<Recogniser Test Specifications>
<SXX.XXXnnn.nnn>

<Draft> Rev <0.2>

<Recogniser Test Specifications>  

	
	
	
	

	Security Classification:
	<Internal>  
	Team/Department:
	<Browsing/Content & Messaging>

	Document Reference:
	<SXX.XXXnnn.nnn>    
	Author(s):
	<Omer Saleem>

	Status:
	<Draft>
	Owner(s):
	<Omer Saleem>

	Version:
	<0.2>
	Approver(s)
	<Brian Evans>

	Last Revised Date: 
	<05> <September> <2003>
	
	

	
	
	
	


21
Introduction

1.1
Purpose and Scope
2
2
Application-Protocols Recogniser Test Framework
2
2.1
Overview
2
2.2
How To Execute the Tests
2
2.3
How To Write a Test Module
2
2.4
Future Enhancements
3
3
Test Specifications
4
3.1
T_WebUrlRec
4
3.1.1
Test Cases
4
3.2
T_EBookmark
4
3.2.1
Test Cases
4
3.3
T_RecWeb
4
3.3.1
Test Cases
4
4
Further Information
6
4.1
People
6
4.2
References
6
4.3
Open Issues
6
4.4
Glossary
6
4.5
Document History
6


Introduction

1.1 Purpose and Scope

This document contains a complete view of the Application-Protocol Recogniser test framework and harnesses. The document contains information on the testing framework, how to execute, how to create new tests and details of the existing test cases.

The document is aimed at all engineers (development and test). This document assumes basic knowledge for test engineers wishing simply to run tests and review existing test cases. For software engineers wishing to enhance or add new tests, this document assumes experienced engineers with familiarity with the Symbian Platform and experience with ECom (the plug-in architecture).  

2 Application-Protocols Recogniser Test Framework

2.1 Overview

Recognisers on SymbianOS all follow the same basic structure and have the same API that is accessible via App-Arc (application architecture). As all recognisers have the same structure, a simple test harness has been included that performs the execution of the tests, provides standard initialisation and logging utilities.

The recogniser test framework is a simple console executable that queries and executes tests in a test module. It is expected that there will be a single test module per recogniser. Test modules are separate DLLs in the form of ECom plug-ins that have the same API. The defined API has been designed to allow the test framework to query and execute tests.

The test framework provides standard logging to allow automated overnight testing to take place and logs test results, summaries and a list of failed tests. Providing this standard logging allows logs files and the console to have a standard format so that automated test result parsing can take place.

The test framework also provides test modules with a logger for additional logging and an open session to App-Arc (required by all test modules to carry out any kind of recognition.

2.2 How To Execute the Tests

To execute the tests first ensure that the test framework and all the test modules are built. The code is located in perforce at …/generic/application-protocols/recognisers/… and perform a test build from the group directory.

To run the test harness, simply execute the t_recogtest.exe. The test harness will discover the ECom test modules and run every test in each test module discovered.

To enable logging, create the following directory before executing the tests:


c:\logs\t_recog

Currently, there is no way to run selected test cases within a test module, every test case will be run automatically. It is possible to remove test modules by executing the ‘reallyclean’ command for the individual test module or removing the test module ECom DLL and associated resource file manually from …\system\libs\plugins\.

Generally, any test data that is required by the test module should be stored in c:\recogtestdata\. This means that for hardware testing that folder needs to be manually copied across over to the c drive on the hardware platform.

2.3 How To Write a Test Module

A test module is an ECom plug-in that conforms to a defined interface. To create a test module create an ECom plug-in based on the following ECom interface:

CEComRecogTest In …\application-protocols\recognisers\test\t_recogtest\cecomrecogtest.h

The registry information resource file should contain the interface UID as 0x101FD8D0. The data type field is not used so this can be any value. The recognisers have a number of UIDs allocated to the sub-system and these are detailed in …\application-protocols\recognisers\documentation\uid.txt. The DLL UID and the ECom plug-in implementation UID should use free UIDs from this allocated list.

The ECom test module should be implemented in the following way:

· Construction – The ECom test module plug-in should implement a NewL() function that contains a TAny* parameter. The TAny* must be cast to the TRecogTestConstructionParams object. This is a container providing the test module with the construction parameters. TRecogTestConstructionParams::iAppArcSession provides a pointer to an open AppArc session, RApaLsSession, to allow the test module to do the recognition. This must not be closed when the test module has completed as it is owned by the test framework. TRecogTestConstructionParams::iLogger provides a pointer to an opened session with RFileLogger. This provides the test module with additional logging capabilities, again this must not be closed by the test module. Usage of these parameters will also mean that the test module must statically link to the apgrfx.lib, apmime.lib and flogger.lib libraries.

· Querying API – The test module must provide implementations for a number querying APIs defined in CEComRecogTest. TestPluginTitle() should return a descriptor with the name of the test module so that it can be identified in logs. A test module will normally contain a number of test cases, TestCaseCount() should return an integer with the number of test cases contained within the test module. Each test case should also be identifiable with a short descriptor describing or naming the test case, TestCaseTitle() is passed an index for the test case and should return this descriptor. As this is an index it will start from 0.

