0
|
1 |
/*
|
|
2 |
$Id: malloc.c,v 1.4 2006/03/30 16:47:29 wg Exp $
|
|
3 |
|
|
4 |
This version of malloc.c was adapted for ptmalloc3 by Wolfram Gloger
|
|
5 |
<wg@malloc.de>. Therefore, some of the comments below do not apply
|
|
6 |
for this modified version. However, it is the intention to keep
|
|
7 |
differences to Doug Lea's original version minimal, hence the
|
|
8 |
comments were mostly left unchanged.
|
|
9 |
|
|
10 |
-----------------------------------------------------------------------
|
|
11 |
|
|
12 |
This is a version (aka dlmalloc) of malloc/free/realloc written by
|
|
13 |
Doug Lea and released to the public domain, as explained at
|
|
14 |
http://creativecommons.org/licenses/publicdomain. Send questions,
|
|
15 |
comments, complaints, performance data, etc to dl@cs.oswego.edu
|
|
16 |
|
|
17 |
* Version pre-2.8.4 Wed Mar 29 19:46:29 2006 (dl at gee)
|
|
18 |
|
|
19 |
Note: There may be an updated version of this malloc obtainable at
|
|
20 |
ftp://gee.cs.oswego.edu/pub/misc/malloc.c
|
|
21 |
Check before installing!
|
|
22 |
|
|
23 |
* Quickstart
|
|
24 |
|
|
25 |
This library is all in one file to simplify the most common usage:
|
|
26 |
ftp it, compile it (-O3), and link it into another program. All of
|
|
27 |
the compile-time options default to reasonable values for use on
|
|
28 |
most platforms. You might later want to step through various
|
|
29 |
compile-time and dynamic tuning options.
|
|
30 |
|
|
31 |
For convenience, an include file for code using this malloc is at:
|
|
32 |
ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
|
|
33 |
You don't really need this .h file unless you call functions not
|
|
34 |
defined in your system include files. The .h file contains only the
|
|
35 |
excerpts from this file needed for using this malloc on ANSI C/C++
|
|
36 |
systems, so long as you haven't changed compile-time options about
|
|
37 |
naming and tuning parameters. If you do, then you can create your
|
|
38 |
own malloc.h that does include all settings by cutting at the point
|
|
39 |
indicated below. Note that you may already by default be using a C
|
|
40 |
library containing a malloc that is based on some version of this
|
|
41 |
malloc (for example in linux). You might still want to use the one
|
|
42 |
in this file to customize settings or to avoid overheads associated
|
|
43 |
with library versions.
|
|
44 |
|
|
45 |
* Vital statistics:
|
|
46 |
|
|
47 |
Supported pointer/size_t representation: 4 or 8 bytes
|
|
48 |
size_t MUST be an unsigned type of the same width as
|
|
49 |
pointers. (If you are using an ancient system that declares
|
|
50 |
size_t as a signed type, or need it to be a different width
|
|
51 |
than pointers, you can use a previous release of this malloc
|
|
52 |
(e.g. 2.7.2) supporting these.)
|
|
53 |
|
|
54 |
Alignment: 8 bytes (default)
|
|
55 |
This suffices for nearly all current machines and C compilers.
|
|
56 |
However, you can define MALLOC_ALIGNMENT to be wider than this
|
|
57 |
if necessary (up to 128bytes), at the expense of using more space.
|
|
58 |
|
|
59 |
Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
|
|
60 |
8 or 16 bytes (if 8byte sizes)
|
|
61 |
Each malloced chunk has a hidden word of overhead holding size
|
|
62 |
and status information, and additional cross-check word
|
|
63 |
if FOOTERS is defined.
|
|
64 |
|
|
65 |
Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
|
|
66 |
8-byte ptrs: 32 bytes (including overhead)
|
|
67 |
|
|
68 |
Even a request for zero bytes (i.e., malloc(0)) returns a
|
|
69 |
pointer to something of the minimum allocatable size.
|
|
70 |
The maximum overhead wastage (i.e., number of extra bytes
|
|
71 |
allocated than were requested in malloc) is less than or equal
|
|
72 |
to the minimum size, except for requests >= mmap_threshold that
|
|
73 |
are serviced via mmap(), where the worst case wastage is about
|
|
74 |
32 bytes plus the remainder from a system page (the minimal
|
|
75 |
mmap unit); typically 4096 or 8192 bytes.
|
|
76 |
|
|
77 |
Security: static-safe; optionally more or less
|
|
78 |
The "security" of malloc refers to the ability of malicious
|
|
79 |
code to accentuate the effects of errors (for example, freeing
|
|
80 |
space that is not currently malloc'ed or overwriting past the
|
|
81 |
ends of chunks) in code that calls malloc. This malloc
|
|
82 |
guarantees not to modify any memory locations below the base of
|
|
83 |
heap, i.e., static variables, even in the presence of usage
|
|
84 |
errors. The routines additionally detect most improper frees
|
|
85 |
and reallocs. All this holds as long as the static bookkeeping
|
|
86 |
for malloc itself is not corrupted by some other means. This
|
|
87 |
is only one aspect of security -- these checks do not, and
|
|
88 |
cannot, detect all possible programming errors.
|
|
89 |
|
|
90 |
If FOOTERS is defined nonzero, then each allocated chunk
|
|
91 |
carries an additional check word to verify that it was malloced
|
|
92 |
from its space. These check words are the same within each
|
|
93 |
execution of a program using malloc, but differ across
|
|
94 |
executions, so externally crafted fake chunks cannot be
|
|
95 |
freed. This improves security by rejecting frees/reallocs that
|
|
96 |
could corrupt heap memory, in addition to the checks preventing
|
|
97 |
writes to statics that are always on. This may further improve
|
|
98 |
security at the expense of time and space overhead. (Note that
|
|
99 |
FOOTERS may also be worth using with MSPACES.)
|
|
100 |
|
|
101 |
By default detected errors cause the program to abort (calling
|
|
102 |
"abort()"). You can override this to instead proceed past
|
|
103 |
errors by defining PROCEED_ON_ERROR. In this case, a bad free
|
|
104 |
has no effect, and a malloc that encounters a bad address
|
|
105 |
caused by user overwrites will ignore the bad address by
|
|
106 |
dropping pointers and indices to all known memory. This may
|
|
107 |
be appropriate for programs that should continue if at all
|
|
108 |
possible in the face of programming errors, although they may
|
|
109 |
run out of memory because dropped memory is never reclaimed.
|
|
110 |
|
|
111 |
If you don't like either of these options, you can define
|
|
112 |
CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
|
|
113 |
else. And if if you are sure that your program using malloc has
|
|
114 |
no errors or vulnerabilities, you can define INSECURE to 1,
|
|
115 |
which might (or might not) provide a small performance improvement.
|
|
116 |
|
|
117 |
Thread-safety: NOT thread-safe unless USE_LOCKS defined
|
|
118 |
When USE_LOCKS is defined, each public call to malloc, free,
|
|
119 |
etc is surrounded with either a pthread mutex or a win32
|
|
120 |
spinlock (depending on WIN32). This is not especially fast, and
|
|
121 |
can be a major bottleneck. It is designed only to provide
|
|
122 |
minimal protection in concurrent environments, and to provide a
|
|
123 |
basis for extensions. If you are using malloc in a concurrent
|
|
124 |
program, consider instead using nedmalloc
|
|
125 |
(http://www.nedprod.com/programs/portable/nedmalloc/) or
|
|
126 |
ptmalloc (See http://www.malloc.de), which are derived
|
|
127 |
from versions of this malloc.
|
|
128 |
|
|
129 |
System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
|
|
130 |
This malloc can use unix sbrk or any emulation (invoked using
|
|
131 |
the CALL_MORECORE macro) and/or mmap/munmap or any emulation
|
|
132 |
(invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
|
|
133 |
memory. On most unix systems, it tends to work best if both
|
|
134 |
MORECORE and MMAP are enabled. On Win32, it uses emulations
|
|
135 |
based on VirtualAlloc. It also uses common C library functions
|
|
136 |
like memset.
|
|
137 |
|
|
138 |
Compliance: I believe it is compliant with the Single Unix Specification
|
|
139 |
(See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
|
|
140 |
others as well.
|
|
141 |
|
|
142 |
* Overview of algorithms
|
|
143 |
|
|
144 |
This is not the fastest, most space-conserving, most portable, or
|
|
145 |
most tunable malloc ever written. However it is among the fastest
|
|
146 |
while also being among the most space-conserving, portable and
|
|
147 |
tunable. Consistent balance across these factors results in a good
|
|
148 |
general-purpose allocator for malloc-intensive programs.
|
|
149 |
|
|
150 |
In most ways, this malloc is a best-fit allocator. Generally, it
|
|
151 |
chooses the best-fitting existing chunk for a request, with ties
|
|
152 |
broken in approximately least-recently-used order. (This strategy
|
|
153 |
normally maintains low fragmentation.) However, for requests less
|
|
154 |
than 256bytes, it deviates from best-fit when there is not an
|
|
155 |
exactly fitting available chunk by preferring to use space adjacent
|
|
156 |
to that used for the previous small request, as well as by breaking
|
|
157 |
ties in approximately most-recently-used order. (These enhance
|
|
158 |
locality of series of small allocations.) And for very large requests
|
|
159 |
(>= 256Kb by default), it relies on system memory mapping
|
|
160 |
facilities, if supported. (This helps avoid carrying around and
|
|
161 |
possibly fragmenting memory used only for large chunks.)
|
|
162 |
|
|
163 |
All operations (except malloc_stats and mallinfo) have execution
|
|
164 |
times that are bounded by a constant factor of the number of bits in
|
|
165 |
a size_t, not counting any clearing in calloc or copying in realloc,
|
|
166 |
or actions surrounding MORECORE and MMAP that have times
|
|
167 |
proportional to the number of non-contiguous regions returned by
|
|
168 |
system allocation routines, which is often just 1. In real-time
|
|
169 |
applications, you can optionally suppress segment traversals using
|
|
170 |
NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
|
|
171 |
system allocators return non-contiguous spaces, at the typical
|
|
172 |
expense of carrying around more memory and increased fragmentation.
|
|
173 |
|
|
174 |
The implementation is not very modular and seriously overuses
|
|
175 |
macros. Perhaps someday all C compilers will do as good a job
|
|
176 |
inlining modular code as can now be done by brute-force expansion,
|
|
177 |
but now, enough of them seem not to.
|
|
178 |
|
|
179 |
Some compilers issue a lot of warnings about code that is
|
|
180 |
dead/unreachable only on some platforms, and also about intentional
|
|
181 |
uses of negation on unsigned types. All known cases of each can be
|
|
182 |
ignored.
|
|
183 |
|
|
184 |
For a longer but out of date high-level description, see
|
|
185 |
http://gee.cs.oswego.edu/dl/html/malloc.html
|
|
186 |
|
|
187 |
* MSPACES
|
|
188 |
If MSPACES is defined, then in addition to malloc, free, etc.,
|
|
189 |
this file also defines mspace_malloc, mspace_free, etc. These
|
|
190 |
are versions of malloc routines that take an "mspace" argument
|
|
191 |
obtained using create_mspace, to control all internal bookkeeping.
|
|
192 |
If ONLY_MSPACES is defined, only these versions are compiled.
|
|
193 |
So if you would like to use this allocator for only some allocations,
|
|
194 |
and your system malloc for others, you can compile with
|
|
195 |
ONLY_MSPACES and then do something like...
|
|
196 |
static mspace mymspace = create_mspace(0,0); // for example
|
|
197 |
#define mymalloc(bytes) mspace_malloc(mymspace, bytes)
|
|
198 |
|
|
199 |
(Note: If you only need one instance of an mspace, you can instead
|
|
200 |
use "USE_DL_PREFIX" to relabel the global malloc.)
|
|
201 |
|
|
202 |
You can similarly create thread-local allocators by storing
|
|
203 |
mspaces as thread-locals. For example:
|
|
204 |
static __thread mspace tlms = 0;
|
|
205 |
void* tlmalloc(size_t bytes) {
|
|
206 |
if (tlms == 0) tlms = create_mspace(0, 0);
|
|
207 |
return mspace_malloc(tlms, bytes);
|
|
208 |
}
|
|
209 |
void tlfree(void* mem) { mspace_free(tlms, mem); }
|
|
210 |
|
|
211 |
Unless FOOTERS is defined, each mspace is completely independent.
|
|
212 |
You cannot allocate from one and free to another (although
|
|
213 |
conformance is only weakly checked, so usage errors are not always
|
|
214 |
caught). If FOOTERS is defined, then each chunk carries around a tag
|
|
215 |
indicating its originating mspace, and frees are directed to their
|
|
216 |
originating spaces.
|
|
217 |
|
|
218 |
------------------------- Compile-time options ---------------------------
|
|
219 |
|
|
220 |
Be careful in setting #define values for numerical constants of type
|
|
221 |
size_t. On some systems, literal values are not automatically extended
|
|
222 |
to size_t precision unless they are explicitly casted. You can also
|
|
223 |
use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
|
|
224 |
|
|
225 |
WIN32 default: defined if _WIN32 defined
|
|
226 |
Defining WIN32 sets up defaults for MS environment and compilers.
|
|
227 |
Otherwise defaults are for unix.
|
|
228 |
|
|
229 |
MALLOC_ALIGNMENT default: (size_t)8
|
|
230 |
Controls the minimum alignment for malloc'ed chunks. It must be a
|
|
231 |
power of two and at least 8, even on machines for which smaller
|
|
232 |
alignments would suffice. It may be defined as larger than this
|
|
233 |
though. Note however that code and data structures are optimized for
|
|
234 |
the case of 8-byte alignment.
|
|
235 |
|
|
236 |
MSPACES default: 0 (false)
|
|
237 |
If true, compile in support for independent allocation spaces.
|
|
238 |
This is only supported if HAVE_MMAP is true.
|
|
239 |
|
|
240 |
ONLY_MSPACES default: 0 (false)
|
|
241 |
If true, only compile in mspace versions, not regular versions.
|
|
242 |
|
|
243 |
USE_LOCKS default: 0 (false)
|
|
244 |
Causes each call to each public routine to be surrounded with
|
|
245 |
pthread or WIN32 mutex lock/unlock. (If set true, this can be
|
|
246 |
overridden on a per-mspace basis for mspace versions.) If set to a
|
|
247 |
non-zero value other than 1, locks are used, but their
|
|
248 |
implementation is left out, so lock functions must be supplied manually.
|
|
249 |
|
|
250 |
USE_SPIN_LOCKS default: 1 iff USE_LOCKS and on x86 using gcc or MSC
|
|
251 |
If true, uses custom spin locks for locking. This is currently
|
|
252 |
supported only for x86 platforms using gcc or recent MS compilers.
|
|
253 |
Otherwise, posix locks or win32 critical sections are used.
|
|
254 |
|
|
255 |
FOOTERS default: 0
|
|
256 |
If true, provide extra checking and dispatching by placing
|
|
257 |
information in the footers of allocated chunks. This adds
|
|
258 |
space and time overhead.
|
|
259 |
|
|
260 |
INSECURE default: 0
|
|
261 |
If true, omit checks for usage errors and heap space overwrites.
|
|
262 |
|
|
263 |
USE_DL_PREFIX default: NOT defined
|
|
264 |
Causes compiler to prefix all public routines with the string 'dl'.
|
|
265 |
This can be useful when you only want to use this malloc in one part
|
|
266 |
of a program, using your regular system malloc elsewhere.
|
|
267 |
|
|
268 |
ABORT default: defined as abort()
|
|
269 |
Defines how to abort on failed checks. On most systems, a failed
|
|
270 |
check cannot die with an "assert" or even print an informative
|
|
271 |
message, because the underlying print routines in turn call malloc,
|
|
272 |
which will fail again. Generally, the best policy is to simply call
|
|
273 |
abort(). It's not very useful to do more than this because many
|
|
274 |
errors due to overwriting will show up as address faults (null, odd
|
|
275 |
addresses etc) rather than malloc-triggered checks, so will also
|
|
276 |
abort. Also, most compilers know that abort() does not return, so
|
|
277 |
can better optimize code conditionally calling it.
|
|
278 |
|
|
279 |
PROCEED_ON_ERROR default: defined as 0 (false)
|
|
280 |
Controls whether detected bad addresses cause them to bypassed
|
|
281 |
rather than aborting. If set, detected bad arguments to free and
|
|
282 |
realloc are ignored. And all bookkeeping information is zeroed out
|
|
283 |
upon a detected overwrite of freed heap space, thus losing the
|
|
284 |
ability to ever return it from malloc again, but enabling the
|
|
285 |
application to proceed. If PROCEED_ON_ERROR is defined, the
|
|
286 |
static variable malloc_corruption_error_count is compiled in
|
|
287 |
and can be examined to see if errors have occurred. This option
|
|
288 |
generates slower code than the default abort policy.
|
|
289 |
|
|
290 |
DEBUG default: NOT defined
|
|
291 |
The DEBUG setting is mainly intended for people trying to modify
|
|
292 |
this code or diagnose problems when porting to new platforms.
|
|
293 |
However, it may also be able to better isolate user errors than just
|
|
294 |
using runtime checks. The assertions in the check routines spell
|
|
295 |
out in more detail the assumptions and invariants underlying the
|
|
296 |
algorithms. The checking is fairly extensive, and will slow down
|
|
297 |
execution noticeably. Calling malloc_stats or mallinfo with DEBUG
|
|
298 |
set will attempt to check every non-mmapped allocated and free chunk
|
|
299 |
in the course of computing the summaries.
|
|
300 |
|
|
301 |
ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
|
|
302 |
Debugging assertion failures can be nearly impossible if your
|
|
303 |
version of the assert macro causes malloc to be called, which will
|
|
304 |
lead to a cascade of further failures, blowing the runtime stack.
|
|
305 |
ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
|
|
306 |
which will usually make debugging easier.
|
|
307 |
|
|
308 |
MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
|
|
309 |
The action to take before "return 0" when malloc fails to be able to
|
|
310 |
return memory because there is none available.
|
|
311 |
|
|
312 |
HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
|
|
313 |
True if this system supports sbrk or an emulation of it.
|
|
314 |
|
|
315 |
MORECORE default: sbrk
|
|
316 |
The name of the sbrk-style system routine to call to obtain more
|
|
317 |
memory. See below for guidance on writing custom MORECORE
|
|
318 |
functions. The type of the argument to sbrk/MORECORE varies across
|
|
319 |
systems. It cannot be size_t, because it supports negative
|
|
320 |
arguments, so it is normally the signed type of the same width as
|
|
321 |
size_t (sometimes declared as "intptr_t"). It doesn't much matter
|
|
322 |
though. Internally, we only call it with arguments less than half
|
|
323 |
the max value of a size_t, which should work across all reasonable
|
|
324 |
possibilities, although sometimes generating compiler warnings. See
|
|
325 |
near the end of this file for guidelines for creating a custom
|
|
326 |
version of MORECORE.
|
|
327 |
|
|
328 |
MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
|
|
329 |
If true, take advantage of fact that consecutive calls to MORECORE
|
|
330 |
with positive arguments always return contiguous increasing
|
|
331 |
addresses. This is true of unix sbrk. It does not hurt too much to
|
|
332 |
set it true anyway, since malloc copes with non-contiguities.
|
|
333 |
Setting it false when definitely non-contiguous saves time
|
|
334 |
and possibly wasted space it would take to discover this though.
|
|
335 |
|
|
336 |
MORECORE_CANNOT_TRIM default: NOT defined
|
|
337 |
True if MORECORE cannot release space back to the system when given
|
|
338 |
negative arguments. This is generally necessary only if you are
|
|
339 |
using a hand-crafted MORECORE function that cannot handle negative
|
|
340 |
arguments.
|
|
341 |
|
|
342 |
NO_SEGMENT_TRAVERSAL default: 0
|
|
343 |
If non-zero, suppresses traversals of memory segments
|
|
344 |
returned by either MORECORE or CALL_MMAP. This disables
|
|
345 |
merging of segments that are contiguous, and selectively
|
|
346 |
releasing them to the OS if unused, but bounds execution times.
|
|
347 |
|
|
348 |
HAVE_MMAP default: 1 (true)
|
|
349 |
True if this system supports mmap or an emulation of it. If so, and
|
|
350 |
HAVE_MORECORE is not true, MMAP is used for all system
|
|
351 |
allocation. If set and HAVE_MORECORE is true as well, MMAP is
|
|
352 |
primarily used to directly allocate very large blocks. It is also
|
|
353 |
used as a backup strategy in cases where MORECORE fails to provide
|
|
354 |
space from system. Note: A single call to MUNMAP is assumed to be
|
|
355 |
able to unmap memory that may have be allocated using multiple calls
|
|
356 |
to MMAP, so long as they are adjacent.
|
|
357 |
|
|
358 |
HAVE_MREMAP default: 1 on linux, else 0
|
|
359 |
If true realloc() uses mremap() to re-allocate large blocks and
|
|
360 |
extend or shrink allocation spaces.
|
|
361 |
|
|
362 |
MMAP_CLEARS default: 1 except on WINCE.
|
|
363 |
True if mmap clears memory so calloc doesn't need to. This is true
|
|
364 |
for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
|
|
365 |
|
|
366 |
USE_BUILTIN_FFS default: 0 (i.e., not used)
|
|
367 |
Causes malloc to use the builtin ffs() function to compute indices.
|
|
368 |
Some compilers may recognize and intrinsify ffs to be faster than the
|
|
369 |
supplied C version. Also, the case of x86 using gcc is special-cased
|
|
370 |
to an asm instruction, so is already as fast as it can be, and so
|
|
371 |
this setting has no effect. Similarly for Win32 under recent MS compilers.
|
|
372 |
(On most x86s, the asm version is only slightly faster than the C version.)
|
|
373 |
|
|
374 |
malloc_getpagesize default: derive from system includes, or 4096.
|
|
375 |
The system page size. To the extent possible, this malloc manages
|
|
376 |
memory from the system in page-size units. This may be (and
|
|
377 |
usually is) a function rather than a constant. This is ignored
|
|
378 |
if WIN32, where page size is determined using getSystemInfo during
|
|
379 |
initialization.
|
|
380 |
|
|
381 |
USE_DEV_RANDOM default: 0 (i.e., not used)
|
|
382 |
Causes malloc to use /dev/random to initialize secure magic seed for
|
|
383 |
stamping footers. Otherwise, the current time is used.
|
|
384 |
|
|
385 |
NO_MALLINFO default: 0
|
|
386 |
If defined, don't compile "mallinfo". This can be a simple way
|
|
387 |
of dealing with mismatches between system declarations and
|
|
388 |
those in this file.
|
|
389 |
|
|
390 |
MALLINFO_FIELD_TYPE default: size_t
|
|
391 |
The type of the fields in the mallinfo struct. This was originally
|
|
392 |
defined as "int" in SVID etc, but is more usefully defined as
|
|
393 |
size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
|
|
394 |
|
|
395 |
REALLOC_ZERO_BYTES_FREES default: not defined
|
|
396 |
This should be set if a call to realloc with zero bytes should
|
|
397 |
be the same as a call to free. Some people think it should. Otherwise,
|
|
398 |
since this malloc returns a unique pointer for malloc(0), so does
|
|
399 |
realloc(p, 0).
|
|
400 |
|
|
401 |
LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
|
|
402 |
LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
|
|
403 |
LACKS_STDLIB_H default: NOT defined unless on WIN32
|
|
404 |
Define these if your system does not have these header files.
|
|
405 |
You might need to manually insert some of the declarations they provide.
|
|
406 |
|
|
407 |
DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
|
|
408 |
system_info.dwAllocationGranularity in WIN32,
|
|
409 |
otherwise 64K.
|
|
410 |
Also settable using mallopt(M_GRANULARITY, x)
|
|
411 |
The unit for allocating and deallocating memory from the system. On
|
|
412 |
most systems with contiguous MORECORE, there is no reason to
|
|
413 |
make this more than a page. However, systems with MMAP tend to
|
|
414 |
either require or encourage larger granularities. You can increase
|
|
415 |
this value to prevent system allocation functions to be called so
|
|
416 |
often, especially if they are slow. The value must be at least one
|
|
417 |
page and must be a power of two. Setting to 0 causes initialization
|
|
418 |
to either page size or win32 region size. (Note: In previous
|
|
419 |
versions of malloc, the equivalent of this option was called
|
|
420 |
"TOP_PAD")
|
|
421 |
|
|
422 |
DEFAULT_TRIM_THRESHOLD default: 2MB
|
|
423 |
Also settable using mallopt(M_TRIM_THRESHOLD, x)
|
|
424 |
The maximum amount of unused top-most memory to keep before
|
|
425 |
releasing via malloc_trim in free(). Automatic trimming is mainly
|
|
426 |
useful in long-lived programs using contiguous MORECORE. Because
|
|
427 |
trimming via sbrk can be slow on some systems, and can sometimes be
|
|
428 |
wasteful (in cases where programs immediately afterward allocate
|
|
429 |
more large chunks) the value should be high enough so that your
|
|
430 |
overall system performance would improve by releasing this much
|
|
431 |
memory. As a rough guide, you might set to a value close to the
|
|
432 |
average size of a process (program) running on your system.
|
|
433 |
Releasing this much memory would allow such a process to run in
|
|
434 |
memory. Generally, it is worth tuning trim thresholds when a
|
|
435 |
program undergoes phases where several large chunks are allocated
|
|
436 |
and released in ways that can reuse each other's storage, perhaps
|
|
437 |
mixed with phases where there are no such chunks at all. The trim
|
|
438 |
value must be greater than page size to have any useful effect. To
|
|
439 |
disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
|
|
440 |
some people use of mallocing a huge space and then freeing it at
|
|
441 |
program startup, in an attempt to reserve system memory, doesn't
|
|
442 |
have the intended effect under automatic trimming, since that memory
|
|
443 |
will immediately be returned to the system.
|
|
444 |
|
|
445 |
DEFAULT_MMAP_THRESHOLD default: 256K
|
|
446 |
Also settable using mallopt(M_MMAP_THRESHOLD, x)
|
|
447 |
The request size threshold for using MMAP to directly service a
|
|
448 |
request. Requests of at least this size that cannot be allocated
|
|
449 |
using already-existing space will be serviced via mmap. (If enough
|
|
450 |
normal freed space already exists it is used instead.) Using mmap
|
|
451 |
segregates relatively large chunks of memory so that they can be
|
|
452 |
individually obtained and released from the host system. A request
|
|
453 |
serviced through mmap is never reused by any other request (at least
|
|
454 |
not directly; the system may just so happen to remap successive
|
|
455 |
requests to the same locations). Segregating space in this way has
|
|
456 |
the benefits that: Mmapped space can always be individually released
|
|
457 |
back to the system, which helps keep the system level memory demands
|
|
458 |
of a long-lived program low. Also, mapped memory doesn't become
|
|
459 |
`locked' between other chunks, as can happen with normally allocated
|
|
460 |
chunks, which means that even trimming via malloc_trim would not
|
|
461 |
release them. However, it has the disadvantage that the space
|
|
462 |
cannot be reclaimed, consolidated, and then used to service later
|
|
463 |
requests, as happens with normal chunks. The advantages of mmap
|
|
464 |
nearly always outweigh disadvantages for "large" chunks, but the
|
|
465 |
value of "large" may vary across systems. The default is an
|
|
466 |
empirically derived value that works well in most systems. You can
|
|
467 |
disable mmap by setting to MAX_SIZE_T.
|
|
468 |
|
|
469 |
MAX_RELEASE_CHECK_RATE default: 255 unless not HAVE_MMAP
|
|
470 |
The number of consolidated frees between checks to release
|
|
471 |
unused segments when freeing. When using non-contiguous segments,
|
|
472 |
especially with multiple mspaces, checking only for topmost space
|
|
473 |
doesn't always suffice to trigger trimming. To compensate for this,
|
|
474 |
free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
|
|
475 |
current number of segments, if greater) try to release unused
|
|
476 |
segments to the OS when freeing chunks that result in
|
|
477 |
consolidation. The best value for this parameter is a compromise
|
|
478 |
between slowing down frees with relatively costly checks that
|
|
479 |
rarely trigger versus holding on to unused memory. To effectively
|
|
480 |
disable, set to MAX_SIZE_T. This may lead to a very slight speed
|
|
481 |
improvement at the expense of carrying around more memory.
|
|
482 |
*/
|
|
483 |
|
|
484 |
#ifndef WIN32
|
|
485 |
#ifdef _WIN32
|
|
486 |
#define WIN32 1
|
|
487 |
#endif /* _WIN32 */
|
|
488 |
#endif /* WIN32 */
|
|
489 |
#ifdef WIN32
|
|
490 |
#define WIN32_LEAN_AND_MEAN
|
|
491 |
#include <windows.h>
|
|
492 |
#define HAVE_MMAP 1
|
|
493 |
#define HAVE_MORECORE 0
|
|
494 |
#define LACKS_UNISTD_H
|
|
495 |
#define LACKS_SYS_PARAM_H
|
|
496 |
#define LACKS_SYS_MMAN_H
|
|
497 |
#define LACKS_STRING_H
|
|
498 |
#define LACKS_STRINGS_H
|
|
499 |
#define LACKS_SYS_TYPES_H
|
|
500 |
#define LACKS_ERRNO_H
|
|
501 |
#define MALLOC_FAILURE_ACTION
|
|
502 |
#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
|
|
503 |
#define MMAP_CLEARS 0
|
|
504 |
#else
|
|
505 |
#define MMAP_CLEARS 1
|
|
506 |
#endif /* _WIN32_WCE */
|
|
507 |
#endif /* WIN32 */
|
|
508 |
|
|
509 |
#if defined(DARWIN) || defined(_DARWIN)
|
|
510 |
/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
|
|
511 |
#ifndef HAVE_MORECORE
|
|
512 |
#define HAVE_MORECORE 0
|
|
513 |
#define HAVE_MMAP 1
|
|
514 |
#endif /* HAVE_MORECORE */
|
|
515 |
#endif /* DARWIN */
|
|
516 |
|
|
517 |
#ifndef LACKS_SYS_TYPES_H
|
|
518 |
#include <sys/types.h> /* For size_t */
|
|
519 |
#endif /* LACKS_SYS_TYPES_H */
|
|
520 |
|
|
521 |
/* The maximum possible size_t value has all bits set */
|
|
522 |
#define MAX_SIZE_T (~(size_t)0)
|
|
523 |
|
|
524 |
#ifndef ONLY_MSPACES
|
|
525 |
#define ONLY_MSPACES 0
|
|
526 |
#endif /* ONLY_MSPACES */
|
|
527 |
#ifndef MSPACES
|
|
528 |
#if ONLY_MSPACES
|
|
529 |
#define MSPACES 1
|
|
530 |
#else /* ONLY_MSPACES */
|
|
531 |
#define MSPACES 0
|
|
532 |
#endif /* ONLY_MSPACES */
|
|
533 |
#endif /* MSPACES */
|
|
534 |
#ifndef MALLOC_ALIGNMENT
|
|
535 |
#define MALLOC_ALIGNMENT ((size_t)8U)
|
|
536 |
#endif /* MALLOC_ALIGNMENT */
|
|
537 |
#ifndef FOOTERS
|
|
538 |
#define FOOTERS 0
|
|
539 |
#endif /* FOOTERS */
|
|
540 |
#ifndef ABORT
|
|
541 |
#define ABORT abort()
|
|
542 |
#endif /* ABORT */
|
|
543 |
#ifndef ABORT_ON_ASSERT_FAILURE
|
|
544 |
#define ABORT_ON_ASSERT_FAILURE 1
|
|
545 |
#endif /* ABORT_ON_ASSERT_FAILURE */
|
|
546 |
#ifndef PROCEED_ON_ERROR
|
|
547 |
#define PROCEED_ON_ERROR 0
|
|
548 |
#endif /* PROCEED_ON_ERROR */
|
|
549 |
#ifndef USE_LOCKS
|
|
550 |
#define USE_LOCKS 0
|
|
551 |
#endif /* USE_LOCKS */
|
|
552 |
#ifndef USE_SPIN_LOCKS
|
|
553 |
#if USE_LOCKS && (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))) || (defined(_MSC_VER) && _MSC_VER>=1310)
|
|
554 |
#define USE_SPIN_LOCKS 1
|
|
555 |
#else
|
|
556 |
#define USE_SPIN_LOCKS 0
|
|
557 |
#endif /* USE_LOCKS && ... */
|
|
558 |
#endif /* USE_SPIN_LOCKS */
|
|
559 |
#ifndef INSECURE
|
|
560 |
#define INSECURE 0
|
|
561 |
#endif /* INSECURE */
|
|
562 |
#ifndef HAVE_MMAP
|
|
563 |
#define HAVE_MMAP 1
|
|
564 |
#endif /* HAVE_MMAP */
|
|
565 |
#ifndef MMAP_CLEARS
|
|
566 |
#define MMAP_CLEARS 1
|
|
567 |
#endif /* MMAP_CLEARS */
|
|
568 |
#ifndef HAVE_MREMAP
|
|
569 |
#ifdef linux
|
|
570 |
#define HAVE_MREMAP 1
|
|
571 |
#else /* linux */
|
|
572 |
#define HAVE_MREMAP 0
|
|
573 |
#endif /* linux */
|
|
574 |
#endif /* HAVE_MREMAP */
|
|
575 |
#ifndef MALLOC_FAILURE_ACTION
|
|
576 |
#define MALLOC_FAILURE_ACTION errno = ENOMEM;
|
|
577 |
#endif /* MALLOC_FAILURE_ACTION */
|
|
578 |
#ifndef HAVE_MORECORE
|
|
579 |
#if ONLY_MSPACES
|
|
580 |
#define HAVE_MORECORE 0
|
|
581 |
#else /* ONLY_MSPACES */
|
|
582 |
#define HAVE_MORECORE 1
|
|
583 |
#endif /* ONLY_MSPACES */
|
|
584 |
#endif /* HAVE_MORECORE */
|
|
585 |
#if !HAVE_MORECORE
|
|
586 |
#define MORECORE_CONTIGUOUS 0
|
|
587 |
#else /* !HAVE_MORECORE */
|
|
588 |
#ifndef MORECORE
|
|
589 |
#define MORECORE sbrk
|
|
590 |
#endif /* MORECORE */
|
|
591 |
#ifndef MORECORE_CONTIGUOUS
|
|
592 |
#define MORECORE_CONTIGUOUS 1
|
|
593 |
#endif /* MORECORE_CONTIGUOUS */
|
|
594 |
#endif /* HAVE_MORECORE */
|
|
595 |
#ifndef DEFAULT_GRANULARITY
|
|
596 |
#if MORECORE_CONTIGUOUS
|
|
597 |
#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
|
|
598 |
#else /* MORECORE_CONTIGUOUS */
|
|
599 |
#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
|
|
600 |
#endif /* MORECORE_CONTIGUOUS */
|
|
601 |
#endif /* DEFAULT_GRANULARITY */
|
|
602 |
#ifndef DEFAULT_TRIM_THRESHOLD
|
|
603 |
#ifndef MORECORE_CANNOT_TRIM
|
|
604 |
#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
|
|
605 |
#else /* MORECORE_CANNOT_TRIM */
|
|
606 |
#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
|
|
607 |
#endif /* MORECORE_CANNOT_TRIM */
|
|
608 |
#endif /* DEFAULT_TRIM_THRESHOLD */
|
|
609 |
#ifndef DEFAULT_MMAP_THRESHOLD
|
|
610 |
#if HAVE_MMAP
|
|
611 |
#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
|
|
612 |
#else /* HAVE_MMAP */
|
|
613 |
#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
|
|
614 |
#endif /* HAVE_MMAP */
|
|
615 |
#endif /* DEFAULT_MMAP_THRESHOLD */
|
|
616 |
#ifndef MAX_RELEASE_CHECK_RATE
|
|
617 |
#if HAVE_MMAP
|
|
618 |
#define MAX_RELEASE_CHECK_RATE 255
|
|
619 |
#else
|
|
620 |
#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
|
|
621 |
#endif /* HAVE_MMAP */
|
|
622 |
#endif /* MAX_RELEASE_CHECK_RATE */
|
|
623 |
#ifndef USE_BUILTIN_FFS
|
|
624 |
#define USE_BUILTIN_FFS 0
|
|
625 |
#endif /* USE_BUILTIN_FFS */
|
|
626 |
#ifndef USE_DEV_RANDOM
|
|
627 |
#define USE_DEV_RANDOM 0
|
|
628 |
#endif /* USE_DEV_RANDOM */
|
|
629 |
#ifndef NO_MALLINFO
|
|
630 |
#define NO_MALLINFO 0
|
|
631 |
#endif /* NO_MALLINFO */
|
|
632 |
#ifndef MALLINFO_FIELD_TYPE
|
|
633 |
#define MALLINFO_FIELD_TYPE size_t
|
|
634 |
#endif /* MALLINFO_FIELD_TYPE */
|
|
635 |
#ifndef NO_SEGMENT_TRAVERSAL
|
|
636 |
#define NO_SEGMENT_TRAVERSAL 0
|
|
637 |
#endif /* NO_SEGMENT_TRAVERSAL */
|
|
638 |
|
|
639 |
/*
|
|
640 |
mallopt tuning options. SVID/XPG defines four standard parameter
|
|
641 |
numbers for mallopt, normally defined in malloc.h. None of these
|
|
642 |
are used in this malloc, so setting them has no effect. But this
|
|
643 |
malloc does support the following options.
