diff -r 000000000000 -r 2f259fa3e83a classicui_plat/ode_api/inc/odemath.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/classicui_plat/ode_api/inc/odemath.h Tue Feb 02 01:00:49 2010 +0200 @@ -0,0 +1,282 @@ +/************************************************************************* + * * + * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * + * All rights reserved. Email: russ@q12.org Web: www.q12.org * + * * + * This library is free software; you can redistribute it and/or * + * modify it under the terms of EITHER: * + * (1) The GNU Lesser General Public License as published by the Free * + * Software Foundation; either version 2.1 of the License, or (at * + * your option) any later version. The text of the GNU Lesser * + * General Public License is included with this library in the * + * file LICENSE.TXT. * + * (2) The BSD-style license that is included with this library in * + * the file LICENSE-BSD.TXT. * + * * + * This library is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * + * LICENSE.TXT and LICENSE-BSD.TXT for more details. * + * * + *************************************************************************/ + +#ifndef _ODE_ODEMATH_H_ +#define _ODE_ODEMATH_H_ + +#include + +#ifdef __GNUC__ +#define PURE_INLINE extern inline +#else +#define PURE_INLINE inline +#endif + +/* + * macro to access elements i,j in an NxM matrix A, independent of the + * matrix storage convention. + */ +#define dACCESS33(A,i,j) ((A)[(i)*4+(j)]) + +/* + * Macro to test for valid floating point values + */ +#define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]))) +#define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3]))) +#define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]))) +#define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) )) + + + +/* + * General purpose vector operations with other vectors or constants. + */ + +#define dOP(a,op,b,c) \ + (a)[0] = ((b)[0]) op ((c)[0]); \ + (a)[1] = ((b)[1]) op ((c)[1]); \ + (a)[2] = ((b)[2]) op ((c)[2]); +#define dOPC(a,op,b,c) \ + (a)[0] = ((b)[0]) op (c); \ + (a)[1] = ((b)[1]) op (c); \ + (a)[2] = ((b)[2]) op (c); +#define dOPE(a,op,b) \ + (a)[0] op ((b)[0]); \ + (a)[1] op ((b)[1]); \ + (a)[2] op ((b)[2]); +#define dOPEC(a,op,c) \ + (a)[0] op (c); \ + (a)[1] op (c); \ + (a)[2] op (c); + + + + + +/* + * 3-way dot product. dDOTpq means that elements of `a' and `b' are spaced + * p and q indexes apart respectively. dDOT() means dDOT11. + * in C++ we could use function templates to get all the versions of these + * functions - but on some compilers this will result in sub-optimal code. + */ + +#define dDOTpq(a,b,p,q) (dMUL((a)[0],(b)[0]) + dMUL((a)[p],(b)[q]) + dMUL((a)[2*(p)],(b)[2*(q)])) + + +#ifdef __cplusplus + +PURE_INLINE dReal dDOT (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,1); } +PURE_INLINE dReal dDOT13 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,3); } +PURE_INLINE dReal dDOT31 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,1); } +PURE_INLINE dReal dDOT33 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,3); } +PURE_INLINE dReal dDOT14 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,4); } +PURE_INLINE dReal dDOT41 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,1); } +PURE_INLINE