diff -r 87e863f6f840 -r 3903521a36da engine/sqlite/src/btreeInt.h --- a/engine/sqlite/src/btreeInt.h Wed May 26 10:44:32 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,649 +0,0 @@ -/* -** 2004 April 6 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** $Id: btreeInt.h 1282 2008-11-13 09:31:33Z LarsPson $ -** -** This file implements a external (disk-based) database using BTrees. -** For a detailed discussion of BTrees, refer to -** -** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: -** "Sorting And Searching", pages 473-480. Addison-Wesley -** Publishing Company, Reading, Massachusetts. -** -** The basic idea is that each page of the file contains N database -** entries and N+1 pointers to subpages. -** -** ---------------------------------------------------------------- -** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) | -** ---------------------------------------------------------------- -** -** All of the keys on the page that Ptr(0) points to have values less -** than Key(0). All of the keys on page Ptr(1) and its subpages have -** values greater than Key(0) and less than Key(1). All of the keys -** on Ptr(N) and its subpages have values greater than Key(N-1). And -** so forth. -** -** Finding a particular key requires reading O(log(M)) pages from the -** disk where M is the number of entries in the tree. -** -** In this implementation, a single file can hold one or more separate -** BTrees. Each BTree is identified by the index of its root page. The -** key and data for any entry are combined to form the "payload". A -** fixed amount of payload can be carried directly on the database -** page. If the payload is larger than the preset amount then surplus -** bytes are stored on overflow pages. The payload for an entry -** and the preceding pointer are combined to form a "Cell". Each -** page has a small header which contains the Ptr(N) pointer and other -** information such as the size of key and data. -** -** FORMAT DETAILS -** -** The file is divided into pages. The first page is called page 1, -** the second is page 2, and so forth. A page number of zero indicates -** "no such page". The page size can be anything between 512 and 65536. -** Each page can be either a btree page, a freelist page or an overflow -** page. -** -** The first page is always a btree page. The first 100 bytes of the first -** page contain a special header (the "file header") that describes the file. -** The format of the file header is as follows: -** -** OFFSET SIZE DESCRIPTION -** 0 16 Header string: "SQLite format 3\000" -** 16 2 Page size in bytes. -** 18 1 File format write version -** 19 1 File format read version -** 20 1 Bytes of unused space at the end of each page -** 21 1 Max embedded payload fraction -** 22 1 Min embedded payload fraction -** 23 1 Min leaf payload fraction -** 24 4 File change counter -** 28 4 Reserved for future use -** 32 4 First freelist page -** 36 4 Number of freelist pages in the file -** 40 60 15 4-byte meta values passed to higher layers -** -** All of the integer values are big-endian (most significant byte first). -** -** The file change counter is incremented when the database is changed -** This counter allows other processes to know when the file has changed -** and thus when they need to flush their cache. -** -** The max embedded payload fraction is the amount of the total usable -** space in a page that can be consumed by a single cell for standard -** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default -** is to limit the maximum cell size so that at least 4 cells will fit -** on one page. Thus the default max embedded payload fraction is 64. -** -** If the payload for a cell is larger than the max payload, then extra -** payload is spilled to overflow pages. Once an overflow page is allocated, -** as many bytes as possible are moved into the overflow pages without letting -** the cell size drop below the min embedded payload fraction. -** -** The min leaf payload fraction is like the min embedded payload fraction -** except that it applies to leaf nodes in a LEAFDATA tree. The maximum -** payload fraction for a LEAFDATA tree is always 100% (or 255) and it -** not specified in the header. -** -** Each btree pages is divided into three sections: The header, the -** cell pointer array, and the cell content area. Page 1 also has a 100-byte -** file header that occurs before the page header. -** -** |----------------| -** | file header | 100 bytes. Page 1 only. -** |----------------| -** | page header | 8 bytes for leaves. 