|
|
644 |
*/
|
|
645 |
|
|
646 |
#define M_TRIM_THRESHOLD (-1)
|
|
647 |
#define M_GRANULARITY (-2)
|
|
648 |
#define M_MMAP_THRESHOLD (-3)
|
|
649 |
|
|
650 |
/* ------------------------ Mallinfo declarations ------------------------ */
|
|
651 |
|
|
652 |
#if !NO_MALLINFO
|
|
653 |
/*
|
|
654 |
This version of malloc supports the standard SVID/XPG mallinfo
|
|
655 |
routine that returns a struct containing usage properties and
|
|
656 |
statistics. It should work on any system that has a
|
|
657 |
/usr/include/malloc.h defining struct mallinfo. The main
|
|
658 |
declaration needed is the mallinfo struct that is returned (by-copy)
|
|
659 |
by mallinfo(). The malloinfo struct contains a bunch of fields that
|
|
660 |
are not even meaningful in this version of malloc. These fields are
|
|
661 |
are instead filled by mallinfo() with other numbers that might be of
|
|
662 |
interest.
|
|
663 |
|
|
664 |
HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
|
|
665 |
/usr/include/malloc.h file that includes a declaration of struct
|
|
666 |
mallinfo. If so, it is included; else a compliant version is
|
|
667 |
declared below. These must be precisely the same for mallinfo() to
|
|
668 |
work. The original SVID version of this struct, defined on most
|
|
669 |
systems with mallinfo, declares all fields as ints. But some others
|
|
670 |
define as unsigned long. If your system defines the fields using a
|
|
671 |
type of different width than listed here, you MUST #include your
|
|
672 |
system version and #define HAVE_USR_INCLUDE_MALLOC_H.
|
|
673 |
*/
|
|
674 |
|
|
675 |
/* #define HAVE_USR_INCLUDE_MALLOC_H */
|
|
676 |
|
|
677 |
#ifdef HAVE_USR_INCLUDE_MALLOC_H
|
|
678 |
#include "/usr/include/malloc.h"
|
|
679 |
#else /* HAVE_USR_INCLUDE_MALLOC_H */
|
|
680 |
|
|
681 |
struct mallinfo {
|
|
682 |
MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
|
|
683 |
MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
|
|
684 |
MALLINFO_FIELD_TYPE smblks; /* always 0 */
|
|
685 |
MALLINFO_FIELD_TYPE hblks; /* always 0 */
|
|
686 |
MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
|
|
687 |
MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
|
|
688 |
MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
|
|
689 |
MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
|
|
690 |
MALLINFO_FIELD_TYPE fordblks; /* total free space */
|
|
691 |
MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
|
|
692 |
};
|
|
693 |
|
|
694 |
#endif /* HAVE_USR_INCLUDE_MALLOC_H */
|
|
695 |
#endif /* NO_MALLINFO */
|
|
696 |
|
|
697 |
/*
|
|
698 |
Try to persuade compilers to inline. The most critical functions for
|
|
699 |
inlining are defined as macros, so these aren't used for them.
|
|
700 |
*/
|
|
701 |
|
|
702 |
#ifndef FORCEINLINE
|
|
703 |
#if defined(__GNUC__)
|
|
704 |
#define FORCEINLINE __inline __attribute__ ((always_inline))
|
|
705 |
#elif defined(_MSC_VER)
|
|
706 |
#define FORCEINLINE __forceinline
|
|
707 |
#endif
|
|
708 |
#endif
|
|
709 |
#ifndef NOINLINE
|
|
710 |
#if defined(__GNUC__)
|
|
711 |
#define NOINLINE __attribute__ ((noinline))
|
|
712 |
#elif defined(_MSC_VER)
|
|
713 |
#define NOINLINE __declspec(noinline)
|
|
714 |
#else
|
|
715 |
#define NOINLINE
|
|
716 |
#endif
|
|
717 |
#endif
|
|
718 |
|
|
719 |
#ifdef __cplusplus
|
|
720 |
extern "C" {
|
|
721 |
#ifndef FORCEINLINE
|
|
722 |
#define FORCEINLINE inline
|
|
723 |
#endif
|
|
724 |
#endif /* __cplusplus */
|
|
725 |
#ifndef FORCEINLINE
|
|
726 |
#define FORCEINLINE
|
|
727 |
#endif
|
|
728 |
|
|
729 |
#if !ONLY_MSPACES
|
|
730 |
|
|
731 |
/* ------------------- Declarations of public routines ------------------- */
|
|
732 |
|
|
733 |
#ifndef USE_DL_PREFIX
|
|
734 |
#define dlcalloc calloc
|
|
735 |
#define dlfree free
|
|
736 |
#define dlmalloc malloc
|
|
737 |
#define dlmemalign memalign
|
|
738 |
#define dlrealloc realloc
|
|
739 |
#define dlvalloc valloc
|
|
740 |
#define dlpvalloc pvalloc
|
|
741 |
#define dlmallinfo mallinfo
|
|
742 |
#define dlmallopt mallopt
|
|
743 |
#define dlmalloc_trim malloc_trim
|
|
744 |
#define dlmalloc_stats malloc_stats
|
|
745 |
#define dlmalloc_usable_size malloc_usable_size
|
|
746 |
#define dlmalloc_footprint malloc_footprint
|
|
747 |
#define dlmalloc_max_footprint malloc_max_footprint
|
|
748 |
#define dlindependent_calloc independent_calloc
|
|
749 |
#define dlindependent_comalloc independent_comalloc
|
|
750 |
#endif /* USE_DL_PREFIX */
|
|
751 |
|
|
752 |
|
|
753 |
/*
|
|
754 |
malloc(size_t n)
|
|
755 |
Returns a pointer to a newly allocated chunk of at least n bytes, or
|
|
756 |
null if no space is available, in which case errno is set to ENOMEM
|
|
757 |
on ANSI C systems.
|
|
758 |
|
|
759 |
If n is zero, malloc returns a minimum-sized chunk. (The minimum
|
|
760 |
size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
|
|
761 |
systems.) Note that size_t is an unsigned type, so calls with
|
|
762 |
arguments that would be negative if signed are interpreted as
|
|
763 |
requests for huge amounts of space, which will often fail. The
|
|
764 |
maximum supported value of n differs across systems, but is in all
|
|
765 |
cases less than the maximum representable value of a size_t.
|
|
766 |
*/
|
|
767 |
void* dlmalloc(size_t);
|
|
768 |
|
|
769 |
/*
|
|
770 |
free(void* p)
|
|
771 |
Releases the chunk of memory pointed to by p, that had been previously
|
|
772 |
allocated using malloc or a related routine such as realloc.
|
|
773 |
It has no effect if p is null. If p was not malloced or already
|
|
774 |
freed, free(p) will by default cause the current program to abort.
|
|
775 |
*/
|
|
776 |
void dlfree(void*);
|
|
777 |
|
|
778 |
/*
|
|
779 |
calloc(size_t n_elements, size_t element_size);
|
|
780 |
Returns a pointer to n_elements * element_size bytes, with all locations
|
|
781 |
set to zero.
|
|
782 |
*/
|
|
783 |
void* dlcalloc(size_t, size_t);
|
|
784 |
|
|
785 |
/*
|
|
786 |
realloc(void* p, size_t n)
|
|
787 |
Returns a pointer to a chunk of size n that contains the same data
|
|
788 |
as does chunk p up to the minimum of (n, p's size) bytes, or null
|
|
789 |
if no space is available.
|
|
790 |
|
|
791 |
The returned pointer may or may not be the same as p. The algorithm
|
|
792 |
prefers extending p in most cases when possible, otherwise it
|
|
793 |
employs the equivalent of a malloc-copy-free sequence.
|
|
794 |
|
|
795 |
If p is null, realloc is equivalent to malloc.
|
|
796 |
|
|
797 |
If space is not available, realloc returns null, errno is set (if on
|
|
798 |
ANSI) and p is NOT freed.
|
|
799 |
|
|
800 |
if n is for fewer bytes than already held by p, the newly unused
|
|
801 |
space is lopped off and freed if possible. realloc with a size
|
|
802 |
argument of zero (re)allocates a minimum-sized chunk.
|
|
803 |
|
|
804 |
The old unix realloc convention of allowing the last-free'd chunk
|
|
805 |
to be used as an argument to realloc is not supported.
|
|
806 |
*/
|
|
807 |
|
|
808 |
void* dlrealloc(void*, size_t);
|
|
809 |
|
|
810 |
/*
|
|
811 |
memalign(size_t alignment, size_t n);
|
|
812 |
Returns a pointer to a newly allocated chunk of n bytes, aligned
|
|
813 |
in accord with the alignment argument.
|
|
814 |
|
|
815 |
The alignment argument should be a power of two. If the argument is
|
|
816 |
not a power of two, the nearest greater power is used.
|
|
817 |
8-byte alignment is guaranteed by normal malloc calls, so don't
|
|
818 |
bother calling memalign with an argument of 8 or less.
|
|
819 |
|
|
820 |
Overreliance on memalign is a sure way to fragment space.
|
|
821 |
*/
|
|
822 |
void* dlmemalign(size_t, size_t);
|
|
823 |
|
|
824 |
/*
|
|
825 |
valloc(size_t n);
|
|
826 |
Equivalent to memalign(pagesize, n), where pagesize is the page
|
|
827 |
size of the system. If the pagesize is unknown, 4096 is used.
|
|
828 |
*/
|
|
829 |
void* dlvalloc(size_t);
|
|
830 |
|
|
831 |
/*
|
|
832 |
mallopt(int parameter_number, int parameter_value)
|
|
833 |
Sets tunable parameters The format is to provide a
|
|
834 |
(parameter-number, parameter-value) pair. mallopt then sets the
|
|
835 |
corresponding parameter to the argument value if it can (i.e., so
|
|
836 |
long as the value is meaningful), and returns 1 if successful else
|
|
837 |
0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
|
|
838 |
normally defined in malloc.h. None of these are use in this malloc,
|
|
839 |
so setting them has no effect. But this malloc also supports other
|
|
840 |
options in mallopt. See below for details. Briefly, supported
|
|
841 |
parameters are as follows (listed defaults are for "typical"
|
|
842 |
configurations).
|
|
843 |
|
|
844 |
Symbol param # default allowed param values
|
|
845 |
M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables)
|
|
846 |
M_GRANULARITY -2 page size any power of 2 >= page size
|
|
847 |
M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
|
|
848 |
*/
|
|
849 |
int dlmallopt(int, int);
|
|
850 |
|
|
851 |
/*
|
|
852 |
malloc_footprint();
|
|
853 |
Returns the number of bytes obtained from the system. The total
|
|
854 |
number of bytes allocated by malloc, realloc etc., is less than this
|
|
855 |
value. Unlike mallinfo, this function returns only a precomputed
|
|
856 |
result, so can be called frequently to monitor memory consumption.
|
|
857 |
Even if locks are otherwise defined, this function does not use them,
|
|
858 |
so results might not be up to date.
|
|
859 |
*/
|
|
860 |
size_t dlmalloc_footprint(void);
|
|
861 |
|
|
862 |
/*
|
|
863 |
malloc_max_footprint();
|
|
864 |
Returns the maximum number of bytes obtained from the system. This
|
|
865 |
value will be greater than current footprint if deallocated space
|
|
866 |
has been reclaimed by the system. The peak number of bytes allocated
|
|
867 |
by malloc, realloc etc., is less than this value. Unlike mallinfo,
|
|
868 |
this function returns only a precomputed result, so can be called
|
|
869 |
frequently to monitor memory consumption. Even if locks are
|
|
870 |
otherwise defined, this function does not use them, so results might
|
|
871 |
not be up to date.
|
|
872 |
*/
|
|
873 |
size_t dlmalloc_max_footprint(void);
|
|
874 |
|
|
875 |
#if !NO_MALLINFO
|
|
876 |
/*
|
|
877 |
mallinfo()
|
|
878 |
Returns (by copy) a struct containing various summary statistics:
|
|
879 |
|
|
880 |
arena: current total non-mmapped bytes allocated from system
|
|
881 |
ordblks: the number of free chunks
|
|
882 |
smblks: always zero.
|
|
883 |
hblks: current number of mmapped regions
|
|
884 |
hblkhd: total bytes held in mmapped regions
|
|
885 |
usmblks: the maximum total allocated space. This will be greater
|
|
886 |
than current total if trimming has occurred.
|
|
887 |
fsmblks: always zero
|
|
888 |
uordblks: current total allocated space (normal or mmapped)
|
|
889 |
fordblks: total free space
|
|
890 |
keepcost: the maximum number of bytes that could ideally be released
|
|
891 |
back to system via malloc_trim. ("ideally" means that
|
|
892 |
it ignores page restrictions etc.)
|
|
893 |
|
|
894 |
Because these fields are ints, but internal bookkeeping may
|
|
895 |
be kept as longs, the reported values may wrap around zero and
|
|
896 |
thus be inaccurate.
|
|
897 |
*/
|
|
898 |
struct mallinfo dlmallinfo(void);
|
|
899 |
#endif /* NO_MALLINFO */
|
|
900 |
|
|
901 |
/*
|
|
902 |
independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
|
|
903 |
|
|
904 |
independent_calloc is similar to calloc, but instead of returning a
|
|
905 |
single cleared space, it returns an array of pointers to n_elements
|
|
906 |
independent elements that can hold contents of size elem_size, each
|
|
907 |
of which starts out cleared, and can be independently freed,
|
|
908 |
realloc'ed etc. The elements are guaranteed to be adjacently
|
|
909 |
allocated (this is not guaranteed to occur with multiple callocs or
|
|
910 |
mallocs), which may also improve cache locality in some
|
|
911 |
applications.
|
|
912 |
|
|
913 |
The "chunks" argument is optional (i.e., may be null, which is
|
|
914 |
probably the most typical usage). If it is null, the returned array
|
|
915 |
is itself dynamically allocated and should also be freed when it is
|
|
916 |
no longer needed. Otherwise, the chunks array must be of at least
|
|
917 |
n_elements in length. It is filled in with the pointers to the
|
|
918 |
chunks.
|
|
919 |
|
|
920 |
In either case, independent_calloc returns this pointer array, or
|
|
921 |
null if the allocation failed. If n_elements is zero and "chunks"
|
|
922 |
is null, it returns a chunk representing an array with zero elements
|
|
923 |
(which should be freed if not wanted).
|
|
924 |
|
|
925 |
Each element must be individually freed when it is no longer
|
|
926 |
needed. If you'd like to instead be able to free all at once, you
|
|
927 |
should instead use regular calloc and assign pointers into this
|
|
928 |
space to represent elements. (In this case though, you cannot
|
|
929 |
independently free elements.)
|
|
930 |
|
|
931 |
independent_calloc simplifies and speeds up implementations of many
|
|
932 |
kinds of pools. It may also be useful when constructing large data
|
|
933 |
structures that initially have a fixed number of fixed-sized nodes,
|
|
934 |
but the number is not known at compile time, and some of the nodes
|
|
935 |
may later need to be freed. For example:
|
|
936 |
|
|
937 |
struct Node { int item; struct Node* next; };
|
|
938 |
|
|
939 |
struct Node* build_list() {
|
|
940 |
struct Node** pool;
|
|
941 |
int n = read_number_of_nodes_needed();
|
|
942 |
if (n <= 0) return 0;
|
|
943 |
pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
|
|
944 |
if (pool == 0) die();
|
|
945 |
// organize into a linked list...
|
|
946 |
struct Node* first = pool[0];
|
|
947 |
for (i = 0; i < n-1; ++i)
|
|
948 |
pool[i]->next = pool[i+1];
|
|
949 |
free(pool); // Can now free the array (or not, if it is needed later)
|
|
950 |
return first;
|
|
951 |
}
|
|
952 |
*/
|
|
953 |
void** dlindependent_calloc(size_t, size_t, void**);
|
|
954 |
|
|
955 |
/*
|
|
956 |
independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
|
|
957 |
|
|
958 |
independent_comalloc allocates, all at once, a set of n_elements
|
|
959 |
chunks with sizes indicated in the "sizes" array. It returns
|
|
960 |
an array of pointers to these elements, each of which can be
|
|
961 |
independently freed, realloc'ed etc. The elements are guaranteed to
|
|
962 |
be adjacently allocated (this is not guaranteed to occur with
|
|
963 |
multiple callocs or mallocs), which may also improve cache locality
|
|
964 |
in some applications.
|
|
965 |
|
|
966 |
The "chunks" argument is optional (i.e., may be null). If it is null
|
|
967 |
the returned array is itself dynamically allocated and should also
|
|
968 |
be freed when it is no longer needed. Otherwise, the chunks array
|
|
969 |
must be of at least n_elements in length. It is filled in with the
|
|
970 |
pointers to the chunks.
|
|
971 |
|
|
972 |
In either case, independent_comalloc returns this pointer array, or
|
|
973 |
null if the allocation failed. If n_elements is zero and chunks is
|
|
974 |
null, it returns a chunk representing an array with zero elements
|
|
975 |
(which should be freed if not wanted).
|
|
976 |
|
|
977 |
Each element must be individually freed when it is no longer
|
|
978 |
needed. If you'd like to instead be able to free all at once, you
|
|
979 |
should instead use a single regular malloc, and assign pointers at
|
|
980 |
particular offsets in the aggregate space. (In this case though, you
|
|
981 |
cannot independently free elements.)
|
|
982 |
|
|
983 |
independent_comallac differs from independent_calloc in that each
|
|
984 |
element may have a different size, and also that it does not
|
|
985 |
automatically clear elements.
|
|
986 |
|
|
987 |
independent_comalloc can be used to speed up allocation in cases
|
|
988 |
where several structs or objects must always be allocated at the
|
|
989 |
same time. For example:
|
|
990 |
|
|
991 |
struct Head { ... }
|
|
992 |
struct Foot { ... }
|
|
993 |
|
|
994 |
void send_message(char* msg) {
|
|
995 |
int msglen = strlen(msg);
|
|
996 |
size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
|
|
997 |
void* chunks[3];
|
|
998 |
if (independent_comalloc(3, sizes, chunks) == 0)
|
|
999 |
die();
|
|
1000 |
struct Head* head = (struct Head*)(chunks[0]);
|
|
1001 |
char* body = (char*)(chunks[1]);
|
|
1002 |
struct Foot* foot = (struct Foot*)(chunks[2]);
|
|
1003 |
// ...
|
|
1004 |
}
|
|
1005 |
|
|
1006 |
In general though, independent_comalloc is worth using only for
|
|
1007 |
larger values of n_elements. For small values, you probably won't
|
|
1008 |
detect enough difference from series of malloc calls to bother.
|
|
1009 |
|
|
1010 |
Overuse of independent_comalloc can increase overall memory usage,
|
|
1011 |
since it cannot reuse existing noncontiguous small chunks that
|
|
1012 |
might be available for some of the elements.
|
|
1013 |
*/
|
|
1014 |
void** dlindependent_comalloc(size_t, size_t*, void**);
|
|
1015 |
|
|
1016 |
|
|
1017 |
/*
|
|
1018 |
pvalloc(size_t n);
|
|
1019 |
Equivalent to valloc(minimum-page-that-holds(n)), that is,
|
|
1020 |
round up n to nearest pagesize.
|
|
1021 |
*/
|
|
1022 |
void* dlpvalloc(size_t);
|
|
1023 |
|
|
1024 |
/*
|
|
1025 |
malloc_trim(size_t pad);
|
|
1026 |
|
|
1027 |
If possible, gives memory back to the system (via negative arguments
|
|
1028 |
to sbrk) if there is unused memory at the `high' end of the malloc
|
|
1029 |
pool or in unused MMAP segments. You can call this after freeing
|
|
1030 |
large blocks of memory to potentially reduce the system-level memory
|
|
1031 |
requirements of a program. However, it cannot guarantee to reduce
|
|
1032 |
memory. Under some allocation patterns, some large free blocks of
|
|
1033 |
memory will be locked between two used chunks, so they cannot be
|
|
1034 |
given back to the system.
|
|
1035 |
|
|
1036 |
The `pad' argument to malloc_trim represents the amount of free
|
|
1037 |
trailing space to leave untrimmed. If this argument is zero, only
|
|
1038 |
the minimum amount of memory to maintain internal data structures
|
|
1039 |
will be left. Non-zero arguments can be supplied to maintain enough
|
|
1040 |
trailing space to service future expected allocations without having
|
|
1041 |
to re-obtain memory from the system.
|
|
1042 |
|
|
1043 |
Malloc_trim returns 1 if it actually released any memory, else 0.
|
|
1044 |
*/
|
|
1045 |
int dlmalloc_trim(size_t);
|
|
1046 |
|
|
1047 |
/*
|
|
1048 |
malloc_usable_size(void* p);
|
|
1049 |
|
|
1050 |
Returns the number of bytes you can actually use in
|
|
1051 |
an allocated chunk, which may be more than you requested (although
|
|
1052 |
often not) due to alignment and minimum size constraints.
|
|
1053 |
You can use this many bytes without worrying about
|
|
1054 |
overwriting other allocated objects. This is not a particularly great
|
|
1055 |
programming practice. malloc_usable_size can be more useful in
|
|
1056 |
debugging and assertions, for example:
|
|
1057 |
|
|
1058 |
p = malloc(n);
|
|
1059 |
assert(malloc_usable_size(p) >= 256);
|
|
1060 |
*/
|
|
1061 |
size_t dlmalloc_usable_size(void*);
|
|
1062 |
|
|
1063 |
/*
|
|
1064 |
malloc_stats();
|
|
1065 |
Prints on stderr the amount of space obtained from the system (both
|
|
1066 |
via sbrk and mmap), the maximum amount (which may be more than
|
|
1067 |
current if malloc_trim and/or munmap got called), and the current
|
|
1068 |
number of bytes allocated via malloc (or realloc, etc) but not yet
|
|
1069 |
freed. Note that this is the number of bytes allocated, not the
|
|
1070 |
number requested. It will be larger than the number requested
|
|
1071 |
because of alignment and bookkeeping overhead. Because it includes
|
|
1072 |
alignment wastage as being in use, this figure may be greater than
|
|
1073 |
zero even when no user-level chunks are allocated.
|
|
1074 |
|
|
1075 |
The reported current and maximum system memory can be inaccurate if
|
|
1076 |
a program makes other calls to system memory allocation functions
|
|
1077 |
(normally sbrk) outside of malloc.
|
|
1078 |
|
|
1079 |
malloc_stats prints only the most commonly interesting statistics.
|
|
1080 |
More information can be obtained by calling mallinfo.
|
|
1081 |
*/
|
|
1082 |
void dlmalloc_stats(void);
|
|
1083 |
|
|
1084 |
#endif /* ONLY_MSPACES */
|
|
1085 |
|
|
1086 |
#if MSPACES
|
|
1087 |
|
|
1088 |
/*
|
|
1089 |
mspace is an opaque type representing an independent
|
|
1090 |
region of space that supports mspace_malloc, etc.
|
|
1091 |
*/
|
|
1092 |
typedef void* mspace;
|
|
1093 |
|
|
1094 |
/*
|
|
1095 |
create_mspace creates and returns a new independent space with the
|
|
1096 |
given initial capacity, or, if 0, the default granularity size. It
|
|
1097 |
returns null if there is no system memory available to create the
|
|
1098 |
space. If argument locked is non-zero, the space uses a separate
|
|
1099 |
lock to control access. The capacity of the space will grow
|
|
1100 |
dynamically as needed to service mspace_malloc requests. You can
|
|
1101 |
control the sizes of incremental increases of this space by
|
|
1102 |
compiling with a different DEFAULT_GRANULARITY or dynamically
|
|
1103 |
setting with mallopt(M_GRANULARITY, value).
|
|
1104 |
*/
|
|
1105 |
mspace create_mspace(size_t capacity, int locked);
|
|
1106 |
|
|
1107 |
/*
|
|
1108 |
destroy_mspace destroys the given space, and attempts to return all
|
|
1109 |
of its memory back to the system, returning the total number of
|
|
1110 |
bytes freed. After destruction, the results of access to all memory
|
|
1111 |
used by the space become undefined.
|
|
1112 |
*/
|
|
1113 |
size_t destroy_mspace(mspace msp);
|
|
1114 |
|
|
1115 |
/*
|
|
1116 |
create_mspace_with_base uses the memory supplied as the initial base
|
|
1117 |
of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
|
|
1118 |
space is used for bookkeeping, so the capacity must be at least this
|
|
1119 |
large. (Otherwise 0 is returned.) When this initial space is
|
|
1120 |
exhausted, additional memory will be obtained from the system.
|
|
1121 |
Destroying this space will deallocate all additionally allocated
|
|
1122 |
space (if possible) but not the initial base.
|
|
1123 |
*/
|
|
1124 |
mspace create_mspace_with_base(void* base, size_t capacity, int locked);
|
|
1125 |
|
|
1126 |
/*
|
|
1127 |
mspace_malloc behaves as malloc, but operates within
|
|
1128 |
the given space.
|
|
1129 |
*/
|
|
1130 |
void* mspace_malloc(mspace msp, size_t bytes);
|
|
1131 |
|
|
1132 |
/*
|
|
1133 |
mspace_free behaves as free, but operates within
|
|
1134 |
the given space.
|
|
1135 |
|
|
1136 |
If compiled with FOOTERS==1, mspace_free is not actually needed.
|
|
1137 |
free may be called instead of mspace_free because freed chunks from
|
|
1138 |
any space are handled by their originating spaces.
|
|
1139 |
*/
|
|
1140 |
void mspace_free(mspace msp, void* mem);
|
|
1141 |
|
|
1142 |
/*
|
|
1143 |
mspace_realloc behaves as realloc, but operates within
|
|
1144 |
the given space.
|
|
1145 |
|
|
1146 |
If compiled with FOOTERS==1, mspace_realloc is not actually
|
|
1147 |
needed. realloc may be called instead of mspace_realloc because
|
|
1148 |
realloced chunks from any space are handled by their originating
|
|
1149 |
spaces.
|
|
1150 |
*/
|
|
1151 |
void* mspace_realloc(mspace msp, void* mem, size_t newsize);
|
|
1152 |
|
|
1153 |
/*
|
|
1154 |
mspace_calloc behaves as calloc, but operates within
|
|
1155 |
the given space.
|
|
1156 |
*/
|
|
1157 |
void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
|
|
1158 |
|
|
1159 |
/*
|
|
1160 |
mspace_memalign behaves as memalign, but operates within
|
|
1161 |
the given space.
|
|
1162 |
*/
|
|
1163 |
void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
|
|
1164 |
|
|
1165 |
/*
|
|
1166 |
mspace_independent_calloc behaves as independent_calloc, but
|
|
1167 |
operates within the given space.
|
|
1168 |
*/
|
|
1169 |
void** mspace_independent_calloc(mspace msp, size_t n_elements,
|
|
1170 |
size_t elem_size, void* chunks[]);
|
|
1171 |
|
|
1172 |
/*
|
|
1173 |
mspace_independent_comalloc behaves as independent_comalloc, but
|
|
1174 |
operates within the given space.
|
|
1175 |
*/
|
|
1176 |
void** mspace_independent_comalloc(mspace msp, size_t n_elements,
|
|
1177 |
size_t sizes[], void* chunks[]);
|
|
1178 |
|
|
1179 |
/*
|
|
1180 |
mspace_footprint() returns the number of bytes obtained from the
|
|
1181 |
system for this space.
|
|
1182 |
*/
|
|
1183 |
size_t mspace_footprint(mspace msp);
|
|
1184 |
|
|
1185 |
/*
|
|
1186 |
mspace_max_footprint() returns the peak number of bytes obtained from the
|
|
1187 |
system for this space.
|
|
1188 |
*/
|
|
1189 |
size_t mspace_max_footprint(mspace msp);
|
|
1190 |
|
|
1191 |
|
|
1192 |
#if !NO_MALLINFO
|
|
1193 |
/*
|
|
1194 |
mspace_mallinfo behaves as mallinfo, but reports properties of
|
|
1195 |
the given space.
|
|
1196 |
*/
|
|
1197 |
struct mallinfo mspace_mallinfo(mspace msp);
|
|
1198 |
#endif /* NO_MALLINFO */
|
|
1199 |
|
|
1200 |
/*
|
|
1201 |
mspace_malloc_stats behaves as malloc_stats, but reports
|
|
1202 |
properties of the given space.
|
|
1203 |
*/
|
|
1204 |
void mspace_malloc_stats(mspace msp);
|
|
1205 |
|
|
1206 |
/*
|
|
1207 |
mspace_trim behaves as malloc_trim, but
|
|
1208 |
operates within the given space.
|
|
1209 |
*/
|
|
1210 |
int mspace_trim(mspace msp, size_t pad);
|
|
1211 |
|
|
1212 |
/*
|
|
1213 |
An alias for mallopt.
|
|
1214 |
*/
|
|
1215 |
int mspace_mallopt(int, int);
|
|
1216 |
|
|
1217 |
#endif /* MSPACES */
|
|
1218 |
|
|
1219 |
#ifdef __cplusplus
|
|
1220 |
}; /* end of extern "C" */
|
|
1221 |
#endif /* __cplusplus */
|
|
1222 |
|
|
1223 |
/*
|
|
1224 |
========================================================================
|
|
1225 |
To make a fully customizable malloc.h header file, cut everything
|
|
1226 |
above this line, put into file malloc.h, edit to suit, and #include it
|
|
1227 |
on the next line, as well as in programs that use this malloc.