· Executing Tests – The RunTestCaseL() method must be implemented by the test module for running the test cases. This method should run a single test case as identified by an index value passed in. The index again will start from 0. If all the tests are being run, this method will be called once for every test case. The implementation of this method should retrieve its own test data and use the open AppArc session (RApaLsSession) to recognise the data. The implementation is also responsible for any condition checks and the decision on whether the test passes or fails. If the test passes then the method must complete successfully, but if the test fails, the method must leave with an error code.

· The following snippet of code shows and example of how to use AppArc for recognition:

TDataRecognitionResult recogResult;


iAppArc.RecognizeData(aTestDataName, aTestDataBuffer, recogResult);

TPtrC8 dataTypeResult(recogResult.iDataType.Des8());

· Any test data required by the test module should be exported to the c:\recogtestdata\ folder.

· All test cases are referenced by an index value starting from 0. It is therefore advisable that if a large number of test cases are being written, code can be significantly simplified by using an internal iterator or array to hold test cases.

· The details of the test specifications should then be appended to this document. This should include information of what recogniser is being tested and details of each test case within the test module.

2.4 Future Enhancements

Due to restrictions in time, a number of features have been excluded. The section describes future enhancements that can be made to the recogniser test framework:

· Scriptable – The test framework can be enhanced so that rather than using ECom plug-ins as test modules, tests can be run using script files. This would mean that tests could be dynamically added and removed without having to recompile. Doing this also has the advantage that selected tests can be executed or omitted.

Test Specifications

This section describes the current existing test modules in the sub-system and details the test cases contained within them.

2.5 T_WebUrlRec

This test module tests the Web URL Recogniser (weburlrec).

2.5.1 Test Cases

	Test Case
	Data Name
	Data
	Expected Datatype

	Recognise http scheme
	http://www.symbian.com
	n/a
	X-Epoc-Url/http

	Recognise https scheme
	https://www.symbian.com
	n/a
	X-Epoc-Url/https

	Recognise file scheme
	file:///c:/testfile.txt
	n/a
	X-Epoc-Url/file


2.6 T_EBookmark

This test module tests the EBookmark Recogniser.

2.6.1 Test Cases

	Test Case
	Data Name
	Data
	Expected Datatype

	Recognise EBookmark 1.ebm
	1.ebm
	n/a – recognise on file extension
	text/vnd.symbian.ebookmark

	Recognise EBookmark 2.ebm
	2.ebm
	n/a – recognise on file extension
	text/vnd.symbian.ebookmark

	Recognise EBookmark 3.ebm
	3.ebm
	n/a – recognise of file extension
	text/vnd.symbian.ebookmark

	Recognise EBookmark 4.notebm
	4.notebm
	Standard EBookmark file – wrong file extension so recognise on data
	text/vnd.symbian.ebookmark


2.7 T_RecWeb

This test module tests the Web Recogniser (RecWeb).

2.7.1 Test Cases

	Test Case
	Data Name
	Data
	Expected Datatype

	Recognise sample1.html
	sample1.html
	n/a – recognise on file extension
	text/html

	Recognise sample1
	sample1
	Simple html file
	text/html

	Recognise sample2.htm
	sample2.htm
	n/a – recognise of file extension
	text/html

	Recognise sample2
	sample2
	Html file with large metadata
	text/html

	Recognise sample3.xhtml
	sample3.xhtml
	n/a – recognise of file extension
	text/html

	Recognise sample3
	sample3
	Simple xhtml file
	text/html

	Recognise sample4.xml
	sample4.xml
	n/a – recognise of file extension
	text/xml

	Recognise sample4
	sample4
	Simple xml file
	text/xml


Further Information

2.8 People

	Role
	Person / People

	Reviewers
	

	Contributors
	

	Distribution
	


2.9 References

	No.
	Document Reference
	Version
	Description

	[R1]
	
	
	

	[R2]
	
	
	


2.10 Open Issues

1. There are no open issues.  

2.11 Glossary 

The following technical terms and abbreviations are used within this document.

	Term
	Definition 

	ECom
	Symbian Platform plug-in architecture

	AppArc
	Symbian Platform Application Architecture

	Flogger
	File logging system


2.12 Document History

	Date
	Version
	Status
	Author
	Description

	dd-mm-yyyy
	1.0
	Issued
	<Name>
	

	11-09-2003
	0.2
	Draft
	Omer Saleem
	Added guidance on where to store test data.

	05-09-2003
	0.1
	Draft
	Omer Saleem
	First draft of test specifications of Application-Protocols Recognisers.


	Copyright © 2009 Nokia Corporation and/or its subsidiary(-ies). All rights reserved.

	This component and the accompanying materials are made available under the terms of "Eclipse Public  License v1.0" which accompanies this distribution and is available at the URL “http://www.eclipse.org/legal/epl-v10.html”.

Initial Contributors:
Nokia - initial contribution.


© Nokia Corporation and/or its subsidiaries

Page 1 of 7



© Nokia Corporation and/or its subsidiaries

Page 2 of 7