12 bytes for interior nodes -** |----------------| -** | cell pointer | | 2 bytes per cell. Sorted order. -** | array | | Grows downward -** | | v -** |----------------| -** | unallocated | -** | space | -** |----------------| ^ Grows upwards -** | cell content | | Arbitrary order interspersed with freeblocks. -** | area | | and free space fragments. -** |----------------| -** -** The page headers looks like this: -** -** OFFSET SIZE DESCRIPTION -** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf -** 1 2 byte offset to the first freeblock -** 3 2 number of cells on this page -** 5 2 first byte of the cell content area -** 7 1 number of fragmented free bytes -** 8 4 Right child (the Ptr(N) value). Omitted on leaves. -** -** The flags define the format of this btree page. The leaf flag means that -** this page has no children. The zerodata flag means that this page carries -** only keys and no data. The intkey flag means that the key is a integer -** which is stored in the key size entry of the cell header rather than in -** the payload area. -** -** The cell pointer array begins on the first byte after the page header. -** The cell pointer array contains zero or more 2-byte numbers which are -** offsets from the beginning of the page to the cell content in the cell -** content area. The cell pointers occur in sorted order. The system strives -** to keep free space after the last cell pointer so that new cells can -** be easily added without having to defragment the page. -** -** Cell content is stored at the very end of the page and grows toward the -** beginning of the page. -** -** Unused space within the cell content area is collected into a linked list of -** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset -** to the first freeblock is given in the header. Freeblocks occur in -** increasing order. Because a freeblock must be at least 4 bytes in size, -** any group of 3 or fewer unused bytes in the cell content area cannot -** exist on the freeblock chain. A group of 3 or fewer free bytes is called -** a fragment. The total number of bytes in all fragments is recorded. -** in the page header at offset 7. -** -** SIZE DESCRIPTION -** 2 Byte offset of the next freeblock -** 2 Bytes in this freeblock -** -** Cells are of variable length. Cells are stored in the cell content area at -** the end of the page. Pointers to the cells are in the cell pointer array -** that immediately follows the page header. Cells is not necessarily -** contiguous or in order, but cell pointers are contiguous and in order. -** -** Cell content makes use of variable length integers. A variable -** length integer is 1 to 9 bytes where the lower 7 bits of each -** byte are used. The integer consists of all bytes that have bit 8 set and -** the first byte with bit 8 clear. The most significant byte of the integer -** appears first. A variable-length integer may not be more than 9 bytes long. -** As a special case, all 8 bytes of the 9th byte are used as data. This -** allows a 64-bit integer to be encoded in 9 bytes. -** -** 0x00 becomes 0x00000000 -** 0x7f becomes 0x0000007f -** 0x81 0x00 becomes 0x00000080 -** 0x82 0x00 becomes 0x00000100 -** 0x80 0x7f becomes 0x0000007f -** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678 -** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 -** -** Variable length integers are used for rowids and to hold the number of -** bytes of key and data in a btree cell. -** -** The content of a cell looks like this: -** -** SIZE DESCRIPTION -** 4 Page number of the left child. Omitted if leaf flag is set. -** var Number of bytes of data. Omitted if the zerodata flag is set. -** var Number of bytes of key. Or the key itself if intkey flag is set. -** * Payload -** 4 First page of the overflow chain. Omitted if no overflow -** -** Overflow pages form a linked list. Each page except the last is completely -** filled with data (pagesize - 4 bytes). The last page can have as little -** as 1 byte of data. -** -** SIZE DESCRIPTION -** 4 Page number of next overflow page -** * Data -** -** Freelist pages come in two subtypes: trunk pages and leaf pages. The -** file header points to the first in a linked list of trunk page. Each trunk -** page points to multiple leaf pages. The content of a leaf page is -** unspecified. A trunk page looks like this: -** -** SIZE DESCRIPTION -** 4 Page number of next trunk page -** 4 Number of leaf pointers on this page -** * zero or more pages numbers of leaves -*/ -#include "sqliteInt.h" -#include "pager.h" -#include "btree.h" -#include "os.h" -#include - -/* Round up a number to the next larger multiple of 8. This is used -** to force 8-byte alignment on 64-bit architectures. -*/ -#define ROUND8(x) ((x+7)&~7) - - -/* The following value is the maximum cell size assuming a maximum page -** size give above. -*/ -#define MX_CELL_SIZE(pBt) (pBt->pageSize-8) - -/* The maximum number of cells on a single page of the database. This -** assumes a minimum cell size of 3 bytes. Such small cells will be -** exceedingly rare, but they are possible. -*/ -#define MX_CELL(pBt) ((pBt->pageSize-8)/3) - -/* Forward declarations */ -typedef struct MemPage MemPage; -typedef struct BtLock BtLock; - -/* -** This is a magic string that appears at the beginning of every -** SQLite database in order to identify the file as a real database. -** -** You can change this value at compile-time by specifying a -** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The -** header must be exactly 16 bytes including the zero-terminator so -** the string itself should be 15 characters long. If you change -** the header, then your custom library will not be able to read -** databases generated by the standard tools and the standard tools -** will not be able to read databases created by your custom library. -*/ -#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */ -# define SQLITE_FILE_HEADER "SQLite format 3" -#endif - -/* -** Page type flags. An ORed combination of these flags appear as the -** first byte of on-disk image of every BTree page. -*/ -#define PTF_INTKEY 0x01 -#define PTF_ZERODATA 0x02 -#define PTF_LEAFDATA 0x04 -#define PTF_LEAF 0x08 - -/* -** As each page of the file is loaded into memory, an instance of the following -** structure is appended and initialized to zero. This structure stores -** information about the page that is decoded from the raw file page. -** -** The pParent field points back to the parent page. This allows us to -** walk up the BTree from any leaf to the root. Care must be taken to -** unref() the parent page pointer when this page is no longer referenced. -** The pageDestructor() routine handles that chore. -** -** Access to all fields of this structure is controlled by the mutex -** stored in MemPage.pBt->mutex. -*/ -struct MemPage { - u8 isInit; /* True if previously initialized. MUST BE FIRST! */ - u8 idxShift; /* True if Cell indices have changed */ - u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ - u8 intKey; /* True if intkey flag is set */ - u8 leaf; /* True if leaf flag is set */ - u8 zeroData; /* True if table stores keys only */ - u8 leafData; /* True if tables stores data on leaves only */ - u8 hasData; /* True if this page stores data */ - u8 hdrOffset; /* 100 for page 1. 0 otherwise */ - u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ - u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */ - u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */ - u16 cellOffset; /* Index in aData of first cell pointer */ - u16 idxParent; /* Index in parent of this node */ - u16 nFree; /* Number of free bytes on the page */ - u16 nCell; /* Number of cells on this page, local and ovfl */ - struct _OvflCell { /* Cells that will not fit on aData[] */ - u8 *pCell; /* Pointers to the body of the overflow cell */ - u16 idx; /* Insert this cell before idx-th non-overflow cell */ - } aOvfl[5]; - BtShared *pBt; /* Pointer to BtShared that this page is part of */ - u8 *aData; /* Pointer to disk image of the page data */ - DbPage *pDbPage; /* Pager page handle */ - Pgno pgno; /* Page number for this page */ - MemPage *pParent; /* The parent of this page. NULL for root */ -}; - -/* -** The in-memory image of a disk page has the auxiliary information appended -** to the end. EXTRA_SIZE is the number of bytes of space needed to hold -** that extra information. -*/ -#define EXTRA_SIZE sizeof(MemPage) - -/* A Btree handle -** -** A database connection contains a pointer to an instance of -** this object for every database file that it has open. This structure -** is opaque to the database connection. The database connection cannot -** see the internals of this structure and only deals with pointers to -** this structure. -** -** For some database files, the same underlying database cache might be -** shared between multiple connections. In that case, each contection -** has it own pointer to this object. But each instance of this object -** points to the same BtShared object. The database cache and the -** schema associated with the database