqlite3FitsIn64Bits(z, negateFlag) ){+ −
i64 value;+ −
char *zV;+ −
sqlite3Atoi64(z, &value);+ −
if( negateFlag ) value = -value;+ −
zV = dup8bytes(v, (char*)&value);+ −
sqlite3VdbeOp3(v, OP_Int64, 0, 0, zV, P3_INT64);+ −
}else{+ −
codeReal(v, z, n, negateFlag);+ −
}+ −
}+ −
}+ −
+ −
+ −
/*+ −
** Generate code that will extract the iColumn-th column from+ −
** table pTab and push that column value on the stack. There+ −
** is an open cursor to pTab in iTable. If iColumn<0 then+ −
** code is generated that extracts the rowid.+ −
*/+ −
void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){+ −
if( iColumn<0 ){+ −
int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;+ −
sqlite3VdbeAddOp(v, op, iTable, 0);+ −
}else if( pTab==0 ){+ −
sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn);+ −
}else{+ −
int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;+ −
sqlite3VdbeAddOp(v, op, iTable, iColumn);+ −
sqlite3ColumnDefault(v, pTab, iColumn);+ −
#ifndef SQLITE_OMIT_FLOATING_POINT+ −
if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){+ −
sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0);+ −
}+ −
#endif+ −
}+ −
}+ −
+ −
/*+ −
** Generate code into the current Vdbe to evaluate the given+ −
** expression and leave the result on the top of stack.+ −
**+ −
** This code depends on the fact that certain token values (ex: TK_EQ)+ −
** are the same as opcode values (ex: OP_Eq) that implement the corresponding+ −
** operation. Special comments in vdbe.c and the mkopcodeh.awk script in+ −
** the make process cause these values to align. Assert()s in the code+ −
** below verify that the numbers are aligned correctly.+ −
*/+ −
void sqlite3ExprCode(Parse *pParse, Expr *pExpr){+ −
Vdbe *v = pParse->pVdbe;+ −
int op;+ −
int stackChng = 1; /* Amount of change to stack depth */+ −
+ −
if( v==0 ) return;+ −
if( pExpr==0 ){+ −
sqlite3VdbeAddOp(v, OP_Null, 0, 0);+ −
return;+ −
}+ −
op = pExpr->op;+ −
switch( op ){+ −
case TK_AGG_COLUMN: {+ −
AggInfo *pAggInfo = pExpr->pAggInfo;+ −
AggInfo::AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];+ −
if( !pAggInfo->directMode ){+ −
sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);+ −
break;+ −
}else if( pAggInfo->useSortingIdx ){+ −
sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,+ −
pCol->iSorterColumn);+ −
break;+ −
}+ −
/* Otherwise, fall thru into the TK_COLUMN case */+ −
}+ −
case TK_COLUMN: {+ −
if( pExpr->iTable<0 ){+ −
/* This only happens when coding check constraints */+ −
assert( pParse->ckOffset>0 );+ −
sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);+ −
}else{+ −
sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable);+ −
}+ −
break;+ −
}+ −
case TK_INTEGER: {+ −
codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0);+ −
break;+ −
}+ −
case TK_FLOAT: {+ −
codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0);+ −
break;+ −
}+ −
case TK_STRING: {+ −
sqlite3DequoteExpr(pParse->db, pExpr);+ −
sqlite3VdbeOp3(v,OP_String8, 0, 0, (char*)pExpr->token.z, pExpr->token.n);+ −
break;+ −
}+ −
case TK_NULL: {+ −
sqlite3VdbeAddOp(v, OP_Null, 0, 0);+ −
break;+ −
}+ −
#ifndef SQLITE_OMIT_BLOB_LITERAL+ −
case TK_BLOB: {+ −
int n;+ −
const char *z;+ −
assert( TK_BLOB==OP_HexBlob );+ −
n = pExpr->token.n - 3;+ −
z = (char*)pExpr->token.z + 2;+ −
assert( n>=0 );+ −
if( n==0 ){+ −
z = "";+ −
}+ −
sqlite3VdbeOp3(v, op, 0, 0, z, n);+ −
break;+ −
}+ −
#endif+ −
case TK_VARIABLE: {+ −
sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0);+ −
if( pExpr->token.n>1 ){+ −
sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n);+ −