|
|
1228 |
========================================================================
|
|
1229 |
*/
|
|
1230 |
|
|
1231 |
/* #include "malloc.h" */
|
|
1232 |
|
|
1233 |
/*------------------------------ internal #includes ---------------------- */
|
|
1234 |
|
|
1235 |
#ifdef WIN32
|
|
1236 |
#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
|
|
1237 |
#endif /* WIN32 */
|
|
1238 |
|
|
1239 |
#include <stdio.h> /* for printing in malloc_stats */
|
|
1240 |
|
|
1241 |
#ifndef LACKS_ERRNO_H
|
|
1242 |
#include <errno.h> /* for MALLOC_FAILURE_ACTION */
|
|
1243 |
#endif /* LACKS_ERRNO_H */
|
|
1244 |
#if FOOTERS
|
|
1245 |
#include <time.h> /* for magic initialization */
|
|
1246 |
#endif /* FOOTERS */
|
|
1247 |
#ifndef LACKS_STDLIB_H
|
|
1248 |
#include <stdlib.h> /* for abort() */
|
|
1249 |
#endif /* LACKS_STDLIB_H */
|
|
1250 |
#ifdef DEBUG
|
|
1251 |
#if ABORT_ON_ASSERT_FAILURE
|
|
1252 |
#define assert(x) if(!(x)) ABORT
|
|
1253 |
#else /* ABORT_ON_ASSERT_FAILURE */
|
|
1254 |
#include <assert.h>
|
|
1255 |
#endif /* ABORT_ON_ASSERT_FAILURE */
|
|
1256 |
#else /* DEBUG */
|
|
1257 |
#define assert(x)
|
|
1258 |
#endif /* DEBUG */
|
|
1259 |
#ifndef LACKS_STRING_H
|
|
1260 |
#include <string.h> /* for memset etc */
|
|
1261 |
#endif /* LACKS_STRING_H */
|
|
1262 |
#if USE_BUILTIN_FFS
|
|
1263 |
#ifndef LACKS_STRINGS_H
|
|
1264 |
#include <strings.h> /* for ffs */
|
|
1265 |
#endif /* LACKS_STRINGS_H */
|
|
1266 |
#endif /* USE_BUILTIN_FFS */
|
|
1267 |
#if HAVE_MMAP
|
|
1268 |
#ifndef LACKS_SYS_MMAN_H
|
|
1269 |
#include <sys/mman.h> /* for mmap */
|
|
1270 |
#endif /* LACKS_SYS_MMAN_H */
|
|
1271 |
#ifndef LACKS_FCNTL_H
|
|
1272 |
#include <fcntl.h>
|
|
1273 |
#endif /* LACKS_FCNTL_H */
|
|
1274 |
#endif /* HAVE_MMAP */
|
|
1275 |
#if HAVE_MORECORE
|
|
1276 |
#ifndef LACKS_UNISTD_H
|
|
1277 |
#include <unistd.h> /* for sbrk */
|
|
1278 |
#else /* LACKS_UNISTD_H */
|
|
1279 |
#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
|
|
1280 |
extern void* sbrk(ptrdiff_t);
|
|
1281 |
#endif /* FreeBSD etc */
|
|
1282 |
#endif /* LACKS_UNISTD_H */
|
|
1283 |
#endif /* HAVE_MMAP */
|
|
1284 |
|
|
1285 |
/* Declarations for locking */
|
|
1286 |
#if USE_LOCKS
|
|
1287 |
#ifndef WIN32
|
|
1288 |
#include <pthread.h>
|
|
1289 |
#if defined (__SVR4) && defined (__sun) /* solaris */
|
|
1290 |
#include <thread.h>
|
|
1291 |
#endif /* solaris */
|
|
1292 |
#else
|
|
1293 |
#ifndef _M_AMD64
|
|
1294 |
/* These are already defined on AMD64 builds */
|
|
1295 |
#ifdef __cplusplus
|
|
1296 |
extern "C" {
|
|
1297 |
#endif /* __cplusplus */
|
|
1298 |
LONG __cdecl _InterlockedCompareExchange(LPLONG volatile Dest, LONG Exchange, LONG Comp);
|
|
1299 |
LONG __cdecl _InterlockedExchange(LPLONG volatile Target, LONG Value);
|
|
1300 |
#ifdef __cplusplus
|
|
1301 |
}
|
|
1302 |
#endif /* __cplusplus */
|
|
1303 |
#endif /* _M_AMD64 */
|
|
1304 |
#pragma intrinsic (_InterlockedCompareExchange)
|
|
1305 |
#pragma intrinsic (_InterlockedExchange)
|
|
1306 |
#define interlockedcompareexchange _InterlockedCompareExchange
|
|
1307 |
#define interlockedexchange _InterlockedExchange
|
|
1308 |
#endif /* Win32 */
|
|
1309 |
#endif /* USE_LOCKS */
|
|
1310 |
|
|
1311 |
/* Declarations for bit scanning on win32 */
|
|
1312 |
#if defined(_MSC_VER) && _MSC_VER>=1300
|
|
1313 |
#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
|
|
1314 |
#ifdef __cplusplus
|
|
1315 |
extern "C" {
|
|
1316 |
#endif /* __cplusplus */
|
|
1317 |
unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
|
|
1318 |
unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
|
|
1319 |
#ifdef __cplusplus
|
|
1320 |
}
|
|
1321 |
#endif /* __cplusplus */
|
|
1322 |
|
|
1323 |
#define BitScanForward _BitScanForward
|
|
1324 |
#define BitScanReverse _BitScanReverse
|
|
1325 |
#pragma intrinsic(_BitScanForward)
|
|
1326 |
#pragma intrinsic(_BitScanReverse)
|
|
1327 |
#endif /* BitScanForward */
|
|
1328 |
#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
|
|
1329 |
|
|
1330 |
#ifndef WIN32
|
|
1331 |
#ifndef malloc_getpagesize
|
|
1332 |
# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
|
|
1333 |
# ifndef _SC_PAGE_SIZE
|
|
1334 |
# define _SC_PAGE_SIZE _SC_PAGESIZE
|
|
1335 |
# endif
|
|
1336 |
# endif
|
|
1337 |
# ifdef _SC_PAGE_SIZE
|
|
1338 |
# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
|
|
1339 |
# else
|
|
1340 |
# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
|
|
1341 |
extern size_t getpagesize();
|
|
1342 |
# define malloc_getpagesize getpagesize()
|
|
1343 |
# else
|
|
1344 |
# ifdef WIN32 /* use supplied emulation of getpagesize */
|
|
1345 |
# define malloc_getpagesize getpagesize()
|
|
1346 |
# else
|
|
1347 |
# ifndef LACKS_SYS_PARAM_H
|
|
1348 |
# include <sys/param.h>
|
|
1349 |
# endif
|
|
1350 |
# ifdef EXEC_PAGESIZE
|
|
1351 |
# define malloc_getpagesize EXEC_PAGESIZE
|
|
1352 |
# else
|
|
1353 |
# ifdef NBPG
|
|
1354 |
# ifndef CLSIZE
|
|
1355 |
# define malloc_getpagesize NBPG
|
|
1356 |
# else
|
|
1357 |
# define malloc_getpagesize (NBPG * CLSIZE)
|
|
1358 |
# endif
|
|
1359 |
# else
|
|
1360 |
# ifdef NBPC
|
|
1361 |
# define malloc_getpagesize NBPC
|
|
1362 |
# else
|
|
1363 |
# ifdef PAGESIZE
|
|
1364 |
# define malloc_getpagesize PAGESIZE
|
|
1365 |
# else /* just guess */
|
|
1366 |
# define malloc_getpagesize ((size_t)4096U)
|
|
1367 |
# endif
|
|
1368 |
# endif
|
|
1369 |
# endif
|
|
1370 |
# endif
|
|
1371 |
# endif
|
|
1372 |
# endif
|
|
1373 |
# endif
|
|
1374 |
#endif
|
|
1375 |
#endif
|
|
1376 |
|
|
1377 |
|
|
1378 |
|
|
1379 |
/* ------------------- size_t and alignment properties -------------------- */
|
|
1380 |
|
|
1381 |
/* The byte and bit size of a size_t */
|
|
1382 |
#define SIZE_T_SIZE (sizeof(size_t))
|
|
1383 |
#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
|
|
1384 |
|
|
1385 |
/* Some constants coerced to size_t */
|
|
1386 |
/* Annoying but necessary to avoid errors on some platforms */
|
|
1387 |
#define SIZE_T_ZERO ((size_t)0)
|
|
1388 |
#define SIZE_T_ONE ((size_t)1)
|
|
1389 |
#define SIZE_T_TWO ((size_t)2)
|
|
1390 |
#define SIZE_T_FOUR ((size_t)4)
|
|
1391 |
#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
|
|
1392 |
#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
|
|
1393 |
#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
|
|
1394 |
#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
|
|
1395 |
|
|
1396 |
/* The bit mask value corresponding to MALLOC_ALIGNMENT */
|
|
1397 |
#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
|
|
1398 |
|
|
1399 |
/* True if address a has acceptable alignment */
|
|
1400 |
#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
|
|
1401 |
|
|
1402 |
/* the number of bytes to offset an address to align it */
|
|
1403 |
#define align_offset(A)\
|
|
1404 |
((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
|
|
1405 |
((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
|
|
1406 |
|
|
1407 |
/* -------------------------- MMAP preliminaries ------------------------- */
|
|
1408 |
|
|
1409 |
/*
|
|
1410 |
If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
|
|
1411 |
checks to fail so compiler optimizer can delete code rather than
|
|
1412 |
using so many "#if"s.
|
|
1413 |
*/
|
|
1414 |
|
|
1415 |
|
|
1416 |
/* MORECORE and MMAP must return MFAIL on failure */
|
|
1417 |
#define MFAIL ((void*)(MAX_SIZE_T))
|
|
1418 |
#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
|
|
1419 |
|
|
1420 |
#if !HAVE_MMAP
|
|
1421 |
#define IS_MMAPPED_BIT (SIZE_T_ZERO)
|
|
1422 |
#define USE_MMAP_BIT (SIZE_T_ZERO)
|
|
1423 |
#define CALL_MMAP(s) MFAIL
|
|
1424 |
#define CALL_MUNMAP(a, s) (-1)
|
|
1425 |
#define DIRECT_MMAP(s) MFAIL
|
|
1426 |
|
|
1427 |
#else /* HAVE_MMAP */
|
|
1428 |
#define IS_MMAPPED_BIT (SIZE_T_ONE)
|
|
1429 |
#define USE_MMAP_BIT (SIZE_T_ONE)
|
|
1430 |
|
|
1431 |
#ifndef WIN32
|
|
1432 |
#define CALL_MUNMAP(a, s) munmap((a), (s))
|
|
1433 |
#define MMAP_PROT (PROT_READ|PROT_WRITE)
|
|
1434 |
#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
|
|
1435 |
#define MAP_ANONYMOUS MAP_ANON
|
|
1436 |
#endif /* MAP_ANON */
|
|
1437 |
#ifdef MAP_ANONYMOUS
|
|
1438 |
#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
|
|
1439 |
#define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
|
|
1440 |
#else /* MAP_ANONYMOUS */
|
|
1441 |
/*
|
|
1442 |
Nearly all versions of mmap support MAP_ANONYMOUS, so the following
|
|
1443 |
is unlikely to be needed, but is supplied just in case.
|
|
1444 |
*/
|
|
1445 |
#define MMAP_FLAGS (MAP_PRIVATE)
|
|
1446 |
static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
|
|
1447 |
#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
|
|
1448 |
(dev_zero_fd = open("/dev/zero", O_RDWR), \
|
|
1449 |
mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
|
|
1450 |
mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
|
|
1451 |
#endif /* MAP_ANONYMOUS */
|
|
1452 |
|
|
1453 |
#define DIRECT_MMAP(s) CALL_MMAP(s)
|
|
1454 |
#else /* WIN32 */
|
|
1455 |
|
|
1456 |
/* Win32 MMAP via VirtualAlloc */
|
|
1457 |
static FORCEINLINE void* win32mmap(size_t size) {
|
|
1458 |
void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
|
|
1459 |
return (ptr != 0)? ptr: MFAIL;
|
|
1460 |
}
|
|
1461 |
|
|
1462 |
/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
|
|
1463 |
static FORCEINLINE void* win32direct_mmap(size_t size) {
|
|
1464 |
void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
|
|
1465 |
PAGE_READWRITE);
|
|
1466 |
return (ptr != 0)? ptr: MFAIL;
|
|
1467 |
}
|
|
1468 |
|
|
1469 |
/* This function supports releasing coalesed segments */
|
|
1470 |
static FORCEINLINE int win32munmap(void* ptr, size_t size) {
|
|
1471 |
MEMORY_BASIC_INFORMATION minfo;
|
|
1472 |
char* cptr = (char*)ptr;
|
|
1473 |
while (size) {
|
|
1474 |
if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
|
|
1475 |
return -1;
|
|
1476 |
if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
|
|
1477 |
minfo.State != MEM_COMMIT || minfo.RegionSize > size)
|
|
1478 |
return -1;
|
|
1479 |
if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
|
|
1480 |
return -1;
|
|
1481 |
cptr += minfo.RegionSize;
|
|
1482 |
size -= minfo.RegionSize;
|
|
1483 |
}
|
|
1484 |
return 0;
|
|
1485 |
}
|
|
1486 |
|
|
1487 |
#define CALL_MMAP(s) win32mmap(s)
|
|
1488 |
#define CALL_MUNMAP(a, s) win32munmap((a), (s))
|
|
1489 |
#define DIRECT_MMAP(s) win32direct_mmap(s)
|
|
1490 |
#endif /* WIN32 */
|
|
1491 |
#endif /* HAVE_MMAP */
|
|
1492 |
|
|
1493 |
#if HAVE_MMAP && HAVE_MREMAP
|
|
1494 |
#define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
|
|
1495 |
#else /* HAVE_MMAP && HAVE_MREMAP */
|
|
1496 |
#define CALL_MREMAP(addr, osz, nsz, mv) ((void)(addr),(void)(osz), \
|
|
1497 |
(void)(nsz), (void)(mv),MFAIL)
|
|
1498 |
#endif /* HAVE_MMAP && HAVE_MREMAP */
|
|
1499 |
|
|
1500 |
#if HAVE_MORECORE
|
|
1501 |
#define CALL_MORECORE(S) MORECORE(S)
|
|
1502 |
#else /* HAVE_MORECORE */
|
|
1503 |
#define CALL_MORECORE(S) MFAIL
|
|
1504 |
#endif /* HAVE_MORECORE */
|
|
1505 |
|
|
1506 |
/* mstate bit set if continguous morecore disabled or failed */
|
|
1507 |
#define USE_NONCONTIGUOUS_BIT (4U)
|
|
1508 |
|
|
1509 |
/* segment bit set in create_mspace_with_base */
|
|
1510 |
#define EXTERN_BIT (8U)
|
|
1511 |
|
|
1512 |
|
|
1513 |
/* --------------------------- Lock preliminaries ------------------------ */
|
|
1514 |
|
|
1515 |
/*
|
|
1516 |
When locks are defined, there are up to two global locks:
|
|
1517 |
|
|
1518 |
* If HAVE_MORECORE, morecore_mutex protects sequences of calls to
|
|
1519 |
MORECORE. In many cases sys_alloc requires two calls, that should
|
|
1520 |
not be interleaved with calls by other threads. This does not
|
|
1521 |
protect against direct calls to MORECORE by other threads not
|
|
1522 |
using this lock, so there is still code to cope the best we can on
|
|
1523 |
interference.
|
|
1524 |
|
|
1525 |
* magic_init_mutex ensures that mparams.magic and other
|
|
1526 |
unique mparams values are initialized only once.
|
|
1527 |
|
|
1528 |
To enable use in layered extensions, locks are reentrant.
|
|
1529 |
|
|
1530 |
Because lock-protected regions generally have bounded times, we use
|
|
1531 |
the supplied simple spinlocks in the custom versions for x86.
|
|
1532 |
|
|
1533 |
If USE_LOCKS is > 1, the definitions of lock routines here are
|
|
1534 |
bypassed, in which case you will need to define at least
|
|
1535 |
INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK, and
|
|
1536 |
NULL_LOCK_INITIALIZER, and possibly TRY_LOCK and IS_LOCKED
|
|
1537 |
(The latter two are not used in this malloc, but are
|
|
1538 |
commonly needed in extensions.)
|
|
1539 |
*/
|
|
1540 |
|
|
1541 |
#if USE_LOCKS == 1
|
|
1542 |
|
|
1543 |
#if USE_SPIN_LOCKS
|
|
1544 |
#ifndef WIN32
|
|
1545 |
/* Custom pthread-style spin locks on x86 and x64 for gcc */
|
|
1546 |
struct pthread_mlock_t
|
|
1547 |
{
|
|
1548 |
volatile pthread_t threadid;
|
|
1549 |
volatile unsigned int c;
|
|
1550 |
volatile unsigned int l;
|
|
1551 |
};
|
|
1552 |
#define MLOCK_T struct pthread_mlock_t
|
|
1553 |
#define CURRENT_THREAD pthread_self()
|
|
1554 |
#define SPINS_PER_YIELD 63
|
|
1555 |
static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) {
|
|
1556 |
if(CURRENT_THREAD==sl->threadid)
|
|
1557 |
++sl->c;
|
|
1558 |
else {
|
|
1559 |
int spins = 0;
|
|
1560 |
for (;;) {
|
|
1561 |
int ret;
|
|
1562 |
__asm__ __volatile__ ("lock cmpxchgl %2,(%1)" : "=a" (ret) : "r" (&sl->l), "r" (1), "a" (0));
|
|
1563 |
if(!ret) {
|
|
1564 |
assert(!sl->threadid);
|
|
1565 |
sl->threadid=CURRENT_THREAD;
|
|
1566 |
sl->c=1;
|
|
1567 |
break;
|
|
1568 |
}
|
|
1569 |
if ((++spins & SPINS_PER_YIELD) == 0) {
|
|
1570 |
#if defined (__SVR4) && defined (__sun) /* solaris */
|
|
1571 |
thr_yield();
|
|
1572 |
#else
|
|
1573 |
#ifdef linux
|
|
1574 |
sched_yield();
|
|
1575 |
#else /* no-op yield on unknown systems */
|
|
1576 |
;
|
|
1577 |
#endif /* linux */
|
|
1578 |
#endif /* solaris */
|
|
1579 |
}
|
|
1580 |
}
|
|
1581 |
}
|
|
1582 |
|
|
1583 |
return 0;
|
|
1584 |
}
|
|
1585 |
|
|
1586 |
static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) {
|
|
1587 |
int ret;
|
|
1588 |
assert(CURRENT_THREAD==sl->threadid);
|
|
1589 |
if (!--sl->c) {
|
|
1590 |
sl->threadid=0;
|
|
1591 |
__asm__ __volatile__ ("xchgl %2,(%1)" : "=r" (ret) : "r" (&sl->l), "0" (0));
|
|
1592 |
}
|
|
1593 |
}
|
|
1594 |
|
|
1595 |
static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) {
|
|
1596 |
int ret;
|
|
1597 |
__asm__ __volatile__ ("lock cmpxchgl %2,(%1)" : "=a" (ret) : "r" (&sl->l), "r" (1), "a" (0));
|
|
1598 |
if(!ret){
|
|
1599 |
assert(!sl->threadid);
|
|
1600 |
sl->threadid=CURRENT_THREAD;
|
|
1601 |
sl->c=1;
|
|
1602 |
return 1;
|
|
1603 |
}
|
|
1604 |
return 0;
|
|
1605 |
}
|
|
1606 |
|
|
1607 |
#define INITIAL_LOCK(sl) (memset((sl), 0, sizeof(MLOCK_T)), 0)
|
|
1608 |
#define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl)
|
|
1609 |
#define RELEASE_LOCK(sl) pthread_release_lock(sl)
|
|
1610 |
#define TRY_LOCK(sl) pthread_try_lock(sl)
|
|
1611 |
#define IS_LOCKED(sl) ((sl)->l)
|
|
1612 |
|
|
1613 |
static MLOCK_T magic_init_mutex = {0, 0, 0 };
|
|
1614 |
#if HAVE_MORECORE
|
|
1615 |
static MLOCK_T morecore_mutex = {0, 0, 0 };
|
|
1616 |
#endif /* HAVE_MORECORE */
|
|
1617 |
|
|
1618 |
#else /* WIN32 */
|
|
1619 |
/* Custom win32-style spin locks on x86 and x64 for MSC */
|
|
1620 |
struct win32_mlock_t
|
|
1621 |
{
|
|
1622 |
volatile long threadid;
|
|
1623 |
volatile unsigned int c;
|
|
1624 |
long l;
|
|
1625 |
};
|
|
1626 |
#define MLOCK_T struct win32_mlock_t
|
|
1627 |
#define CURRENT_THREAD GetCurrentThreadId()
|
|
1628 |
#define SPINS_PER_YIELD 63
|
|
1629 |
static FORCEINLINE int win32_acquire_lock (MLOCK_T *sl) {
|
|
1630 |
long mythreadid=CURRENT_THREAD;
|
|
1631 |
if(mythreadid==sl->threadid)
|
|
1632 |
++sl->c;
|
|
1633 |
else {
|
|
1634 |
int spins = 0;
|
|
1635 |
for (;;) {
|
|
1636 |
if (!interlockedexchange(&sl->l, 1)) {
|
|
1637 |
assert(!sl->threadid);
|
|
1638 |
sl->threadid=mythreadid;
|
|
1639 |
sl->c=1;
|
|
1640 |
break;
|
|
1641 |
}
|
|
1642 |
if ((++spins & SPINS_PER_YIELD) == 0)
|
|
1643 |
SleepEx(0, FALSE);
|
|
1644 |
}
|
|
1645 |
}
|
|
1646 |
return 0;
|
|
1647 |
}
|
|
1648 |
|
|
1649 |
static FORCEINLINE void win32_release_lock (MLOCK_T *sl) {
|
|
1650 |
assert(CURRENT_THREAD==sl->threadid);
|
|
1651 |
if (!--sl->c) {
|
|
1652 |
sl->threadid=0;
|
|
1653 |
interlockedexchange (&sl->l, 0);
|
|
1654 |
}
|
|
1655 |
}
|
|
1656 |
|
|
1657 |
static FORCEINLINE int win32_try_lock (MLOCK_T *sl) {
|
|
1658 |
if (!interlockedexchange(&sl->l, 1)){
|
|
1659 |
assert(!sl->threadid);
|
|
1660 |
sl->threadid=CURRENT_THREAD;
|
|
1661 |
sl->c=1;
|
|
1662 |
return 1;
|
|
1663 |
}
|
|
1664 |
return 0;
|
|
1665 |
}
|
|
1666 |
|
|
1667 |
#define INITIAL_LOCK(sl) (memset(sl, 0, sizeof(MLOCK_T)), 0)
|
|
1668 |
#define ACQUIRE_LOCK(sl) win32_acquire_lock(sl)
|
|
1669 |
#define RELEASE_LOCK(sl) win32_release_lock(sl)
|
|
1670 |
#define TRY_LOCK(sl) win32_try_lock(sl)
|
|
1671 |
#define IS_LOCKED(sl) ((sl)->l)
|
|
1672 |
|
|
1673 |
static MLOCK_T magic_init_mutex = {0, 0 };
|
|
1674 |
#if HAVE_MORECORE
|
|
1675 |
static MLOCK_T morecore_mutex = {0, 0 };
|
|
1676 |
#endif /* HAVE_MORECORE */
|
|
1677 |
|
|
1678 |
#endif /* WIN32 */
|
|
1679 |
#else /* USE_SPIN_LOCKS */
|
|
1680 |
|
|
1681 |
#ifndef WIN32
|
|
1682 |
/* pthreads-based locks */
|
|
1683 |
struct pthread_mlock_t
|
|
1684 |
{
|
|
1685 |
volatile unsigned int c;
|
|
1686 |
pthread_mutex_t l;
|
|
1687 |
};
|
|
1688 |
#define MLOCK_T struct pthread_mlock_t
|
|
1689 |
#define CURRENT_THREAD pthread_self()
|
|
1690 |
static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) {
|
|
1691 |
if(!pthread_mutex_lock(&(sl)->l)){
|
|
1692 |
sl->c++;
|
|
1693 |
return 0;
|
|
1694 |
}
|
|
1695 |
return 1;
|
|
1696 |
}
|
|
1697 |
|
|
1698 |
static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) {
|
|
1699 |
--sl->c;
|
|
1700 |
pthread_mutex_unlock(&(sl)->l);
|
|
1701 |
}
|
|
1702 |
|
|
1703 |
static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) {
|
|
1704 |
if(!pthread_mutex_trylock(&(sl)->l)){
|
|
1705 |
sl->c++;
|
|
1706 |
return 1;
|
|
1707 |
}
|
|
1708 |
return 0;
|
|
1709 |
}
|
|
1710 |
|
|
1711 |
static FORCEINLINE int pthread_init_lock (MLOCK_T *sl) {
|
|
1712 |
pthread_mutexattr_t attr;
|
|
1713 |
sl->c=0;
|
|
1714 |
if(pthread_mutexattr_init(&attr)) return 1;
|
|
1715 |
if(pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
|
|
1716 |
if(pthread_mutex_init(&sl->l, &attr)) return 1;
|
|
1717 |
pthread_mutexattr_destroy(&attr);
|
|
1718 |
return 0;
|
|
1719 |
}
|
|
1720 |
|
|
1721 |
static FORCEINLINE int pthread_islocked (MLOCK_T *sl) {
|
|
1722 |
if(!pthread_try_lock(sl)){
|
|
1723 |
int ret = (sl->c != 0);
|
|
1724 |
pthread_mutex_unlock(sl);
|
|
1725 |
return ret;
|
|
1726 |
}
|
|
1727 |
return 0;
|
|
1728 |
}
|
|
1729 |
|
|
1730 |
#define INITIAL_LOCK(sl) pthread_init_lock(sl)
|
|
1731 |
#define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl)
|
|
1732 |
#define RELEASE_LOCK(sl) pthread_release_lock(sl)
|
|
1733 |
#define TRY_LOCK(sl) pthread_try_lock(sl)
|
|
1734 |
#define IS_LOCKED(sl) pthread_islocked(sl)
|
|
1735 |
|
|
1736 |
static MLOCK_T magic_init_mutex = {0, PTHREAD_MUTEX_INITIALIZER };
|
|
1737 |
#if HAVE_MORECORE
|
|
1738 |
static MLOCK_T morecore_mutex = {0, PTHREAD_MUTEX_INITIALIZER };
|
|
1739 |
#endif /* HAVE_MORECORE */
|
|
1740 |
|
|
1741 |
#else /* WIN32 */
|
|
1742 |
/* Win32 critical sections */
|
|
1743 |
#define MLOCK_T CRITICAL_SECTION
|
|
1744 |
#define CURRENT_THREAD GetCurrentThreadId()
|
|
1745 |
#define INITIAL_LOCK(s) (!InitializeCriticalSectionAndSpinCount((s), 4000)
|
|
1746 |
#define ACQUIRE_LOCK(s) ( (!((s))->DebugInfo ? INITIAL_LOCK((s)) : 0), !EnterCriticalSection((s)), 0)
|
|
1747 |
#define RELEASE_LOCK(s) ( LeaveCriticalSection((s)), 0 )
|
|
1748 |
#define TRY_LOCK(s) ( TryEnterCriticalSection((s)) )
|
|
1749 |
#define IS_LOCKED(s) ( (s)->LockCount >= 0 )
|
|
1750 |
#define NULL_LOCK_INITIALIZER
|
|
1751 |
static MLOCK_T magic_init_mutex;
|
|
1752 |
#if HAVE_MORECORE
|
|
1753 |
static MLOCK_T morecore_mutex;
|
|
1754 |
#endif /* HAVE_MORECORE */
|
|
1755 |
#endif /* WIN32 */
|
|
1756 |
#endif /* USE_SPIN_LOCKS */
|
|
1757 |
#endif /* USE_LOCKS == 1 */
|
|
1758 |
|
|
1759 |
/* ----------------------- User-defined locks ------------------------ */
|
|
1760 |
|
|
1761 |
#if USE_LOCKS > 1
|
|
1762 |
/* Define your own lock implementation here */
|
|
1763 |
/* #define INITIAL_LOCK(sl) ... */
|
|
1764 |
/* #define ACQUIRE_LOCK(sl) ... */
|
|
1765 |
/* #define RELEASE_LOCK(sl) ... */
|
|
1766 |
/* #define TRY_LOCK(sl) ... */
|
|
1767 |
/* #define IS_LOCKED(sl) ... */
|
|
1768 |
/* #define NULL_LOCK_INITIALIZER ... */
|
|
1769 |
|
|
1770 |
static MLOCK_T magic_init_mutex = NULL_LOCK_INITIALIZER;
|
|
1771 |
#if HAVE_MORECORE
|
|
1772 |
static MLOCK_T morecore_mutex = NULL_LOCK_INITIALIZER;
|
|
1773 |
#endif /* HAVE_MORECORE */
|
|
1774 |
#endif /* USE_LOCKS > 1 */
|
|
1775 |
|
|
1776 |
/* ----------------------- Lock-based state ------------------------ */
|
|
1777 |
|
|
1778 |
|
|
1779 |
#if USE_LOCKS
|
|
1780 |
#define USE_LOCK_BIT (2U)
|
|
1781 |
#else /* USE_LOCKS */
|
|
1782 |
#define USE_LOCK_BIT (0U)
|
|
1783 |
#define INITIAL_LOCK(l)
|
|
1784 |
#endif /* USE_LOCKS */
|
|
1785 |
|
|
1786 |
#if USE_LOCKS && HAVE_MORECORE
|
|
1787 |
#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex);
|
|
1788 |
#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex);
|
|
1789 |
#else /* USE_LOCKS && HAVE_MORECORE */
|
|
1790 |
#define ACQUIRE_MORECORE_LOCK()
|
|
1791 |
#define RELEASE_MORECORE_LOCK()
|
|
1792 |
#endif /* USE_LOCKS && HAVE_MORECORE */
|
|
1793 |
|
|
1794 |
#if USE_LOCKS
|
|
1795 |
#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex);
|
|
1796 |
#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex);
|
|
1797 |
#else /* USE_LOCKS */
|
|
1798 |
#define ACQUIRE_MAGIC_INIT_LOCK()
|
|
1799 |
#define RELEASE_MAGIC_INIT_LOCK()
|
|
1800 |
#endif /* USE_LOCKS */
|
|
1801 |
|
|
1802 |
|
|
1803 |
/* ----------------------- Chunk representations ------------------------ */
|
|
1804 |
|
|
1805 |
/*
|
|
1806 |
(The following includes lightly edited explanations by Colin Plumb.)
|
|
1807 |
|
|
1808 |
The malloc_chunk declaration below is misleading (but accurate and
|
|
1809 |
necessary). It declares a "view" into memory allowing access to
|
|
1810 |
necessary fields at known offsets from a given base.
|
|
1811 |
|
|
1812 |
Chunks of memory are maintained using a `boundary tag' method as
|
|
1813 |
originally described by Knuth. (See the paper by Paul Wilson
|
|
1814 |
ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
|
|
1815 |
techniques.) Sizes of free chunks are stored both in the front of
|
|
1816 |
each chunk and at the end. This makes consolidating fragmented
|
|
1817 |
chunks into bigger chunks fast. The head fields also hold bits
|
|
1818 |
representing whether chunks are free or in use.
|
|
1819 |
|
|
1820 |
Here are some pictures to make it clearer. They are "exploded" to
|
|
1821 |
show that the state of a chunk can be thought of as extending from
|
|
1822 |
the high 31 bits of the head field of its header through the
|
|
1823 |
prev_foot and PINUSE_BIT bit of the following chunk header.
|
|
1824 |
|
|
1825 |
A chunk that's in use looks like:
|
|
1826 |
|
|
1827 |
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
1828 |
| Size of previous chunk (if P = 1) |
|
|
1829 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
1830 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
|
|
1831 |
| Size of this chunk 1| +-+
|
|
1832 |
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
1833 |
| |
|
|
1834 |
+- -+
|
|
1835 |
| |
|
|
1836 |
+- -+
|
|
1837 |
| :
|
|
1838 |
+- size - sizeof(size_t) available payload bytes -+
|
|
1839 |
: |
|
|
1840 |
chunk-> +- -+
|
|
1841 |
| |
|
|
1842 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
1843 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
|
|
1844 |
| Size of next chunk (may or may not be in use) | +-+
|
|
1845 |
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
1846 |
|
|
1847 |
And if it's free, it looks like this:
|
|
1848 |
|
|
1849 |
chunk-> +- -+
|
|
1850 |
| User payload (must be in use, or we would have merged!) |
|
|
1851 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
1852 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
|
|
1853 |
| Size of this chunk 0| +-+
|
|
1854 |
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
1855 |
| Next pointer |
|
|
1856 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
1857 |
| Prev pointer |
|
|
1858 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
1859 |
| :
|
|
1860 |
+- size - sizeof(struct chunk) unused bytes -+
|
|
1861 |
: |
|
|
1862 |
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
1863 |
| Size of this chunk |
|
|
1864 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
1865 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
|
|
1866 |
| Size of next chunk (must be in use, or we would have merged)| +-+
|
|
1867 |
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
1868 |
| :
|
|
1869 |
+- User payload -+
|
|
1870 |
: |
|
|
1871 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
1872 |
|0|
|
|
1873 |
+-+
|
|
1874 |
Note that since we always merge adjacent free chunks, the chunks
|
|
1875 |
adjacent to a free chunk must be in use.
|
|
1876 |
|
|
1877 |
Given a pointer to a chunk (which can be derived trivially from the
|
|
1878 |
payload pointer) we can, in O(1) time, find out whether the adjacent
|
|
1879 |
chunks are free, and if so, unlink them from the lists that they
|
|
1880 |
are on and merge them with the current chunk.
|
|
1881 |
|
|
1882 |
Chunks always begin on even word boundaries, so the mem portion
|
|
1883 |
(which is returned to the user) is also on an even word boundary, and
|
|
1884 |
thus at least double-word aligned.
|
|
1885 |
|
|
1886 |
The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
|
|
1887 |
chunk size (which is always a multiple of two words), is an in-use
|
|
1888 |
bit for the *previous* chunk. If that bit is *clear*, then the
|
|
1889 |
word before the current chunk size contains the previous chunk
|
|
1890 |
size, and can be used to find the front of the previous chunk.
|
|
1891 |
The very first chunk allocated always has this bit set, preventing
|
|
1892 |
access to non-existent (or non-owned) memory. If pinuse is set for
|
|
1893 |
any given chunk, then you CANNOT determine the size of the
|
|
1894 |
previous chunk, and might even get a memory addressing fault when
|
|
1895 |
trying to do so.
|
|
1896 |
|
|
1897 |
The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
|
|
1898 |
the chunk size redundantly records whether the current chunk is
|
|
1899 |
inuse. This redundancy enables usage checks within free and realloc,
|
|
1900 |
and reduces indirection when freeing and consolidating chunks.
|
|
1901 |
|
|
1902 |
Each freshly allocated chunk must have both cinuse and pinuse set.
|
|
1903 |
That is, each allocated chunk borders either a previously allocated
|
|
1904 |
and still in-use chunk, or the base of its memory arena. This is
|
|
1905 |
ensured by making all allocations from the the `lowest' part of any
|
|
1906 |
found chunk. Further, no free chunk physically borders another one,
|
|
1907 |
so each free chunk is known to be preceded and followed by either
|
|
1908 |
inuse chunks or the ends of memory.
|
|
1909 |
|
|
1910 |
Note that the `foot' of the current chunk is actually represented
|
|
1911 |
as the prev_foot of the NEXT chunk. This makes it easier to
|
|
1912 |
deal with alignments etc but can be very confusing when trying
|
|
1913 |
to extend or adapt this code.
|
|
1914 |
|
|
1915 |
The exceptions to all this are
|
|
1916 |
|
|
1917 |
1. The special chunk `top' is the top-most available chunk (i.e.,
|
|
1918 |
the one bordering the end of available memory). It is treated
|
|
1919 |
specially. Top is never included in any bin, is used only if
|
|
1920 |
no other chunk is available, and is released back to the
|
|
1921 |
system if it is very large (see M_TRIM_THRESHOLD). In effect,
|
|
1922 |
the top chunk is treated as larger (and thus less well
|
|
1923 |
fitting) than any other available chunk. The top chunk
|
|
1924 |
doesn't update its trailing size field since there is no next
|
|
1925 |
contiguous chunk that would have to index off it. However,
|
|
1926 |
space is still allocated for it (TOP_FOOT_SIZE) to enable
|
|
1927 |
separation or merging when space is extended.
|
|
1928 |
|
|
1929 |
3. Chunks allocated via mmap, which have the lowest-order bit
|
|
1930 |
(IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
|
|
1931 |
PINUSE_BIT in their head fields. Because they are allocated
|
|
1932 |
one-by-one, each must carry its own prev_foot field, which is
|
|
1933 |
also used to hold the offset this chunk has within its mmapped
|
|
1934 |
region, which is needed to preserve alignment. Each mmapped
|
|
1935 |
chunk is trailed by the first two fields of a fake next-chunk
|
|
1936 |
for sake of usage checks.