file are all contained within -** the BtShared object. -** -** All fields in this structure are accessed under sqlite3.mutex. -** The pBt pointer itself may not be changed while there exists cursors -** in the referenced BtShared that point back to this Btree since those -** cursors have to do go through this Btree to find their BtShared and -** they often do so without holding sqlite3.mutex. -*/ -struct Btree { - sqlite3 *db; /* The database connection holding this btree */ - BtShared *pBt; /* Sharable content of this btree */ - u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ - u8 sharable; /* True if we can share pBt with another db */ - u8 locked; /* True if db currently has pBt locked */ - int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */ - Btree *pNext; /* List of other sharable Btrees from the same db */ - Btree *pPrev; /* Back pointer of the same list */ -}; - -/* -** Btree.inTrans may take one of the following values. -** -** If the shared-data extension is enabled, there may be multiple users -** of the Btree structure. At most one of these may open a write transaction, -** but any number may have active read transactions. -*/ -#define TRANS_NONE 0 -#define TRANS_READ 1 -#define TRANS_WRITE 2 - -/* -** An instance of this object represents a single database file. -** -** A single database file can be in use as the same time by two -** or more database connections. When two or more connections are -** sharing the same database file, each connection has it own -** private Btree object for the file and each of those Btrees points -** to this one BtShared object. BtShared.nRef is the number of -** connections currently sharing this database file. -** -** Fields in this structure are accessed under the BtShared.mutex -** mutex, except for nRef and pNext which are accessed under the -** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field -** may not be modified once it is initially set as long as nRef>0. -** The pSchema field may be set once under BtShared.mutex and -** thereafter is unchanged as long as nRef>0. -*/ -struct BtShared { - Pager *pPager; /* The page cache */ - sqlite3 *db; /* Database connection currently using this Btree */ - BtCursor *pCursor; /* A list of all open cursors */ - MemPage *pPage1; /* First page of the database */ - u8 inStmt; /* True if we are in a statement subtransaction */ - u8 readOnly; /* True if the underlying file is readonly */ - u8 maxEmbedFrac; /* Maximum payload as % of total page size */ - u8 minEmbedFrac; /* Minimum payload as % of total page size */ - u8 minLeafFrac; /* Minimum leaf payload as % of total page size */ - u8 pageSizeFixed; /* True if the page size can no longer be changed */ -#ifndef SQLITE_OMIT_AUTOVACUUM - u8 autoVacuum; /* True if auto-vacuum is enabled */ - u8 incrVacuum; /* True if incr-vacuum is enabled */ - Pgno nTrunc; /* Non-zero if the db will be truncated (incr vacuum) */ -#endif - u16 pageSize; /* Total number of bytes on a page */ - u16 usableSize; /* Number of usable bytes on each page */ - int maxLocal; /* Maximum local payload in non-LEAFDATA tables */ - int minLocal; /* Minimum local payload in non-LEAFDATA tables */ - int maxLeaf; /* Maximum local payload in a LEAFDATA table */ - int minLeaf; /* Minimum local payload in a LEAFDATA table */ - u8 inTransaction; /* Transaction state */ - int nTransaction; /* Number of open transactions (read + write) */ - void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */ - void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */ - sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */ - BusyHandler busyHdr; /* The busy handler for this btree */ -#ifndef SQLITE_OMIT_SHARED_CACHE - int nRef; /* Number of references to this structure */ - BtShared *pNext; /* Next on a list of sharable BtShared structs */ - BtLock *pLock; /* List of locks held on this shared-btree struct */ -#endif -}; - -/* -** An instance of the following structure is used to hold information -** about a cell. The parseCellPtr() function fills in this structure -** based on information extract from the raw disk page. -*/ -typedef struct CellInfo CellInfo; -struct CellInfo { - u8 *pCell; /* Pointer to the start of cell content */ - i64 nKey; /* The key for INTKEY tables, or number of bytes in key */ - u32 nData; /* Number of bytes of data */ - u32 nPayload; /* Total amount of payload */ - u16 nHeader; /* Size of the cell content header in bytes */ - u16 nLocal; /* Amount of payload held locally */ - u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */ - u16 nSize; /* Size of the cell content on the main b-tree page */ -}; - -/* -** A cursor is a pointer to a particular entry within a particular -** b-tree within a database file. -** -** The entry is identified by its MemPage and the index in -** MemPage.aCell[] of the entry. -** -** When a single database file can shared by two more database connections, -** but cursors cannot be shared. Each cursor is associated with a -** particular database connection identified BtCursor.pBtree.db. -** -** Fields in this structure are accessed under the BtShared.mutex -** found at self->pBt->mutex. -*/ -struct BtCursor { - Btree *pBtree; /* The Btree to which this cursor belongs */ - BtShared *pBt; /* The BtShared this cursor points to */ - BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ - int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */ - void *pArg; /* First arg to xCompare() */ - Pgno pgnoRoot; /* The root page of this tree */ - MemPage *pPage; /* Page that contains the entry */ - int idx; /* Index of the entry in pPage->aCell[] */ - CellInfo info; /* A parse of the cell we are pointing at */ - u8 wrFlag; /* True if writable */ - u8 eState; /* One of the CURSOR_XXX constants (see below) */ - void *pKey; /* Saved key that was cursor's last known position */ - i64 nKey; /* Size of pKey, or last integer key */ - int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */ -#ifndef SQLITE_OMIT_INCRBLOB - u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */ - Pgno *aOverflow; /* Cache of overflow page locations */ -#endif -}; - -/* -** Potential values for BtCursor.eState. -** -** CURSOR_VALID: -** Cursor points to a valid entry. getPayload() etc. may be called. -** -** CURSOR_INVALID: -** Cursor does not point to a valid entry. This can happen (for example) -** because the table is empty or because BtreeCursorFirst() has not been -** called. -** -** CURSOR_REQUIRESEEK: -** The table that this cursor was opened on still exists, but has been -** modified since the cursor was last used. The cursor position is saved -** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in -** this state, restoreOrClearCursorPosition() can be called to attempt to -** seek the cursor to the saved position. -** -** CURSOR_FAULT: -** A unrecoverable error (an I/O error or a malloc failure) has occurred -** on a different connection that shares the BtShared cache with this -** cursor. The error has left the cache in an inconsistent state. -** Do nothing else with this cursor. Any attempt to use the cursor -** should return the error code stored in BtCursor.skip -*/ -#define CURSOR_INVALID 0 -#define CURSOR_VALID 1 -#define CURSOR_REQUIRESEEK 2 -#define CURSOR_FAULT 3 - -/* -** The TRACE macro will print high-level status information about the -** btree operation when the global variable sqlite3_btree_trace is -** enabled. -*/ -#if SQLITE_TEST -# define TRACE(X) if( sqlite3_btree_trace ){ printf X; fflush(stdout); } -#else -# define TRACE(X) -#endif - -/* -** Routines to read and write variable-length integers. These used to -** be defined locally, but now we use the varint routines in the util.c -** file. -*/ -#define getVarint sqlite3GetVarint -#define getVarint32(A,B) ((*B=*(A))<=0x7f?1:sqlite3GetVarint32(A,B)) -#define putVarint sqlite3PutVarint - -/* The database page the PENDING_BYTE occupies. This page is never used. -** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They -** should possibly be consolidated (presumably in pager.h). -** -** If disk I/O is omitted (meaning that the database is stored purely -** in memory) then there is no pending byte. -*/ -#ifdef SQLITE_OMIT_DISKIO -# define PENDING_BYTE_PAGE(pBt) 0x7fffffff -#else -# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1) -#endif - -/* -** A linked list of the following structures is stored at BtShared.pLock. -** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor -** is opened on the table with root page BtShared.iTable. Locks are removed -** from this list when a transaction is committed or rolled back, or when -** a btree handle is closed. -*/ -struct BtLock { - Btree *pBtree; /* Btree handle holding this lock */ - Pgno iTable; /* Root page of table */ - u8 eLock; /* READ_LOCK or WRITE_LOCK */ - BtLock *pNext; /* Next in BtShared.pLock list */ -}; - -/* Candidate values for BtLock.eLock */ -#define READ_LOCK 1 -#define WRITE_LOCK 2 - -/* -** These macros define the location of the pointer-map entry for a -** database page. The first argument to each is the number of usable -** bytes on each page