}+ −
break;+ −
}+ −
case TK_REGISTER: {+ −
sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0);+ −
break;+ −
}+ −
#ifndef SQLITE_OMIT_CAST+ −
case TK_CAST: {+ −
/* Expressions of the form: CAST(pLeft AS token) */+ −
int aff, to_op;+ −
sqlite3ExprCode(pParse, pExpr->pLeft);+ −
aff = sqlite3AffinityType(&pExpr->token);+ −
to_op = aff - SQLITE_AFF_TEXT + OP_ToText;+ −
assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );+ −
assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );+ −
assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );+ −
assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );+ −
assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );+ −
sqlite3VdbeAddOp(v, to_op, 0, 0);+ −
stackChng = 0;+ −
break;+ −
}+ −
#endif /* SQLITE_OMIT_CAST */+ −
case TK_LT:+ −
case TK_LE:+ −
case TK_GT:+ −
case TK_GE:+ −
case TK_NE:+ −
case TK_EQ: {+ −
assert( TK_LT==OP_Lt );+ −
assert( TK_LE==OP_Le );+ −
assert( TK_GT==OP_Gt );+ −
assert( TK_GE==OP_Ge );+ −
assert( TK_EQ==OP_Eq );+ −
assert( TK_NE==OP_Ne );+ −
sqlite3ExprCode(pParse, pExpr->pLeft);+ −
sqlite3ExprCode(pParse, pExpr->pRight);+ −
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0);+ −
stackChng = -1;+ −
break;+ −
}+ −
case TK_AND:+ −
case TK_OR:+ −
case TK_PLUS:+ −
case TK_STAR:+ −
case TK_MINUS:+ −
case TK_REM:+ −
case TK_BITAND:+ −
case TK_BITOR:+ −
case TK_SLASH:+ −
case TK_LSHIFT:+ −
case TK_RSHIFT: + −
case TK_CONCAT: {+ −
assert( TK_AND==OP_And );+ −
assert( TK_OR==OP_Or );+ −
assert( TK_PLUS==OP_Add );+ −
assert( TK_MINUS==OP_Subtract );+ −
assert( TK_REM==OP_Remainder );+ −
assert( TK_BITAND==OP_BitAnd );+ −
assert( TK_BITOR==OP_BitOr );+ −
assert( TK_SLASH==OP_Divide );+ −
assert( TK_LSHIFT==OP_ShiftLeft );+ −
assert( TK_RSHIFT==OP_ShiftRight );+ −
assert( TK_CONCAT==OP_Concat );+ −
sqlite3ExprCode(pParse, pExpr->pLeft);+ −
sqlite3ExprCode(pParse, pExpr->pRight);+ −
sqlite3VdbeAddOp(v, op, 0, 0);+ −
stackChng = -1;+ −
break;+ −
}+ −
case TK_UMINUS: {+ −
Expr *pLeft = pExpr->pLeft;+ −
assert( pLeft );+ −
if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){+ −
Token *p = &pLeft->token;+ −
if( pLeft->op==TK_FLOAT ){+ −
codeReal(v, (char*)p->z, p->n, 1);+ −
}else{+ −
codeInteger(v, (char*)p->z, p->n, 1);+ −
}+ −
break;+ −
}+ −
/* Fall through into TK_NOT */+ −
}+ −
case TK_BITNOT:+ −
case TK_NOT: {+ −
assert( TK_BITNOT==OP_BitNot );+ −
assert( TK_NOT==OP_Not );+ −
sqlite3ExprCode(pParse, pExpr->pLeft);+ −
sqlite3VdbeAddOp(v, op, 0, 0);+ −
stackChng = 0;+ −
break;+ −
}+ −
case TK_ISNULL:+ −
case TK_NOTNULL: {+ −
int dest;+ −
assert( TK_ISNULL==OP_IsNull );+ −
assert( TK_NOTNULL==OP_NotNull );+ −
sqlite3VdbeAddOp(v, OP_Integer, 1, 0);+ −
sqlite3ExprCode(pParse, pExpr->pLeft);+ −
dest = sqlite3VdbeCurrentAddr(v) + 2;+ −
sqlite3VdbeAddOp(v, op, 1, dest);+ −
sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);+ −
stackChng = 0;+ −
break;+ −
}+ −
case TK_AGG_FUNCTION: {+ −
AggInfo *pInfo = pExpr->pAggInfo;+ −
if( pInfo==0 ){+ −
sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",+ −
&pExpr->span);+ −
}else{+ −
sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);+ −
}+ −
break;+ −
}+ −
case TK_CONST_FUNC:+ −
case TK_FUNCTION: {+ −
ExprList *pList = pExpr->pList;+ −
int nExpr = pList ? pList->nExpr : 0;+ −
FuncDef *pDef;+ −
int nId;+ −
const char *zId;+ −
int constMask = 0;+ −
int i;+ −
sqlite3 *db = pParse->db;+ −
u8 enc = ENC(db);+ −
CollSeq *pColl = 0;+ −
+ −
zId = (char*)pExpr->token.z;+ −
nId = pExpr->token.n;+ −
pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);+ −