dReal dDOT44 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,4); } + +#endif /* __cplusplus */ + + +/* + * cross product, set a = b x c. dCROSSpqr means that elements of `a', `b' + * and `c' are spaced p, q and r indexes apart respectively. + * dCROSS() means dCROSS111. `op' is normally `=', but you can set it to + * +=, -= etc to get other effects. + */ + +#define dCROSS(a,op,b,c) \ +do { \ + (a)[0] op (dMUL((b)[1],(c)[2]) - dMUL((b)[2],(c)[1])); \ + (a)[1] op (dMUL((b)[2],(c)[0]) - dMUL((b)[0],(c)[2])); \ + (a)[2] op (dMUL((b)[0],(c)[1]) - dMUL((b)[1],(c)[0])); \ +} while(0) + +#define dCROSSpqr(a,op,b,c,p,q,r) \ +do { \ + (a)[ 0] op (dMUL((b)[ q],(c)[2*r]) - dMUL((b)[2*q],(c)[ r])); \ + (a)[ p] op (dMUL((b)[2*q],(c)[ 0]) - dMUL((b)[ 0],(c)[2*r])); \ + (a)[2*p] op (dMUL((b)[ 0],(c)[ r]) - dMUL((b)[ q],(c)[ 0])); \ +} while(0) +#define dCROSS114(a,op,b,c) dCROSSpqr(a,op,b,c,1,1,4) +#define dCROSS141(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,1) +#define dCROSS144(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,4) +#define dCROSS411(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,1) +#define dCROSS414(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,4) +#define dCROSS441(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,1) +#define dCROSS444(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,4) + + +/* + * set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b. + * A is stored by rows, and has `skip' elements per row. the matrix is + * assumed to be already zero, so this does not write zero elements! + * if (plus,minus) is (+,-) then a positive version will be written. + * if (plus,minus) is (-,+) then a negative version will be written. + */ + +#define dCROSSMAT(A,a,skip,plus,minus) \ +do { \ + (A)[1] = minus (a)[2]; \ + (A)[2] = plus (a)[1]; \ + (A)[(skip)+0] = plus (a)[2]; \ + (A)[(skip)+2] = minus (a)[0]; \ + (A)[2*(skip)+0] = minus (a)[1]; \ + (A)[2*(skip)+1] = plus (a)[0]; \ +} while(0) + + +/* + * compute the distance between two 3D-vectors + */ + +#ifdef __cplusplus +#define dDISTANCE(a,b) \ + (dSqrt( dMUL(((a)[0]-(b)[0]),((a)[0]-(b)[0])) + dMUL(((a)[1]-(b)[1]),((a)[1]-(b)[1])) + dMUL(((a)[2]-(b)[2]),((a)[2]-(b)[2])) )) +#endif + + +/* + * special case matrix multipication, with operator selection + */ + +#define dMULTIPLYOP0_331(A,op,B,C) \ +do { \ + (A)[0] op dDOT((B),(C)); \ + (A)[1] op dDOT((B+4),(C)); \ + (A)[2] op dDOT((B+8),(C)); \ +} while(0) +#define dMULTIPLYOP1_331(A,op,B,C) \ +do { \ + (A)[0] op dDOT41((B),(C)); \ + (A)[1] op dDOT41((B+1),(C)); \ + (A)[2] op dDOT41((B+2),(C)); \ +} while(0) +#define dMULTIPLYOP0_133(A,op,B,C) \ +do { \ + (A)[0] op dDOT14((B),(C)); \ + (A)[1] op dDOT14((B),(C+1)); \ + (A)[2] op dDOT14((B),(C+2)); \ +} while(0) +#define dMULTIPLYOP0_333(A,op,B,C) \ +do { \ + (A)[0] op dDOT14((B),(C)); \ + (A)[1] op dDOT14((B),(C+1)); \ + (A)[2] op dDOT14((B),(C+2)); \ + (A)[4] op dDOT14((B+4),(C)); \ + (A)[5] op dDOT14((B+4),(C+1)); \ + (A)[6] op dDOT14((B+4),(C+2)); \ + (A)[8] op dDOT14((B+8),(C)); \ + (A)[9] op dDOT14((B+8),(C+1)); \ + (A)[10] op dDOT14((B+8),(C+2)); \ +} while(0) +#define dMULTIPLYOP1_333(A,op,B,C) \ +do { \ + (A)[0] op dDOT44((B),(C)); \ + (A)[1] op dDOT44((B),(C+1)); \ + (A)[2] op dDOT44((B),(C+2)); \ + (A)[4] op dDOT44((B+1),(C)); \ + (A)[5] op dDOT44((B+1),(C+1)); \ + (A)[6] op dDOT44((B+1),(C+2)); \ + (A)[8] op dDOT44((B+2),(C)); \ + (A)[9] op dDOT44((B+2),(C+1)); \ + (A)[10] op dDOT44((B+2),(C+2)); \ +} while(0) +#define dMULTIPLYOP2_333(A,op,B,C) \ +do { \ + (A)[0] op dDOT((B),(C)); \ + (A)[1] op dDOT((B),(C+4)); \ + (A)[2] op dDOT((B),(C+8)); \ + (A)[4] op dDOT((B+4),(C)); \ + (A)[5] op dDOT((B+4),(C+4)); \ + (A)[6] op dDOT((B+4),(C+8)); \ + (A)[8] op dDOT((B+8),(C)); \ + (A)[9] op dDOT((B+8),(C+4)); \ + (A)[10] op dDOT((B+8),(C+8)); \ +} while(0) + +#ifdef __cplusplus + +#define DECL template PURE_INLINE void + +DECL dMULTIPLY0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,=,B,C); } +DECL dMULTIPLY1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,=,B,C); } +DECL dMULTIPLY0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,=,B,C); } +DECL dMULTIPLY0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,=,B,C); } +DECL dMULTIPLY1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,=,B,C); } +DECL dMULTIPLY2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,=,B,C); } + +DECL dMULTIPLYADD0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,+=,B,C); } +DECL dMULTIPLYADD1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,+=,B,C); } +DECL dMULTIPLYADD0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,+=,B,C); } +DECL dMULTIPLYADD0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,+=,B,C); } +DECL dMULTIPLYADD1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,+=,B,C); } +DECL dMULTIPLYADD2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,+=,B,C); } + +#undef DECL + +#else + +#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C) +#define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C) +#define dMULTIPLY0_133(A,B,C) dMULTIPLYOP0_133(A,=,B,C) +#define dMULTIPLY0_333(A,B,C) dMULTIPLYOP0_333(A,=,B,C) +#define dMULTIPLY1_333(A,B,C) dMULTIPLYOP1_333(A,=,B,C) +#define dMULTIPLY2_333(A,B,C) dMULTIPLYOP2_333(A,=,B,C) + +#define dMULTIPLYADD0_331(A,B,C) dMULTIPLYOP0_331(A,+=,B,C) +#define dMULTIPLYADD1_331(A,B,C) dMULTIPLYOP1_331(A,+=,B,C) +#define dMULTIPLYADD0_133(A,B,C) dMULTIPLYOP0_133(A,+=,B,C) +#define dMULTIPLYADD0_333(A,B,C) dMULTIPLYOP0_333(A,+=,B,C) +#define dMULTIPLYADD1_333(A,B,C) dMULTIPLYOP1_333(A,+=,B,C) +#define dMULTIPLYADD2_333(A,B,C) dMULTIPLYOP2_333(A,+=,B,C) + +#endif + + +#ifdef __cplusplus +extern "C" { +#endif + +/* + * normalize 3x1 and 4x1 vectors (i.e. scale them to unit length) + */ +ODE_API IMPORT_C void dNormalize3 (dVector3 a); +ODE_API IMPORT_C void dNormalize4 (dVector4 a); + + +/* + * given a unit length "normal" vector n, generate vectors p and q vectors + * that are an orthonormal basis for the plane space perpendicular to n. + * i.e. this makes p,q such that n,p,q are all perpendicular to each other. + * q will equal n x p. if n is not unit length then p will be unit length but + * q wont be. + */ + +ODE_API IMPORT_C void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q); + +ODE_API IMPORT_C dReal dArcTan2(const dReal x, const dReal y); +ODE_API IMPORT_C dReal dArcSin(const dReal arg); + +#ifdef __cplusplus +} +#endif + +#endif