|
|
1937 |
|
|
1938 |
*/
|
|
1939 |
|
|
1940 |
struct malloc_chunk {
|
|
1941 |
size_t prev_foot; /* Size of previous chunk (if free). */
|
|
1942 |
size_t head; /* Size and inuse bits. */
|
|
1943 |
struct malloc_chunk* fd; /* double links -- used only if free. */
|
|
1944 |
struct malloc_chunk* bk;
|
|
1945 |
};
|
|
1946 |
|
|
1947 |
typedef struct malloc_chunk mchunk;
|
|
1948 |
typedef struct malloc_chunk* mchunkptr;
|
|
1949 |
typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
|
|
1950 |
typedef unsigned int bindex_t; /* Described below */
|
|
1951 |
typedef unsigned int binmap_t; /* Described below */
|
|
1952 |
typedef unsigned int flag_t; /* The type of various bit flag sets */
|
|
1953 |
|
|
1954 |
/* ------------------- Chunks sizes and alignments ----------------------- */
|
|
1955 |
|
|
1956 |
#define MCHUNK_SIZE (sizeof(mchunk))
|
|
1957 |
|
|
1958 |
#if FOOTERS
|
|
1959 |
#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
|
|
1960 |
#else /* FOOTERS */
|
|
1961 |
#define CHUNK_OVERHEAD (SIZE_T_SIZE)
|
|
1962 |
#endif /* FOOTERS */
|
|
1963 |
|
|
1964 |
/* MMapped chunks need a second word of overhead ... */
|
|
1965 |
#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
|
|
1966 |
/* ... and additional padding for fake next-chunk at foot */
|
|
1967 |
#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
|
|
1968 |
|
|
1969 |
/* The smallest size we can malloc is an aligned minimal chunk */
|
|
1970 |
#define MIN_CHUNK_SIZE\
|
|
1971 |
((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
|
|
1972 |
|
|
1973 |
/* conversion from malloc headers to user pointers, and back */
|
|
1974 |
#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
|
|
1975 |
#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
|
|
1976 |
/* chunk associated with aligned address A */
|
|
1977 |
#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
|
|
1978 |
|
|
1979 |
/* Bounds on request (not chunk) sizes. */
|
|
1980 |
#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
|
|
1981 |
#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
|
|
1982 |
|
|
1983 |
/* pad request bytes into a usable size */
|
|
1984 |
#define pad_request(req) \
|
|
1985 |
(((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
|
|
1986 |
|
|
1987 |
/* pad request, checking for minimum (but not maximum) */
|
|
1988 |
#define request2size(req) \
|
|
1989 |
(((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
|
|
1990 |
|
|
1991 |
|
|
1992 |
/* ------------------ Operations on head and foot fields ----------------- */
|
|
1993 |
|
|
1994 |
/*
|
|
1995 |
The head field of a chunk is or'ed with PINUSE_BIT when previous
|
|
1996 |
adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
|
|
1997 |
use. If the chunk was obtained with mmap, the prev_foot field has
|
|
1998 |
IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
|
|
1999 |
mmapped region to the base of the chunk.
|
|
2000 |
|
|
2001 |
FLAG4_BIT is not used by this malloc, but might be useful in extensions.
|
|
2002 |
*/
|
|
2003 |
|
|
2004 |
#define PINUSE_BIT (SIZE_T_ONE)
|
|
2005 |
#define CINUSE_BIT (SIZE_T_TWO)
|
|
2006 |
#define FLAG4_BIT (SIZE_T_FOUR)
|
|
2007 |
#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
|
|
2008 |
#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
|
|
2009 |
|
|
2010 |
/* Head value for fenceposts */
|
|
2011 |
#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
|
|
2012 |
|
|
2013 |
/* extraction of fields from head words */
|
|
2014 |
#define cinuse(p) ((p)->head & CINUSE_BIT)
|
|
2015 |
#define pinuse(p) ((p)->head & PINUSE_BIT)
|
|
2016 |
#define chunksize(p) ((p)->head & ~(FLAG_BITS))
|
|
2017 |
|
|
2018 |
#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
|
|
2019 |
#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
|
|
2020 |
|
|
2021 |
/* Treat space at ptr +/- offset as a chunk */
|
|
2022 |
#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
|
|
2023 |
#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
|
|
2024 |
|
|
2025 |
/* Ptr to next or previous physical malloc_chunk. */
|
|
2026 |
#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
|
|
2027 |
#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
|
|
2028 |
|
|
2029 |
/* extract next chunk's pinuse bit */
|
|
2030 |
#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
|
|
2031 |
|
|
2032 |
/* Get/set size at footer */
|
|
2033 |
#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
|
|
2034 |
#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
|
|
2035 |
|
|
2036 |
/* Set size, pinuse bit, and foot */
|
|
2037 |
#define set_size_and_pinuse_of_free_chunk(p, s)\
|
|
2038 |
((p)->head = (s|PINUSE_BIT), set_foot(p, s))
|
|
2039 |
|
|
2040 |
/* Set size, pinuse bit, foot, and clear next pinuse */
|
|
2041 |
#define set_free_with_pinuse(p, s, n)\
|
|
2042 |
(clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
|
|
2043 |
|
|
2044 |
#define is_mmapped(p)\
|
|
2045 |
(!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
|
|
2046 |
|
|
2047 |
/* Get the internal overhead associated with chunk p */
|
|
2048 |
#define overhead_for(p)\
|
|
2049 |
(is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
|
|
2050 |
|
|
2051 |
/* Return true if malloced space is not necessarily cleared */
|
|
2052 |
#if MMAP_CLEARS
|
|
2053 |
#define calloc_must_clear(p) (!is_mmapped(p))
|
|
2054 |
#else /* MMAP_CLEARS */
|
|
2055 |
#define calloc_must_clear(p) (1)
|
|
2056 |
#endif /* MMAP_CLEARS */
|
|
2057 |
|
|
2058 |
/* ---------------------- Overlaid data structures ----------------------- */
|
|
2059 |
|
|
2060 |
/*
|
|
2061 |
When chunks are not in use, they are treated as nodes of either
|
|
2062 |
lists or trees.
|
|
2063 |
|
|
2064 |
"Small" chunks are stored in circular doubly-linked lists, and look
|
|
2065 |
like this:
|
|
2066 |
|
|
2067 |
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2068 |
| Size of previous chunk |
|
|
2069 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2070 |
`head:' | Size of chunk, in bytes |P|
|
|
2071 |
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2072 |
| Forward pointer to next chunk in list |
|
|
2073 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2074 |
| Back pointer to previous chunk in list |
|
|
2075 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2076 |
| Unused space (may be 0 bytes long) .
|
|
2077 |
. .
|
|
2078 |
. |
|
|
2079 |
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2080 |
`foot:' | Size of chunk, in bytes |
|
|
2081 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2082 |
|
|
2083 |
Larger chunks are kept in a form of bitwise digital trees (aka
|
|
2084 |
tries) keyed on chunksizes. Because malloc_tree_chunks are only for
|
|
2085 |
free chunks greater than 256 bytes, their size doesn't impose any
|
|
2086 |
constraints on user chunk sizes. Each node looks like:
|
|
2087 |
|
|
2088 |
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2089 |
| Size of previous chunk |
|
|
2090 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2091 |
`head:' | Size of chunk, in bytes |P|
|
|
2092 |
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2093 |
| Forward pointer to next chunk of same size |
|
|
2094 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2095 |
| Back pointer to previous chunk of same size |
|
|
2096 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2097 |
| Pointer to left child (child[0]) |
|
|
2098 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2099 |
| Pointer to right child (child[1]) |
|
|
2100 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2101 |
| Pointer to parent |
|
|
2102 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2103 |
| bin index of this chunk |
|
|
2104 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2105 |
| Unused space .
|
|
2106 |
. |
|
|
2107 |
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2108 |
`foot:' | Size of chunk, in bytes |
|
|
2109 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
2110 |
|
|
2111 |
Each tree holding treenodes is a tree of unique chunk sizes. Chunks
|
|
2112 |
of the same size are arranged in a circularly-linked list, with only
|
|
2113 |
the oldest chunk (the next to be used, in our FIFO ordering)
|
|
2114 |
actually in the tree. (Tree members are distinguished by a non-null
|
|
2115 |
parent pointer.) If a chunk with the same size an an existing node
|
|
2116 |
is inserted, it is linked off the existing node using pointers that
|
|
2117 |
work in the same way as fd/bk pointers of small chunks.
|
|
2118 |
|
|
2119 |
Each tree contains a power of 2 sized range of chunk sizes (the
|
|
2120 |
smallest is 0x100 <= x < 0x180), which is is divided in half at each
|
|
2121 |
tree level, with the chunks in the smaller half of the range (0x100
|
|
2122 |
<= x < 0x140 for the top nose) in the left subtree and the larger
|
|
2123 |
half (0x140 <= x < 0x180) in the right subtree. This is, of course,
|
|
2124 |
done by inspecting individual bits.
|
|
2125 |
|
|
2126 |
Using these rules, each node's left subtree contains all smaller
|
|
2127 |
sizes than its right subtree. However, the node at the root of each
|
|
2128 |
subtree has no particular ordering relationship to either. (The
|
|
2129 |
dividing line between the subtree sizes is based on trie relation.)
|
|
2130 |
If we remove the last chunk of a given size from the interior of the
|
|
2131 |
tree, we need to replace it with a leaf node. The tree ordering
|
|
2132 |
rules permit a node to be replaced by any leaf below it.
|
|
2133 |
|
|
2134 |
The smallest chunk in a tree (a common operation in a best-fit
|
|
2135 |
allocator) can be found by walking a path to the leftmost leaf in
|
|
2136 |
the tree. Unlike a usual binary tree, where we follow left child
|
|
2137 |
pointers until we reach a null, here we follow the right child
|
|
2138 |
pointer any time the left one is null, until we reach a leaf with
|
|
2139 |
both child pointers null. The smallest chunk in the tree will be
|
|
2140 |
somewhere along that path.
|
|
2141 |
|
|
2142 |
The worst case number of steps to add, find, or remove a node is
|
|
2143 |
bounded by the number of bits differentiating chunks within
|
|
2144 |
bins. Under current bin calculations, this ranges from 6 up to 21
|
|
2145 |
(for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
|
|
2146 |
is of course much better.
|
|
2147 |
*/
|
|
2148 |
|
|
2149 |
struct malloc_tree_chunk {
|
|
2150 |
/* The first four fields must be compatible with malloc_chunk */
|
|
2151 |
size_t prev_foot;
|
|
2152 |
size_t head;
|
|
2153 |
struct malloc_tree_chunk* fd;
|
|
2154 |
struct malloc_tree_chunk* bk;
|
|
2155 |
|
|
2156 |
struct malloc_tree_chunk* child[2];
|
|
2157 |
struct malloc_tree_chunk* parent;
|
|
2158 |
bindex_t index;
|
|
2159 |
};
|
|
2160 |
|
|
2161 |
typedef struct malloc_tree_chunk tchunk;
|
|
2162 |
typedef struct malloc_tree_chunk* tchunkptr;
|
|
2163 |
typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
|
|
2164 |
|
|
2165 |
/* A little helper macro for trees */
|
|
2166 |
#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
|
|
2167 |
|
|
2168 |
/* ----------------------------- Segments -------------------------------- */
|
|
2169 |
|
|
2170 |
/*
|
|
2171 |
Each malloc space may include non-contiguous segments, held in a
|
|
2172 |
list headed by an embedded malloc_segment record representing the
|
|
2173 |
top-most space. Segments also include flags holding properties of
|
|
2174 |
the space. Large chunks that are directly allocated by mmap are not
|
|
2175 |
included in this list. They are instead independently created and
|
|
2176 |
destroyed without otherwise keeping track of them.
|
|
2177 |
|
|
2178 |
Segment management mainly comes into play for spaces allocated by
|
|
2179 |
MMAP. Any call to MMAP might or might not return memory that is
|
|
2180 |
adjacent to an existing segment. MORECORE normally contiguously
|
|
2181 |
extends the current space, so this space is almost always adjacent,
|
|
2182 |
which is simpler and faster to deal with. (This is why MORECORE is
|
|
2183 |
used preferentially to MMAP when both are available -- see
|
|
2184 |
sys_alloc.) When allocating using MMAP, we don't use any of the
|
|
2185 |
hinting mechanisms (inconsistently) supported in various
|
|
2186 |
implementations of unix mmap, or distinguish reserving from
|
|
2187 |
committing memory. Instead, we just ask for space, and exploit
|
|
2188 |
contiguity when we get it. It is probably possible to do
|
|
2189 |
better than this on some systems, but no general scheme seems
|
|
2190 |
to be significantly better.
|
|
2191 |
|
|
2192 |
Management entails a simpler variant of the consolidation scheme
|
|
2193 |
used for chunks to reduce fragmentation -- new adjacent memory is
|
|
2194 |
normally prepended or appended to an existing segment. However,
|
|
2195 |
there are limitations compared to chunk consolidation that mostly
|
|
2196 |
reflect the fact that segment processing is relatively infrequent
|
|
2197 |
(occurring only when getting memory from system) and that we
|
|
2198 |
don't expect to have huge numbers of segments:
|
|
2199 |
|
|
2200 |
* Segments are not indexed, so traversal requires linear scans. (It
|
|
2201 |
would be possible to index these, but is not worth the extra
|
|
2202 |
overhead and complexity for most programs on most platforms.)
|
|
2203 |
* New segments are only appended to old ones when holding top-most
|
|
2204 |
memory; if they cannot be prepended to others, they are held in
|
|
2205 |
different segments.
|
|
2206 |
|
|
2207 |
Except for the top-most segment of an mstate, each segment record
|
|
2208 |
is kept at the tail of its segment. Segments are added by pushing
|
|
2209 |
segment records onto the list headed by &mstate.seg for the
|
|
2210 |
containing mstate.
|
|
2211 |
|
|
2212 |
Segment flags control allocation/merge/deallocation policies:
|
|
2213 |
* If EXTERN_BIT set, then we did not allocate this segment,
|
|
2214 |
and so should not try to deallocate or merge with others.
|
|
2215 |
(This currently holds only for the initial segment passed
|
|
2216 |
into create_mspace_with_base.)
|
|
2217 |
* If IS_MMAPPED_BIT set, the segment may be merged with
|
|
2218 |
other surrounding mmapped segments and trimmed/de-allocated
|
|
2219 |
using munmap.
|
|
2220 |
* If neither bit is set, then the segment was obtained using
|
|
2221 |
MORECORE so can be merged with surrounding MORECORE'd segments
|
|
2222 |
and deallocated/trimmed using MORECORE with negative arguments.
|
|
2223 |
*/
|
|
2224 |
|
|
2225 |
struct malloc_segment {
|
|
2226 |
char* base; /* base address */
|
|
2227 |
size_t size; /* allocated size */
|
|
2228 |
struct malloc_segment* next; /* ptr to next segment */
|
|
2229 |
flag_t sflags; /* mmap and extern flag */
|
|
2230 |
};
|
|
2231 |
|
|
2232 |
#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)
|
|
2233 |
#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
|
|
2234 |
|
|
2235 |
typedef struct malloc_segment msegment;
|
|
2236 |
typedef struct malloc_segment* msegmentptr;
|
|
2237 |
|
|
2238 |
/* ---------------------------- malloc_state ----------------------------- */
|
|
2239 |
|
|
2240 |
/*
|
|
2241 |
A malloc_state holds all of the bookkeeping for a space.
|
|
2242 |
The main fields are:
|
|
2243 |
|
|
2244 |
Top
|
|
2245 |
The topmost chunk of the currently active segment. Its size is
|
|
2246 |
cached in topsize. The actual size of topmost space is
|
|
2247 |
topsize+TOP_FOOT_SIZE, which includes space reserved for adding
|
|
2248 |
fenceposts and segment records if necessary when getting more
|
|
2249 |
space from the system. The size at which to autotrim top is
|
|
2250 |
cached from mparams in trim_check, except that it is disabled if
|
|
2251 |
an autotrim fails.
|
|
2252 |
|
|
2253 |
Designated victim (dv)
|
|
2254 |
This is the preferred chunk for servicing small requests that
|
|
2255 |
don't have exact fits. It is normally the chunk split off most
|
|
2256 |
recently to service another small request. Its size is cached in
|
|
2257 |
dvsize. The link fields of this chunk are not maintained since it
|
|
2258 |
is not kept in a bin.
|
|
2259 |
|
|
2260 |
SmallBins
|
|
2261 |
An array of bin headers for free chunks. These bins hold chunks
|
|
2262 |
with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
|
|
2263 |
chunks of all the same size, spaced 8 bytes apart. To simplify
|
|
2264 |
use in double-linked lists, each bin header acts as a malloc_chunk
|
|
2265 |
pointing to the real first node, if it exists (else pointing to
|
|
2266 |
itself). This avoids special-casing for headers. But to avoid
|
|
2267 |
waste, we allocate only the fd/bk pointers of bins, and then use
|
|
2268 |
repositioning tricks to treat these as the fields of a chunk.
|
|
2269 |
|
|
2270 |
TreeBins
|
|
2271 |
Treebins are pointers to the roots of trees holding a range of
|
|
2272 |
sizes. There are 2 equally spaced treebins for each power of two
|
|
2273 |
from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
|
|
2274 |
larger.
|
|
2275 |
|
|
2276 |
Bin maps
|
|
2277 |
There is one bit map for small bins ("smallmap") and one for
|
|
2278 |
treebins ("treemap). Each bin sets its bit when non-empty, and
|
|
2279 |
clears the bit when empty. Bit operations are then used to avoid
|
|
2280 |
bin-by-bin searching -- nearly all "search" is done without ever
|
|
2281 |
looking at bins that won't be selected. The bit maps
|
|
2282 |
conservatively use 32 bits per map word, even if on 64bit system.
|
|
2283 |
For a good description of some of the bit-based techniques used
|
|
2284 |
here, see Henry S. Warren Jr's book "Hacker's Delight" (and
|
|
2285 |
supplement at http://hackersdelight.org/). Many of these are
|
|
2286 |
intended to reduce the branchiness of paths through malloc etc, as
|
|
2287 |
well as to reduce the number of memory locations read or written.
|
|
2288 |
|
|
2289 |
Segments
|
|
2290 |
A list of segments headed by an embedded malloc_segment record
|
|
2291 |
representing the initial space.
|
|
2292 |
|
|
2293 |
Address check support
|
|
2294 |
The least_addr field is the least address ever obtained from
|
|
2295 |
MORECORE or MMAP. Attempted frees and reallocs of any address less
|
|
2296 |
than this are trapped (unless INSECURE is defined).
|
|
2297 |
|
|
2298 |
Magic tag
|
|
2299 |
A cross-check field that should always hold same value as mparams.magic.
|
|
2300 |
|
|
2301 |
Flags
|
|
2302 |
Bits recording whether to use MMAP, locks, or contiguous MORECORE
|
|
2303 |
|
|
2304 |
Statistics
|
|
2305 |
Each space keeps track of current and maximum system memory
|
|
2306 |
obtained via MORECORE or MMAP.
|
|
2307 |
|
|
2308 |
Trim support
|
|
2309 |
Fields holding the amount of unused topmost memory that should trigger
|
|
2310 |
timming, and a counter to force periodic scanning to release unused
|
|
2311 |
non-topmost segments.
|
|
2312 |
|
|
2313 |
Locking
|
|
2314 |
If USE_LOCKS is defined, the "mutex" lock is acquired and released
|
|
2315 |
around every public call using this mspace.
|
|
2316 |
|
|
2317 |
Extension support
|
|
2318 |
A void* pointer and a size_t field that can be used to help implement
|
|
2319 |
extensions to this malloc.
|
|
2320 |
*/
|
|
2321 |
|
|
2322 |
/* Bin types, widths and sizes */
|
|
2323 |
#define NSMALLBINS (32U)
|
|
2324 |
#define NTREEBINS (32U)
|
|
2325 |
#define SMALLBIN_SHIFT (3U)
|
|
2326 |
#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
|
|
2327 |
#define TREEBIN_SHIFT (8U)
|
|
2328 |
#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
|
|
2329 |
#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
|
|
2330 |
#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
|
|
2331 |
|
|
2332 |
struct malloc_state {
|
|
2333 |
binmap_t smallmap;
|
|
2334 |
binmap_t treemap;
|
|
2335 |
size_t dvsize;
|
|
2336 |
size_t topsize;
|
|
2337 |
char* least_addr;
|
|
2338 |
mchunkptr dv;
|
|
2339 |
mchunkptr top;
|
|
2340 |
size_t trim_check;
|
|
2341 |
size_t release_checks;
|
|
2342 |
size_t magic;
|
|
2343 |
mchunkptr smallbins[(NSMALLBINS+1)*2];
|
|
2344 |
tbinptr treebins[NTREEBINS];
|
|
2345 |
size_t footprint;
|
|
2346 |
size_t max_footprint;
|
|
2347 |
flag_t mflags;
|
|
2348 |
#if USE_LOCKS
|
|
2349 |
MLOCK_T mutex; /* locate lock among fields that rarely change */
|
|
2350 |
#endif /* USE_LOCKS */
|
|
2351 |
msegment seg;
|
|
2352 |
void* extp; /* Unused but available for extensions */
|
|
2353 |
size_t exts;
|
|
2354 |
};
|
|
2355 |
|
|
2356 |
typedef struct malloc_state* mstate;
|
|
2357 |
|
|
2358 |
/* ------------- Global malloc_state and malloc_params ------------------- */
|
|
2359 |
|
|
2360 |
/*
|
|
2361 |
malloc_params holds global properties, including those that can be
|
|
2362 |
dynamically set using mallopt. There is a single instance, mparams,
|
|
2363 |
initialized in init_mparams.
|
|
2364 |
*/
|
|
2365 |
|
|
2366 |
struct malloc_params {
|
|
2367 |
size_t magic;
|
|
2368 |
size_t page_size;
|
|
2369 |
size_t granularity;
|
|
2370 |
size_t mmap_threshold;
|
|
2371 |
size_t trim_threshold;
|
|
2372 |
flag_t default_mflags;
|
|
2373 |
};
|
|
2374 |
|
|
2375 |
static struct malloc_params mparams;
|
|
2376 |
|
|
2377 |
#if !ONLY_MSPACES
|
|
2378 |
|
|
2379 |
/* The global malloc_state used for all non-"mspace" calls */
|
|
2380 |
static struct malloc_state _gm_;
|
|
2381 |
#define gm (&_gm_)
|
|
2382 |
#define is_global(M) ((M) == &_gm_)
|
|
2383 |
|
|
2384 |
#endif /* !ONLY_MSPACES */
|
|
2385 |
|
|
2386 |
#define is_initialized(M) ((M)->top != 0)
|
|
2387 |
|
|
2388 |
/* -------------------------- system alloc setup ------------------------- */
|
|
2389 |
|
|
2390 |
/* Operations on mflags */
|
|
2391 |
|
|
2392 |
#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
|
|
2393 |
#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
|
|
2394 |
#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
|
|
2395 |
|
|
2396 |
#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
|
|
2397 |
#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
|
|
2398 |
#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
|
|
2399 |
|
|
2400 |
#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
|
|
2401 |
#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
|
|
2402 |
|
|
2403 |
#define set_lock(M,L)\
|
|
2404 |
((M)->mflags = (L)?\
|
|
2405 |
((M)->mflags | USE_LOCK_BIT) :\
|
|
2406 |
((M)->mflags & ~USE_LOCK_BIT))
|
|
2407 |
|
|
2408 |
/* page-align a size */
|
|
2409 |
#define page_align(S)\
|
|
2410 |
(((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
|
|
2411 |
|
|
2412 |
/* granularity-align a size */
|
|
2413 |
#define granularity_align(S)\
|
|
2414 |
(((S) + (mparams.granularity - SIZE_T_ONE))\
|
|
2415 |
& ~(mparams.granularity - SIZE_T_ONE))
|
|
2416 |
|
|
2417 |
|
|
2418 |
/* For mmap, use granularity alignment on windows, else page-align */
|
|
2419 |
#ifdef WIN32
|
|
2420 |
#define mmap_align(S) granularity_align(S)
|
|
2421 |
#else
|
|
2422 |
#define mmap_align(S) page_align(S)
|
|
2423 |
#endif
|
|
2424 |
|
|
2425 |
#define is_page_aligned(S)\
|
|
2426 |
(((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
|
|
2427 |
#define is_granularity_aligned(S)\
|
|
2428 |
(((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
|
|
2429 |
|
|
2430 |
/* True if segment S holds address A */
|
|
2431 |
#define segment_holds(S, A)\
|
|
2432 |
((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
|
|
2433 |
|
|
2434 |
/* Return segment holding given address */
|
|
2435 |
static msegmentptr segment_holding(mstate m, char* addr) {
|
|
2436 |
msegmentptr sp = &m->seg;
|
|
2437 |
for (;;) {
|
|
2438 |
if (addr >= sp->base && addr < sp->base + sp->size)
|
|
2439 |
return sp;
|
|
2440 |
if ((sp = sp->next) == 0)
|
|
2441 |
return 0;
|
|
2442 |
}
|
|
2443 |
}
|
|
2444 |
|
|
2445 |
/* Return true if segment contains a segment link */
|
|
2446 |
static int has_segment_link(mstate m, msegmentptr ss) {
|
|
2447 |
msegmentptr sp = &m->seg;
|
|
2448 |
for (;;) {
|
|
2449 |
if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
|
|
2450 |
return 1;
|
|
2451 |
if ((sp = sp->next) == 0)
|
|
2452 |
return 0;
|
|
2453 |
}
|
|
2454 |
}
|
|
2455 |
|
|
2456 |
#ifndef MORECORE_CANNOT_TRIM
|
|
2457 |
#define should_trim(M,s) ((s) > (M)->trim_check)
|
|
2458 |
#else /* MORECORE_CANNOT_TRIM */
|
|
2459 |
#define should_trim(M,s) (0)
|
|
2460 |
#endif /* MORECORE_CANNOT_TRIM */
|
|
2461 |
|
|
2462 |
/*
|
|
2463 |
TOP_FOOT_SIZE is padding at the end of a segment, including space
|
|
2464 |
that may be needed to place segment records and fenceposts when new
|
|
2465 |
noncontiguous segments are added.
|
|
2466 |
*/
|
|
2467 |
#define TOP_FOOT_SIZE\
|
|
2468 |
(align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
|
|
2469 |
|
|
2470 |
|
|
2471 |
/* ------------------------------- Hooks -------------------------------- */
|
|
2472 |
|
|
2473 |
/*
|
|
2474 |
PREACTION should be defined to return 0 on success, and nonzero on
|
|
2475 |
failure. If you are not using locking, you can redefine these to do
|
|
2476 |
anything you like.
|
|
2477 |
*/
|
|
2478 |
|
|
2479 |
#if USE_LOCKS
|
|
2480 |
|
|
2481 |
/* Ensure locks are initialized */
|
|
2482 |
#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
|
|
2483 |
|
|
2484 |
#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
|
|
2485 |
#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
|
|
2486 |
#else /* USE_LOCKS */
|
|
2487 |
|
|
2488 |
#ifndef PREACTION
|
|
2489 |
#define PREACTION(M) (0)
|
|
2490 |
#endif /* PREACTION */
|
|
2491 |
|
|
2492 |
#ifndef POSTACTION
|
|
2493 |
#define POSTACTION(M)
|
|
2494 |
#endif /* POSTACTION */
|
|
2495 |
|
|
2496 |
#endif /* USE_LOCKS */
|
|
2497 |
|
|
2498 |
/*
|
|
2499 |
CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
|
|
2500 |
USAGE_ERROR_ACTION is triggered on detected bad frees and
|
|
2501 |
reallocs. The argument p is an address that might have triggered the
|
|
2502 |
fault. It is ignored by the two predefined actions, but might be
|
|
2503 |
useful in custom actions that try to help diagnose errors.
|
|
2504 |
*/
|
|
2505 |
|
|
2506 |
#if PROCEED_ON_ERROR
|
|
2507 |
|
|
2508 |
/* A count of the number of corruption errors causing resets */
|
|
2509 |
int malloc_corruption_error_count;
|
|
2510 |
|
|
2511 |
/* default corruption action */
|
|
2512 |
static void reset_on_error(mstate m);
|
|
2513 |
|
|
2514 |
#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
|
|
2515 |
#define USAGE_ERROR_ACTION(m, p)
|
|
2516 |
|
|
2517 |
#else /* PROCEED_ON_ERROR */
|
|
2518 |
|
|
2519 |
#ifndef CORRUPTION_ERROR_ACTION
|
|
2520 |
#define CORRUPTION_ERROR_ACTION(m) ABORT
|
|
2521 |
#endif /* CORRUPTION_ERROR_ACTION */
|
|
2522 |
|
|
2523 |
#ifndef USAGE_ERROR_ACTION
|
|
2524 |
#define USAGE_ERROR_ACTION(m,p) ABORT
|
|
2525 |
#endif /* USAGE_ERROR_ACTION */
|
|
2526 |
|
|
2527 |
#endif /* PROCEED_ON_ERROR */
|
|
2528 |
|
|
2529 |
/* -------------------------- Debugging setup ---------------------------- */
|
|
2530 |
|
|
2531 |
#if ! DEBUG
|
|
2532 |
|
|
2533 |
#define check_free_chunk(M,P)
|
|
2534 |
#define check_inuse_chunk(M,P)
|
|
2535 |
#define check_malloced_chunk(M,P,N)
|
|
2536 |
#define check_mmapped_chunk(M,P)
|
|
2537 |
#define check_malloc_state(M)
|
|
2538 |
#define check_top_chunk(M,P)
|
|
2539 |
|
|
2540 |
#else /* DEBUG */
|
|
2541 |
#define check_free_chunk(M,P) do_check_free_chunk(M,P)
|
|
2542 |
#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
|
|
2543 |
#define check_top_chunk(M,P) do_check_top_chunk(M,P)
|
|
2544 |
#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
|
|
2545 |
#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
|
|
2546 |
#define check_malloc_state(M) do_check_malloc_state(M)
|
|
2547 |
|
|
2548 |
static void do_check_any_chunk(mstate m, mchunkptr p);
|
|
2549 |
static void do_check_top_chunk(mstate m, mchunkptr p);
|
|
2550 |
static void do_check_mmapped_chunk(mstate m, mchunkptr p);
|
|
2551 |
static void do_check_inuse_chunk(mstate m, mchunkptr p);
|
|
2552 |
static void do_check_free_chunk(mstate m, mchunkptr p);
|
|
2553 |
static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
|
|
2554 |
static void do_check_tree(mstate m, tchunkptr t);
|
|
2555 |
static void do_check_treebin(mstate m, bindex_t i);
|
|
2556 |
static void do_check_smallbin(mstate m, bindex_t i);
|
|
2557 |
static void do_check_malloc_state(mstate m);
|
|
2558 |
static int bin_find(mstate m, mchunkptr x);
|
|
2559 |
static size_t traverse_and_check(mstate m);
|
|
2560 |
#endif /* DEBUG */
|
|
2561 |
|
|
2562 |
/* ---------------------------- Indexing Bins ---------------------------- */
|
|
2563 |
|
|
2564 |
#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
|
|
2565 |
#define small_index(s) ((s) >> SMALLBIN_SHIFT)
|
|
2566 |
#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
|
|
2567 |
#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
|
|
2568 |
|
|
2569 |
/* addressing by index. See above about smallbin repositioning */
|
|
2570 |
#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
|
|
2571 |
#define treebin_at(M,i) (&((M)->treebins[i]))
|
|
2572 |
|
|
2573 |
/* assign tree index for size S to variable I */
|
|
2574 |
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
|
|
2575 |
#define compute_tree_index(S, I)\
|
|
2576 |
{\
|
|
2577 |
unsigned int X = S >> TREEBIN_SHIFT;\
|
|
2578 |
if (X == 0)\
|
|
2579 |
I = 0;\
|
|
2580 |
else if (X > 0xFFFF)\
|
|
2581 |
I = NTREEBINS-1;\
|
|
2582 |
else {\
|
|
2583 |
unsigned int K;\
|
|
2584 |
__asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "g" (X));\
|
|
2585 |
I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
|
|
2586 |
}\
|
|
2587 |
}
|
|
2588 |
|
|
2589 |
#elif defined(_MSC_VER) && _MSC_VER>=1300
|
|
2590 |
#define compute_tree_index(S, I)\
|
|
2591 |
{\
|
|
2592 |
size_t X = S >> TREEBIN_SHIFT;\
|
|
2593 |
if (X == 0)\
|
|
2594 |
I = 0;\
|
|
2595 |
else if (X > 0xFFFF)\
|
|
2596 |
I = NTREEBINS-1;\
|
|
2597 |
else {\
|
|
2598 |
unsigned int K;\
|
|
2599 |
_BitScanReverse((DWORD *) &K, X);\
|
|
2600 |
I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
|
|
2601 |
}\
|
|
2602 |
}
|
|
2603 |
#else /* GNUC */
|
|
2604 |
#define compute_tree_index(S, I)\
|
|
2605 |
{\
|
|
2606 |
size_t X = S >> TREEBIN_SHIFT;\
|
|
2607 |
if (X == 0)\
|
|
2608 |
I = 0;\
|
|
2609 |
else if (X > 0xFFFF)\
|
|
2610 |
I = NTREEBINS-1;\
|
|
2611 |
else {\
|
|
2612 |
unsigned int Y = (unsigned int)X;\
|
|
2613 |
unsigned int N = ((Y - 0x100) >> 16) & 8;\
|
|
2614 |
unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
|
|
2615 |
N += K;\
|
|
2616 |
N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
|
|
2617 |
K = 14 - N + ((Y <<= K) >> 15);\
|
|
2618 |
I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
|
|
2619 |
}\
|
|
2620 |
}
|
|
2621 |
#endif /* GNUC */
|
|
2622 |
|
|
2623 |
/* Bit representing maximum resolved size in a treebin at i */
|
|
2624 |
#define bit_for_tree_index(i) \
|
|
2625 |
(i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
|
|
2626 |
|
|
2627 |
/* Shift placing maximum resolved bit in a treebin at i as sign bit */
|
|
2628 |
#define leftshift_for_tree_index(i) \
|
|
2629 |
((i == NTREEBINS-1)? 0 : \
|
|
2630 |
((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
|
|
2631 |
|
|
2632 |
/* The size of the smallest chunk held in bin with index i */
|
|
2633 |
#define minsize_for_tree_index(i) \
|
|
2634 |
((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
|
|
2635 |
(((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
|
|
2636 |
|
|
2637 |
|
|
2638 |
/* ------------------------ Operations on bin maps ----------------------- */
|
|
2639 |
|
|
2640 |
/* bit corresponding to given index */
|
|
2641 |
#define idx2bit(i) ((binmap_t)(1) << (i))
|
|
2642 |
|
|
2643 |
/* Mark/Clear bits with given index */
|
|
2644 |
#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
|
|
2645 |
#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
|
|
2646 |
#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
|
|
2647 |
|
|
2648 |
#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
|
|
2649 |
#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
|
|
2650 |
#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
|
|
2651 |
|
|
2652 |
/* index corresponding to given bit */
|
|
2653 |
|
|
2654 |
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
|
|
2655 |
#define compute_bit2idx(X, I)\
|
|
2656 |
{\
|
|
2657 |
unsigned int J;\
|
|
2658 |
__asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "g" (X));\
|
|
2659 |
I = (bindex_t)J;\
|
|
2660 |
}
|
|
2661 |
#elif defined(_MSC_VER) && _MSC_VER>=1300
|
|
2662 |
#define compute_bit2idx(X, I)\
|
|
2663 |
{\
|
|
2664 |
unsigned int J;\
|
|
2665 |
_BitScanForward((DWORD *) &J, X);\
|
|
2666 |
I = (bindex_t)J;\
|
|
2667 |
}
|
|
2668 |
|
|
2669 |
#else /* GNUC */
|
|
2670 |
#if USE_BUILTIN_FFS
|
|
2671 |
#define compute_bit2idx(X, I) I = ffs(X)-1
|
|
2672 |
|
|
2673 |
#else /* USE_BUILTIN_FFS */
|
|
2674 |
#define compute_bit2idx(X, I)\
|
|
2675 |
{\
|
|
2676 |
unsigned int Y = X - 1;\
|
|
2677 |
unsigned int K = Y >> (16-4) & 16;\
|
|
2678 |
unsigned int N = K; Y >>= K;\
|
|
2679 |
N += K = Y >> (8-3) & 8; Y >>= K;\
|
|
2680 |
N += K = Y >> (4-2) & 4; Y >>= K;\
|
|
2681 |
N += K = Y >> (2-1) & 2; Y >>= K;\
|
|
2682 |
N += K = Y >> (1-0) & 1; Y >>= K;\
|
|
2683 |
I = (bindex_t)(N + Y);\
|
|
2684 |
}
|
|
2685 |
#endif /* USE_BUILTIN_FFS */
|
|
2686 |
#endif /* GNUC */
|
|
2687 |
|
|
2688 |
/* isolate the least set bit of a bitmap */
|
|
2689 |
#define least_bit(x) ((x) & -(x))
|
|
2690 |
|
|
2691 |
/* mask with all bits to left of least bit of x on */
|
|
2692 |
#define left_bits(x) ((x<<1) | -(x<<1))
|
|
2693 |
|
|
2694 |
/* mask with all bits to left of or equal to least bit of x on */
|
|
2695 |
#define same_or_left_bits(x) ((x) | -(x))
|
|
2696 |
|
|
2697 |
|
|
2698 |
/* ----------------------- Runtime Check Support ------------------------- */
|
|
2699 |
|
|
2700 |
/*
|
|
2701 |
For security, the main invariant is that malloc/free/etc never
|
|
2702 |
writes to a static address other than malloc_state, unless static
|
|
2703 |
malloc_state itself has been corrupted, which cannot occur via
|
|
2704 |
malloc (because of these checks). In essence this means that we
|
|
2705 |
believe all pointers, sizes, maps etc held in malloc_state, but
|
|
2706 |
check all of those linked or offsetted from other embedded data
|
|
2707 |
structures. These checks are interspersed with main code in a way
|
|
2708 |
that tends to minimize their run-time cost.