assert( pDef!=0 );+ −
nExpr = sqlite3ExprCodeExprList(pParse, pList);+ −
#ifndef SQLITE_OMIT_VIRTUALTABLE+ −
/* Possibly overload the function if the first argument is+ −
** a virtual table column.+ −
**+ −
** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the+ −
** second argument, not the first, as the argument to test to+ −
** see if it is a column in a virtual table. This is done because+ −
** the left operand of infix functions (the operand we want to+ −
** control overloading) ends up as the second argument to the+ −
** function. The expression "A glob B" is equivalent to + −
** "glob(B,A). We want to use the A in "A glob B" to test+ −
** for function overloading. But we use the B term in "glob(B,A)".+ −
*/+ −
if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){+ −
pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);+ −
}else if( nExpr>0 ){+ −
pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);+ −
}+ −
#endif+ −
for(i=0; i<nExpr && i<32; i++){+ −
if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){+ −
constMask |= (1<<i);+ −
}+ −
if( pDef->needCollSeq && !pColl ){+ −
pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);+ −
}+ −
}+ −
if( pDef->needCollSeq ){+ −
if( !pColl ) pColl = pParse->db->pDfltColl; + −
sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);+ −
}+ −
sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);+ −
stackChng = 1-nExpr;+ −
break;+ −
}+ −
#ifndef SQLITE_OMIT_SUBQUERY+ −
case TK_EXISTS:+ −
case TK_SELECT: {+ −
if( pExpr->iColumn==0 ){+ −
sqlite3CodeSubselect(pParse, pExpr);+ −
}+ −
sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);+ −
VdbeComment((v, "# load subquery result"));+ −
break;+ −
}+ −
case TK_IN: {+ −
int addr;+ −
char affinity;+ −
int ckOffset = pParse->ckOffset;+ −
int eType;+ −
int iLabel = sqlite3VdbeMakeLabel(v);+ −
+ −
eType = sqlite3FindInIndex(pParse, pExpr, 0);+ −
+ −
/* Figure out the affinity to use to create a key from the results+ −
** of the expression. affinityStr stores a static string suitable for+ −
** P3 of OP_MakeRecord.+ −
*/+ −
affinity = comparisonAffinity(pExpr);+ −
+ −
sqlite3VdbeAddOp(v, OP_Integer, 1, 0);+ −
pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0);+ −
+ −
/* Code the <expr> from "<expr> IN (...)". The temporary table+ −
** pExpr->iTable contains the values that make up the (...) set.+ −
*/+ −
sqlite3ExprCode(pParse, pExpr->pLeft);+ −
addr = sqlite3VdbeCurrentAddr(v);+ −
sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */+ −
sqlite3VdbeAddOp(v, OP_Pop, 2, 0);+ −
sqlite3VdbeAddOp(v, OP_Null, 0, 0);+ −
sqlite3VdbeAddOp(v, OP_Goto, 0, iLabel);+ −
if( eType==IN_INDEX_ROWID ){+ −
int iAddr = sqlite3VdbeCurrentAddr(v)+3;+ −
sqlite3VdbeAddOp(v, OP_MustBeInt, 1, iAddr);+ −
sqlite3VdbeAddOp(v, OP_NotExists, pExpr->iTable, iAddr);+ −
sqlite3VdbeAddOp(v, OP_Goto, pExpr->iTable, iLabel);+ −
}else{+ −
sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */+ −
sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, iLabel);+ −
}+ −
sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */+ −
sqlite3VdbeResolveLabel(v, iLabel);+ −
+ −
break;+ −
}+ −
#endif+ −
case TK_BETWEEN: {+ −
Expr *pLeft = pExpr->pLeft;+ −
ExprList::ExprList_item *pLItem = pExpr->pList->a;+ −
Expr *pRight = pLItem->pExpr;+ −
sqlite3ExprCode(pParse, pLeft);+ −
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);+ −
sqlite3ExprCode(pParse, pRight);+ −
codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);+ −
sqlite3VdbeAddOp(v, OP_Pull, 1, 0);+ −
pLItem++;+ −
pRight = pLItem->pExpr;+ −