of the database (often 1024). The second is the -** page number to look up in the pointer map. -** -** PTRMAP_PAGENO returns the database page number of the pointer-map -** page that stores the required pointer. PTRMAP_PTROFFSET returns -** the offset of the requested map entry. -** -** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page, -** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be -** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements -** this test. -*/ -#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno) -#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1)) -#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno)) - -/* -** The pointer map is a lookup table that identifies the parent page for -** each child page in the database file. The parent page is the page that -** contains a pointer to the child. Every page in the database contains -** 0 or 1 parent pages. (In this context 'database page' refers -** to any page that is not part of the pointer map itself.) Each pointer map -** entry consists of a single byte 'type' and a 4 byte parent page number. -** The PTRMAP_XXX identifiers below are the valid types. -** -** The purpose of the pointer map is to facility moving pages from one -** position in the file to another as part of autovacuum. When a page -** is moved, the pointer in its parent must be updated to point to the -** new location. The pointer map is used to locate the parent page quickly. -** -** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not -** used in this case. -** -** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number -** is not used in this case. -** -** PTRMAP_OVERFLOW1: The database page is the first page in a list of -** overflow pages. The page number identifies the page that -** contains the cell with a pointer to this overflow page. -** -** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of -** overflow pages. The page-number identifies the previous -** page in the overflow page list. -** -** PTRMAP_BTREE: The database page is a non-root btree page. The page number -** identifies the parent page in the btree. -*/ -#define PTRMAP_ROOTPAGE 1 -#define PTRMAP_FREEPAGE 2 -#define PTRMAP_OVERFLOW1 3 -#define PTRMAP_OVERFLOW2 4 -#define PTRMAP_BTREE 5 - -/* A bunch of assert() statements to check the transaction state variables -** of handle p (type Btree*) are internally consistent. -*/ -#define btreeIntegrity(p) \ - assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \ - assert( p->pBt->inTransaction>=p->inTrans ); - - -/* -** The ISAUTOVACUUM macro is used within balance_nonroot() to determine -** if the database supports auto-vacuum or not. Because it is used -** within an expression that is an argument to another macro -** (sqliteMallocRaw), it is not possible to use conditional compilation. -** So, this macro is defined instead. -*/ -#ifndef SQLITE_OMIT_AUTOVACUUM -#define ISAUTOVACUUM (pBt->autoVacuum) -#else -#define ISAUTOVACUUM 0 -#endif - - -/* -** This structure is passed around through all the sanity checking routines -** in order to keep track of some global state information. -*/ -typedef struct IntegrityCk IntegrityCk; -struct IntegrityCk { - BtShared *pBt; /* The tree being checked out */ - Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ - int nPage; /* Number of pages in the database */ - int *anRef; /* Number of times each page is referenced */ - int mxErr; /* Stop accumulating errors when this reaches zero */ - char *zErrMsg; /* An error message. NULL if no errors seen. */ - int nErr; /* Number of messages written to zErrMsg so far */ -}; - -/* -** Read or write a two- and four-byte big-endian integer values. -*/ -#define get2byte(x) ((x)[0]<<8 | (x)[1]) -#define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v)) -#define get4byte sqlite3Get4byte -#define put4byte sqlite3Put4byte - -/* -** Internal routines that should be accessed by the btree layer only. -*/ -int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int); -int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent); -void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*); -void sqlite3BtreeParseCell(MemPage*, int, CellInfo*); -#ifdef SQLITE_TEST -u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell); -#endif -int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur); -void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur); -void sqlite3BtreeReleaseTempCursor(BtCursor *pCur); -int sqlite3BtreeIsRootPage(MemPage *pPage); -void sqlite3BtreeMoveToParent(BtCursor *pCur);