|
|
2709 |
|
|
2710 |
When FOOTERS is defined, in addition to range checking, we also
|
|
2711 |
verify footer fields of inuse chunks, which can be used guarantee
|
|
2712 |
that the mstate controlling malloc/free is intact. This is a
|
|
2713 |
streamlined version of the approach described by William Robertson
|
|
2714 |
et al in "Run-time Detection of Heap-based Overflows" LISA'03
|
|
2715 |
http://www.usenix.org/events/lisa03/tech/robertson.html The footer
|
|
2716 |
of an inuse chunk holds the xor of its mstate and a random seed,
|
|
2717 |
that is checked upon calls to free() and realloc(). This is
|
|
2718 |
(probablistically) unguessable from outside the program, but can be
|
|
2719 |
computed by any code successfully malloc'ing any chunk, so does not
|
|
2720 |
itself provide protection against code that has already broken
|
|
2721 |
security through some other means. Unlike Robertson et al, we
|
|
2722 |
always dynamically check addresses of all offset chunks (previous,
|
|
2723 |
next, etc). This turns out to be cheaper than relying on hashes.
|
|
2724 |
*/
|
|
2725 |
|
|
2726 |
#if !INSECURE
|
|
2727 |
/* Check if address a is at least as high as any from MORECORE or MMAP */
|
|
2728 |
#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
|
|
2729 |
/* Check if address of next chunk n is higher than base chunk p */
|
|
2730 |
#define ok_next(p, n) ((char*)(p) < (char*)(n))
|
|
2731 |
/* Check if p has its cinuse bit on */
|
|
2732 |
#define ok_cinuse(p) cinuse(p)
|
|
2733 |
/* Check if p has its pinuse bit on */
|
|
2734 |
#define ok_pinuse(p) pinuse(p)
|
|
2735 |
|
|
2736 |
#else /* !INSECURE */
|
|
2737 |
#define ok_address(M, a) (1)
|
|
2738 |
#define ok_next(b, n) (1)
|
|
2739 |
#define ok_cinuse(p) (1)
|
|
2740 |
#define ok_pinuse(p) (1)
|
|
2741 |
#endif /* !INSECURE */
|
|
2742 |
|
|
2743 |
#if (FOOTERS && !INSECURE)
|
|
2744 |
/* Check if (alleged) mstate m has expected magic field */
|
|
2745 |
#define ok_magic(M) ((M)->magic == mparams.magic)
|
|
2746 |
#else /* (FOOTERS && !INSECURE) */
|
|
2747 |
#define ok_magic(M) (1)
|
|
2748 |
#endif /* (FOOTERS && !INSECURE) */
|
|
2749 |
|
|
2750 |
|
|
2751 |
/* In gcc, use __builtin_expect to minimize impact of checks */
|
|
2752 |
#if !INSECURE
|
|
2753 |
#if defined(__GNUC__) && __GNUC__ >= 3
|
|
2754 |
#define RTCHECK(e) __builtin_expect(e, 1)
|
|
2755 |
#else /* GNUC */
|
|
2756 |
#define RTCHECK(e) (e)
|
|
2757 |
#endif /* GNUC */
|
|
2758 |
#else /* !INSECURE */
|
|
2759 |
#define RTCHECK(e) (1)
|
|
2760 |
#endif /* !INSECURE */
|
|
2761 |
|
|
2762 |
/* macros to set up inuse chunks with or without footers */
|
|
2763 |
|
|
2764 |
#if !FOOTERS
|
|
2765 |
|
|
2766 |
#define mark_inuse_foot(M,p,s)
|
|
2767 |
|
|
2768 |
/* Set cinuse bit and pinuse bit of next chunk */
|
|
2769 |
#define set_inuse(M,p,s)\
|
|
2770 |
((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
|
|
2771 |
((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
|
|
2772 |
|
|
2773 |
/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
|
|
2774 |
#define set_inuse_and_pinuse(M,p,s)\
|
|
2775 |
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
|
|
2776 |
((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
|
|
2777 |
|
|
2778 |
/* Set size, cinuse and pinuse bit of this chunk */
|
|
2779 |
#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
|
|
2780 |
((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
|
|
2781 |
|
|
2782 |
#else /* FOOTERS */
|
|
2783 |
|
|
2784 |
/* Set foot of inuse chunk to be xor of mstate and seed */
|
|
2785 |
#define mark_inuse_foot(M,p,s)\
|
|
2786 |
(((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
|
|
2787 |
|
|
2788 |
#define get_mstate_for(p)\
|
|
2789 |
((mstate)(((mchunkptr)((char*)(p) +\
|
|
2790 |
(chunksize(p))))->prev_foot ^ mparams.magic))
|
|
2791 |
|
|
2792 |
#define set_inuse(M,p,s)\
|
|
2793 |
((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
|
|
2794 |
(((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
|
|
2795 |
mark_inuse_foot(M,p,s))
|
|
2796 |
|
|
2797 |
#define set_inuse_and_pinuse(M,p,s)\
|
|
2798 |
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
|
|
2799 |
(((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
|
|
2800 |
mark_inuse_foot(M,p,s))
|
|
2801 |
|
|
2802 |
#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
|
|
2803 |
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
|
|
2804 |
mark_inuse_foot(M, p, s))
|
|
2805 |
|
|
2806 |
#endif /* !FOOTERS */
|
|
2807 |
|
|
2808 |
/* ---------------------------- setting mparams -------------------------- */
|
|
2809 |
|
|
2810 |
/* Initialize mparams */
|
|
2811 |
static int init_mparams(void) {
|
|
2812 |
if (mparams.page_size == 0) {
|
|
2813 |
size_t s;
|
|
2814 |
|
|
2815 |
mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
|
|
2816 |
mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
|
|
2817 |
#if MORECORE_CONTIGUOUS
|
|
2818 |
mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
|
|
2819 |
#else /* MORECORE_CONTIGUOUS */
|
|
2820 |
mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
|
|
2821 |
#endif /* MORECORE_CONTIGUOUS */
|
|
2822 |
|
|
2823 |
#if (FOOTERS && !INSECURE)
|
|
2824 |
{
|
|
2825 |
#if USE_DEV_RANDOM
|
|
2826 |
int fd;
|
|
2827 |
unsigned char buf[sizeof(size_t)];
|
|
2828 |
/* Try to use /dev/urandom, else fall back on using time */
|
|
2829 |
if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
|
|
2830 |
read(fd, buf, sizeof(buf)) == sizeof(buf)) {
|
|
2831 |
s = *((size_t *) buf);
|
|
2832 |
close(fd);
|
|
2833 |
}
|
|
2834 |
else
|
|
2835 |
#endif /* USE_DEV_RANDOM */
|
|
2836 |
s = (size_t)(time(0) ^ (size_t)0x55555555U);
|
|
2837 |
|
|
2838 |
s |= (size_t)8U; /* ensure nonzero */
|
|
2839 |
s &= ~(size_t)7U; /* improve chances of fault for bad values */
|
|
2840 |
|
|
2841 |
}
|
|
2842 |
#else /* (FOOTERS && !INSECURE) */
|
|
2843 |
s = (size_t)0x58585858U;
|
|
2844 |
#endif /* (FOOTERS && !INSECURE) */
|
|
2845 |
ACQUIRE_MAGIC_INIT_LOCK();
|
|
2846 |
if (mparams.magic == 0) {
|
|
2847 |
mparams.magic = s;
|
|
2848 |
#if !ONLY_MSPACES
|
|
2849 |
/* Set up lock for main malloc area */
|
|
2850 |
INITIAL_LOCK(&gm->mutex);
|
|
2851 |
gm->mflags = mparams.default_mflags;
|
|
2852 |
#endif
|
|
2853 |
}
|
|
2854 |
RELEASE_MAGIC_INIT_LOCK();
|
|
2855 |
|
|
2856 |
#ifndef WIN32
|
|
2857 |
mparams.page_size = malloc_getpagesize;
|
|
2858 |
mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
|
|
2859 |
DEFAULT_GRANULARITY : mparams.page_size);
|
|
2860 |
#else /* WIN32 */
|
|
2861 |
{
|
|
2862 |
SYSTEM_INFO system_info;
|
|
2863 |
GetSystemInfo(&system_info);
|
|
2864 |
mparams.page_size = system_info.dwPageSize;
|
|
2865 |
mparams.granularity = system_info.dwAllocationGranularity;
|
|
2866 |
}
|
|
2867 |
#endif /* WIN32 */
|
|
2868 |
|
|
2869 |
/* Sanity-check configuration:
|
|
2870 |
size_t must be unsigned and as wide as pointer type.
|
|
2871 |
ints must be at least 4 bytes.
|
|
2872 |
alignment must be at least 8.
|
|
2873 |
Alignment, min chunk size, and page size must all be powers of 2.
|
|
2874 |
*/
|
|
2875 |
if ((sizeof(size_t) != sizeof(char*)) ||
|
|
2876 |
(MAX_SIZE_T < MIN_CHUNK_SIZE) ||
|
|
2877 |
(sizeof(int) < 4) ||
|
|
2878 |
(MALLOC_ALIGNMENT < (size_t)8U) ||
|
|
2879 |
((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
|
|
2880 |
((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
|
|
2881 |
((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
|
|
2882 |
((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0))
|
|
2883 |
ABORT;
|
|
2884 |
}
|
|
2885 |
return 0;
|
|
2886 |
}
|
|
2887 |
|
|
2888 |
/* support for mallopt */
|
|
2889 |
static int change_mparam(int param_number, int value) {
|
|
2890 |
size_t val = (size_t)value;
|
|
2891 |
init_mparams();
|
|
2892 |
switch(param_number) {
|
|
2893 |
case M_TRIM_THRESHOLD:
|
|
2894 |
mparams.trim_threshold = val;
|
|
2895 |
return 1;
|
|
2896 |
case M_GRANULARITY:
|
|
2897 |
if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
|
|
2898 |
mparams.granularity = val;
|
|
2899 |
return 1;
|
|
2900 |
}
|
|
2901 |
else
|
|
2902 |
return 0;
|
|
2903 |
case M_MMAP_THRESHOLD:
|
|
2904 |
mparams.mmap_threshold = val;
|
|
2905 |
return 1;
|
|
2906 |
default:
|
|
2907 |
return 0;
|
|
2908 |
}
|
|
2909 |
}
|
|
2910 |
|
|
2911 |
#if DEBUG
|
|
2912 |
/* ------------------------- Debugging Support --------------------------- */
|
|
2913 |
|
|
2914 |
/* Check properties of any chunk, whether free, inuse, mmapped etc */
|
|
2915 |
static void do_check_any_chunk(mstate m, mchunkptr p) {
|
|
2916 |
assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
|
|
2917 |
assert(ok_address(m, p));
|
|
2918 |
}
|
|
2919 |
|
|
2920 |
/* Check properties of top chunk */
|
|
2921 |
static void do_check_top_chunk(mstate m, mchunkptr p) {
|
|
2922 |
msegmentptr sp = segment_holding(m, (char*)p);
|
|
2923 |
size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
|
|
2924 |
assert(sp != 0);
|
|
2925 |
assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
|
|
2926 |
assert(ok_address(m, p));
|
|
2927 |
assert(sz == m->topsize);
|
|
2928 |
assert(sz > 0);
|
|
2929 |
assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
|
|
2930 |
assert(pinuse(p));
|
|
2931 |
assert(!pinuse(chunk_plus_offset(p, sz)));
|
|
2932 |
}
|
|
2933 |
|
|
2934 |
/* Check properties of (inuse) mmapped chunks */
|
|
2935 |
static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
|
|
2936 |
size_t sz = chunksize(p);
|
|
2937 |
size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
|
|
2938 |
assert(is_mmapped(p));
|
|
2939 |
assert(use_mmap(m));
|
|
2940 |
assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
|
|
2941 |
assert(ok_address(m, p));
|
|
2942 |
assert(!is_small(sz));
|
|
2943 |
assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
|
|
2944 |
assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
|
|
2945 |
assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
|
|
2946 |
}
|
|
2947 |
|
|
2948 |
/* Check properties of inuse chunks */
|
|
2949 |
static void do_check_inuse_chunk(mstate m, mchunkptr p) {
|
|
2950 |
do_check_any_chunk(m, p);
|
|
2951 |
assert(cinuse(p));
|
|
2952 |
assert(next_pinuse(p));
|
|
2953 |
/* If not pinuse and not mmapped, previous chunk has OK offset */
|
|
2954 |
assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
|
|
2955 |
if (is_mmapped(p))
|
|
2956 |
do_check_mmapped_chunk(m, p);
|
|
2957 |
}
|
|
2958 |
|
|
2959 |
/* Check properties of free chunks */
|
|
2960 |
static void do_check_free_chunk(mstate m, mchunkptr p) {
|
|
2961 |
size_t sz = chunksize(p);
|
|
2962 |
mchunkptr next = chunk_plus_offset(p, sz);
|
|
2963 |
do_check_any_chunk(m, p);
|
|
2964 |
assert(!cinuse(p));
|
|
2965 |
assert(!next_pinuse(p));
|
|
2966 |
assert (!is_mmapped(p));
|
|
2967 |
if (p != m->dv && p != m->top) {
|
|
2968 |
if (sz >= MIN_CHUNK_SIZE) {
|
|
2969 |
assert((sz & CHUNK_ALIGN_MASK) == 0);
|
|
2970 |
assert(is_aligned(chunk2mem(p)));
|
|
2971 |
assert(next->prev_foot == sz);
|
|
2972 |
assert(pinuse(p));
|
|
2973 |
assert (next == m->top || cinuse(next));
|
|
2974 |
assert(p->fd->bk == p);
|
|
2975 |
assert(p->bk->fd == p);
|
|
2976 |
}
|
|
2977 |
else /* markers are always of size SIZE_T_SIZE */
|
|
2978 |
assert(sz == SIZE_T_SIZE);
|
|
2979 |
}
|
|
2980 |
}
|
|
2981 |
|
|
2982 |
/* Check properties of malloced chunks at the point they are malloced */
|
|
2983 |
static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
|
|
2984 |
if (mem != 0) {
|
|
2985 |
mchunkptr p = mem2chunk(mem);
|
|
2986 |
size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
|
|
2987 |
do_check_inuse_chunk(m, p);
|
|
2988 |
assert((sz & CHUNK_ALIGN_MASK) == 0);
|
|
2989 |
assert(sz >= MIN_CHUNK_SIZE);
|
|
2990 |
assert(sz >= s);
|
|
2991 |
/* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
|
|
2992 |
assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
|
|
2993 |
}
|
|
2994 |
}
|
|
2995 |
|
|
2996 |
/* Check a tree and its subtrees. */
|
|
2997 |
static void do_check_tree(mstate m, tchunkptr t) {
|
|
2998 |
tchunkptr head = 0;
|
|
2999 |
tchunkptr u = t;
|
|
3000 |
bindex_t tindex = t->index;
|
|
3001 |
size_t tsize = chunksize(t);
|
|
3002 |
bindex_t idx;
|
|
3003 |
compute_tree_index(tsize, idx);
|
|
3004 |
assert(tindex == idx);
|
|
3005 |
assert(tsize >= MIN_LARGE_SIZE);
|
|
3006 |
assert(tsize >= minsize_for_tree_index(idx));
|
|
3007 |
assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
|
|
3008 |
|
|
3009 |
do { /* traverse through chain of same-sized nodes */
|
|
3010 |
do_check_any_chunk(m, ((mchunkptr)u));
|
|
3011 |
assert(u->index == tindex);
|
|
3012 |
assert(chunksize(u) == tsize);
|
|
3013 |
assert(!cinuse(u));
|
|
3014 |
assert(!next_pinuse(u));
|
|
3015 |
assert(u->fd->bk == u);
|
|
3016 |
assert(u->bk->fd == u);
|
|
3017 |
if (u->parent == 0) {
|
|
3018 |
assert(u->child[0] == 0);
|
|
3019 |
assert(u->child[1] == 0);
|
|
3020 |
}
|
|
3021 |
else {
|
|
3022 |
assert(head == 0); /* only one node on chain has parent */
|
|
3023 |
head = u;
|
|
3024 |
assert(u->parent != u);
|
|
3025 |
assert (u->parent->child[0] == u ||
|
|
3026 |
u->parent->child[1] == u ||
|
|
3027 |
*((tbinptr*)(u->parent)) == u);
|
|
3028 |
if (u->child[0] != 0) {
|
|
3029 |
assert(u->child[0]->parent == u);
|
|
3030 |
assert(u->child[0] != u);
|
|
3031 |
do_check_tree(m, u->child[0]);
|
|
3032 |
}
|
|
3033 |
if (u->child[1] != 0) {
|
|
3034 |
assert(u->child[1]->parent == u);
|
|
3035 |
assert(u->child[1] != u);
|
|
3036 |
do_check_tree(m, u->child[1]);
|
|
3037 |
}
|
|
3038 |
if (u->child[0] != 0 && u->child[1] != 0) {
|
|
3039 |
assert(chunksize(u->child[0]) < chunksize(u->child[1]));
|
|
3040 |
}
|
|
3041 |
}
|
|
3042 |
u = u->fd;
|
|
3043 |
} while (u != t);
|
|
3044 |
assert(head != 0);
|
|
3045 |
}
|
|
3046 |
|
|
3047 |
/* Check all the chunks in a treebin. */
|
|
3048 |
static void do_check_treebin(mstate m, bindex_t i) {
|
|
3049 |
tbinptr* tb = treebin_at(m, i);
|
|
3050 |
tchunkptr t = *tb;
|
|
3051 |
int empty = (m->treemap & (1U << i)) == 0;
|
|
3052 |
if (t == 0)
|
|
3053 |
assert(empty);
|
|
3054 |
if (!empty)
|
|
3055 |
do_check_tree(m, t);
|
|
3056 |
}
|
|
3057 |
|
|
3058 |
/* Check all the chunks in a smallbin. */
|
|
3059 |
static void do_check_smallbin(mstate m, bindex_t i) {
|
|
3060 |
sbinptr b = smallbin_at(m, i);
|
|
3061 |
mchunkptr p = b->bk;
|
|
3062 |
unsigned int empty = (m->smallmap & (1U << i)) == 0;
|
|
3063 |
if (p == b)
|
|
3064 |
assert(empty);
|
|
3065 |
if (!empty) {
|
|
3066 |
for (; p != b; p = p->bk) {
|
|
3067 |
size_t size = chunksize(p);
|
|
3068 |
mchunkptr q;
|
|
3069 |
/* each chunk claims to be free */
|
|
3070 |
do_check_free_chunk(m, p);
|
|
3071 |
/* chunk belongs in bin */
|
|
3072 |
assert(small_index(size) == i);
|
|
3073 |
assert(p->bk == b || chunksize(p->bk) == chunksize(p));
|
|
3074 |
/* chunk is followed by an inuse chunk */
|
|
3075 |
q = next_chunk(p);
|
|
3076 |
if (q->head != FENCEPOST_HEAD)
|
|
3077 |
do_check_inuse_chunk(m, q);
|
|
3078 |
}
|
|
3079 |
}
|
|
3080 |
}
|
|
3081 |
|
|
3082 |
/* Find x in a bin. Used in other check functions. */
|
|
3083 |
static int bin_find(mstate m, mchunkptr x) {
|
|
3084 |
size_t size = chunksize(x);
|
|
3085 |
if (is_small(size)) {
|
|
3086 |
bindex_t sidx = small_index(size);
|
|
3087 |
sbinptr b = smallbin_at(m, sidx);
|
|
3088 |
if (smallmap_is_marked(m, sidx)) {
|
|
3089 |
mchunkptr p = b;
|
|
3090 |
do {
|
|
3091 |
if (p == x)
|
|
3092 |
return 1;
|
|
3093 |
} while ((p = p->fd) != b);
|
|
3094 |
}
|
|
3095 |
}
|
|
3096 |
else {
|
|
3097 |
bindex_t tidx;
|
|
3098 |
compute_tree_index(size, tidx);
|
|
3099 |
if (treemap_is_marked(m, tidx)) {
|
|
3100 |
tchunkptr t = *treebin_at(m, tidx);
|
|
3101 |
size_t sizebits = size << leftshift_for_tree_index(tidx);
|
|
3102 |
while (t != 0 && chunksize(t) != size) {
|
|
3103 |
t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
|
|
3104 |
sizebits <<= 1;
|
|
3105 |
}
|
|
3106 |
if (t != 0) {
|
|
3107 |
tchunkptr u = t;
|
|
3108 |
do {
|
|
3109 |
if (u == (tchunkptr)x)
|
|
3110 |
return 1;
|
|
3111 |
} while ((u = u->fd) != t);
|
|
3112 |
}
|
|
3113 |
}
|
|
3114 |
}
|
|
3115 |
return 0;
|
|
3116 |
}
|
|
3117 |
|
|
3118 |
/* Traverse each chunk and check it; return total */
|
|
3119 |
static size_t traverse_and_check(mstate m) {
|
|
3120 |
size_t sum = 0;
|
|
3121 |
if (is_initialized(m)) {
|
|
3122 |
msegmentptr s = &m->seg;
|
|
3123 |
sum += m->topsize + TOP_FOOT_SIZE;
|
|
3124 |
while (s != 0) {
|
|
3125 |
mchunkptr q = align_as_chunk(s->base);
|
|
3126 |
mchunkptr lastq = 0;
|
|
3127 |
assert(pinuse(q));
|
|
3128 |
while (segment_holds(s, q) &&
|
|
3129 |
q != m->top && q->head != FENCEPOST_HEAD) {
|
|
3130 |
sum += chunksize(q);
|
|
3131 |
if (cinuse(q)) {
|
|
3132 |
assert(!bin_find(m, q));
|
|
3133 |
do_check_inuse_chunk(m, q);
|
|
3134 |
}
|
|
3135 |
else {
|
|
3136 |
assert(q == m->dv || bin_find(m, q));
|
|
3137 |
assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
|
|
3138 |
do_check_free_chunk(m, q);
|
|
3139 |
}
|
|
3140 |
lastq = q;
|
|
3141 |
q = next_chunk(q);
|
|
3142 |
}
|
|
3143 |
s = s->next;
|
|
3144 |
}
|
|
3145 |
}
|
|
3146 |
return sum;
|
|
3147 |
}
|
|
3148 |
|
|
3149 |
/* Check all properties of malloc_state. */
|
|
3150 |
static void do_check_malloc_state(mstate m) {
|
|
3151 |
bindex_t i;
|
|
3152 |
size_t total;
|
|
3153 |
/* check bins */
|
|
3154 |
for (i = 0; i < NSMALLBINS; ++i)
|
|
3155 |
do_check_smallbin(m, i);
|
|
3156 |
for (i = 0; i < NTREEBINS; ++i)
|
|
3157 |
do_check_treebin(m, i);
|
|
3158 |
|
|
3159 |
if (m->dvsize != 0) { /* check dv chunk */
|
|
3160 |
do_check_any_chunk(m, m->dv);
|
|
3161 |
assert(m->dvsize == chunksize(m->dv));
|
|
3162 |
assert(m->dvsize >= MIN_CHUNK_SIZE);
|
|
3163 |
assert(bin_find(m, m->dv) == 0);
|
|
3164 |
}
|
|
3165 |
|
|
3166 |
if (m->top != 0) { /* check top chunk */
|
|
3167 |
do_check_top_chunk(m, m->top);
|
|
3168 |
/*assert(m->topsize == chunksize(m->top)); redundant */
|
|
3169 |
assert(m->topsize > 0);
|
|
3170 |
assert(bin_find(m, m->top) == 0);
|
|
3171 |
}
|
|
3172 |
|
|
3173 |
total = traverse_and_check(m);
|
|
3174 |
assert(total <= m->footprint);
|
|
3175 |
assert(m->footprint <= m->max_footprint);
|
|
3176 |
}
|
|
3177 |
#endif /* DEBUG */
|
|
3178 |
|
|
3179 |
/* ----------------------------- statistics ------------------------------ */
|
|
3180 |
|
|
3181 |
#if !NO_MALLINFO
|
|
3182 |
static struct mallinfo internal_mallinfo(mstate m) {
|
|
3183 |
struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
3184 |
if (!PREACTION(m)) {
|
|
3185 |
check_malloc_state(m);
|
|
3186 |
if (is_initialized(m)) {
|
|
3187 |
size_t nfree = SIZE_T_ONE; /* top always free */
|
|
3188 |
size_t mfree = m->topsize + TOP_FOOT_SIZE;
|
|
3189 |
size_t sum = mfree;
|
|
3190 |
msegmentptr s = &m->seg;
|
|
3191 |
while (s != 0) {
|
|
3192 |
mchunkptr q = align_as_chunk(s->base);
|
|
3193 |
while (segment_holds(s, q) &&
|
|
3194 |
q != m->top && q->head != FENCEPOST_HEAD) {
|
|
3195 |
size_t sz = chunksize(q);
|
|
3196 |
sum += sz;
|
|
3197 |
if (!cinuse(q)) {
|
|
3198 |
mfree += sz;
|
|
3199 |
++nfree;
|
|
3200 |
}
|
|
3201 |
q = next_chunk(q);
|
|
3202 |
}
|
|
3203 |
s = s->next;
|
|
3204 |
}
|
|
3205 |
|
|
3206 |
nm.arena = sum;
|
|
3207 |
nm.ordblks = nfree;
|
|
3208 |
nm.hblkhd = m->footprint - sum;
|
|
3209 |
nm.usmblks = m->max_footprint;
|
|
3210 |
nm.uordblks = m->footprint - mfree;
|
|
3211 |
nm.fordblks = mfree;
|
|
3212 |
nm.keepcost = m->topsize;
|
|
3213 |
}
|
|
3214 |
|
|
3215 |
POSTACTION(m);
|
|
3216 |
}
|
|
3217 |
return nm;
|
|
3218 |
}
|
|
3219 |
#endif /* !NO_MALLINFO */
|
|
3220 |
|
|
3221 |
static void internal_malloc_stats(mstate m) {
|
|
3222 |
if (!PREACTION(m)) {
|
|
3223 |
size_t maxfp = 0;
|
|
3224 |
size_t fp = 0;
|
|
3225 |
size_t used = 0;
|
|
3226 |
check_malloc_state(m);
|
|
3227 |
if (is_initialized(m)) {
|
|
3228 |
msegmentptr s = &m->seg;
|
|
3229 |
maxfp = m->max_footprint;
|
|
3230 |
fp = m->footprint;
|
|
3231 |
used = fp - (m->topsize + TOP_FOOT_SIZE);
|
|
3232 |
|
|
3233 |
while (s != 0) {
|
|
3234 |
mchunkptr q = align_as_chunk(s->base);
|
|
3235 |
while (segment_holds(s, q) &&
|
|
3236 |
q != m->top && q->head != FENCEPOST_HEAD) {
|
|
3237 |
if (!cinuse(q))
|
|
3238 |
used -= chunksize(q);
|
|
3239 |
q = next_chunk(q);
|
|
3240 |
}
|
|
3241 |
s = s->next;
|
|
3242 |
}
|
|
3243 |
}
|
|
3244 |
|
|
3245 |
fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
|
|
3246 |
fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
|
|
3247 |
fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
|
|
3248 |
|
|
3249 |
POSTACTION(m);
|
|
3250 |
}
|
|
3251 |
}
|
|
3252 |
|
|
3253 |
/* ----------------------- Operations on smallbins ----------------------- */
|
|
3254 |
|
|
3255 |
/*
|
|
3256 |
Various forms of linking and unlinking are defined as macros. Even
|
|
3257 |
the ones for trees, which are very long but have very short typical
|
|
3258 |
paths. This is ugly but reduces reliance on inlining support of
|
|
3259 |
compilers.
|
|
3260 |
*/
|
|
3261 |
|
|
3262 |
/* Link a free chunk into a smallbin */
|
|
3263 |
#define insert_small_chunk(M, P, S) {\
|
|
3264 |
bindex_t I = small_index(S);\
|
|
3265 |
mchunkptr B = smallbin_at(M, I);\
|
|
3266 |
mchunkptr F = B;\
|
|
3267 |
assert(S >= MIN_CHUNK_SIZE);\
|
|
3268 |
if (!smallmap_is_marked(M, I))\
|
|
3269 |
mark_smallmap(M, I);\
|
|
3270 |
else if (RTCHECK(ok_address(M, B->fd)))\
|
|
3271 |
F = B->fd;\
|
|
3272 |
else {\
|
|
3273 |
CORRUPTION_ERROR_ACTION(M);\
|
|
3274 |
}\
|
|
3275 |
B->fd = P;\
|
|
3276 |
F->bk = P;\
|
|
3277 |
P->fd = F;\
|
|
3278 |
P->bk = B;\
|
|
3279 |
}
|
|
3280 |
|
|
3281 |
/* Unlink a chunk from a smallbin */
|
|
3282 |
#define unlink_small_chunk(M, P, S) {\
|
|
3283 |
mchunkptr F = P->fd;\
|
|
3284 |
mchunkptr B = P->bk;\
|
|
3285 |
bindex_t I = small_index(S);\
|
|
3286 |
assert(P != B);\
|
|
3287 |
assert(P != F);\
|
|
3288 |
assert(chunksize(P) == small_index2size(I));\
|
|
3289 |
if (F == B)\
|
|
3290 |
clear_smallmap(M, I);\
|
|
3291 |
else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
|
|
3292 |
(B == smallbin_at(M,I) || ok_address(M, B)))) {\
|
|
3293 |
F->bk = B;\
|
|
3294 |
B->fd = F;\
|
|
3295 |
}\
|
|
3296 |
else {\
|
|
3297 |
CORRUPTION_ERROR_ACTION(M);\
|
|
3298 |
}\
|
|
3299 |
}
|
|
3300 |
|
|
3301 |
/* Unlink the first chunk from a smallbin */
|
|
3302 |
#define unlink_first_small_chunk(M, B, P, I) {\
|
|
3303 |
mchunkptr F = P->fd;\
|
|
3304 |
assert(P != B);\
|
|
3305 |
assert(P != F);\
|
|
3306 |
assert(chunksize(P) == small_index2size(I));\
|
|
3307 |
if (B == F)\
|
|
3308 |
clear_smallmap(M, I);\
|
|
3309 |
else if (RTCHECK(ok_address(M, F))) {\
|
|
3310 |
B->fd = F;\
|
|
3311 |
F->bk = B;\
|
|
3312 |
}\
|
|
3313 |
else {\
|
|
3314 |
CORRUPTION_ERROR_ACTION(M);\
|
|
3315 |
}\
|
|
3316 |
}
|
|
3317 |
|
|
3318 |
/* Replace dv node, binning the old one */
|
|
3319 |
/* Used only when dvsize known to be small */
|
|
3320 |
#define replace_dv(M, P, S) {\
|
|
3321 |
size_t DVS = M->dvsize;\
|
|
3322 |
if (DVS != 0) {\
|
|
3323 |
mchunkptr DV = M->dv;\
|
|
3324 |
assert(is_small(DVS));\
|
|
3325 |
insert_small_chunk(M, DV, DVS);\
|
|
3326 |
}\
|
|
3327 |
M->dvsize = S;\
|
|
3328 |
M->dv = P;\
|
|
3329 |
}
|
|
3330 |
|
|
3331 |
/* ------------------------- Operations on trees ------------------------- */
|
|
3332 |
|
|
3333 |
/* Insert chunk into tree */
|
|
3334 |
#define insert_large_chunk(M, X, S) {\
|
|
3335 |
tbinptr* H;\
|
|
3336 |
bindex_t I;\
|
|
3337 |
compute_tree_index(S, I);\
|
|
3338 |
H = treebin_at(M, I);\
|
|
3339 |
X->index = I;\
|
|
3340 |
X->child[0] = X->child[1] = 0;\
|
|
3341 |
if (!treemap_is_marked(M, I)) {\
|
|
3342 |
mark_treemap(M, I);\
|
|
3343 |
*H = X;\
|
|
3344 |
X->parent = (tchunkptr)H;\
|
|
3345 |
X->fd = X->bk = X;\
|
|
3346 |
}\
|
|
3347 |
else {\
|
|
3348 |
tchunkptr T = *H;\
|
|
3349 |
size_t K = S << leftshift_for_tree_index(I);\
|
|
3350 |
for (;;) {\
|
|
3351 |
if (chunksize(T) != S) {\
|
|
3352 |
tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
|
|
3353 |
K <<= 1;\
|
|
3354 |
if (*C != 0)\
|
|
3355 |
T = *C;\
|
|
3356 |
else if (RTCHECK(ok_address(M, C))) {\
|
|
3357 |
*C = X;\
|
|
3358 |
X->parent = T;\
|
|
3359 |
X->fd = X->bk = X;\
|
|
3360 |
break;\
|
|
3361 |
}\
|
|
3362 |
else {\
|
|
3363 |
CORRUPTION_ERROR_ACTION(M);\
|
|
3364 |
break;\
|
|
3365 |
}\
|
|
3366 |
}\
|
|
3367 |
else {\
|
|
3368 |
tchunkptr F = T->fd;\
|
|
3369 |
if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
|
|
3370 |
T->fd = F->bk = X;\
|
|
3371 |
X->fd = F;\
|
|
3372 |
X->bk = T;\
|
|
3373 |
X->parent = 0;\
|
|
3374 |
break;\
|
|
3375 |
}\
|
|
3376 |
else {\
|
|
3377 |
CORRUPTION_ERROR_ACTION(M);\
|
|
3378 |
break;\
|
|
3379 |
}\
|
|
3380 |
}\
|
|
3381 |
}\
|
|
3382 |
}\
|
|
3383 |
}
|
|
3384 |
|
|
3385 |
/*
|
|
3386 |
Unlink steps:
|
|
3387 |
|
|
3388 |
1. If x is a chained node, unlink it from its same-sized fd/bk links
|
|
3389 |
and choose its bk node as its replacement.