sqlite3ExprCode(pParse, pRight);+ −
codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);+ −
sqlite3VdbeAddOp(v, OP_And, 0, 0);+ −
break;+ −
}+ −
case TK_UPLUS: {+ −
sqlite3ExprCode(pParse, pExpr->pLeft);+ −
stackChng = 0;+ −
break;+ −
}+ −
case TK_CASE: {+ −
int expr_end_label;+ −
int jumpInst;+ −
int nExpr;+ −
int i;+ −
ExprList *pEList;+ −
ExprList::ExprList_item *aListelem;+ −
+ −
assert(pExpr->pList);+ −
assert((pExpr->pList->nExpr % 2) == 0);+ −
assert(pExpr->pList->nExpr > 0);+ −
pEList = pExpr->pList;+ −
aListelem = pEList->a;+ −
nExpr = pEList->nExpr;+ −
expr_end_label = sqlite3VdbeMakeLabel(v);+ −
if( pExpr->pLeft ){+ −
sqlite3ExprCode(pParse, pExpr->pLeft);+ −
}+ −
for(i=0; i<nExpr; i=i+2){+ −
sqlite3ExprCode(pParse, aListelem[i].pExpr);+ −
if( pExpr->pLeft ){+ −
sqlite3VdbeAddOp(v, OP_Dup, 1, 1);+ −
jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,+ −
OP_Ne, 0, 1);+ −
sqlite3VdbeAddOp(v, OP_Pop, 1, 0);+ −
}else{+ −
jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0);+ −
}+ −
sqlite3ExprCode(pParse, aListelem[i+1].pExpr);+ −
sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label);+ −
sqlite3VdbeJumpHere(v, jumpInst);+ −
}+ −
if( pExpr->pLeft ){+ −
sqlite3VdbeAddOp(v, OP_Pop, 1, 0);+ −
}+ −
if( pExpr->pRight ){+ −
sqlite3ExprCode(pParse, pExpr->pRight);+ −
}else{+ −
sqlite3VdbeAddOp(v, OP_Null, 0, 0);+ −
}+ −
sqlite3VdbeResolveLabel(v, expr_end_label);+ −
break;+ −
}+ −
#ifndef SQLITE_OMIT_TRIGGER+ −
case TK_RAISE: {+ −
if( !pParse->trigStack ){+ −
sqlite3ErrorMsg(pParse,+ −
"RAISE() may only be used within a trigger-program");+ −
return;+ −
}+ −
if( pExpr->iColumn!=OE_Ignore ){+ −
assert( pExpr->iColumn==OE_Rollback ||+ −
pExpr->iColumn == OE_Abort ||+ −
pExpr->iColumn == OE_Fail );+ −
sqlite3DequoteExpr(pParse->db, pExpr);+ −
sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,+ −
(char*)pExpr->token.z, pExpr->token.n);+ −
} else {+ −
assert( pExpr->iColumn == OE_Ignore );+ −
sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);+ −
sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);+ −
VdbeComment((v, "# raise(IGNORE)"));+ −
}+ −
stackChng = 0;+ −
break;+ −
}+ −
#endif+ −
}+ −
+ −
if( pParse->ckOffset ){+ −
pParse->ckOffset += stackChng;+ −
assert( pParse->ckOffset );+ −
}+ −
}+ −
+ −
#ifndef SQLITE_OMIT_TRIGGER+ −
/*+ −
** Generate code that evalutes the given expression and leaves the result+ −
** on the stack. See also sqlite3ExprCode().+ −
**+ −
** This routine might also cache the result and modify the pExpr tree+ −
** so that it will make use of the cached result on subsequent evaluations+ −
** rather than evaluate the whole expression again. Trivial expressions are+ −
** not cached. If the expression is cached, its result is stored in a + −
** memory location.+ −
*/+ −
void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){+ −
Vdbe *v = pParse->pVdbe;+ −
VdbeOp *pOp;+ −
int iMem;+ −
int addr1, addr2;+ −
if( v==0 ) return;+ −
addr1 = sqlite3VdbeCurrentAddr(v);+ −
sqlite3ExprCode(pParse, pExpr);+ −
addr2 = sqlite3VdbeCurrentAddr(v);+ −
if( addr2>addr1+1+ −
|| ((pOp = sqlite3VdbeGetOp(v, addr1))!=0 && pOp->opcode==OP_Function) ){+ −
iMem = pExpr->iTable = pParse->nMem++;+ −
sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);+ −
pExpr->op = TK_REGISTER;+ −
}+ −
}+ −
#endif+ −
+ −
/*+ −
** Generate code that pushes the value of every element of the given+ −
** expression list onto the stack.+ −
**+ −
** Return the number of elements pushed onto the stack.+ −
*/+ −
int sqlite3ExprCodeExprList(+ −
Parse *pParse, /* Parsing context */+ −
