0
|
1 |
/*
|
|
2 |
* jcdctmgr.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1994-1996, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains the forward-DCT management logic.
|
|
9 |
* This code selects a particular DCT implementation to be used,
|
|
10 |
* and it performs related housekeeping chores including coefficient
|
|
11 |
* quantization.
|
|
12 |
*/
|
|
13 |
|
|
14 |
#define JPEG_INTERNALS
|
|
15 |
#include "jinclude.h"
|
|
16 |
#include "jpeglib.h"
|
|
17 |
#include "jdct.h" /* Private declarations for DCT subsystem */
|
|
18 |
|
|
19 |
|
|
20 |
/* Private subobject for this module */
|
|
21 |
|
|
22 |
typedef struct {
|
|
23 |
struct jpeg_forward_dct pub; /* public fields */
|
|
24 |
|
|
25 |
/* Pointer to the DCT routine actually in use */
|
|
26 |
forward_DCT_method_ptr do_dct;
|
|
27 |
|
|
28 |
/* The actual post-DCT divisors --- not identical to the quant table
|
|
29 |
* entries, because of scaling (especially for an unnormalized DCT).
|
|
30 |
* Each table is given in normal array order.
|
|
31 |
*/
|
|
32 |
DCTELEM * divisors[NUM_QUANT_TBLS];
|
|
33 |
|
|
34 |
#ifdef DCT_FLOAT_SUPPORTED
|
|
35 |
/* Same as above for the floating-point case. */
|
|
36 |
float_DCT_method_ptr do_float_dct;
|
|
37 |
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
|
|
38 |
#endif
|
|
39 |
} my_fdct_controller;
|
|
40 |
|
|
41 |
typedef my_fdct_controller * my_fdct_ptr;
|
|
42 |
|
|
43 |
|
|
44 |
/*
|
|
45 |
* Initialize for a processing pass.
|
|
46 |
* Verify that all referenced Q-tables are present, and set up
|
|
47 |
* the divisor table for each one.
|
|
48 |
* In the current implementation, DCT of all components is done during
|
|
49 |
* the first pass, even if only some components will be output in the
|
|
50 |
* first scan. Hence all components should be examined here.
|
|
51 |
*/
|
|
52 |
|
|
53 |
METHODDEF(void)
|
|
54 |
start_pass_fdctmgr (j_compress_ptr cinfo)
|
|
55 |
{
|
|
56 |
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
|
57 |
int ci, qtblno, i;
|
|
58 |
jpeg_component_info *compptr;
|
|
59 |
JQUANT_TBL * qtbl;
|
|
60 |
DCTELEM * dtbl;
|
|
61 |
|
|
62 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
63 |
ci++, compptr++) {
|
|
64 |
qtblno = compptr->quant_tbl_no;
|
|
65 |
/* Make sure specified quantization table is present */
|
|
66 |
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
|
67 |
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
|
68 |
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
|
69 |
qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
|
70 |
/* Compute divisors for this quant table */
|
|
71 |
/* We may do this more than once for same table, but it's not a big deal */
|
|
72 |
switch (cinfo->dct_method) {
|
|
73 |
#ifdef DCT_ISLOW_SUPPORTED
|
|
74 |
case JDCT_ISLOW:
|
|
75 |
/* For LL&M IDCT method, divisors are equal to raw quantization
|
|
76 |
* coefficients multiplied by 8 (to counteract scaling).
|
|
77 |
*/
|
|
78 |
if (fdct->divisors[qtblno] == NULL) {
|
|
79 |
fdct->divisors[qtblno] = (DCTELEM *)
|
|
80 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
81 |
DCTSIZE2 * SIZEOF(DCTELEM));
|
|
82 |
}
|
|
83 |
dtbl = fdct->divisors[qtblno];
|
|
84 |
for (i = 0; i < DCTSIZE2; i++) {
|
|
85 |
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
|
|
86 |
}
|
|
87 |
break;
|
|
88 |
#endif
|
|
89 |
#ifdef DCT_IFAST_SUPPORTED
|
|
90 |
case JDCT_IFAST:
|
|
91 |
{
|
|
92 |
/* For AA&N IDCT method, divisors are equal to quantization
|
|
93 |
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
|
94 |
* scalefactor[0] = 1
|
|
95 |
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
|
96 |
* We apply a further scale factor of 8.