|
|
3390 |
2. If x was the last node of its size, but not a leaf node, it must
|
|
3391 |
be replaced with a leaf node (not merely one with an open left or
|
|
3392 |
right), to make sure that lefts and rights of descendents
|
|
3393 |
correspond properly to bit masks. We use the rightmost descendent
|
|
3394 |
of x. We could use any other leaf, but this is easy to locate and
|
|
3395 |
tends to counteract removal of leftmosts elsewhere, and so keeps
|
|
3396 |
paths shorter than minimally guaranteed. This doesn't loop much
|
|
3397 |
because on average a node in a tree is near the bottom.
|
|
3398 |
3. If x is the base of a chain (i.e., has parent links) relink
|
|
3399 |
x's parent and children to x's replacement (or null if none).
|
|
3400 |
*/
|
|
3401 |
|
|
3402 |
#define unlink_large_chunk(M, X) {\
|
|
3403 |
tchunkptr XP = X->parent;\
|
|
3404 |
tchunkptr R;\
|
|
3405 |
if (X->bk != X) {\
|
|
3406 |
tchunkptr F = X->fd;\
|
|
3407 |
R = X->bk;\
|
|
3408 |
if (RTCHECK(ok_address(M, F))) {\
|
|
3409 |
F->bk = R;\
|
|
3410 |
R->fd = F;\
|
|
3411 |
}\
|
|
3412 |
else {\
|
|
3413 |
CORRUPTION_ERROR_ACTION(M);\
|
|
3414 |
}\
|
|
3415 |
}\
|
|
3416 |
else {\
|
|
3417 |
tchunkptr* RP;\
|
|
3418 |
if (((R = *(RP = &(X->child[1]))) != 0) ||\
|
|
3419 |
((R = *(RP = &(X->child[0]))) != 0)) {\
|
|
3420 |
tchunkptr* CP;\
|
|
3421 |
while ((*(CP = &(R->child[1])) != 0) ||\
|
|
3422 |
(*(CP = &(R->child[0])) != 0)) {\
|
|
3423 |
R = *(RP = CP);\
|
|
3424 |
}\
|
|
3425 |
if (RTCHECK(ok_address(M, RP)))\
|
|
3426 |
*RP = 0;\
|
|
3427 |
else {\
|
|
3428 |
CORRUPTION_ERROR_ACTION(M);\
|
|
3429 |
}\
|
|
3430 |
}\
|
|
3431 |
}\
|
|
3432 |
if (XP != 0) {\
|
|
3433 |
tbinptr* H = treebin_at(M, X->index);\
|
|
3434 |
if (X == *H) {\
|
|
3435 |
if ((*H = R) == 0) \
|
|
3436 |
clear_treemap(M, X->index);\
|
|
3437 |
}\
|
|
3438 |
else if (RTCHECK(ok_address(M, XP))) {\
|
|
3439 |
if (XP->child[0] == X) \
|
|
3440 |
XP->child[0] = R;\
|
|
3441 |
else \
|
|
3442 |
XP->child[1] = R;\
|
|
3443 |
}\
|
|
3444 |
else\
|
|
3445 |
CORRUPTION_ERROR_ACTION(M);\
|
|
3446 |
if (R != 0) {\
|
|
3447 |
if (RTCHECK(ok_address(M, R))) {\
|
|
3448 |
tchunkptr C0, C1;\
|
|
3449 |
R->parent = XP;\
|
|
3450 |
if ((C0 = X->child[0]) != 0) {\
|
|
3451 |
if (RTCHECK(ok_address(M, C0))) {\
|
|
3452 |
R->child[0] = C0;\
|
|
3453 |
C0->parent = R;\
|
|
3454 |
}\
|
|
3455 |
else\
|
|
3456 |
CORRUPTION_ERROR_ACTION(M);\
|
|
3457 |
}\
|
|
3458 |
if ((C1 = X->child[1]) != 0) {\
|
|
3459 |
if (RTCHECK(ok_address(M, C1))) {\
|
|
3460 |
R->child[1] = C1;\
|
|
3461 |
C1->parent = R;\
|
|
3462 |
}\
|
|
3463 |
else\
|
|
3464 |
CORRUPTION_ERROR_ACTION(M);\
|
|
3465 |
}\
|
|
3466 |
}\
|
|
3467 |
else\
|
|
3468 |
CORRUPTION_ERROR_ACTION(M);\
|
|
3469 |
}\
|
|
3470 |
}\
|
|
3471 |
}
|
|
3472 |
|
|
3473 |
/* Relays to large vs small bin operations */
|
|
3474 |
|
|
3475 |
#define insert_chunk(M, P, S)\
|
|
3476 |
if (is_small(S)) insert_small_chunk(M, P, S)\
|
|
3477 |
else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
|
|
3478 |
|
|
3479 |
#define unlink_chunk(M, P, S)\
|
|
3480 |
if (is_small(S)) unlink_small_chunk(M, P, S)\
|
|
3481 |
else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
|
|
3482 |
|
|
3483 |
|
|
3484 |
/* Relays to internal calls to malloc/free from realloc, memalign etc */
|
|
3485 |
|
|
3486 |
#if ONLY_MSPACES
|
|
3487 |
#define internal_malloc(m, b) mspace_malloc(m, b)
|
|
3488 |
#define internal_free(m, mem) mspace_free(m,mem);
|
|
3489 |
#else /* ONLY_MSPACES */
|
|
3490 |
#if MSPACES
|
|
3491 |
#define internal_malloc(m, b)\
|
|
3492 |
(m == gm)? dlmalloc(b) : mspace_malloc(m, b)
|
|
3493 |
#define internal_free(m, mem)\
|
|
3494 |
if (m == gm) dlfree(mem); else mspace_free(m,mem);
|
|
3495 |
#else /* MSPACES */
|
|
3496 |
#define internal_malloc(m, b) dlmalloc(b)
|
|
3497 |
#define internal_free(m, mem) dlfree(mem)
|
|
3498 |
#endif /* MSPACES */
|
|
3499 |
#endif /* ONLY_MSPACES */
|
|
3500 |
|
|
3501 |
/* ----------------------- Direct-mmapping chunks ----------------------- */
|
|
3502 |
|
|
3503 |
/*
|
|
3504 |
Directly mmapped chunks are set up with an offset to the start of
|
|
3505 |
the mmapped region stored in the prev_foot field of the chunk. This
|
|
3506 |
allows reconstruction of the required argument to MUNMAP when freed,
|
|
3507 |
and also allows adjustment of the returned chunk to meet alignment
|
|
3508 |
requirements (especially in memalign). There is also enough space
|
|
3509 |
allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
|
|
3510 |
the PINUSE bit so frees can be checked.
|
|
3511 |
*/
|
|
3512 |
|
|
3513 |
/* Malloc using mmap */
|
|
3514 |
static void* mmap_alloc(mstate m, size_t nb) {
|
|
3515 |
size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
|
|
3516 |
if (mmsize > nb) { /* Check for wrap around 0 */
|
|
3517 |
char* mm = (char*)(DIRECT_MMAP(mmsize));
|
|
3518 |
if (mm != CMFAIL) {
|
|
3519 |
size_t offset = align_offset(chunk2mem(mm));
|
|
3520 |
size_t psize = mmsize - offset - MMAP_FOOT_PAD;
|
|
3521 |
mchunkptr p = (mchunkptr)(mm + offset);
|
|
3522 |
p->prev_foot = offset | IS_MMAPPED_BIT;
|
|
3523 |
(p)->head = (psize|CINUSE_BIT);
|
|
3524 |
mark_inuse_foot(m, p, psize);
|
|
3525 |
chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
|
|
3526 |
chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
|
|
3527 |
|
|
3528 |
if (mm < m->least_addr)
|
|
3529 |
m->least_addr = mm;
|
|
3530 |
if ((m->footprint += mmsize) > m->max_footprint)
|
|
3531 |
m->max_footprint = m->footprint;
|
|
3532 |
assert(is_aligned(chunk2mem(p)));
|
|
3533 |
check_mmapped_chunk(m, p);
|
|
3534 |
return chunk2mem(p);
|
|
3535 |
}
|
|
3536 |
}
|
|
3537 |
return 0;
|
|
3538 |
}
|
|
3539 |
|
|
3540 |
/* Realloc using mmap */
|
|
3541 |
static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
|
|
3542 |
size_t oldsize = chunksize(oldp);
|
|
3543 |
if (is_small(nb)) /* Can't shrink mmap regions below small size */
|
|
3544 |
return 0;
|
|
3545 |
/* Keep old chunk if big enough but not too big */
|
|
3546 |
if (oldsize >= nb + SIZE_T_SIZE &&
|
|
3547 |
(oldsize - nb) <= (mparams.granularity << 1))
|
|
3548 |
return oldp;
|
|
3549 |
else {
|
|
3550 |
size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
|
|
3551 |
size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
|
|
3552 |
size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
|
|
3553 |
char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
|
|
3554 |
oldmmsize, newmmsize, 1);
|
|
3555 |
if (cp != CMFAIL) {
|
|
3556 |
mchunkptr newp = (mchunkptr)(cp + offset);
|
|
3557 |
size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
|
|
3558 |
newp->head = (psize|CINUSE_BIT);
|
|
3559 |
mark_inuse_foot(m, newp, psize);
|
|
3560 |
chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
|
|
3561 |
chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
|
|
3562 |
|
|
3563 |
if (cp < m->least_addr)
|
|
3564 |
m->least_addr = cp;
|
|
3565 |
if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
|
|
3566 |
m->max_footprint = m->footprint;
|
|
3567 |
check_mmapped_chunk(m, newp);
|
|
3568 |
return newp;
|
|
3569 |
}
|
|
3570 |
}
|
|
3571 |
return 0;
|
|
3572 |
}
|
|
3573 |
|
|
3574 |
/* -------------------------- mspace management -------------------------- */
|
|
3575 |
|
|
3576 |
/* Initialize top chunk and its size */
|
|
3577 |
static void init_top(mstate m, mchunkptr p, size_t psize) {
|
|
3578 |
/* Ensure alignment */
|
|
3579 |
size_t offset = align_offset(chunk2mem(p));
|
|
3580 |
p = (mchunkptr)((char*)p + offset);
|
|
3581 |
psize -= offset;
|
|
3582 |
|
|
3583 |
m->top = p;
|
|
3584 |
m->topsize = psize;
|
|
3585 |
p->head = psize | PINUSE_BIT;
|
|
3586 |
/* set size of fake trailing chunk holding overhead space only once */
|
|
3587 |
chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
|
|
3588 |
m->trim_check = mparams.trim_threshold; /* reset on each update */
|
|
3589 |
}
|
|
3590 |
|
|
3591 |
/* Initialize bins for a new mstate that is otherwise zeroed out */
|
|
3592 |
static void init_bins(mstate m) {
|
|
3593 |
/* Establish circular links for smallbins */
|
|
3594 |
bindex_t i;
|
|
3595 |
for (i = 0; i < NSMALLBINS; ++i) {
|
|
3596 |
sbinptr bin = smallbin_at(m,i);
|
|
3597 |
bin->fd = bin->bk = bin;
|
|
3598 |
}
|
|
3599 |
}
|
|
3600 |
|
|
3601 |
#if PROCEED_ON_ERROR
|
|
3602 |
|
|
3603 |
/* default corruption action */
|
|
3604 |
static void reset_on_error(mstate m) {
|
|
3605 |
int i;
|
|
3606 |
++malloc_corruption_error_count;
|
|
3607 |
/* Reinitialize fields to forget about all memory */
|
|
3608 |
m->smallbins = m->treebins = 0;
|
|
3609 |
m->dvsize = m->topsize = 0;
|
|
3610 |
m->seg.base = 0;
|
|
3611 |
m->seg.size = 0;
|
|
3612 |
m->seg.next = 0;
|
|
3613 |
m->top = m->dv = 0;
|
|
3614 |
for (i = 0; i < NTREEBINS; ++i)
|
|
3615 |
*treebin_at(m, i) = 0;
|
|
3616 |
init_bins(m);
|
|
3617 |
}
|
|
3618 |
#endif /* PROCEED_ON_ERROR */
|
|
3619 |
|
|
3620 |
/* Allocate chunk and prepend remainder with chunk in successor base. */
|
|
3621 |
static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
|
|
3622 |
size_t nb) {
|
|
3623 |
mchunkptr p = align_as_chunk(newbase);
|
|
3624 |
mchunkptr oldfirst = align_as_chunk(oldbase);
|
|
3625 |
size_t psize = (char*)oldfirst - (char*)p;
|
|
3626 |
mchunkptr q = chunk_plus_offset(p, nb);
|
|
3627 |
size_t qsize = psize - nb;
|
|
3628 |
set_size_and_pinuse_of_inuse_chunk(m, p, nb);
|
|
3629 |
|
|
3630 |
assert((char*)oldfirst > (char*)q);
|
|
3631 |
assert(pinuse(oldfirst));
|
|
3632 |
assert(qsize >= MIN_CHUNK_SIZE);
|
|
3633 |
|
|
3634 |
/* consolidate remainder with first chunk of old base */
|
|
3635 |
if (oldfirst == m->top) {
|
|
3636 |
size_t tsize = m->topsize += qsize;
|
|
3637 |
m->top = q;
|
|
3638 |
q->head = tsize | PINUSE_BIT;
|
|
3639 |
check_top_chunk(m, q);
|
|
3640 |
}
|
|
3641 |
else if (oldfirst == m->dv) {
|
|
3642 |
size_t dsize = m->dvsize += qsize;
|
|
3643 |
m->dv = q;
|
|
3644 |
set_size_and_pinuse_of_free_chunk(q, dsize);
|
|
3645 |
}
|
|
3646 |
else {
|
|
3647 |
if (!cinuse(oldfirst)) {
|
|
3648 |
size_t nsize = chunksize(oldfirst);
|
|
3649 |
unlink_chunk(m, oldfirst, nsize);
|
|
3650 |
oldfirst = chunk_plus_offset(oldfirst, nsize);
|
|
3651 |
qsize += nsize;
|
|
3652 |
}
|
|
3653 |
set_free_with_pinuse(q, qsize, oldfirst);
|
|
3654 |
insert_chunk(m, q, qsize);
|
|
3655 |
check_free_chunk(m, q);
|
|
3656 |
}
|
|
3657 |
|
|
3658 |
check_malloced_chunk(m, chunk2mem(p), nb);
|
|
3659 |
return chunk2mem(p);
|
|
3660 |
}
|
|
3661 |
|
|
3662 |
/* Add a segment to hold a new noncontiguous region */
|
|
3663 |
static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
|
|
3664 |
/* Determine locations and sizes of segment, fenceposts, old top */
|
|
3665 |
char* old_top = (char*)m->top;
|
|
3666 |
msegmentptr oldsp = segment_holding(m, old_top);
|
|
3667 |
char* old_end = oldsp->base + oldsp->size;
|
|
3668 |
size_t ssize = pad_request(sizeof(struct malloc_segment));
|
|
3669 |
char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
|
|
3670 |
size_t offset = align_offset(chunk2mem(rawsp));
|
|
3671 |
char* asp = rawsp + offset;
|
|
3672 |
char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
|
|
3673 |
mchunkptr sp = (mchunkptr)csp;
|
|
3674 |
msegmentptr ss = (msegmentptr)(chunk2mem(sp));
|
|
3675 |
mchunkptr tnext = chunk_plus_offset(sp, ssize);
|
|
3676 |
mchunkptr p = tnext;
|
|
3677 |
int nfences = 0;
|
|
3678 |
|
|
3679 |
/* reset top to new space */
|
|
3680 |
init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
|
|
3681 |
|
|
3682 |
/* Set up segment record */
|
|
3683 |
assert(is_aligned(ss));
|
|
3684 |
set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
|
|
3685 |
*ss = m->seg; /* Push current record */
|
|
3686 |
m->seg.base = tbase;
|
|
3687 |
m->seg.size = tsize;
|
|
3688 |
m->seg.sflags = mmapped;
|
|
3689 |
m->seg.next = ss;
|
|
3690 |
|
|
3691 |
/* Insert trailing fenceposts */
|
|
3692 |
for (;;) {
|
|
3693 |
mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
|
|
3694 |
p->head = FENCEPOST_HEAD;
|
|
3695 |
++nfences;
|
|
3696 |
if ((char*)(&(nextp->head)) < old_end)
|
|
3697 |
p = nextp;
|
|
3698 |
else
|
|
3699 |
break;
|
|
3700 |
}
|
|
3701 |
assert(nfences >= 2);
|
|
3702 |
|
|
3703 |
/* Insert the rest of old top into a bin as an ordinary free chunk */
|
|
3704 |
if (csp != old_top) {
|
|
3705 |
mchunkptr q = (mchunkptr)old_top;
|
|
3706 |
size_t psize = csp - old_top;
|
|
3707 |
mchunkptr tn = chunk_plus_offset(q, psize);
|
|
3708 |
set_free_with_pinuse(q, psize, tn);
|
|
3709 |
insert_chunk(m, q, psize);
|
|
3710 |
}
|
|
3711 |
|
|
3712 |
check_top_chunk(m, m->top);
|
|
3713 |
}
|
|
3714 |
|
|
3715 |
/* -------------------------- System allocation -------------------------- */
|
|
3716 |
|
|
3717 |
/* Get memory from system using MORECORE or MMAP */
|
|
3718 |
static void* sys_alloc(mstate m, size_t nb) {
|
|
3719 |
char* tbase = CMFAIL;
|
|
3720 |
size_t tsize = 0;
|
|
3721 |
flag_t mmap_flag = 0;
|
|
3722 |
|
|
3723 |
init_mparams();
|
|
3724 |
|
|
3725 |
/* Directly map large chunks */
|
|
3726 |
if (use_mmap(m) && nb >= mparams.mmap_threshold) {
|
|
3727 |
void* mem = mmap_alloc(m, nb);
|
|
3728 |
if (mem != 0)
|
|
3729 |
return mem;
|
|
3730 |
}
|
|
3731 |
|
|
3732 |
/*
|
|
3733 |
Try getting memory in any of three ways (in most-preferred to
|
|
3734 |
least-preferred order):
|
|
3735 |
1. A call to MORECORE that can normally contiguously extend memory.
|
|
3736 |
(disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
|
|
3737 |
or main space is mmapped or a previous contiguous call failed)
|
|
3738 |
2. A call to MMAP new space (disabled if not HAVE_MMAP).
|
|
3739 |
Note that under the default settings, if MORECORE is unable to
|
|
3740 |
fulfill a request, and HAVE_MMAP is true, then mmap is
|
|
3741 |
used as a noncontiguous system allocator. This is a useful backup
|
|
3742 |
strategy for systems with holes in address spaces -- in this case
|
|
3743 |
sbrk cannot contiguously expand the heap, but mmap may be able to
|
|
3744 |
find space.
|
|
3745 |
3. A call to MORECORE that cannot usually contiguously extend memory.
|
|
3746 |
(disabled if not HAVE_MORECORE)
|
|
3747 |
*/
|
|
3748 |
|
|
3749 |
if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
|
|
3750 |
char* br = CMFAIL;
|
|
3751 |
msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
|
|
3752 |
size_t asize = 0;
|
|
3753 |
ACQUIRE_MORECORE_LOCK();
|
|
3754 |
|
|
3755 |
if (ss == 0) { /* First time through or recovery */
|
|
3756 |
char* base = (char*)CALL_MORECORE(0);
|
|
3757 |
if (base != CMFAIL) {
|
|
3758 |
asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
|
|
3759 |
/* Adjust to end on a page boundary */
|
|
3760 |
if (!is_page_aligned(base))
|
|
3761 |
asize += (page_align((size_t)base) - (size_t)base);
|
|
3762 |
/* Can't call MORECORE if size is negative when treated as signed */
|
|
3763 |
if (asize < HALF_MAX_SIZE_T &&
|
|
3764 |
(br = (char*)(CALL_MORECORE(asize))) == base) {
|
|
3765 |
tbase = base;
|
|
3766 |
tsize = asize;
|
|
3767 |
}
|
|
3768 |
}
|
|
3769 |
}
|
|
3770 |
else {
|
|
3771 |
/* Subtract out existing available top space from MORECORE request. */
|
|
3772 |
asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
|
|
3773 |
/* Use mem here only if it did continuously extend old space */
|
|
3774 |
if (asize < HALF_MAX_SIZE_T &&
|
|
3775 |
(br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
|
|
3776 |
tbase = br;
|
|
3777 |
tsize = asize;
|
|
3778 |
}
|
|
3779 |
}
|
|
3780 |
|
|
3781 |
if (tbase == CMFAIL) { /* Cope with partial failure */
|
|
3782 |
if (br != CMFAIL) { /* Try to use/extend the space we did get */
|
|
3783 |
if (asize < HALF_MAX_SIZE_T &&
|
|
3784 |
asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
|
|
3785 |
size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
|
|
3786 |
if (esize < HALF_MAX_SIZE_T) {
|
|
3787 |
char* end = (char*)CALL_MORECORE(esize);
|
|
3788 |
if (end != CMFAIL)
|
|
3789 |
asize += esize;
|
|
3790 |
else { /* Can't use; try to release */
|
|
3791 |
(void) CALL_MORECORE(-asize);
|
|
3792 |
br = CMFAIL;
|
|
3793 |
}
|
|
3794 |
}
|
|
3795 |
}
|
|
3796 |
}
|
|
3797 |
if (br != CMFAIL) { /* Use the space we did get */
|
|
3798 |
tbase = br;
|
|
3799 |
tsize = asize;
|
|
3800 |
}
|
|
3801 |
else
|
|
3802 |
disable_contiguous(m); /* Don't try contiguous path in the future */
|
|
3803 |
}
|
|
3804 |
|
|
3805 |
RELEASE_MORECORE_LOCK();
|
|
3806 |
}
|
|
3807 |
|
|
3808 |
if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
|
|
3809 |
size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
|
|
3810 |
size_t rsize = granularity_align(req);
|
|
3811 |
if (rsize > nb) { /* Fail if wraps around zero */
|
|
3812 |
char* mp = (char*)(CALL_MMAP(rsize));
|
|
3813 |
if (mp != CMFAIL) {
|
|
3814 |
tbase = mp;
|
|
3815 |
tsize = rsize;
|
|
3816 |
mmap_flag = IS_MMAPPED_BIT;
|
|
3817 |
}
|
|
3818 |
}
|
|
3819 |
}
|
|
3820 |
|
|
3821 |
if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
|
|
3822 |
size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
|
|
3823 |
if (asize < HALF_MAX_SIZE_T) {
|
|
3824 |
char* br = CMFAIL;
|
|
3825 |
char* end = CMFAIL;
|
|
3826 |
ACQUIRE_MORECORE_LOCK();
|
|
3827 |
br = (char*)(CALL_MORECORE(asize));
|
|
3828 |
end = (char*)(CALL_MORECORE(0));
|
|
3829 |
RELEASE_MORECORE_LOCK();
|
|
3830 |
if (br != CMFAIL && end != CMFAIL && br < end) {
|
|
3831 |
size_t ssize = end - br;
|
|
3832 |
if (ssize > nb + TOP_FOOT_SIZE) {
|
|
3833 |
tbase = br;
|
|
3834 |
tsize = ssize;
|
|
3835 |
}
|
|
3836 |
}
|
|
3837 |
}
|
|
3838 |
}
|
|
3839 |
|
|
3840 |
if (tbase != CMFAIL) {
|
|
3841 |
|
|
3842 |
if ((m->footprint += tsize) > m->max_footprint)
|
|
3843 |
m->max_footprint = m->footprint;
|
|
3844 |
|
|
3845 |
if (!is_initialized(m)) { /* first-time initialization */
|
|
3846 |
m->seg.base = m->least_addr = tbase;
|
|
3847 |
m->seg.size = tsize;
|
|
3848 |
m->seg.sflags = mmap_flag;
|
|
3849 |
m->magic = mparams.magic;
|
|
3850 |
m->release_checks = MAX_RELEASE_CHECK_RATE;
|
|
3851 |
init_bins(m);
|
|
3852 |
#if !ONLY_MSPACES
|
|
3853 |
if (is_global(m))
|
|
3854 |
init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
|
|
3855 |
else
|
|
3856 |
#endif
|
|
3857 |
{
|
|
3858 |
/* Offset top by embedded malloc_state */
|
|
3859 |
mchunkptr mn = next_chunk(mem2chunk(m));
|
|
3860 |
init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
|
|
3861 |
}
|
|
3862 |
}
|
|
3863 |
|
|
3864 |
else {
|
|
3865 |
/* Try to merge with an existing segment */
|
|
3866 |
msegmentptr sp = &m->seg;
|
|
3867 |
/* Only consider most recent segment if traversal suppressed */
|
|
3868 |
while (sp != 0 && tbase != sp->base + sp->size)
|
|
3869 |
sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
|
|
3870 |
if (sp != 0 &&
|
|
3871 |
!is_extern_segment(sp) &&
|
|
3872 |
(sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
|
|
3873 |
segment_holds(sp, m->top)) { /* append */
|
|
3874 |
sp->size += tsize;
|
|
3875 |
init_top(m, m->top, m->topsize + tsize);
|
|
3876 |
}
|
|
3877 |
else {
|
|
3878 |
if (tbase < m->least_addr)
|
|
3879 |
m->least_addr = tbase;
|
|
3880 |
sp = &m->seg;
|
|
3881 |
while (sp != 0 && sp->base != tbase + tsize)
|
|
3882 |
sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
|
|
3883 |
if (sp != 0 &&
|
|
3884 |
!is_extern_segment(sp) &&
|
|
3885 |
(sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
|
|
3886 |
char* oldbase = sp->base;
|
|
3887 |
sp->base = tbase;
|
|
3888 |
sp->size += tsize;
|
|
3889 |
return prepend_alloc(m, tbase, oldbase, nb);
|
|
3890 |
}
|
|
3891 |
else
|
|
3892 |
add_segment(m, tbase, tsize, mmap_flag);
|
|
3893 |
}
|
|
3894 |
}
|
|
3895 |
|
|
3896 |
if (nb < m->topsize) { /* Allocate from new or extended top space */
|
|
3897 |
size_t rsize = m->topsize -= nb;
|
|
3898 |
mchunkptr p = m->top;
|
|
3899 |
mchunkptr r = m->top = chunk_plus_offset(p, nb);
|
|
3900 |
r->head = rsize | PINUSE_BIT;
|
|
3901 |
set_size_and_pinuse_of_inuse_chunk(m, p, nb);
|
|
3902 |
check_top_chunk(m, m->top);
|
|
3903 |
check_malloced_chunk(m, chunk2mem(p), nb);
|
|
3904 |
return chunk2mem(p);
|
|
3905 |
}
|
|
3906 |
}
|
|
3907 |
|
|
3908 |
MALLOC_FAILURE_ACTION;
|
|
3909 |
return 0;
|
|
3910 |
}
|
|
3911 |
|
|
3912 |
/* ----------------------- system deallocation -------------------------- */
|
|
3913 |
|
|
3914 |
/* Unmap and unlink any mmapped segments that don't contain used chunks */
|
|
3915 |
static size_t release_unused_segments(mstate m) {
|
|
3916 |
size_t released = 0;
|
|
3917 |
int nsegs = 0;
|
|
3918 |
msegmentptr pred = &m->seg;
|
|
3919 |
msegmentptr sp = pred->next;
|
|
3920 |
while (sp != 0) {
|
|
3921 |
char* base = sp->base;
|
|
3922 |
size_t size = sp->size;
|
|
3923 |
msegmentptr next = sp->next;
|
|
3924 |
++nsegs;
|
|
3925 |
if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
|
|
3926 |
mchunkptr p = align_as_chunk(base);
|
|
3927 |
size_t psize = chunksize(p);
|
|
3928 |
/* Can unmap if first chunk holds entire segment and not pinned */
|
|
3929 |
if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
|
|
3930 |
tchunkptr tp = (tchunkptr)p;
|
|
3931 |
assert(segment_holds(sp, (char*)sp));
|
|
3932 |
if (p == m->dv) {
|
|
3933 |
m->dv = 0;
|
|
3934 |
m->dvsize = 0;
|
|
3935 |
}
|
|
3936 |
else {
|
|
3937 |
unlink_large_chunk(m, tp);
|
|
3938 |
}
|
|
3939 |
if (CALL_MUNMAP(base, size) == 0) {
|
|
3940 |
released += size;
|
|
3941 |
m->footprint -= size;
|
|
3942 |
/* unlink obsoleted record */
|
|
3943 |
sp = pred;
|
|
3944 |
sp->next = next;
|
|
3945 |
}
|
|
3946 |
else { /* back out if cannot unmap */
|
|
3947 |
insert_large_chunk(m, tp, psize);
|
|
3948 |
}
|
|
3949 |
}
|
|
3950 |
}
|
|
3951 |
if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
|
|
3952 |
break;
|
|
3953 |
pred = sp;
|
|
3954 |
sp = next;
|
|
3955 |
}
|
|
3956 |
/* Reset check counter */
|
|
3957 |
m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)?