ExprList *pList /* The expression list to be coded */+ −
){+ −
ExprList::ExprList_item *pItem;+ −
int i, n;+ −
if( pList==0 ) return 0;+ −
n = pList->nExpr;+ −
for(pItem=pList->a, i=n; i>0; i--, pItem++){+ −
sqlite3ExprCode(pParse, pItem->pExpr);+ −
}+ −
return n;+ −
}+ −
+ −
/*+ −
** Generate code for a boolean expression such that a jump is made+ −
** to the label "dest" if the expression is true but execution+ −
** continues straight thru if the expression is false.+ −
**+ −
** If the expression evaluates to NULL (neither true nor false), then+ −
** take the jump if the jumpIfNull flag is true.+ −
**+ −
** This code depends on the fact that certain token values (ex: TK_EQ)+ −
** are the same as opcode values (ex: OP_Eq) that implement the corresponding+ −
** operation. Special comments in vdbe.c and the mkopcodeh.awk script in+ −
** the make process cause these values to align. Assert()s in the code+ −
** below verify that the numbers are aligned correctly.+ −
*/+ −
void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){+ −
Vdbe *v = pParse->pVdbe;+ −
int op = 0;+ −
int ckOffset = pParse->ckOffset;+ −
if( v==0 || pExpr==0 ) return;+ −
op = pExpr->op;+ −
switch( op ){+ −
case TK_AND: {+ −
int d2 = sqlite3VdbeMakeLabel(v);+ −
sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);+ −
sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);+ −
sqlite3VdbeResolveLabel(v, d2);+ −
break;+ −
}+ −
case TK_OR: {+ −
sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);+ −
sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);+ −
break;+ −
}+ −
case TK_NOT: {+ −
sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);+ −
break;+ −
}+ −
case TK_LT:+ −
case TK_LE:+ −
case TK_GT:+ −
case TK_GE:+ −
case TK_NE:+ −
case TK_EQ: {+ −
assert( TK_LT==OP_Lt );+ −
assert( TK_LE==OP_Le );+ −
assert( TK_GT==OP_Gt );+ −
assert( TK_GE==OP_Ge );+ −
assert( TK_EQ==OP_Eq );+ −
assert( TK_NE==OP_Ne );+ −
sqlite3ExprCode(pParse, pExpr->pLeft);+ −
sqlite3ExprCode(pParse, pExpr->pRight);+ −
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);+ −
break;+ −
}+ −
case TK_ISNULL:+ −
case TK_NOTNULL: {+ −
assert( TK_ISNULL==OP_IsNull );+ −
assert( TK_NOTNULL==OP_NotNull );+ −
sqlite3ExprCode(pParse, pExpr->pLeft);+ −
sqlite3VdbeAddOp(v, op, 1, dest);+ −
break;+ −
}+ −
case TK_BETWEEN: {+ −
/* The expression "x BETWEEN y AND z" is implemented as:+ −
**+ −
** 1 IF (x < y) GOTO 3+ −
** 2 IF (x <= z) GOTO <dest>+ −
** 3 ...+ −
*/+ −
int addr;+ −
Expr *pLeft = pExpr->pLeft;+ −
Expr *pRight = pExpr->pList->a[0].pExpr;+ −
sqlite3ExprCode(pParse, pLeft);+ −
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);+ −
sqlite3ExprCode(pParse, pRight);+ −
addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);+ −
+ −
pRight = pExpr->pList->a[1].pExpr;+ −
sqlite3ExprCode(pParse, pRight);+ −
codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);+ −
+ −
sqlite3VdbeAddOp(v, OP_Integer, 0, 0);+ −
sqlite3VdbeJumpHere(v, addr);+ −
sqlite3VdbeAddOp(v, OP_Pop, 1, 0);+ −
break;+ −
}+ −
default: {+ −
sqlite3ExprCode(pParse, pExpr);+ −
sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest);+ −
break;+ −
}+ −
}+ −
pParse->ckOffset = ckOffset;+ −
}+ −
+ −
/*+ −
** Generate code for a boolean expression such that a jump is made+ −
** to the label "dest" if the expression is false but execution+ −
** continues straight thru if the expression is true.+ −
**+ −
** If the expression evaluates to NULL (neither true nor false) then+ −
** jump if jumpIfNull is true or fall through if jumpIfNull is false.+ −
*/+ −