|
|
97 |
*/
|
|
98 |
#define CONST_BITS 14
|
|
99 |
static const INT16 aanscales[DCTSIZE2] = {
|
|
100 |
/* precomputed values scaled up by 14 bits */
|
|
101 |
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
102 |
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
|
103 |
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
|
104 |
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
|
105 |
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
106 |
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
|
107 |
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
|
108 |
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
|
109 |
};
|
|
110 |
SHIFT_TEMPS
|
|
111 |
|
|
112 |
if (fdct->divisors[qtblno] == NULL) {
|
|
113 |
fdct->divisors[qtblno] = (DCTELEM *)
|
|
114 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
115 |
DCTSIZE2 * SIZEOF(DCTELEM));
|
|
116 |
}
|
|
117 |
dtbl = fdct->divisors[qtblno];
|
|
118 |
for (i = 0; i < DCTSIZE2; i++) {
|
|
119 |
dtbl[i] = (DCTELEM)
|
|
120 |
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
|
121 |
(INT32) aanscales[i]),
|
|
122 |
CONST_BITS-3);
|
|
123 |
}
|
|
124 |
}
|
|
125 |
break;
|
|
126 |
#endif
|
|
127 |
#ifdef DCT_FLOAT_SUPPORTED
|
|
128 |
case JDCT_FLOAT:
|
|
129 |
{
|
|
130 |
/* For float AA&N IDCT method, divisors are equal to quantization
|
|
131 |
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
|
132 |
* scalefactor[0] = 1
|
|
133 |
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
|
134 |
* We apply a further scale factor of 8.
|
|
135 |
* What's actually stored is 1/divisor so that the inner loop can
|
|
136 |
* use a multiplication rather than a division.
|
|
137 |
*/
|
|
138 |
FAST_FLOAT * fdtbl;
|
|
139 |
int row, col;
|
|
140 |
static const double aanscalefactor[DCTSIZE] = {
|
|
141 |
1.0, 1.387039845, 1.306562965, 1.175875602,
|
|
142 |
1.0, 0.785694958, 0.541196100, 0.275899379
|
|
143 |
};
|
|
144 |
|
|
145 |
if (fdct->float_divisors[qtblno] == NULL) {
|
|
146 |
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
|
147 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
148 |
DCTSIZE2 * SIZEOF(FAST_FLOAT));
|
|
149 |
}
|
|
150 |
fdtbl = fdct->float_divisors[qtblno];
|
|
151 |
i = 0;
|
|
152 |
for (row = 0; row < DCTSIZE; row++) {
|
|
153 |
for (col = 0; col < DCTSIZE; col++) {
|
|
154 |
fdtbl[i] = (FAST_FLOAT)
|
|
155 |
(1.0 / (((double) qtbl->quantval[i] *
|
|
156 |
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
|
157 |
i++;
|
|
158 |
}
|
|
159 |
}
|
|
160 |
}
|
|
161 |
break;
|
|
162 |
#endif
|
|
163 |
default:
|
|
164 |
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
165 |
break;
|
|
166 |
}
|
|
167 |
}
|
|
168 |
}
|
|
169 |
|
|
170 |
|
|
171 |
/*
|
|
172 |
* Perform forward DCT on one or more blocks of a component.
|
|
173 |
*
|
|
174 |
* The input samples are taken from the sample_data[] array starting at
|
|
175 |
* position start_row/start_col, and moving to the right for any additional
|
|
176 |
* blocks. The quantized coefficients are returned in coef_blocks[].
