0
|
1 |
/*
|
|
2 |
* jddctmgr.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1994-1996, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains the inverse-DCT management logic.
|
|
9 |
* This code selects a particular IDCT implementation to be used,
|
|
10 |
* and it performs related housekeeping chores. No code in this file
|
|
11 |
* is executed per IDCT step, only during output pass setup.
|
|
12 |
*
|
|
13 |
* Note that the IDCT routines are responsible for performing coefficient
|
|
14 |
* dequantization as well as the IDCT proper. This module sets up the
|
|
15 |
* dequantization multiplier table needed by the IDCT routine.
|
|
16 |
*/
|
|
17 |
|
|
18 |
#define JPEG_INTERNALS
|
|
19 |
#include "jinclude.h"
|
|
20 |
#include "jpeglib.h"
|
|
21 |
#include "jdct.h" /* Private declarations for DCT subsystem */
|
|
22 |
|
|
23 |
|
|
24 |
/*
|
|
25 |
* The decompressor input side (jdinput.c) saves away the appropriate
|
|
26 |
* quantization table for each component at the start of the first scan
|
|
27 |
* involving that component. (This is necessary in order to correctly
|
|
28 |
* decode files that reuse Q-table slots.)
|
|
29 |
* When we are ready to make an output pass, the saved Q-table is converted
|
|
30 |
* to a multiplier table that will actually be used by the IDCT routine.
|
|
31 |
* The multiplier table contents are IDCT-method-dependent. To support
|
|
32 |
* application changes in IDCT method between scans, we can remake the
|
|
33 |
* multiplier tables if necessary.
|
|
34 |
* In buffered-image mode, the first output pass may occur before any data
|
|
35 |
* has been seen for some components, and thus before their Q-tables have
|
|
36 |
* been saved away. To handle this case, multiplier tables are preset
|
|
37 |
* to zeroes; the result of the IDCT will be a neutral gray level.
|
|
38 |
*/
|
|
39 |
|
|
40 |
|
|
41 |
/* Private subobject for this module */
|
|
42 |
|
|
43 |
typedef struct {
|
|
44 |
struct jpeg_inverse_dct pub; /* public fields */
|
|
45 |
|
|
46 |
/* This array contains the IDCT method code that each multiplier table
|
|
47 |
* is currently set up for, or -1 if it's not yet set up.
|
|
48 |
* The actual multiplier tables are pointed to by dct_table in the
|
|
49 |
* per-component comp_info structures.
|
|
50 |
*/
|
|
51 |
int cur_method[MAX_COMPONENTS];
|
|
52 |
} my_idct_controller;
|
|
53 |
|
|
54 |
typedef my_idct_controller * my_idct_ptr;
|
|
55 |
|
|
56 |
|
|
57 |
/* Allocated multiplier tables: big enough for any supported variant */
|
|
58 |
|
|
59 |
typedef union {
|
|
60 |
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
|
|
61 |
#ifdef DCT_IFAST_SUPPORTED
|
|
62 |
IFAST_MULT_TYPE ifast_array[DCTSIZE2];
|
|
63 |
#endif
|
|
64 |
#ifdef DCT_FLOAT_SUPPORTED
|
|
65 |
FLOAT_MULT_TYPE float_array[DCTSIZE2];
|
|
66 |
#endif
|
|
67 |
} multiplier_table;
|
|
68 |
|
|
69 |
|
|
70 |
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
|
|
71 |
* so be sure to compile that code if either ISLOW or SCALING is requested.
|
|
72 |
*/
|
|
73 |
#ifdef DCT_ISLOW_SUPPORTED
|
|
74 |
#define PROVIDE_ISLOW_TABLES
|
|
75 |
#else
|
|
76 |
#ifdef IDCT_SCALING_SUPPORTED
|
|
77 |
#define PROVIDE_ISLOW_TABLES
|
|
78 |
#endif
|
|
79 |
#endif
|
|
80 |
|
|
81 |
|
|
82 |
/*
|
|
83 |
* Prepare for an output pass.