void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){+ −
Vdbe *v = pParse->pVdbe;+ −
int op = 0;+ −
int ckOffset = pParse->ckOffset;+ −
if( v==0 || pExpr==0 ) return;+ −
+ −
/* The value of pExpr->op and op are related as follows:+ −
**+ −
** pExpr->op op+ −
** --------- ----------+ −
** TK_ISNULL OP_NotNull+ −
** TK_NOTNULL OP_IsNull+ −
** TK_NE OP_Eq+ −
** TK_EQ OP_Ne+ −
** TK_GT OP_Le+ −
** TK_LE OP_Gt+ −
** TK_GE OP_Lt+ −
** TK_LT OP_Ge+ −
**+ −
** For other values of pExpr->op, op is undefined and unused.+ −
** The value of TK_ and OP_ constants are arranged such that we+ −
** can compute the mapping above using the following expression.+ −
** Assert()s verify that the computation is correct.+ −
*/+ −
op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);+ −
+ −
/* Verify correct alignment of TK_ and OP_ constants+ −
*/+ −
assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );+ −
assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );+ −
assert( pExpr->op!=TK_NE || op==OP_Eq );+ −
assert( pExpr->op!=TK_EQ || op==OP_Ne );+ −
assert( pExpr->op!=TK_LT || op==OP_Ge );+ −
assert( pExpr->op!=TK_LE || op==OP_Gt );+ −
assert( pExpr->op!=TK_GT || op==OP_Le );+ −
assert( pExpr->op!=TK_GE || op==OP_Lt );+ −
+ −
switch( pExpr->op ){+ −
case TK_AND: {+ −
sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);+ −
sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);+ −
break;+ −
}+ −
case TK_OR: {+ −
int d2 = sqlite3VdbeMakeLabel(v);+ −
sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);+ −
sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);+ −
sqlite3VdbeResolveLabel(v, d2);+ −
break;+ −
}+ −
case TK_NOT: {+ −
sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);+ −
break;+ −
}+ −
case TK_LT:+ −
case TK_LE:+ −
case TK_GT:+ −
case TK_GE:+ −
case TK_NE:+ −
case TK_EQ: {+ −
sqlite3ExprCode(pParse, pExpr->pLeft);+ −
sqlite3ExprCode(pParse, pExpr->pRight);+ −
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);+ −
break;+ −
}+ −
case TK_ISNULL:+ −
case TK_NOTNULL: {+ −
sqlite3ExprCode(pParse, pExpr->pLeft);+ −
sqlite3VdbeAddOp(v, op, 1, dest);+ −
break;+ −
}+ −
case TK_BETWEEN: {+ −
/* The expression is "x BETWEEN y AND z". It is implemented as:+ −
**+ −
** 1 IF (x >= y) GOTO 3+ −
** 2 GOTO <dest>+ −
** 3 IF (x > z) GOTO <dest>+ −
*/+ −
int addr;+ −
Expr *pLeft = pExpr->pLeft;+ −
Expr *pRight = pExpr->pList->a[0].pExpr;+ −
sqlite3ExprCode(pParse, pLeft);+ −
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);+ −
sqlite3ExprCode(pParse, pRight);+ −
addr = sqlite3VdbeCurrentAddr(v);+ −
codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);+ −
+ −
sqlite3VdbeAddOp(v, OP_Pop, 1, 0);+ −
sqlite3VdbeAddOp(v, OP_Goto, 0, dest);+ −
pRight = pExpr->pList->a[1].pExpr;+ −
sqlite3ExprCode(pParse, pRight);+ −
codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);+ −
break;+ −
}+ −
default: {+ −
sqlite3ExprCode(pParse, pExpr);+ −
sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest);+ −
break;+ −
}+ −
}+ −
pParse->ckOffset = ckOffset;+ −
}+ −
+ −
/*+ −
** Do a deep comparison of two expression trees. Return TRUE (non-zero)+ −
** if they are identical and return FALSE if they differ in any way.+ −
**+ −
** Sometimes this routine will return FALSE even if the two expressions+ −
** really are equivalent. If we cannot prove that the expressions are+ −
** identical, we return FALSE just to be safe. So if this routine+ −
** returns false, then you do not really know for certain if the two+ −
** expressions are the same. But if you get a TRUE return, then you+ −
** can be sure the expressions are the same. In the places where+ −
** this routine is used, it does not hurt to get an extra FALSE - that+ −
** just might result in some slightly slower code. But returning+ −
** an incorrect TRUE could lead to a malfunction.+ −
*/+ −