|
|
177 |
*/
|
|
178 |
|
|
179 |
METHODDEF(void)
|
|
180 |
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
|
181 |
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
|
182 |
JDIMENSION start_row, JDIMENSION start_col,
|
|
183 |
JDIMENSION num_blocks)
|
|
184 |
/* This version is used for integer DCT implementations. */
|
|
185 |
{
|
|
186 |
/* This routine is heavily used, so it's worth coding it tightly. */
|
|
187 |
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
|
188 |
forward_DCT_method_ptr do_dct = fdct->do_dct;
|
|
189 |
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
|
|
190 |
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
|
191 |
JDIMENSION bi;
|
|
192 |
|
|
193 |
sample_data += start_row; /* fold in the vertical offset once */
|
|
194 |
|
|
195 |
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
|
196 |
/* Load data into workspace, applying unsigned->signed conversion */
|
|
197 |
{ register DCTELEM *workspaceptr;
|
|
198 |
register JSAMPROW elemptr;
|
|
199 |
register int elemr;
|
|
200 |
|
|
201 |
workspaceptr = workspace;
|
|
202 |
for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
|
203 |
elemptr = sample_data[elemr] + start_col;
|
|
204 |
#if DCTSIZE == 8 /* unroll the inner loop */
|
|
205 |
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
206 |
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
207 |
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
208 |
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
209 |
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
210 |
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
211 |
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
212 |
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
213 |
#else
|
|
214 |
{ register int elemc;
|
|
215 |
for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
|
216 |
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
217 |
}
|
|
218 |
}
|
|
219 |
#endif
|
|
220 |
}
|
|
221 |
}
|
|
222 |
|
|
223 |
/* Perform the DCT */
|
|
224 |
(*do_dct) (workspace);
|
|
225 |
|
|
226 |
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
|
227 |
{ register DCTELEM temp, qval;
|
|
228 |
register int i;
|
|
229 |
register JCOEFPTR output_ptr = coef_blocks[bi];
|
|
230 |
|
|
231 |
for (i = 0; i < DCTSIZE2; i++) {
|
|
232 |
qval = divisors[i];
|
|
233 |
temp = workspace[i];
|
|
234 |
/* Divide the coefficient value by qval, ensuring proper rounding.
|
|
235 |
* Since C does not specify the direction of rounding for negative
|
|
236 |
* quotients, we have to force the dividend positive for portability.
|
|
237 |
*
|
|
238 |
* In most files, at least half of the output values will be zero
|
|
239 |
* (at default quantization settings, more like three-quarters...)
|
|
240 |
* so we should ensure that this case is fast. On many machines,
|
|
241 |
* a comparison is enough cheaper than a divide to make a special test
|
|
242 |
* a win. Since both inputs will be nonnegative, we need only test
|
|
243 |
* for a < b to discover whether a/b is 0.
|
|
244 |
* If your machine's division is fast enough, define FAST_DIVIDE.
|
|
245 |
*/
|
|
246 |
#ifdef FAST_DIVIDE
|
|
247 |
#define DIVIDE_BY(a,b) a /= b
|
|
248 |
#else
|
|
249 |
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
|
|
250 |
#endif
|
|
251 |
if (temp < 0) {
|
|
252 |
temp = -temp;
|
|
253 |
temp += qval>>1; /* for rounding */
|
|
254 |
DIVIDE_BY(temp, qval);
|
|
255 |
temp = -temp;
|
|
256 |
} else {
|
|
257 |
temp += qval>>1; /* for rounding */
|
|
258 |
DIVIDE_BY(temp, qval);
|
|
259 |
}
|
|
260 |
output_ptr[i] = (JCOEF) temp;
|
|
261 |
}
|
|
262 |
}
|
|
263 |
}
|
|
264 |
}
|
|
265 |
|
|
266 |
|
|
267 |
#ifdef DCT_FLOAT_SUPPORTED
|
|
268 |
|
|
269 |
METHODDEF(void)
|
|
270 |
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
|
271 |
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
|
272 |
JDIMENSION start_row, JDIMENSION start_col,
|
|
273 |
JDIMENSION num_blocks)
|
|
274 |
/* This version is used for floating-point DCT implementations. */
|
|
275 |
{
|
|
276 |