|
|
84 |
* Here we select the proper IDCT routine for each component and build
|
|
85 |
* a matching multiplier table.
|
|
86 |
*/
|
|
87 |
|
|
88 |
METHODDEF(void)
|
|
89 |
start_pass (j_decompress_ptr cinfo)
|
|
90 |
{
|
|
91 |
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
|
|
92 |
int ci, i;
|
|
93 |
jpeg_component_info *compptr;
|
|
94 |
int method = 0;
|
|
95 |
inverse_DCT_method_ptr method_ptr = NULL;
|
|
96 |
JQUANT_TBL * qtbl;
|
|
97 |
|
|
98 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
99 |
ci++, compptr++) {
|
|
100 |
/* Select the proper IDCT routine for this component's scaling */
|
|
101 |
switch (compptr->DCT_scaled_size) {
|
|
102 |
#ifdef IDCT_SCALING_SUPPORTED
|
|
103 |
case 1:
|
|
104 |
method_ptr = jpeg_idct_1x1;
|
|
105 |
method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
|
106 |
break;
|
|
107 |
case 2:
|
|
108 |
method_ptr = jpeg_idct_2x2;
|
|
109 |
method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
|
110 |
break;
|
|
111 |
case 4:
|
|
112 |
method_ptr = jpeg_idct_4x4;
|
|
113 |
method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
|
114 |
break;
|
|
115 |
#endif
|
|
116 |
case DCTSIZE:
|
|
117 |
switch (cinfo->dct_method) {
|
|
118 |
#ifdef DCT_ISLOW_SUPPORTED
|
|
119 |
case JDCT_ISLOW:
|
|
120 |
method_ptr = jpeg_idct_islow;
|
|
121 |
method = JDCT_ISLOW;
|
|
122 |
break;
|
|
123 |
#endif
|
|
124 |
#ifdef DCT_IFAST_SUPPORTED
|
|
125 |
case JDCT_IFAST:
|
|
126 |
method_ptr = jpeg_idct_ifast;
|
|
127 |
method = JDCT_IFAST;
|
|
128 |
break;
|
|
129 |
#endif
|
|
130 |
#ifdef DCT_FLOAT_SUPPORTED
|
|
131 |
case JDCT_FLOAT:
|
|
132 |
method_ptr = jpeg_idct_float;
|
|
133 |
method = JDCT_FLOAT;
|
|
134 |
break;
|
|
135 |
#endif
|
|
136 |
default:
|
|
137 |
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
138 |
break;
|
|
139 |
}
|
|
140 |
break;
|
|
141 |
default:
|
|
142 |
ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
|
|
143 |
break;
|
|
144 |
}
|
|
145 |
idct->pub.inverse_DCT[ci] = method_ptr;
|
|
146 |
/* Create multiplier table from quant table.
|
|
147 |
* However, we can skip this if the component is uninteresting
|
|
148 |
* or if we already built the table. Also, if no quant table
|
|
149 |
* has yet been saved for the component, we leave the
|
|
150 |
* multiplier table all-zero; we'll be reading zeroes from the
|
|
151 |
* coefficient controller's buffer anyway.
|
|
152 |
*/
|
|
153 |
if (! compptr->component_needed || idct->cur_method[ci] == method)
|
|
154 |
continue;
|
|
155 |
qtbl = compptr->quant_table;
|
|
156 |
if (qtbl == NULL) /* happens if no data yet for component */
|
|
157 |
continue;
|
|
158 |
idct->cur_method[ci] = method;
|
|
159 |
switch (method) {
|
|
160 |
#ifdef PROVIDE_ISLOW_TABLES
|
|
161 |
case JDCT_ISLOW:
|
|
162 |
{
|
|
163 |
/* For LL&M IDCT method, multipliers are equal to raw quantization
|
|
164 |
* coefficients, but are stored as ints to ensure access efficiency.