int sqlite3ExprCompare(Expr *pA, Expr *pB){+ −
int i;+ −
if( pA==0||pB==0 ){+ −
return pB==pA;+ −
}+ −
if( pA->op!=pB->op ) return 0;+ −
if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;+ −
if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;+ −
if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;+ −
if( pA->pList ){+ −
if( pB->pList==0 ) return 0;+ −
if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;+ −
for(i=0; i<pA->pList->nExpr; i++){+ −
if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){+ −
return 0;+ −
}+ −
}+ −
}else if( pB->pList ){+ −
return 0;+ −
}+ −
if( pA->pSelect || pB->pSelect ) return 0;+ −
if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;+ −
if( pA->op!=TK_COLUMN && pA->token.z ){+ −
if( pB->token.z==0 ) return 0;+ −
if( pB->token.n!=pA->token.n ) return 0;+ −
if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){+ −
return 0;+ −
}+ −
}+ −
return 1;+ −
}+ −
+ −
+ −
/*+ −
** Add a new element to the pAggInfo->aCol[] array. Return the index of+ −
** the new element. Return a negative number if malloc fails.+ −
*/+ −
static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){+ −
int i;+ −
pInfo->aCol = (AggInfo::AggInfo_col*)sqlite3ArrayAllocate(+ −
db,+ −
pInfo->aCol,+ −
sizeof(pInfo->aCol[0]),+ −
3,+ −
&pInfo->nColumn,+ −
&pInfo->nColumnAlloc,+ −
&i+ −
);+ −
return i;+ −
} + −
+ −
/*+ −
** Add a new element to the pAggInfo->aFunc[] array. Return the index of+ −
** the new element. Return a negative number if malloc fails.+ −
*/+ −
static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){+ −
int i;+ −
pInfo->aFunc = (AggInfo::AggInfo_func*)sqlite3ArrayAllocate(+ −
db, + −
pInfo->aFunc,+ −
sizeof(pInfo->aFunc[0]),+ −
3,+ −
&pInfo->nFunc,+ −
&pInfo->nFuncAlloc,+ −
&i+ −
);+ −
return i;+ −
} + −
+ −
/*+ −
** This is an xFunc for walkExprTree() used to implement + −
** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates+ −
** for additional information.+ −
**+ −
** This routine analyzes the aggregate function at pExpr.+ −
*/+ −
static int analyzeAggregate(void *pArg, Expr *pExpr){+ −
int i;+ −
NameContext *pNC = (NameContext *)pArg;+ −
Parse *pParse = pNC->pParse;+ −
SrcList *pSrcList = pNC->pSrcList;+ −
AggInfo *pAggInfo = pNC->pAggInfo;+ −
+ −
switch( pExpr->op ){+ −
case TK_AGG_COLUMN:+ −
case TK_COLUMN: {+ −
/* Check to see if the column is in one of the tables in the FROM+ −
** clause of the aggregate query */+ −
if( pSrcList ){+ −
SrcList::SrcList_item *pItem = pSrcList->a;+ −
for(i=0; i<pSrcList->nSrc; i++, pItem++){+ −
AggInfo::AggInfo_col *pCol;+ −
if( pExpr->iTable==pItem->iCursor ){+ −
/* If we reach this point, it means that pExpr refers to a table+ −
** that is in the FROM clause of the aggregate query. + −
**+ −
** Make an entry for the column in pAggInfo->aCol[] if there+ −
** is not an entry there already.+ −
*/+ −
int k=0;+ −
pCol = pAggInfo->aCol;+ −
for(k=0; k<pAggInfo->nColumn; k++, pCol++){+ −
if( pCol->iTable==pExpr->iTable &&+ −
pCol->iColumn==pExpr->iColumn ){+ −
break;+ −
}+ −
}+ −
if( (k>=pAggInfo->nColumn)+ −
&& (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 + −
){+ −
pCol = &pAggInfo->aCol[k];+ −
pCol->pTab = pExpr->pTab;+ −
pCol->iTable = pExpr->iTable;+ −
pCol->iColumn = pExpr->iColumn;+ −
pCol->iMem = pParse->nMem++;+ −
pCol->iSorterColumn = -1;+ −