|
|
3958 |
nsegs : MAX_RELEASE_CHECK_RATE);
|
|
3959 |
return released;
|
|
3960 |
}
|
|
3961 |
|
|
3962 |
static int sys_trim(mstate m, size_t pad) {
|
|
3963 |
size_t released = 0;
|
|
3964 |
if (pad < MAX_REQUEST && is_initialized(m)) {
|
|
3965 |
pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
|
|
3966 |
|
|
3967 |
if (m->topsize > pad) {
|
|
3968 |
/* Shrink top space in granularity-size units, keeping at least one */
|
|
3969 |
size_t unit = mparams.granularity;
|
|
3970 |
size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
|
|
3971 |
SIZE_T_ONE) * unit;
|
|
3972 |
msegmentptr sp = segment_holding(m, (char*)m->top);
|
|
3973 |
|
|
3974 |
if (!is_extern_segment(sp)) {
|
|
3975 |
if (is_mmapped_segment(sp)) {
|
|
3976 |
if (HAVE_MMAP &&
|
|
3977 |
sp->size >= extra &&
|
|
3978 |
!has_segment_link(m, sp)) { /* can't shrink if pinned */
|
|
3979 |
size_t newsize = sp->size - extra;
|
|
3980 |
/* Prefer mremap, fall back to munmap */
|
|
3981 |
if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
|
|
3982 |
(CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
|
|
3983 |
released = extra;
|
|
3984 |
}
|
|
3985 |
}
|
|
3986 |
}
|
|
3987 |
else if (HAVE_MORECORE) {
|
|
3988 |
if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
|
|
3989 |
extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
|
|
3990 |
ACQUIRE_MORECORE_LOCK();
|
|
3991 |
{
|
|
3992 |
/* Make sure end of memory is where we last set it. */
|
|
3993 |
char* old_br = (char*)(CALL_MORECORE(0));
|
|
3994 |
if (old_br == sp->base + sp->size) {
|
|
3995 |
char* rel_br = (char*)(CALL_MORECORE(-extra));
|
|
3996 |
char* new_br = (char*)(CALL_MORECORE(0));
|
|
3997 |
if (rel_br != CMFAIL && new_br < old_br)
|
|
3998 |
released = old_br - new_br;
|
|
3999 |
}
|
|
4000 |
}
|
|
4001 |
RELEASE_MORECORE_LOCK();
|
|
4002 |
}
|
|
4003 |
}
|
|
4004 |
|
|
4005 |
if (released != 0) {
|
|
4006 |
sp->size -= released;
|
|
4007 |
m->footprint -= released;
|
|
4008 |
init_top(m, m->top, m->topsize - released);
|
|
4009 |
check_top_chunk(m, m->top);
|
|
4010 |
}
|
|
4011 |
}
|
|
4012 |
|
|
4013 |
/* Unmap any unused mmapped segments */
|
|
4014 |
if (HAVE_MMAP)
|
|
4015 |
released += release_unused_segments(m);
|
|
4016 |
|
|
4017 |
/* On failure, disable autotrim to avoid repeated failed future calls */
|
|
4018 |
if (released == 0 && m->topsize > m->trim_check)
|
|
4019 |
m->trim_check = MAX_SIZE_T;
|
|
4020 |
}
|
|
4021 |
|
|
4022 |
return (released != 0)? 1 : 0;
|
|
4023 |
}
|
|
4024 |
|
|
4025 |
/* ---------------------------- malloc support --------------------------- */
|
|
4026 |
|
|
4027 |
/* allocate a large request from the best fitting chunk in a treebin */
|
|
4028 |
static void* tmalloc_large(mstate m, size_t nb) {
|
|
4029 |
tchunkptr v = 0;
|
|
4030 |
size_t rsize = -nb; /* Unsigned negation */
|
|
4031 |
tchunkptr t;
|
|
4032 |
bindex_t idx;
|
|
4033 |
compute_tree_index(nb, idx);
|
|
4034 |
|
|
4035 |
if ((t = *treebin_at(m, idx)) != 0) {
|
|
4036 |
/* Traverse tree for this bin looking for node with size == nb */
|
|
4037 |
size_t sizebits = nb << leftshift_for_tree_index(idx);
|
|
4038 |
tchunkptr rst = 0; /* The deepest untaken right subtree */
|
|
4039 |
for (;;) {
|
|
4040 |
tchunkptr rt;
|
|
4041 |
size_t trem = chunksize(t) - nb;
|
|
4042 |
if (trem < rsize) {
|
|
4043 |
v = t;
|
|
4044 |
if ((rsize = trem) == 0)
|
|
4045 |
break;
|
|
4046 |
}
|
|
4047 |
rt = t->child[1];
|
|
4048 |
t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
|
|
4049 |
if (rt != 0 && rt != t)
|
|
4050 |
rst = rt;
|
|
4051 |
if (t == 0) {
|
|
4052 |
t = rst; /* set t to least subtree holding sizes > nb */
|
|
4053 |
break;
|
|
4054 |
}
|
|
4055 |
sizebits <<= 1;
|
|
4056 |
}
|
|
4057 |
}
|
|
4058 |
|
|
4059 |
if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
|
|
4060 |
binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
|
|
4061 |
if (leftbits != 0) {
|
|
4062 |
bindex_t i;
|
|
4063 |
binmap_t leastbit = least_bit(leftbits);
|
|
4064 |
compute_bit2idx(leastbit, i);
|
|
4065 |
t = *treebin_at(m, i);
|
|
4066 |
}
|
|
4067 |
}
|
|
4068 |
|
|
4069 |
while (t != 0) { /* find smallest of tree or subtree */
|
|
4070 |
size_t trem = chunksize(t) - nb;
|
|
4071 |
if (trem < rsize) {
|
|
4072 |
rsize = trem;
|
|
4073 |
v = t;
|
|
4074 |
}
|
|
4075 |
t = leftmost_child(t);
|
|
4076 |
}
|
|
4077 |
|
|
4078 |
/* If dv is a better fit, return 0 so malloc will use it */
|
|
4079 |
if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
|
|
4080 |
if (RTCHECK(ok_address(m, v))) { /* split */
|
|
4081 |
mchunkptr r = chunk_plus_offset(v, nb);
|
|
4082 |
assert(chunksize(v) == rsize + nb);
|
|
4083 |
if (RTCHECK(ok_next(v, r))) {
|
|
4084 |
unlink_large_chunk(m, v);
|
|
4085 |
if (rsize < MIN_CHUNK_SIZE)
|
|
4086 |
set_inuse_and_pinuse(m, v, (rsize + nb));
|
|
4087 |
else {
|
|
4088 |
set_size_and_pinuse_of_inuse_chunk(m, v, nb);
|
|
4089 |
set_size_and_pinuse_of_free_chunk(r, rsize);
|
|
4090 |
insert_chunk(m, r, rsize);
|
|
4091 |
}
|
|
4092 |
return chunk2mem(v);
|
|
4093 |
}
|
|
4094 |
}
|
|
4095 |
CORRUPTION_ERROR_ACTION(m);
|
|
4096 |
}
|
|
4097 |
return 0;
|
|
4098 |
}
|
|
4099 |
|
|
4100 |
/* allocate a small request from the best fitting chunk in a treebin */
|
|
4101 |
static void* tmalloc_small(mstate m, size_t nb) {
|
|
4102 |
tchunkptr t, v;
|
|
4103 |
size_t rsize;
|
|
4104 |
bindex_t i;
|
|
4105 |
binmap_t leastbit = least_bit(m->treemap);
|
|
4106 |
compute_bit2idx(leastbit, i);
|
|
4107 |
|
|
4108 |
v = t = *treebin_at(m, i);
|
|
4109 |
rsize = chunksize(t) - nb;
|
|
4110 |
|
|
4111 |
while ((t = leftmost_child(t)) != 0) {
|
|
4112 |
size_t trem = chunksize(t) - nb;
|
|
4113 |
if (trem < rsize) {
|
|
4114 |
rsize = trem;
|
|
4115 |
v = t;
|
|
4116 |
}
|
|
4117 |
}
|
|
4118 |
|
|
4119 |
if (RTCHECK(ok_address(m, v))) {
|
|
4120 |
mchunkptr r = chunk_plus_offset(v, nb);
|
|
4121 |
assert(chunksize(v) == rsize + nb);
|
|
4122 |
if (RTCHECK(ok_next(v, r))) {
|
|
4123 |
unlink_large_chunk(m, v);
|
|
4124 |
if (rsize < MIN_CHUNK_SIZE)
|
|
4125 |
set_inuse_and_pinuse(m, v, (rsize + nb));
|
|
4126 |
else {
|
|
4127 |
set_size_and_pinuse_of_inuse_chunk(m, v, nb);
|
|
4128 |
set_size_and_pinuse_of_free_chunk(r, rsize);
|
|
4129 |
replace_dv(m, r, rsize);
|
|
4130 |
}
|
|
4131 |
return chunk2mem(v);
|
|
4132 |
}
|
|
4133 |
}
|
|
4134 |
|
|
4135 |
CORRUPTION_ERROR_ACTION(m);
|
|
4136 |
return 0;
|
|
4137 |
}
|
|
4138 |
|
|
4139 |
/* --------------------------- realloc support --------------------------- */
|
|
4140 |
|
|
4141 |
static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
|
|
4142 |
if (bytes >= MAX_REQUEST) {
|
|
4143 |
MALLOC_FAILURE_ACTION;
|
|
4144 |
return 0;
|
|
4145 |
}
|
|
4146 |
if (!PREACTION(m)) {
|
|
4147 |
mchunkptr oldp = mem2chunk(oldmem);
|
|
4148 |
size_t oldsize = chunksize(oldp);
|
|
4149 |
mchunkptr next = chunk_plus_offset(oldp, oldsize);
|
|
4150 |
mchunkptr newp = 0;
|
|
4151 |
void* extra = 0;
|
|
4152 |
|
|
4153 |
/* Try to either shrink or extend into top. Else malloc-copy-free */
|
|
4154 |
|
|
4155 |
if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
|
|
4156 |
ok_next(oldp, next) && ok_pinuse(next))) {
|
|
4157 |
size_t nb = request2size(bytes);
|
|
4158 |
if (is_mmapped(oldp))
|
|
4159 |
newp = mmap_resize(m, oldp, nb);
|
|
4160 |
else if (oldsize >= nb) { /* already big enough */
|
|
4161 |
size_t rsize = oldsize - nb;
|
|
4162 |
newp = oldp;
|
|
4163 |
if (rsize >= MIN_CHUNK_SIZE) {
|
|
4164 |
mchunkptr remainder = chunk_plus_offset(newp, nb);
|
|
4165 |
set_inuse(m, newp, nb);
|
|
4166 |
set_inuse(m, remainder, rsize);
|
|
4167 |
extra = chunk2mem(remainder);
|
|
4168 |
}
|
|
4169 |
}
|
|
4170 |
else if (next == m->top && oldsize + m->topsize > nb) {
|
|
4171 |
/* Expand into top */
|
|
4172 |
size_t newsize = oldsize + m->topsize;
|
|
4173 |
size_t newtopsize = newsize - nb;
|
|
4174 |
mchunkptr newtop = chunk_plus_offset(oldp, nb);
|
|
4175 |
set_inuse(m, oldp, nb);
|
|
4176 |
newtop->head = newtopsize |PINUSE_BIT;
|
|
4177 |
m->top = newtop;
|
|
4178 |
m->topsize = newtopsize;
|
|
4179 |
newp = oldp;
|
|
4180 |
}
|
|
4181 |
}
|
|
4182 |
else {
|
|
4183 |
USAGE_ERROR_ACTION(m, oldmem);
|
|
4184 |
POSTACTION(m);
|
|
4185 |
return 0;
|
|
4186 |
}
|
|
4187 |
|
|
4188 |
POSTACTION(m);
|
|
4189 |
|
|
4190 |
if (newp != 0) {
|
|
4191 |
if (extra != 0) {
|
|
4192 |
internal_free(m, extra);
|
|
4193 |
}
|
|
4194 |
check_inuse_chunk(m, newp);
|
|
4195 |
return chunk2mem(newp);
|
|
4196 |
}
|
|
4197 |
else {
|
|
4198 |
void* newmem = internal_malloc(m, bytes);
|
|
4199 |
if (newmem != 0) {
|
|
4200 |
size_t oc = oldsize - overhead_for(oldp);
|
|
4201 |
memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
|
|
4202 |
internal_free(m, oldmem);
|
|
4203 |
}
|
|
4204 |
return newmem;
|
|
4205 |
}
|
|
4206 |
}
|
|
4207 |
return 0;
|
|
4208 |
}
|
|
4209 |
|
|
4210 |
/* --------------------------- memalign support -------------------------- */
|
|
4211 |
|
|
4212 |
static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
|
|
4213 |
if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
|
|
4214 |
return internal_malloc(m, bytes);
|
|
4215 |
if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
|
|
4216 |
alignment = MIN_CHUNK_SIZE;
|
|
4217 |
if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
|
|
4218 |
size_t a = MALLOC_ALIGNMENT << 1;
|
|
4219 |
while (a < alignment) a <<= 1;
|
|
4220 |
alignment = a;
|
|
4221 |
}
|
|
4222 |
|
|
4223 |
if (bytes >= MAX_REQUEST - alignment) {
|
|
4224 |
if (m != 0) { /* Test isn't needed but avoids compiler warning */
|
|
4225 |
MALLOC_FAILURE_ACTION;
|
|
4226 |
}
|
|
4227 |
}
|
|
4228 |
else {
|
|
4229 |
size_t nb = request2size(bytes);
|
|
4230 |
size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
|
|
4231 |
char* mem = (char*)internal_malloc(m, req);
|
|
4232 |
if (mem != 0) {
|
|
4233 |
void* leader = 0;
|
|
4234 |
void* trailer = 0;
|
|
4235 |
mchunkptr p = mem2chunk(mem);
|
|
4236 |
|
|
4237 |
if (PREACTION(m)) return 0;
|
|
4238 |
if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
|
|
4239 |
/*
|
|
4240 |
Find an aligned spot inside chunk. Since we need to give
|
|
4241 |
back leading space in a chunk of at least MIN_CHUNK_SIZE, if
|
|
4242 |
the first calculation places us at a spot with less than
|
|
4243 |
MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
|
|
4244 |
We've allocated enough total room so that this is always
|
|
4245 |
possible.
|
|
4246 |
*/
|
|
4247 |
char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
|
|
4248 |
alignment -
|
|
4249 |
SIZE_T_ONE)) &
|
|
4250 |
-alignment));
|
|
4251 |
char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
|
|
4252 |
br : br+alignment;
|
|
4253 |
mchunkptr newp = (mchunkptr)pos;
|
|
4254 |
size_t leadsize = pos - (char*)(p);
|
|
4255 |
size_t newsize = chunksize(p) - leadsize;
|
|
4256 |
|
|
4257 |
if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
|
|
4258 |
newp->prev_foot = p->prev_foot + leadsize;
|
|
4259 |
newp->head = (newsize|CINUSE_BIT);
|
|
4260 |
}
|
|
4261 |
else { /* Otherwise, give back leader, use the rest */
|
|
4262 |
set_inuse(m, newp, newsize);
|
|
4263 |
set_inuse(m, p, leadsize);
|
|
4264 |
leader = chunk2mem(p);
|
|
4265 |
}
|
|
4266 |
p = newp;
|
|
4267 |
}
|
|
4268 |
|
|
4269 |
/* Give back spare room at the end */
|
|
4270 |
if (!is_mmapped(p)) {
|
|
4271 |
size_t size = chunksize(p);
|
|
4272 |
if (size > nb + MIN_CHUNK_SIZE) {
|
|
4273 |
size_t remainder_size = size - nb;
|
|
4274 |
mchunkptr remainder = chunk_plus_offset(p, nb);
|
|
4275 |
set_inuse(m, p, nb);
|
|
4276 |
set_inuse(m, remainder, remainder_size);
|
|
4277 |
trailer = chunk2mem(remainder);
|
|
4278 |
}
|
|
4279 |
}
|
|
4280 |
|
|
4281 |
assert (chunksize(p) >= nb);
|
|
4282 |
assert((((size_t)(chunk2mem(p))) % alignment) == 0);
|
|
4283 |
check_inuse_chunk(m, p);
|
|
4284 |
POSTACTION(m);
|
|
4285 |
if (leader != 0) {
|
|
4286 |
internal_free(m, leader);
|
|
4287 |
}
|
|
4288 |
if (trailer != 0) {
|
|
4289 |
internal_free(m, trailer);
|
|
4290 |
}
|
|
4291 |
return chunk2mem(p);
|
|
4292 |
}
|
|
4293 |
}
|
|
4294 |
return 0;
|
|
4295 |
}
|
|
4296 |
|
|
4297 |
/* ------------------------ comalloc/coalloc support --------------------- */
|
|
4298 |
|
|
4299 |
static void** ialloc(mstate m,
|
|
4300 |
size_t n_elements,
|
|
4301 |
size_t* sizes,
|
|
4302 |
int opts,
|
|
4303 |
void* chunks[]) {
|
|
4304 |
/*
|
|
4305 |
This provides common support for independent_X routines, handling
|
|
4306 |
all of the combinations that can result.
|
|
4307 |
|
|
4308 |
The opts arg has:
|
|
4309 |
bit 0 set if all elements are same size (using sizes[0])
|
|
4310 |
bit 1 set if elements should be zeroed
|
|
4311 |
*/
|
|
4312 |
|
|
4313 |
size_t element_size; /* chunksize of each element, if all same */
|
|
4314 |
size_t contents_size; /* total size of elements */
|
|
4315 |
size_t array_size; /* request size of pointer array */
|
|
4316 |
void* mem; /* malloced aggregate space */
|
|
4317 |
mchunkptr p; /* corresponding chunk */
|
|
4318 |
size_t remainder_size; /* remaining bytes while splitting */
|
|
4319 |
void** marray; /* either "chunks" or malloced ptr array */
|
|
4320 |
mchunkptr array_chunk; /* chunk for malloced ptr array */
|
|
4321 |
flag_t was_enabled; /* to disable mmap */
|
|
4322 |
size_t size;
|
|
4323 |
size_t i;
|
|
4324 |
|
|
4325 |
/* compute array length, if needed */
|
|
4326 |
if (chunks != 0) {
|
|
4327 |
if (n_elements == 0)
|
|
4328 |
return chunks; /* nothing to do */
|
|
4329 |
marray = chunks;
|
|
4330 |
array_size = 0;
|
|
4331 |
}
|
|
4332 |
else {
|
|
4333 |
/* if empty req, must still return chunk representing empty array */
|
|
4334 |
if (n_elements == 0)
|
|
4335 |
return (void**)internal_malloc(m, 0);
|
|
4336 |
marray = 0;
|
|
4337 |
array_size = request2size(n_elements * (sizeof(void*)));
|
|
4338 |
}
|
|
4339 |
|
|
4340 |
/* compute total element size */
|
|
4341 |
if (opts & 0x1) { /* all-same-size */
|
|
4342 |
element_size = request2size(*sizes);
|
|
4343 |
contents_size = n_elements * element_size;
|
|
4344 |
}
|
|
4345 |
else { /* add up all the sizes */
|
|
4346 |
element_size = 0;
|
|
4347 |
contents_size = 0;
|
|
4348 |
for (i = 0; i != n_elements; ++i)
|
|
4349 |
contents_size += request2size(sizes[i]);
|
|
4350 |
}
|
|
4351 |
|
|
4352 |
size = contents_size + array_size;
|
|
4353 |
|
|
4354 |
/*
|
|
4355 |
Allocate the aggregate chunk. First disable direct-mmapping so
|
|
4356 |
malloc won't use it, since we would not be able to later
|
|
4357 |
free/realloc space internal to a segregated mmap region.
|
|
4358 |
*/
|
|
4359 |
was_enabled = use_mmap(m);
|
|
4360 |
disable_mmap(m);
|
|
4361 |
mem = internal_malloc(m, size - CHUNK_OVERHEAD);
|
|
4362 |
if (was_enabled)
|
|
4363 |
enable_mmap(m);
|
|
4364 |
if (mem == 0)
|
|
4365 |
return 0;
|
|
4366 |
|
|
4367 |
if (PREACTION(m)) return 0;
|
|
4368 |
p = mem2chunk(mem);
|
|
4369 |
remainder_size = chunksize(p);
|
|
4370 |
|
|
4371 |
assert(!is_mmapped(p));
|
|
4372 |
|
|
4373 |
if (opts & 0x2) { /* optionally clear the elements */
|
|
4374 |
memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
|
|
4375 |
}
|
|
4376 |
|
|
4377 |
/* If not provided, allocate the pointer array as final part of chunk */
|
|
4378 |
if (marray == 0) {
|
|
4379 |
size_t array_chunk_size;
|
|
4380 |
array_chunk = chunk_plus_offset(p, contents_size);
|
|
4381 |
array_chunk_size = remainder_size - contents_size;
|
|
4382 |
marray = (void**) (chunk2mem(array_chunk));
|
|
4383 |
set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
|
|
4384 |
remainder_size = contents_size;
|
|
4385 |
}
|
|
4386 |
|
|
4387 |
/* split out elements */
|
|
4388 |
for (i = 0; ; ++i) {
|
|
4389 |
marray[i] = chunk2mem(p);
|
|
4390 |
if (i != n_elements-1) {
|
|
4391 |
if (element_size != 0)
|
|
4392 |
size = element_size;
|
|
4393 |
else
|
|
4394 |
size = request2size(sizes[i]);
|
|
4395 |
remainder_size -= size;
|
|
4396 |
set_size_and_pinuse_of_inuse_chunk(m, p, size);
|
|
4397 |
p = chunk_plus_offset(p, size);
|
|
4398 |
}
|
|
4399 |
else { /* the final element absorbs any overallocation slop */
|
|
4400 |
set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
|
|
4401 |
break;
|
|
4402 |
}
|
|
4403 |
}
|
|
4404 |
|
|
4405 |
#if DEBUG
|
|
4406 |
if (marray != chunks) {
|
|
4407 |
/* final element must have exactly exhausted chunk */
|
|
4408 |
if (element_size != 0) {
|
|
4409 |
assert(remainder_size == element_size);
|
|
4410 |
}
|
|
4411 |
else {
|
|
4412 |
assert(remainder_size == request2size(sizes[i]));
|
|
4413 |
}
|
|
4414 |
check_inuse_chunk(m, mem2chunk(marray));
|
|
4415 |
}
|
|
4416 |
for (i = 0; i != n_elements; ++i)
|
|
4417 |
check_inuse_chunk(m, mem2chunk(marray[i]));
|
|
4418 |
|
|
4419 |
#endif /* DEBUG */
|
|
4420 |
|
|
4421 |
POSTACTION(m);
|
|
4422 |
return marray;
|
|
4423 |
}
|
|
4424 |
|
|
4425 |
|
|
4426 |
/* -------------------------- public routines ---------------------------- */
|
|
4427 |
|
|
4428 |
#if !ONLY_MSPACES
|
|
4429 |
|
|
4430 |
void* dlmalloc(size_t bytes) {
|
|
4431 |
/*
|
|
4432 |
Basic algorithm:
|
|
4433 |
If a small request (< 256 bytes minus per-chunk overhead):
|
|
4434 |
1. If one exists, use a remainderless chunk in associated smallbin.
|
|
4435 |
(Remainderless means that there are too few excess bytes to
|
|
4436 |
represent as a chunk.)
|
|
4437 |
2. If it is big enough, use the dv chunk, which is normally the
|
|
4438 |
chunk adjacent to the one used for the most recent small request.
|
|
4439 |
3. If one exists, split the smallest available chunk in a bin,
|
|
4440 |
saving remainder in dv.
|
|
4441 |
4. If it is big enough, use the top chunk.
|
|
4442 |
5. If available, get memory from system and use it
|
|
4443 |
Otherwise, for a large request:
|
|
4444 |
1. Find the smallest available binned chunk that fits, and use it
|
|
4445 |
if it is better fitting than dv chunk, splitting if necessary.
|
|
4446 |
2. If better fitting than any binned chunk, use the dv chunk.
|
|
4447 |
3. If it is big enough, use the top chunk.
|
|
4448 |
4. If request size >= mmap threshold, try to directly mmap this chunk.
|
|
4449 |
5. If available, get memory from system and use it
|
|
4450 |
|
|
4451 |
The ugly goto's here ensure that postaction occurs along all paths.
|
|
4452 |
*/
|
|
4453 |
|
|
4454 |
if (!PREACTION(gm)) {
|
|
4455 |
void* mem;
|
|
4456 |
size_t nb;
|
|
4457 |
if (bytes <= MAX_SMALL_REQUEST) {
|
|
4458 |
bindex_t idx;
|
|
4459 |
binmap_t smallbits;
|
|
4460 |
nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
|
|
4461 |
idx = small_index(nb);
|
|
4462 |
smallbits = gm->smallmap >> idx;
|
|
4463 |
|
|
4464 |
if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
|
|
4465 |
mchunkptr b, p;
|
|
4466 |
idx += ~smallbits & 1; /* Uses next bin if idx empty */
|
|
4467 |
b = smallbin_at(gm, idx);
|
|
4468 |
p = b->fd;
|
|
4469 |
assert(chunksize(p) == small_index2size(idx));
|
|
4470 |
unlink_first_small_chunk(gm, b, p, idx);
|
|
4471 |
set_inuse_and_pinuse(gm, p, small_index2size(idx));
|
|
4472 |
mem = chunk2mem(p);
|
|
4473 |
check_malloced_chunk(gm, mem, nb);
|
|
4474 |
goto postaction;
|
|
4475 |
}
|
|
4476 |
|
|
4477 |
else if (nb > gm->dvsize) {
|
|
4478 |
if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
|
|
4479 |
mchunkptr b, p, r;
|
|
4480 |
size_t rsize;
|
|
4481 |
bindex_t i;
|
|
4482 |
binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
|
|
4483 |
binmap_t leastbit = least_bit(leftbits);
|
|
4484 |
compute_bit2idx(leastbit, i);
|
|
4485 |
b = smallbin_at(gm, i);
|
|
4486 |
p = b->fd;
|
|
4487 |
assert(chunksize(p) == small_index2size(i));
|
|
4488 |
unlink_first_small_chunk(gm, b, p, i);
|
|
4489 |
rsize = small_index2size(i) - nb;
|
|
4490 |
/* Fit here cannot be remainderless if 4byte sizes */
|
|
4491 |
if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
|
|
4492 |
set_inuse_and_pinuse(gm, p, small_index2size(i));
|
|
4493 |
else {
|
|
4494 |
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
|
|
4495 |
r = chunk_plus_offset(p, nb);
|
|
4496 |
set_size_and_pinuse_of_free_chunk(r, rsize);
|
|
4497 |
replace_dv(gm, r, rsize);
|
|
4498 |
}
|
|
4499 |
mem = chunk2mem(p);
|
|
4500 |
check_malloced_chunk(gm, mem, nb);
|
|
4501 |
goto postaction;
|
|
4502 |
}
|
|
4503 |
|
|
4504 |
else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
|
|
4505 |
check_malloced_chunk(gm, mem, nb);
|
|
4506 |
goto postaction;
|
|
4507 |
}
|
|
4508 |
}
|
|
4509 |
}
|
|
4510 |
else if (bytes >= MAX_REQUEST)
|
|
4511 |
nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
|
|
4512 |
else {
|
|
4513 |
nb = pad_request(bytes);
|
|
4514 |
if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
|
|
4515 |
check_malloced_chunk(gm, mem, nb);
|
|
4516 |
goto postaction;
|
|
4517 |
}
|
|
4518 |
}
|
|
4519 |
|
|
4520 |
if (nb <= gm->dvsize) {
|
|
4521 |
size_t rsize = gm->dvsize - nb;
|
|
4522 |
mchunkptr p = gm->dv;
|
|
4523 |
if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
|
|
4524 |
mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
|
|
4525 |
gm->dvsize = rsize;
|
|
4526 |
set_size_and_pinuse_of_free_chunk(r, rsize);
|
|
4527 |
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
|
|
4528 |
}
|
|
4529 |
else { /* exhaust dv */
|
|
4530 |
size_t dvs = gm->dvsize;
|
|
4531 |
gm->dvsize = 0;
|
|
4532 |
gm->dv = 0;
|
|
4533 |
set_inuse_and_pinuse(gm, p, dvs);
|
|
4534 |
}
|
|
4535 |
mem = chunk2mem(p);
|
|
4536 |
check_malloced_chunk(gm, mem, nb);
|
|
4537 |
goto postaction;
|
|
4538 |
}
|
|
4539 |
|
|
4540 |
else if (nb < gm->topsize) { /* Split top */
|
|
4541 |
size_t rsize = gm->topsize -= nb;
|
|
4542 |
mchunkptr p = gm->top;
|
|
4543 |
mchunkptr r = gm->top = chunk_plus_offset(p, nb);
|
|
4544 |
r->head = rsize | PINUSE_BIT;
|
|
4545 |
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
|
|
4546 |
mem = chunk2mem(p);
|
|
4547 |
check_top_chunk(gm, gm->top);
|
|
4548 |
check_malloced_chunk(gm, mem, nb);
|
|
4549 |
goto postaction;
|
|
4550 |
}
|
|
4551 |
|
|
4552 |
mem = sys_alloc(gm, nb);
|
|
4553 |
|
|
4554 |
postaction:
|
|
4555 |
POSTACTION(gm);
|
|
4556 |
return mem;
|
|
4557 |
}
|
|
4558 |
|
|
4559 |
return 0;
|
|
4560 |
}
|
|
4561 |
|
|
4562 |
void dlfree(void* mem) {
|
|
4563 |
/*
|
|
4564 |
Consolidate freed chunks with preceeding or succeeding bordering
|
|
4565 |
free chunks, if they exist, and then place in a bin. Intermixed
|
|
4566 |
with special cases for top, dv, mmapped chunks, and usage errors.
|
|
4567 |
*/
|
|
4568 |
|
|
4569 |
if (mem != 0) {
|
|
4570 |
mchunkptr p = mem2chunk(mem);
|
|
4571 |
#if FOOTERS
|
|
4572 |
mstate fm = get_mstate_for(p);
|
|
4573 |
if (!ok_magic(fm)) {
|
|
4574 |
USAGE_ERROR_ACTION(fm, p);
|
|
4575 |
return;
|
|
4576 |
}
|
|
4577 |
#else /* FOOTERS */
|
|
4578 |
#define fm gm
|
|
4579 |
#endif /* FOOTERS */
|
|
4580 |
if (!PREACTION(fm)) {
|
|
4581 |
check_inuse_chunk(fm, p);
|
|
4582 |
if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
|
|
4583 |
size_t psize = chunksize(p);
|
|
4584 |
mchunkptr next = chunk_plus_offset(p, psize);
|
|
4585 |
if (!pinuse(p)) {
|
|
4586 |
size_t prevsize = p->prev_foot;
|
|
4587 |
if ((prevsize & IS_MMAPPED_BIT) != 0) {
|
|
4588 |
prevsize &= ~IS_MMAPPED_BIT;
|
|
4589 |
psize += prevsize + MMAP_FOOT_PAD;
|
|
4590 |
if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
|
|
4591 |
fm->footprint -= psize;
|
|
4592 |
goto postaction;
|
|
4593 |
}
|
|
4594 |
else {
|
|
4595 |
mchunkptr prev = chunk_minus_offset(p, prevsize);
|
|
4596 |
psize += prevsize;
|
|
4597 |
p = prev;
|
|
4598 |
if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
|
|
4599 |
if (p != fm->dv) {
|
|
4600 |
unlink_chunk(fm, p, prevsize);
|
|
4601 |
}
|
|
4602 |
else if ((next->head & INUSE_BITS) == INUSE_BITS) {
|
|
4603 |
fm->dvsize = psize;
|
|
4604 |
set_free_with_pinuse(p, psize, next);
|
|
4605 |
goto postaction;
|
|
4606 |
}
|
|
4607 |
}
|
|
4608 |
else
|
|
4609 |
goto erroraction;
|
|
4610 |
}
|
|
4611 |
}
|
|
4612 |
|
|
4613 |
if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
|
|
4614 |
if (!cinuse(next)) { /* consolidate forward */
|
|
4615 |
if (next == fm->top) {
|
|
4616 |
size_t tsize = fm->topsize += psize;
|
|
4617 |
fm->top = p;
|
|
4618 |
p->head = tsize | PINUSE_BIT;
|
|
4619 |
if (p == fm->dv) {
|
|
4620 |
fm->dv = 0;
|
|
4621 |
fm->dvsize = 0;
|
|
4622 |
}
|
|
4623 |
if (should_trim(fm, tsize))
|
|
4624 |
sys_trim(fm, 0);
|
|
4625 |
goto postaction;
|
|
4626 |
}
|
|
4627 |
else if (next == fm->dv) {
|
|
4628 |
size_t dsize = fm->dvsize += psize;
|
|
4629 |
fm->dv = p;
|
|
4630 |
set_size_and_pinuse_of_free_chunk(p, dsize);
|
|
4631 |
goto postaction;
|
|
4632 |
}
|
|
4633 |
else {
|
|
4634 |
size_t nsize = chunksize(next);
|
|
4635 |
psize += nsize;
|
|
4636 |
unlink_chunk(fm, next, nsize);
|
|
4637 |
set_size_and_pinuse_of_free_chunk(p, psize);
|
|
4638 |
if (p == fm->dv) {
|
|
4639 |
fm->dvsize = psize;
|
|
4640 |
goto postaction;
|
|
4641 |
}
|
|
4642 |
}
|
|
4643 |
}
|
|
4644 |
else
|
|
4645 |
set_free_with_pinuse(p, psize, next);
|
|
4646 |
|
|
4647 |
if (is_small(psize)) {
|
|
4648 |
insert_small_chunk(fm, p, psize);
|
|
4649 |
check_free_chunk(fm, p);
|
|
4650 |
}
|
|
4651 |
else {
|
|
4652 |
tchunkptr tp = (tchunkptr)p;
|
|
4653 |
insert_large_chunk(fm, tp, psize);
|
|
4654 |
check_free_chunk(fm, p);
|
|
4655 |
if (--fm->release_checks == 0)
|
|
4656 |
release_unused_segments(fm);
|
|
4657 |
}
|
|
4658 |
goto postaction;
|
|
4659 |
}
|
|
4660 |
}
|
|
4661 |
erroraction:
|
|
4662 |
USAGE_ERROR_ACTION(fm, p);
|
|
4663 |
postaction:
|
|
4664 |
POSTACTION(fm);
|
|
4665 |
}
|
|
4666 |
}
|
|
4667 |
#if !FOOTERS
|
|
4668 |
#undef fm
|
|
4669 |
#endif /* FOOTERS */
|
|
4670 |
}
|
|
4671 |
|
|
4672 |
void* dlcalloc(size_t n_elements, size_t elem_size) {
|
|
4673 |
void* mem;
|
|
4674 |
size_t req = 0;
|
|
4675 |
if (n_elements != 0) {
|
|
4676 |
req = n_elements * elem_size;
|
|
4677 |
if (((n_elements | elem_size) & ~(size_t)0xffff) &&
|
|
4678 |
(req / n_elements != elem_size))
|
|
4679 |
req = MAX_SIZE_T; /* force downstream failure on overflow */
|
|
4680 |
}
|
|
4681 |
mem = dlmalloc(req);
|
|
4682 |
if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
|
|
4683 |
memset(mem, 0, req);
|
|
4684 |
return mem;
|
|
4685 |
}
|
|
4686 |
|
|
4687 |
void* dlrealloc(void* oldmem, size_t bytes) {
|
|
4688 |
if (oldmem == 0)
|
|
4689 |
return dlmalloc(bytes);
|
|
4690 |
#ifdef REALLOC_ZERO_BYTES_FREES
|
|
4691 |
if (bytes == 0) {
|
|
4692 |
dlfree(oldmem);
|
|
4693 |
return 0;
|
|
4694 |
}
|
|
4695 |
#endif /* REALLOC_ZERO_BYTES_FREES */
|
|
4696 |
else {
|
|
4697 |
#if ! FOOTERS
|
|
4698 |
mstate m = gm;
|
|
4699 |
#else /* FOOTERS */
|
|
4700 |
mstate m = get_mstate_for(mem2chunk(oldmem));
|
|
4701 |
if (!ok_magic(m)) {
|
|
4702 |
USAGE_ERROR_ACTION(m, oldmem);
|
|
4703 |
return 0;
|
|
4704 |
}
|
|
4705 |
#endif /* FOOTERS */
|
|
4706 |
return internal_realloc(m, oldmem, bytes);
|
|
4707 |
}
|
|
4708 |
}
|
|
4709 |
|
|
4710 |
void* dlmemalign(size_t alignment, size_t bytes) {
|
|
4711 |
return internal_memalign(gm, alignment, bytes);
|
|
4712 |
}
|
|
4713 |
|
|
4714 |
void** dlindependent_calloc(size_t n_elements, size_t elem_size,
|
|
4715 |
void* chunks[]) {
|
|
4716 |
size_t sz = elem_size; /* serves as 1-element array */
|
|
4717 |
return ialloc(gm, n_elements, &sz, 3, chunks);
|
|
4718 |
}
|
|
4719 |
|
|
4720 |
void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
|
|
4721 |
void* chunks[]) {
|
|
4722 |
return ialloc(gm, n_elements, sizes, 0, chunks);
|
|
4723 |
}
|
|
4724 |
|
|
4725 |
void* dlvalloc(size_t bytes) {
|
|
4726 |
size_t pagesz;
|
|
4727 |
init_mparams();
|
|
4728 |
pagesz = mparams.page_size;
|
|
4729 |
return dlmemalign(pagesz, bytes);
|
|
4730 |
}
|
|
4731 |
|
|
4732 |
void* dlpvalloc(size_t bytes) {
|
|
4733 |
size_t pagesz;
|
|
4734 |
init_mparams();
|
|
4735 |
pagesz = mparams.page_size;
|
|
4736 |
return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
|
|
4737 |
}
|
|
4738 |
|
|
4739 |
int dlmalloc_trim(size_t pad) {
|
|
4740 |
int result = 0;
|
|
4741 |
if (!PREACTION(gm)) {
|
|
4742 |
result = sys_trim(gm, pad);
|
|
4743 |
POSTACTION(gm);
|
|
4744 |
}
|
|
4745 |
return result;
|
|
4746 |
}
|
|
4747 |
|
|
4748 |
size_t dlmalloc_footprint(void) {
|
|
4749 |
return gm->footprint;
|
|
4750 |
}
|
|
4751 |
|
|
4752 |
size_t dlmalloc_max_footprint(void) {
|
|
4753 |
return gm->max_footprint;
|
|
4754 |
}
|
|
4755 |
|
|
4756 |
#if !NO_MALLINFO
|
|
4757 |
struct mallinfo dlmallinfo(void) {
|
|
4758 |
return internal_mallinfo(gm);
|
|
4759 |
}
|
|
4760 |
#endif /* NO_MALLINFO */
|
|
4761 |
|
|
4762 |
void dlmalloc_stats() {
|
|
4763 |
internal_malloc_stats(gm);
|
|
4764 |
}
|
|
4765 |
|
|
4766 |
size_t dlmalloc_usable_size(void* mem) {
|
|
4767 |
if (mem != 0) {
|
|
4768 |
mchunkptr p = mem2chunk(mem);
|
|
4769 |
if (cinuse(p))
|
|
4770 |
return chunksize(p) - overhead_for(p);
|
|
4771 |
}
|
|
4772 |
return 0;
|
|
4773 |
}
|
|
4774 |
|
|
4775 |
int dlmallopt(int param_number, int value) {
|
|
4776 |
return change_mparam(param_number, value);
|
|
4777 |
}
|
|
4778 |
|
|
4779 |
#endif /* !ONLY_MSPACES */
|
|
4780 |
|
|
4781 |
/* ----------------------------- user mspaces ---------------------------- */
|
|
4782 |
|
|
4783 |
#if MSPACES
|
|
4784 |
|
|
4785 |
static mstate init_user_mstate(char* tbase, size_t tsize) {
|
|
4786 |
size_t msize = pad_request(sizeof(struct malloc_state));
|
|
4787 |
mchunkptr mn;
|
|
4788 |
mchunkptr msp = align_as_chunk(tbase);
|
|
4789 |
mstate m = (mstate)(chunk2mem(msp));
|
|
4790 |
memset(m, 0, msize);
|
|
4791 |
INITIAL_LOCK(&m->mutex);
|
|
4792 |
msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
|
|
4793 |
m->seg.base = m->least_addr = tbase;
|
|
4794 |
m->seg.size = m->footprint = m->max_footprint = tsize;
|
|
4795 |
m->magic = mparams.magic;
|
|
4796 |
m->release_checks = MAX_RELEASE_CHECK_RATE;
|
|
4797 |
m->mflags = mparams.default_mflags;
|
|
4798 |
m->extp = 0;
|
|
4799 |
m->exts = 0;
|
|
4800 |
disable_contiguous(m);
|
|
4801 |
init_bins(m);
|
|
4802 |
mn = next_chunk(mem2chunk(m));
|
|
4803 |
init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
|
|
4804 |
check_top_chunk(m, m->top);
|
|
4805 |
return m;
|
|
4806 |
}
|
|
4807 |
|
|
4808 |
mspace create_mspace(size_t capacity, int locked) {
|
|
4809 |
mstate m = 0;
|
|
4810 |
size_t msize = pad_request(sizeof(struct malloc_state));
|
|
4811 |
init_mparams(); /* Ensure pagesize etc initialized */
|
|
4812 |
|
|
4813 |
if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
|
|
4814 |
size_t rs = ((capacity == 0)? mparams.granularity :
|
|
4815 |
(capacity + TOP_FOOT_SIZE + msize));
|
|
4816 |
size_t tsize = granularity_align(rs);
|
|
4817 |
char* tbase = (char*)(CALL_MMAP(tsize));
|
|
4818 |
if (tbase != CMFAIL) {
|
|
4819 |
m = init_user_mstate(tbase, tsize);
|
|
4820 |
m->seg.sflags = IS_MMAPPED_BIT;
|
|
4821 |
set_lock(m, locked);
|
|
4822 |
}
|
|
4823 |
}
|
|
4824 |
return (mspace)m;
|
|
4825 |
}
|
|
4826 |
|
|
4827 |
mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
|
|
4828 |
mstate m = 0;
|
|
4829 |
size_t msize = pad_request(sizeof(struct malloc_state));
|
|
4830 |
init_mparams(); /* Ensure pagesize etc initialized */
|
|
4831 |
|
|
4832 |
if (capacity > msize + TOP_FOOT_SIZE &&
|
|
4833 |
capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
|
|
4834 |
m = init_user_mstate((char*)base, capacity);
|
|
4835 |
m->seg.sflags = EXTERN_BIT;
|
|
4836 |
set_lock(m, locked);
|
|
4837 |
}
|
|
4838 |
return (mspace)m;
|
|
4839 |
}
|
|
4840 |
|
|
4841 |
size_t destroy_mspace(mspace msp) {
|
|
4842 |
size_t freed = 0;
|
|
4843 |
mstate ms = (mstate)msp;
|
|
4844 |
if (ok_magic(ms)) {
|
|
4845 |
msegmentptr sp = &ms->seg;
|
|
4846 |
while (sp != 0) {
|
|
4847 |
char* base = sp->base;
|
|
4848 |
size_t size = sp->size;
|
|
4849 |
flag_t flag = sp->sflags;
|
|
4850 |
sp = sp->next;
|
|
4851 |
if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
|
|
4852 |
CALL_MUNMAP(base, size) == 0)
|
|
4853 |
freed += size;
|
|
4854 |
}
|
|
4855 |
}
|
|
4856 |
else {
|
|
4857 |
USAGE_ERROR_ACTION(ms,ms);
|
|
4858 |
}
|
|
4859 |
return freed;
|
|
4860 |
}
|
|
4861 |
|
|
4862 |
/*
|
|
4863 |
mspace versions of routines are near-clones of the global
|
|
4864 |
versions. This is not so nice but better than the alternatives.