|
|
165 |
*/
|
|
166 |
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
167 |
for (i = 0; i < DCTSIZE2; i++) {
|
|
168 |
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
|
|
169 |
}
|
|
170 |
}
|
|
171 |
break;
|
|
172 |
#endif
|
|
173 |
#ifdef DCT_IFAST_SUPPORTED
|
|
174 |
case JDCT_IFAST:
|
|
175 |
{
|
|
176 |
/* For AA&N IDCT method, multipliers are equal to quantization
|
|
177 |
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
|
178 |
* scalefactor[0] = 1
|
|
179 |
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
|
180 |
* For integer operation, the multiplier table is to be scaled by
|
|
181 |
* IFAST_SCALE_BITS.
|
|
182 |
*/
|
|
183 |
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
|
|
184 |
#define CONST_BITS 14
|
|
185 |
static const INT16 aanscales[DCTSIZE2] = {
|
|
186 |
/* precomputed values scaled up by 14 bits */
|
|
187 |
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
188 |
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
|
189 |
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
|
190 |
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
|
191 |
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
192 |
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
|
193 |
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
|
194 |
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
|
195 |
};
|
|
196 |
SHIFT_TEMPS
|
|
197 |
|
|
198 |
for (i = 0; i < DCTSIZE2; i++) {
|
|
199 |
ifmtbl[i] = (IFAST_MULT_TYPE)
|
|
200 |
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
|
201 |
(INT32) aanscales[i]),
|
|
202 |
CONST_BITS-IFAST_SCALE_BITS);
|
|
203 |
}
|
|
204 |
}
|
|
205 |
break;
|
|
206 |
#endif
|
|
207 |
#ifdef DCT_FLOAT_SUPPORTED
|
|
208 |
case JDCT_FLOAT:
|
|
209 |
{
|
|
210 |
/* For float AA&N IDCT method, multipliers are equal to quantization
|
|
211 |
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
|
212 |
* scalefactor[0] = 1
|
|
213 |
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
|
214 |
*/
|
|
215 |
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
|
216 |
int row, col;
|
|
217 |
static const double aanscalefactor[DCTSIZE] = {
|
|
218 |
1.0, 1.387039845, 1.306562965, 1.175875602,
|
|
219 |
1.0, 0.785694958, 0.541196100, 0.275899379
|
|
220 |
};
|
|
221 |
|
|
222 |
i = 0;
|
|
223 |
for (row = 0; row < DCTSIZE; row++) {
|
|
224 |
for (col = 0; col < DCTSIZE; col++) {
|
|
225 |
fmtbl[i] = (FLOAT_MULT_TYPE)
|
|
226 |
((double) qtbl->quantval[i] *
|
|
227 |
aanscalefactor[row] * aanscalefactor[col]);
|
|
228 |
i++;
|
|
229 |
}
|
|
230 |
}
|
|
231 |
}
|
|
232 |
break;
|
|
233 |
#endif
|
|
234 |
default:
|
|
235 |
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
236 |
break;
|
|
237 |
}
|
|
238 |
}
|
|
239 |
}
|
|
240 |
|
|
241 |
|
|
242 |
/*
|
|
243 |
* Initialize IDCT manager.
|
|
244 |
*/
|
|
245 |
|
|
246 |
GLOBAL(void)
|
|
247 |
jinit_inverse_dct (j_decompress_ptr cinfo)
|
|
248 |
{
|
|
249 |
my_idct_ptr idct;
|
|
250 |
int ci;
|
|
251 |
jpeg_component_info *compptr;
|
|
252 |
|
|
253 |
idct = (my_idct_ptr)
|
|
254 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
255 |
SIZEOF(my_idct_controller));
|
|
256 |
cinfo->idct = (struct jpeg_inverse_dct *) idct;
|
|
257 |
idct->pub.start_pass = start_pass;
|
|
258 |
|
|
259 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
260 |
ci++, compptr++) {
|
|
261 |
/* Allocate and pre-zero a multiplier table for each component */
|
|
262 |
compptr->dct_table =
|
|
263 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
264 |
SIZEOF(multiplier_table));
|
|
265 |
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
|
|
266 |
/* Mark multiplier table not yet set up for any method */
|
|
267 |
idct->cur_method[ci] = -1;
|
|
268 |
}
|
|
269 |
}
|