pCol->pExpr = pExpr;+ −
if( pAggInfo->pGroupBy ){+ −
int j, n;+ −
ExprList *pGB = pAggInfo->pGroupBy;+ −
ExprList::ExprList_item *pTerm = pGB->a;+ −
n = pGB->nExpr;+ −
for(j=0; j<n; j++, pTerm++){+ −
Expr *pE = pTerm->pExpr;+ −
if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&+ −
pE->iColumn==pExpr->iColumn ){+ −
pCol->iSorterColumn = j;+ −
break;+ −
}+ −
}+ −
}+ −
if( pCol->iSorterColumn<0 ){+ −
pCol->iSorterColumn = pAggInfo->nSortingColumn++;+ −
}+ −
}+ −
/* There is now an entry for pExpr in pAggInfo->aCol[] (either+ −
** because it was there before or because we just created it).+ −
** Convert the pExpr to be a TK_AGG_COLUMN referring to that+ −
** pAggInfo->aCol[] entry.+ −
*/+ −
pExpr->pAggInfo = pAggInfo;+ −
pExpr->op = TK_AGG_COLUMN;+ −
pExpr->iAgg = k;+ −
break;+ −
} /* endif pExpr->iTable==pItem->iCursor */+ −
} /* end loop over pSrcList */+ −
}+ −
return 1;+ −
}+ −
case TK_AGG_FUNCTION: {+ −
/* The pNC->nDepth==0 test causes aggregate functions in subqueries+ −
** to be ignored */+ −
if( pNC->nDepth==0 ){+ −
/* Check to see if pExpr is a duplicate of another aggregate + −
** function that is already in the pAggInfo structure+ −
*/+ −
AggInfo::AggInfo_func *pItem = pAggInfo->aFunc;+ −
for(i=0; i<pAggInfo->nFunc; i++, pItem++){+ −
if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){+ −
break;+ −
}+ −
}+ −
if( i>=pAggInfo->nFunc ){+ −
/* pExpr is original. Make a new entry in pAggInfo->aFunc[]+ −
*/+ −
u8 enc = ENC(pParse->db);+ −
i = addAggInfoFunc(pParse->db, pAggInfo);+ −
if( i>=0 ){+ −
pItem = &pAggInfo->aFunc[i];+ −
pItem->pExpr = pExpr;+ −
pItem->iMem = pParse->nMem++;+ −
pItem->pFunc = sqlite3FindFunction(pParse->db,+ −
(char*)pExpr->token.z, pExpr->token.n,+ −
pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);+ −
if( pExpr->flags & EP_Distinct ){+ −
pItem->iDistinct = pParse->nTab++;+ −
}else{+ −
pItem->iDistinct = -1;+ −
}+ −
}+ −
}+ −
/* Make pExpr point to the appropriate pAggInfo->aFunc[] entry+ −
*/+ −
pExpr->iAgg = i;+ −
pExpr->pAggInfo = pAggInfo;+ −
return 1;+ −
}+ −
}+ −
}+ −
+ −
/* Recursively walk subqueries looking for TK_COLUMN nodes that need+ −
** to be changed to TK_AGG_COLUMN. But increment nDepth so that+ −
** TK_AGG_FUNCTION nodes in subqueries will be unchanged.+ −
*/+ −
if( pExpr->pSelect ){+ −
pNC->nDepth++;+ −
walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);+ −
pNC->nDepth--;+ −
}+ −
return 0;+ −
}+ −
+ −
/*+ −
** Analyze the given expression looking for aggregate functions and+ −
** for variables that need to be added to the pParse->aAgg[] array.+ −
** Make additional entries to the pParse->aAgg[] array as necessary.+ −
**+ −
** This routine should only be called after the expression has been+ −
** analyzed by sqlite3ExprResolveNames().+ −
**+ −
** If errors are seen, leave an error message in zErrMsg and return+ −
** the number of errors.+ −
*/+ −
int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){+ −
int nErr = pNC->pParse->nErr;+ −
walkExprTree(pExpr, analyzeAggregate, pNC);+ −
return pNC->pParse->nErr - nErr;+ −
}+ −
+ −
/*+ −
** Call sqlite3ExprAnalyzeAggregates() for every expression in an+ −
** expression list. Return the number of errors.+ −
**+ −
** If an error is found, the analysis is cut short.+ −
*/+ −
int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){+ −
ExprList::ExprList_item *pItem;+ −
int i;+ −
int nErr = 0;+ −
if( pList ){+ −
for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){+ −
nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);+ −
}+ −
}+ −
return nErr;+ −
}+ −