|
|
4865 |
*/
|
|
4866 |
|
|
4867 |
|
|
4868 |
void* mspace_malloc(mspace msp, size_t bytes) {
|
|
4869 |
mstate ms = (mstate)msp;
|
|
4870 |
if (!ok_magic(ms)) {
|
|
4871 |
USAGE_ERROR_ACTION(ms,ms);
|
|
4872 |
return 0;
|
|
4873 |
}
|
|
4874 |
if (!PREACTION(ms)) {
|
|
4875 |
void* mem;
|
|
4876 |
size_t nb;
|
|
4877 |
if (bytes <= MAX_SMALL_REQUEST) {
|
|
4878 |
bindex_t idx;
|
|
4879 |
binmap_t smallbits;
|
|
4880 |
nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
|
|
4881 |
idx = small_index(nb);
|
|
4882 |
smallbits = ms->smallmap >> idx;
|
|
4883 |
|
|
4884 |
if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
|
|
4885 |
mchunkptr b, p;
|
|
4886 |
idx += ~smallbits & 1; /* Uses next bin if idx empty */
|
|
4887 |
b = smallbin_at(ms, idx);
|
|
4888 |
p = b->fd;
|
|
4889 |
assert(chunksize(p) == small_index2size(idx));
|
|
4890 |
unlink_first_small_chunk(ms, b, p, idx);
|
|
4891 |
set_inuse_and_pinuse(ms, p, small_index2size(idx));
|
|
4892 |
mem = chunk2mem(p);
|
|
4893 |
check_malloced_chunk(ms, mem, nb);
|
|
4894 |
goto postaction;
|
|
4895 |
}
|
|
4896 |
|
|
4897 |
else if (nb > ms->dvsize) {
|
|
4898 |
if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
|
|
4899 |
mchunkptr b, p, r;
|
|
4900 |
size_t rsize;
|
|
4901 |
bindex_t i;
|
|
4902 |
binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
|
|
4903 |
binmap_t leastbit = least_bit(leftbits);
|
|
4904 |
compute_bit2idx(leastbit, i);
|
|
4905 |
b = smallbin_at(ms, i);
|
|
4906 |
p = b->fd;
|
|
4907 |
assert(chunksize(p) == small_index2size(i));
|
|
4908 |
unlink_first_small_chunk(ms, b, p, i);
|
|
4909 |
rsize = small_index2size(i) - nb;
|
|
4910 |
/* Fit here cannot be remainderless if 4byte sizes */
|
|
4911 |
if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
|
|
4912 |
set_inuse_and_pinuse(ms, p, small_index2size(i));
|
|
4913 |
else {
|
|
4914 |
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
|
|
4915 |
r = chunk_plus_offset(p, nb);
|
|
4916 |
set_size_and_pinuse_of_free_chunk(r, rsize);
|
|
4917 |
replace_dv(ms, r, rsize);
|
|
4918 |
}
|
|
4919 |
mem = chunk2mem(p);
|
|
4920 |
check_malloced_chunk(ms, mem, nb);
|
|
4921 |
goto postaction;
|
|
4922 |
}
|
|
4923 |
|
|
4924 |
else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
|
|
4925 |
check_malloced_chunk(ms, mem, nb);
|
|
4926 |
goto postaction;
|
|
4927 |
}
|
|
4928 |
}
|
|
4929 |
}
|
|
4930 |
else if (bytes >= MAX_REQUEST)
|
|
4931 |
nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
|
|
4932 |
else {
|
|
4933 |
nb = pad_request(bytes);
|
|
4934 |
if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
|
|
4935 |
check_malloced_chunk(ms, mem, nb);
|
|
4936 |
goto postaction;
|
|
4937 |
}
|
|
4938 |
}
|
|
4939 |
|
|
4940 |
if (nb <= ms->dvsize) {
|
|
4941 |
size_t rsize = ms->dvsize - nb;
|
|
4942 |
mchunkptr p = ms->dv;
|
|
4943 |
if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
|
|
4944 |
mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
|
|
4945 |
ms->dvsize = rsize;
|
|
4946 |
set_size_and_pinuse_of_free_chunk(r, rsize);
|
|
4947 |
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
|
|
4948 |
}
|
|
4949 |
else { /* exhaust dv */
|
|
4950 |
size_t dvs = ms->dvsize;
|
|
4951 |
ms->dvsize = 0;
|
|
4952 |
ms->dv = 0;
|
|
4953 |
set_inuse_and_pinuse(ms, p, dvs);
|
|
4954 |
}
|
|
4955 |
mem = chunk2mem(p);
|
|
4956 |
check_malloced_chunk(ms, mem, nb);
|
|
4957 |
goto postaction;
|
|
4958 |
}
|
|
4959 |
|
|
4960 |
else if (nb < ms->topsize) { /* Split top */
|
|
4961 |
size_t rsize = ms->topsize -= nb;
|
|
4962 |
mchunkptr p = ms->top;
|
|
4963 |
mchunkptr r = ms->top = chunk_plus_offset(p, nb);
|
|
4964 |
r->head = rsize | PINUSE_BIT;
|
|
4965 |
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
|
|
4966 |
mem = chunk2mem(p);
|
|
4967 |
check_top_chunk(ms, ms->top);
|
|
4968 |
check_malloced_chunk(ms, mem, nb);
|
|
4969 |
goto postaction;
|
|
4970 |
}
|
|
4971 |
|
|
4972 |
mem = sys_alloc(ms, nb);
|
|
4973 |
|
|
4974 |
postaction:
|
|
4975 |
POSTACTION(ms);
|
|
4976 |
return mem;
|
|
4977 |
}
|
|
4978 |
|
|
4979 |
return 0;
|
|
4980 |
}
|
|
4981 |
|
|
4982 |
void mspace_free(mspace msp, void* mem) {
|
|
4983 |
if (mem != 0) {
|
|
4984 |
mchunkptr p = mem2chunk(mem);
|
|
4985 |
#if FOOTERS
|
|
4986 |
mstate fm = get_mstate_for(p);
|
|
4987 |
#else /* FOOTERS */
|
|
4988 |
mstate fm = (mstate)msp;
|
|
4989 |
#endif /* FOOTERS */
|
|
4990 |
if (!ok_magic(fm)) {
|
|
4991 |
USAGE_ERROR_ACTION(fm, p);
|
|
4992 |
return;
|
|
4993 |
}
|
|
4994 |
if (!PREACTION(fm)) {
|
|
4995 |
check_inuse_chunk(fm, p);
|
|
4996 |
if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
|
|
4997 |
size_t psize = chunksize(p);
|
|
4998 |
mchunkptr next = chunk_plus_offset(p, psize);
|
|
4999 |
if (!pinuse(p)) {
|
|
5000 |
size_t prevsize = p->prev_foot;
|
|
5001 |
if ((prevsize & IS_MMAPPED_BIT) != 0) {
|
|
5002 |
prevsize &= ~IS_MMAPPED_BIT;
|
|
5003 |
psize += prevsize + MMAP_FOOT_PAD;
|
|
5004 |
if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
|
|
5005 |
fm->footprint -= psize;
|
|
5006 |
goto postaction;
|
|
5007 |
}
|
|
5008 |
else {
|
|
5009 |
mchunkptr prev = chunk_minus_offset(p, prevsize);
|
|
5010 |
psize += prevsize;
|
|
5011 |
p = prev;
|
|
5012 |
if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
|
|
5013 |
if (p != fm->dv) {
|
|
5014 |
unlink_chunk(fm, p, prevsize);
|
|
5015 |
}
|
|
5016 |
else if ((next->head & INUSE_BITS) == INUSE_BITS) {
|
|
5017 |
fm->dvsize = psize;
|
|
5018 |
set_free_with_pinuse(p, psize, next);
|
|
5019 |
goto postaction;
|
|
5020 |
}
|
|
5021 |
}
|
|
5022 |
else
|
|
5023 |
goto erroraction;
|
|
5024 |
}
|
|
5025 |
}
|
|
5026 |
|
|
5027 |
if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
|
|
5028 |
if (!cinuse(next)) { /* consolidate forward */
|
|
5029 |
if (next == fm->top) {
|
|
5030 |
size_t tsize = fm->topsize += psize;
|
|
5031 |
fm->top = p;
|
|
5032 |
p->head = tsize | PINUSE_BIT;
|
|
5033 |
if (p == fm->dv) {
|
|
5034 |
fm->dv = 0;
|
|
5035 |
fm->dvsize = 0;
|
|
5036 |
}
|
|
5037 |
if (should_trim(fm, tsize))
|
|
5038 |
sys_trim(fm, 0);
|
|
5039 |
goto postaction;
|
|
5040 |
}
|
|
5041 |
else if (next == fm->dv) {
|
|
5042 |
size_t dsize = fm->dvsize += psize;
|
|
5043 |
fm->dv = p;
|
|
5044 |
set_size_and_pinuse_of_free_chunk(p, dsize);
|
|
5045 |
goto postaction;
|
|
5046 |
}
|
|
5047 |
else {
|
|
5048 |
size_t nsize = chunksize(next);
|
|
5049 |
psize += nsize;
|
|
5050 |
unlink_chunk(fm, next, nsize);
|
|
5051 |
set_size_and_pinuse_of_free_chunk(p, psize);
|
|
5052 |
if (p == fm->dv) {
|
|
5053 |
fm->dvsize = psize;
|
|
5054 |
goto postaction;
|
|
5055 |
}
|
|
5056 |
}
|
|
5057 |
}
|
|
5058 |
else
|
|
5059 |
set_free_with_pinuse(p, psize, next);
|
|
5060 |
|
|
5061 |
if (is_small(psize)) {
|
|
5062 |
insert_small_chunk(fm, p, psize);
|
|
5063 |
check_free_chunk(fm, p);
|
|
5064 |
}
|
|
5065 |
else {
|
|
5066 |
tchunkptr tp = (tchunkptr)p;
|
|
5067 |
insert_large_chunk(fm, tp, psize);
|
|
5068 |
check_free_chunk(fm, p);
|
|
5069 |
if (--fm->release_checks == 0)
|
|
5070 |
release_unused_segments(fm);
|
|
5071 |
}
|
|
5072 |
goto postaction;
|
|
5073 |
}
|
|
5074 |
}
|
|
5075 |
erroraction:
|
|
5076 |
USAGE_ERROR_ACTION(fm, p);
|
|
5077 |
postaction:
|
|
5078 |
POSTACTION(fm);
|
|
5079 |
}
|
|
5080 |
}
|
|
5081 |
}
|
|
5082 |
|
|
5083 |
void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
|
|
5084 |
void* mem;
|
|
5085 |
size_t req = 0;
|
|
5086 |
mstate ms = (mstate)msp;
|
|
5087 |
if (!ok_magic(ms)) {
|
|
5088 |
USAGE_ERROR_ACTION(ms,ms);
|
|
5089 |
return 0;
|
|
5090 |
}
|
|
5091 |
if (n_elements != 0) {
|
|
5092 |
req = n_elements * elem_size;
|
|
5093 |
if (((n_elements | elem_size) & ~(size_t)0xffff) &&
|
|
5094 |
(req / n_elements != elem_size))
|
|
5095 |
req = MAX_SIZE_T; /* force downstream failure on overflow */
|
|
5096 |
}
|
|
5097 |
mem = internal_malloc(ms, req);
|
|
5098 |
if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
|
|
5099 |
memset(mem, 0, req);
|
|
5100 |
return mem;
|
|
5101 |
}
|
|
5102 |
|
|
5103 |
void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
|
|
5104 |
if (oldmem == 0)
|
|
5105 |
return mspace_malloc(msp, bytes);
|
|
5106 |
#ifdef REALLOC_ZERO_BYTES_FREES
|
|
5107 |
if (bytes == 0) {
|
|
5108 |
mspace_free(msp, oldmem);
|
|
5109 |
return 0;
|
|
5110 |
}
|
|
5111 |
#endif /* REALLOC_ZERO_BYTES_FREES */
|
|
5112 |
else {
|
|
5113 |
#if FOOTERS
|
|
5114 |
mchunkptr p = mem2chunk(oldmem);
|
|
5115 |
mstate ms = get_mstate_for(p);
|
|
5116 |
#else /* FOOTERS */
|
|
5117 |
mstate ms = (mstate)msp;
|
|
5118 |
#endif /* FOOTERS */
|
|
5119 |
if (!ok_magic(ms)) {
|
|
5120 |
USAGE_ERROR_ACTION(ms,ms);
|
|
5121 |
return 0;
|
|
5122 |
}
|
|
5123 |
return internal_realloc(ms, oldmem, bytes);
|
|
5124 |
}
|
|
5125 |
}
|
|
5126 |
|
|
5127 |
void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
|
|
5128 |
mstate ms = (mstate)msp;
|
|
5129 |
if (!ok_magic(ms)) {
|
|
5130 |
USAGE_ERROR_ACTION(ms,ms);
|
|
5131 |
return 0;
|
|
5132 |
}
|
|
5133 |
return internal_memalign(ms, alignment, bytes);
|
|
5134 |
}
|
|
5135 |
|
|
5136 |
void** mspace_independent_calloc(mspace msp, size_t n_elements,
|
|
5137 |
size_t elem_size, void* chunks[]) {
|
|
5138 |
size_t sz = elem_size; /* serves as 1-element array */
|
|
5139 |
mstate ms = (mstate)msp;
|
|
5140 |
if (!ok_magic(ms)) {
|
|
5141 |
USAGE_ERROR_ACTION(ms,ms);
|
|
5142 |
return 0;
|
|
5143 |
}
|
|
5144 |
return ialloc(ms, n_elements, &sz, 3, chunks);
|
|
5145 |
}
|
|
5146 |
|
|
5147 |
void** mspace_independent_comalloc(mspace msp, size_t n_elements,
|
|
5148 |
size_t sizes[], void* chunks[]) {
|
|
5149 |
mstate ms = (mstate)msp;
|
|
5150 |
if (!ok_magic(ms)) {
|
|
5151 |
USAGE_ERROR_ACTION(ms,ms);
|
|
5152 |
return 0;
|
|
5153 |
}
|
|
5154 |
return ialloc(ms, n_elements, sizes, 0, chunks);
|
|
5155 |
}
|
|
5156 |
|
|
5157 |
int mspace_trim(mspace msp, size_t pad) {
|
|
5158 |
int result = 0;
|
|
5159 |
mstate ms = (mstate)msp;
|
|
5160 |
if (ok_magic(ms)) {
|
|
5161 |
if (!PREACTION(ms)) {
|
|
5162 |
result = sys_trim(ms, pad);
|
|
5163 |
POSTACTION(ms);
|
|
5164 |
}
|
|
5165 |
}
|
|
5166 |
else {
|
|
5167 |
USAGE_ERROR_ACTION(ms,ms);
|
|
5168 |
}
|
|
5169 |
return result;
|
|
5170 |
}
|
|
5171 |
|
|
5172 |
void mspace_malloc_stats(mspace msp) {
|
|
5173 |
mstate ms = (mstate)msp;
|
|
5174 |
if (ok_magic(ms)) {
|
|
5175 |
internal_malloc_stats(ms);
|
|
5176 |
}
|
|
5177 |
else {
|
|
5178 |
USAGE_ERROR_ACTION(ms,ms);
|
|
5179 |
}
|
|
5180 |
}
|
|
5181 |
|
|
5182 |
size_t mspace_footprint(mspace msp) {
|
|
5183 |
size_t result = 0;
|
|
5184 |
mstate ms = (mstate)msp;
|
|
5185 |
if (ok_magic(ms)) {
|
|
5186 |
result = ms->footprint;
|
|
5187 |
}
|
|
5188 |
else {
|
|
5189 |
USAGE_ERROR_ACTION(ms,ms);
|
|
5190 |
}
|
|
5191 |
return result;
|
|
5192 |
}
|
|
5193 |
|
|
5194 |
|
|
5195 |
size_t mspace_max_footprint(mspace msp) {
|
|
5196 |
size_t result = 0;
|
|
5197 |
mstate ms = (mstate)msp;
|
|
5198 |
if (ok_magic(ms)) {
|
|
5199 |
result = ms->max_footprint;
|
|
5200 |
}
|
|
5201 |
else {
|
|
5202 |
USAGE_ERROR_ACTION(ms,ms);
|
|
5203 |
}
|
|
5204 |
return result;
|
|
5205 |
}
|
|
5206 |
|
|
5207 |
|
|
5208 |
#if !NO_MALLINFO
|
|
5209 |
struct mallinfo mspace_mallinfo(mspace msp) {
|
|
5210 |
mstate ms = (mstate)msp;
|
|
5211 |
if (!ok_magic(ms)) {
|
|
5212 |
USAGE_ERROR_ACTION(ms,ms);
|
|
5213 |
}
|
|
5214 |
return internal_mallinfo(ms);
|
|
5215 |
}
|
|
5216 |
#endif /* NO_MALLINFO */
|
|
5217 |
|
|
5218 |
size_t mspace_usable_size(void* mem) {
|
|
5219 |
if (mem != 0) {
|
|
5220 |
mchunkptr p = mem2chunk(mem);
|
|
5221 |
if (cinuse(p))
|
|
5222 |
return chunksize(p) - overhead_for(p);
|
|
5223 |
}
|
|
5224 |
return 0;
|
|
5225 |
}
|
|
5226 |
|
|
5227 |
int mspace_mallopt(int param_number, int value) {
|
|
5228 |
return change_mparam(param_number, value);
|
|
5229 |
}
|
|
5230 |
|
|
5231 |
#endif /* MSPACES */
|
|
5232 |
|
|
5233 |
/* -------------------- Alternative MORECORE functions ------------------- */
|
|
5234 |
|
|
5235 |
/*
|
|
5236 |
Guidelines for creating a custom version of MORECORE:
|
|
5237 |
|
|
5238 |
* For best performance, MORECORE should allocate in multiples of pagesize.
|
|
5239 |
* MORECORE may allocate more memory than requested. (Or even less,
|
|
5240 |
but this will usually result in a malloc failure.)
|
|
5241 |
* MORECORE must not allocate memory when given argument zero, but
|
|
5242 |
instead return one past the end address of memory from previous
|
|
5243 |
nonzero call.
|
|
5244 |
* For best performance, consecutive calls to MORECORE with positive
|
|
5245 |
arguments should return increasing addresses, indicating that
|
|
5246 |
space has been contiguously extended.
|
|
5247 |
* Even though consecutive calls to MORECORE need not return contiguous
|
|
5248 |
addresses, it must be OK for malloc'ed chunks to span multiple
|
|
5249 |
regions in those cases where they do happen to be contiguous.
|
|
5250 |
* MORECORE need not handle negative arguments -- it may instead
|
|
5251 |
just return MFAIL when given negative arguments.
|
|
5252 |
Negative arguments are always multiples of pagesize. MORECORE
|
|
5253 |
must not misinterpret negative args as large positive unsigned
|
|
5254 |
args. You can suppress all such calls from even occurring by defining
|
|
5255 |
MORECORE_CANNOT_TRIM,
|
|
5256 |
|
|
5257 |
As an example alternative MORECORE, here is a custom allocator
|
|
5258 |
kindly contributed for pre-OSX macOS. It uses virtually but not
|
|
5259 |
necessarily physically contiguous non-paged memory (locked in,
|
|
5260 |
present and won't get swapped out). You can use it by uncommenting
|
|
5261 |
this section, adding some #includes, and setting up the appropriate
|
|
5262 |
defines above:
|
|
5263 |
|
|
5264 |
#define MORECORE osMoreCore
|
|
5265 |
|
|
5266 |
There is also a shutdown routine that should somehow be called for
|
|
5267 |
cleanup upon program exit.
|
|
5268 |
|
|
5269 |
#define MAX_POOL_ENTRIES 100
|
|
5270 |
#define MINIMUM_MORECORE_SIZE (64 * 1024U)
|
|
5271 |
static int next_os_pool;
|
|
5272 |
void *our_os_pools[MAX_POOL_ENTRIES];
|
|
5273 |
|
|
5274 |
void *osMoreCore(int size)
|
|
5275 |
{
|
|
5276 |
void *ptr = 0;
|
|
5277 |
static void *sbrk_top = 0;
|
|
5278 |
|
|
5279 |
if (size > 0)
|
|
5280 |
{
|
|
5281 |
if (size < MINIMUM_MORECORE_SIZE)
|
|
5282 |
size = MINIMUM_MORECORE_SIZE;
|
|
5283 |
if (CurrentExecutionLevel() == kTaskLevel)
|
|
5284 |
ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
|
|
5285 |
if (ptr == 0)
|
|
5286 |
{
|
|
5287 |
return (void *) MFAIL;
|
|
5288 |
}
|
|
5289 |
// save ptrs so they can be freed during cleanup
|
|
5290 |
our_os_pools[next_os_pool] = ptr;
|
|
5291 |
next_os_pool++;
|
|
5292 |
ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
|
|
5293 |
sbrk_top = (char *) ptr + size;
|
|
5294 |
return ptr;
|
|
5295 |
}
|
|
5296 |
else if (size < 0)
|
|
5297 |
{
|
|
5298 |
// we don't currently support shrink behavior
|
|
5299 |
return (void *) MFAIL;
|
|
5300 |
}
|
|
5301 |
else
|
|
5302 |
{
|
|
5303 |
return sbrk_top;
|
|
5304 |
}
|
|
5305 |
}
|
|
5306 |
|
|
5307 |
// cleanup any allocated memory pools
|
|
5308 |
// called as last thing before shutting down driver
|
|
5309 |
|
|
5310 |
void osCleanupMem(void)
|
|
5311 |
{
|
|
5312 |
void **ptr;
|
|
5313 |
|
|
5314 |
for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
|
|
5315 |
if (*ptr)
|
|
5316 |
{
|
|
5317 |
PoolDeallocate(*ptr);
|
|
5318 |
*ptr = 0;
|
|
5319 |
}
|
|
5320 |
}
|
|
5321 |
|
|
5322 |
*/
|
|
5323 |
|
|
5324 |
|
|
5325 |
/* -----------------------------------------------------------------------
|
|
5326 |
History:
|
|
5327 |
V2.8.4 (not yet released)
|
|
5328 |
* Fix bad error check in mspace_footprint
|
|
5329 |
* Adaptations for ptmalloc, courtesy of Wolfram Gloger.
|
|
5330 |
* Reentrant spin locks, courtesy of Earl Chew and others
|
|
5331 |
* Win32 improvements, courtesy of Niall Douglas and Earl Chew
|
|
5332 |
* Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
|
|
5333 |
* Various small adjustments to reduce warnings on some compilers
|
|
5334 |
* Extension hook in malloc_state
|
|
5335 |
|
|
5336 |
V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
|
|
5337 |
* Add max_footprint functions
|
|
5338 |
* Ensure all appropriate literals are size_t
|
|
5339 |
* Fix conditional compilation problem for some #define settings
|
|
5340 |
* Avoid concatenating segments with the one provided
|
|
5341 |
in create_mspace_with_base
|
|
5342 |
* Rename some variables to avoid compiler shadowing warnings
|
|
5343 |
* Use explicit lock initialization.
|
|
5344 |
* Better handling of sbrk interference.
|
|
5345 |
* Simplify and fix segment insertion, trimming and mspace_destroy
|
|
5346 |
* Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
|
|
5347 |
* Thanks especially to Dennis Flanagan for help on these.
|
|
5348 |
|
|
5349 |
V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
|
|
5350 |
* Fix memalign brace error.
|
|
5351 |
|
|
5352 |
V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
|
|
5353 |
* Fix improper #endif nesting in C++
|
|
5354 |
* Add explicit casts needed for C++
|
|
5355 |
|
|
5356 |
V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
|
|
5357 |
* Use trees for large bins
|
|
5358 |
* Support mspaces
|
|
5359 |
* Use segments to unify sbrk-based and mmap-based system allocation,
|
|
5360 |
removing need for emulation on most platforms without sbrk.
|
|
5361 |
* Default safety checks
|
|
5362 |
* Optional footer checks. Thanks to William Robertson for the idea.
|
|
5363 |
* Internal code refactoring
|
|
5364 |
* Incorporate suggestions and platform-specific changes.
|
|
5365 |
Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
|
|
5366 |
Aaron Bachmann, Emery Berger, and others.
|
|
5367 |
* Speed up non-fastbin processing enough to remove fastbins.
|
|
5368 |
* Remove useless cfree() to avoid conflicts with other apps.
|
|
5369 |
* Remove internal memcpy, memset. Compilers handle builtins better.
|
|
5370 |
* Remove some options that no one ever used and rename others.
|
|
5371 |
|
|
5372 |
V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
|
|
5373 |
* Fix malloc_state bitmap array misdeclaration
|
|
5374 |
|
|
5375 |
V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
|
|
5376 |
* Allow tuning of FIRST_SORTED_BIN_SIZE
|
|
5377 |
* Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
|
|
5378 |
* Better detection and support for non-contiguousness of MORECORE.
|
|
5379 |
Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
|
|
5380 |
* Bypass most of malloc if no frees. Thanks To Emery Berger.
|
|
5381 |
* Fix freeing of old top non-contiguous chunk im sysmalloc.
|
|
5382 |
* Raised default trim and map thresholds to 256K.
|
|
5383 |
* Fix mmap-related #defines. Thanks to Lubos Lunak.
|
|
5384 |
* Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
|
|
5385 |
* Branch-free bin calculation
|
|
5386 |
* Default trim and mmap thresholds now 256K.
|
|
5387 |
|
|
5388 |
V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
|
|
5389 |
* Introduce independent_comalloc and independent_calloc.
|
|
5390 |
Thanks to Michael Pachos for motivation and help.
|
|
5391 |
* Make optional .h file available
|
|
5392 |
* Allow > 2GB requests on 32bit systems.
|
|
5393 |
* new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
|
|
5394 |
Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
|
|
5395 |
and Anonymous.
|
|
5396 |
* Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
|
|
5397 |
helping test this.)
|
|
5398 |
* memalign: check alignment arg
|
|
5399 |
* realloc: don't try to shift chunks backwards, since this
|
|
5400 |
leads to more fragmentation in some programs and doesn't
|
|
5401 |
seem to help in any others.
|
|
5402 |
* Collect all cases in malloc requiring system memory into sysmalloc
|
|
5403 |
* Use mmap as backup to sbrk
|
|
5404 |
* Place all internal state in malloc_state
|
|
5405 |
* Introduce fastbins (although similar to 2.5.1)
|
|
5406 |
* Many minor tunings and cosmetic improvements
|
|
5407 |
* Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
|
|
5408 |
* Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
|
|
5409 |
Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
|
|
5410 |
* Include errno.h to support default failure action.
|
|
5411 |
|
|
5412 |
V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
|
|
5413 |
* return null for negative arguments
|
|
5414 |
* Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
|
|
5415 |
* Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
|
|
5416 |
(e.g. WIN32 platforms)
|
|
5417 |
* Cleanup header file inclusion for WIN32 platforms
|
|
5418 |
* Cleanup code to avoid Microsoft Visual C++ compiler complaints
|
|
5419 |
* Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
|
|
5420 |
memory allocation routines
|
|
5421 |
* Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
|
|
5422 |
* Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
|
|
5423 |
usage of 'assert' in non-WIN32 code
|
|
5424 |
* Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
|
|
5425 |
avoid infinite loop
|
|
5426 |
* Always call 'fREe()' rather than 'free()'
|
|
5427 |
|
|
5428 |
V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
|
|
5429 |
* Fixed ordering problem with boundary-stamping
|
|
5430 |
|
|
5431 |
V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
|
|
5432 |
* Added pvalloc, as recommended by H.J. Liu
|
|
5433 |
* Added 64bit pointer support mainly from Wolfram Gloger
|
|
5434 |
* Added anonymously donated WIN32 sbrk emulation
|
|
5435 |
* Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
|
|
5436 |
* malloc_extend_top: fix mask error that caused wastage after
|
|
5437 |
foreign sbrks
|
|
5438 |
* Add linux mremap support code from HJ Liu
|
|
5439 |
|
|
5440 |
V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
|
|
5441 |
* Integrated most documentation with the code.
|
|
5442 |
* Add support for mmap, with help from
|
|
5443 |
Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
|
|
5444 |
* Use last_remainder in more cases.
|
|
5445 |
* Pack bins using idea from colin@nyx10.cs.du.edu
|
|
5446 |
* Use ordered bins instead of best-fit threshhold
|
|
5447 |
* Eliminate block-local decls to simplify tracing and debugging.
|
|
5448 |
* Support another case of realloc via move into top
|
|
5449 |
* Fix error occuring when initial sbrk_base not word-aligned.
|
|
5450 |
* Rely on page size for units instead of SBRK_UNIT to
|
|
5451 |
avoid surprises about sbrk alignment conventions.
|
|
5452 |
* Add mallinfo, mallopt. Thanks to Raymond Nijssen
|
|
5453 |
(raymond@es.ele.tue.nl) for the suggestion.
|
|
5454 |
* Add `pad' argument to malloc_trim and top_pad mallopt parameter.
|
|
5455 |
* More precautions for cases where other routines call sbrk,
|
|
5456 |
courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
|
|
5457 |
* Added macros etc., allowing use in linux libc from
|
|
5458 |
H.J. Lu (hjl@gnu.ai.mit.edu)
|
|
5459 |
* Inverted this history list
|
|
5460 |
|
|
5461 |
V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
|
|
5462 |
* Re-tuned and fixed to behave more nicely with V2.6.0 changes.
|
|
5463 |
* Removed all preallocation code since under current scheme
|
|
5464 |
the work required to undo bad preallocations exceeds
|
|
5465 |
the work saved in good cases for most test programs.
|
|
5466 |
* No longer use return list or unconsolidated bins since
|
|
5467 |
no scheme using them consistently outperforms those that don't
|
|
5468 |
given above changes.
|
|
5469 |
* Use best fit for very large chunks to prevent some worst-cases.
|
|
5470 |
* Added some support for debugging
|
|
5471 |
|
|
5472 |
V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
|
|
5473 |
* Removed footers when chunks are in use. Thanks to
|
|
5474 |
Paul Wilson (wilson@cs.texas.edu) for the suggestion.
|
|
5475 |
|
|
5476 |
V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
|
|
5477 |
* Added malloc_trim, with help from Wolfram Gloger
|
|
5478 |
(wmglo@Dent.MED.Uni-Muenchen.DE).
|
|
5479 |
|
|
5480 |
V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
|
|
5481 |
|
|
5482 |
V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
|
|
5483 |
* realloc: try to expand in both directions
|
|
5484 |
* malloc: swap order of clean-bin strategy;
|
|
5485 |
* realloc: only conditionally expand backwards
|
|
5486 |
* Try not to scavenge used bins
|
|
5487 |
* Use bin counts as a guide to preallocation
|
|
5488 |
* Occasionally bin return list chunks in first scan
|
|
5489 |
* Add a few optimizations from colin@nyx10.cs.du.edu
|
|
5490 |
|
|
5491 |
V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
|
|
5492 |
* faster bin computation & slightly different binning
|
|
5493 |
* merged all consolidations to one part of malloc proper
|
|
5494 |
(eliminating old malloc_find_space & malloc_clean_bin)
|
|
5495 |
* Scan 2 returns chunks (not just 1)
|
|
5496 |
* Propagate failure in realloc if malloc returns 0
|
|
5497 |
* Add stuff to allow compilation on non-ANSI compilers
|
|
5498 |
from kpv@research.att.com
|
|
5499 |
|
|
5500 |
V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
|
|
5501 |
* removed potential for odd address access in prev_chunk
|
|
5502 |
* removed dependency on getpagesize.h
|
|
5503 |
* misc cosmetics and a bit more internal documentation
|
|
5504 |
* anticosmetics: mangled names in macros to evade debugger strangeness
|
|
5505 |
* tested on sparc, hp-700, dec-mips, rs6000
|
|
5506 |
with gcc & native cc (hp, dec only) allowing
|
|
5507 |
Detlefs & Zorn comparison study (in SIGPLAN Notices.)
|
|
5508 |
|
|
5509 |
Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
|
|
5510 |
* Based loosely on libg++-1.2X malloc. (It retains some of the overall
|
|
5511 |
structure of old version, but most details differ.)
|
|
5512 |
|
|
5513 |
*/
|
|
5514 |
|
|
5515 |
|