/* This routine is heavily used, so it's worth coding it tightly. */
|
|
277 |
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
|
278 |
float_DCT_method_ptr do_dct = fdct->do_float_dct;
|
|
279 |
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
|
280 |
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
|
281 |
JDIMENSION bi;
|
|
282 |
|
|
283 |
sample_data += start_row; /* fold in the vertical offset once */
|
|
284 |
|
|
285 |
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
|
286 |
/* Load data into workspace, applying unsigned->signed conversion */
|
|
287 |
{ register FAST_FLOAT *workspaceptr;
|
|
288 |
register JSAMPROW elemptr;
|
|
289 |
register int elemr;
|
|
290 |
|
|
291 |
workspaceptr = workspace;
|
|
292 |
for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
|
293 |
elemptr = sample_data[elemr] + start_col;
|
|
294 |
#if DCTSIZE == 8 /* unroll the inner loop */
|
|
295 |
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
296 |
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
297 |
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
298 |
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
299 |
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
300 |
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
301 |
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
302 |
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
303 |
#else
|
|
304 |
{ register int elemc;
|
|
305 |
for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
|
306 |
*workspaceptr++ = (FAST_FLOAT)
|
|
307 |
(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
308 |
}
|
|
309 |
}
|
|
310 |
#endif
|
|
311 |
}
|
|
312 |
}
|
|
313 |
|
|
314 |
/* Perform the DCT */
|
|
315 |
(*do_dct) (workspace);
|
|
316 |
|
|
317 |
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
|
318 |
{ register FAST_FLOAT temp;
|
|
319 |
register int i;
|
|
320 |
register JCOEFPTR output_ptr = coef_blocks[bi];
|
|
321 |
|
|
322 |
for (i = 0; i < DCTSIZE2; i++) {
|
|
323 |
/* Apply the quantization and scaling factor */
|
|
324 |
temp = workspace[i] * divisors[i];
|
|
325 |
/* Round to nearest integer.
|
|
326 |
* Since C does not specify the direction of rounding for negative
|
|
327 |
* quotients, we have to force the dividend positive for portability.
|
|
328 |
* The maximum coefficient size is +-16K (for 12-bit data), so this
|
|
329 |
* code should work for either 16-bit or 32-bit ints.
|
|
330 |
*/
|
|
331 |
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
|
332 |
}
|
|
333 |
}
|
|
334 |
}
|
|
335 |
}
|
|
336 |
|
|
337 |
#endif /* DCT_FLOAT_SUPPORTED */
|
|
338 |
|
|
339 |
|
|
340 |
/*
|
|
341 |
* Initialize FDCT manager.
|
|
342 |
*/
|
|
343 |
|
|
344 |
GLOBAL(void)
|
|
345 |
jinit_forward_dct (j_compress_ptr cinfo)
|
|
346 |
{
|
|
347 |
my_fdct_ptr fdct;
|
|
348 |
int i;
|
|
349 |
|
|
350 |
fdct = (my_fdct_ptr)
|
|
351 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
352 |
SIZEOF(my_fdct_controller));
|
|
353 |
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
|
354 |
fdct->pub.start_pass = start_pass_fdctmgr;
|
|
355 |
|
|
356 |
switch (cinfo->dct_method) {
|
|
357 |
#ifdef DCT_ISLOW_SUPPORTED
|
|
358 |
case JDCT_ISLOW:
|
|
359 |
fdct->pub.forward_DCT = forward_DCT;
|
|
360 |
fdct->do_dct = jpeg_fdct_islow;
|
|
361 |
break;
|
|
362 |
#endif
|
|
363 |
#ifdef DCT_IFAST_SUPPORTED
|
|
364 |
case JDCT_IFAST:
|
|
365 |
fdct->pub.forward_DCT = forward_DCT;
|
|
366 |
fdct->do_dct = jpeg_fdct_ifast;
|
|
367 |
break;
|
|
368 |
#endif
|
|
369 |
#ifdef DCT_FLOAT_SUPPORTED
|
|
370 |
case JDCT_FLOAT:
|
|
371 |
fdct->pub.forward_DCT = forward_DCT_float;
|
|
372 |
fdct->do_float_dct = jpeg_fdct_float;
|
|
373 |
break;
|
|
374 |
#endif
|
|
375 |
default:
|
|
376 |
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
377 |
break;
|
|
378 |
}
|
|
379 |
|
|
380 |
/* Mark divisor tables unallocated */
|
|
381 |
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
|
382 |
fdct->divisors[i] = NULL;
|
|
383 |
#ifdef DCT_FLOAT_SUPPORTED
|
|
384 |
fdct->float_divisors[i] = NULL;
|
|
385 |
#endif
|
|
386 |
}
|
|
387 |
}
|