0
|
1 |
/* adler32.c -- compute the Adler-32 checksum of a data stream
|
|
2 |
* Copyright (C) 1995-2004 Mark Adler
|
|
3 |
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
4 |
*/
|
|
5 |
|
|
6 |
/* @(#) $Id$ */
|
|
7 |
|
|
8 |
#define ZLIB_INTERNAL
|
|
9 |
#include "zlib.h"
|
|
10 |
|
|
11 |
#define BASE 65521UL /* largest prime smaller than 65536 */
|
|
12 |
#define NMAX 5552
|
|
13 |
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
|
|
14 |
|
|
15 |
#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
|
|
16 |
#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
|
|
17 |
#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
|
|
18 |
#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
|
|
19 |
#define DO16(buf) DO8(buf,0); DO8(buf,8);
|
|
20 |
|
|
21 |
/* use NO_DIVIDE if your processor does not do division in hardware */
|
|
22 |
#ifdef NO_DIVIDE
|
|
23 |
# define MOD(a) \
|
|
24 |
do { \
|
|
25 |
if (a >= (BASE << 16)) a -= (BASE << 16); \
|
|
26 |
if (a >= (BASE << 15)) a -= (BASE << 15); \
|
|
27 |
if (a >= (BASE << 14)) a -= (BASE << 14); \
|
|
28 |
if (a >= (BASE << 13)) a -= (BASE << 13); \
|
|
29 |
if (a >= (BASE << 12)) a -= (BASE << 12); \
|
|
30 |
if (a >= (BASE << 11)) a -= (BASE << 11); \
|
|
31 |
if (a >= (BASE << 10)) a -= (BASE << 10); \
|
|
32 |
if (a >= (BASE << 9)) a -= (BASE << 9); \
|
|
33 |
if (a >= (BASE << 8)) a -= (BASE << 8); \
|
|
34 |
if (a >= (BASE << 7)) a -= (BASE << 7); \
|
|
35 |
if (a >= (BASE << 6)) a -= (BASE << 6); \
|
|
36 |
if (a >= (BASE << 5)) a -= (BASE << 5); \
|
|
37 |
if (a >= (BASE << 4)) a -= (BASE << 4); \
|
|
38 |
if (a >= (BASE << 3)) a -= (BASE << 3); \
|
|
39 |
if (a >= (BASE << 2)) a -= (BASE << 2); \
|
|
40 |
if (a >= (BASE << 1)) a -= (BASE << 1); \
|
|
41 |
if (a >= BASE) a -= BASE; \
|
|
42 |
} while (0)
|
|
43 |
# define MOD4(a) \
|
|
44 |
do { \
|
|
45 |
if (a >= (BASE << 4)) a -= (BASE << 4); \
|
|
46 |
if (a >= (BASE << 3)) a -= (BASE << 3); \
|
|
47 |
if (a >= (BASE << 2)) a -= (BASE << 2); \
|
|
48 |
if (a >= (BASE << 1)) a -= (BASE << 1); \
|
|
49 |
if (a >= BASE) a -= BASE; \
|
|
50 |
} while (0)
|
|
51 |
#else
|
|
52 |
# define MOD(a) a %= BASE
|
|
53 |
# define MOD4(a) a %= BASE
|
|
54 |
#endif
|
|
55 |
|
|
56 |
/* ========================================================================= */
|
|
57 |
uLong ZEXPORT adler32(adler, buf, len)
|
|
58 |
uLong adler;
|
|
59 |
const Bytef *buf;
|
|
60 |
uInt len;
|
|
61 |
{
|
|
62 |
unsigned long sum2;
|
|
63 |
unsigned n;
|
|
64 |
|
|
65 |
/* split Adler-32 into component sums */
|
|
66 |
sum2 = (adler >> 16) & 0xffff;
|
|
67 |
adler &= 0xffff;
|
|
68 |
|
|
69 |
/* in case user likes doing a byte at a time, keep it fast */
|
|
70 |
if (len == 1) {
|
|
71 |
adler += buf[0];
|
|
72 |
if (adler >= BASE)
|
|
73 |
adler -= BASE;
|
|
74 |
sum2 += adler;
|
|
75 |
if (sum2 >= BASE)
|
|
76 |
sum2 -= BASE;
|
|
77 |
return adler | (sum2 << 16);
|
|
78 |
}
|
|
79 |
|
|
80 |
/* initial Adler-32 value (deferred check for len == 1 speed) */
|
|
81 |
if (buf == Z_NULL)
|
|
82 |
return 1L;
|
|
83 |
|
|
84 |
/* in case short lengths are provided, keep it somewhat fast */
|
|
85 |
if (len < 16) {
|
|
86 |
while (len--) {
|
|
87 |
adler += *buf++;
|
|
88 |
sum2 += adler;
|
|
89 |
}
|
|
90 |
if (adler >= BASE)
|
|
91 |
adler -= BASE;
|
|
92 |
MOD4(sum2); /* only added so many BASE's */
|
|
93 |
return adler | (sum2 << 16);
|
|
94 |
}
|
|
95 |
|
|
96 |
/* do length NMAX blocks -- requires just one modulo operation */
|
|
97 |
while (len >= NMAX) {
|
|
98 |
len -= NMAX;
|
|
99 |
n = NMAX / 16; /* NMAX is divisible by 16 */
|
|
100 |
do {
|
|
101 |
DO16(buf); /* 16 sums unrolled */
|
|
102 |
buf += 16;
|
|
103 |
} while (--n);
|
|
104 |
MOD(adler);
|
|
105 |
MOD(sum2);
|
|
106 |
}
|
|
107 |
|
|
108 |
/* do remaining bytes (less than NMAX, still just one modulo) */
|
|
109 |
if (len) { /* avoid modulos if none remaining */
|
|
110 |
while (len >= 16) {
|
|
111 |
len -= 16;
|
|
112 |
DO16(buf);
|
|
113 |
buf += 16;
|
|
114 |
}
|
|
115 |
while (len--) {
|
|
116 |
adler += *buf++;
|
|
117 |
sum2 += adler;
|
|
118 |
}
|
|
119 |
MOD(adler);
|
|
120 |
MOD(sum2);
|
|
121 |
}
|
|
122 |
|
|
123 |
/* return recombined sums */
|
|
124 |
return adler | (sum2 << 16);
|
|
125 |
}
|
|
126 |
|
|
127 |
/* ========================================================================= */
|
|
128 |
uLong ZEXPORT adler32_combine(adler1, adler2, len2)
|
|
129 |
uLong adler1;
|
|
130 |
uLong adler2;
|
|
131 |
z_off_t len2;
|
|
132 |
{
|
|
133 |
unsigned long sum1;
|
|
134 |
unsigned long sum2;
|
|
135 |
unsigned rem;
|
|
136 |
|
|
137 |
/* the derivation of this formula is left as an exercise for the reader */
|
|
138 |
rem = (unsigned)(len2 % BASE);
|
|
139 |
sum1 = adler1 & 0xffff;
|
|
140 |
sum2 = rem * sum1;
|
|
141 |
MOD(sum2);
|
|
142 |
sum1 += (adler2 & 0xffff) + BASE - 1;
|
|
143 |
sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
|
|
144 |
if (sum1 > BASE) sum1 -= BASE;
|
|
145 |
if (sum1 > BASE) sum1 -= BASE;
|
|
146 |
if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
|
|
147 |
if (sum2 > BASE) sum2 -= BASE;
|
|
148 |
return sum1 | (sum2 << 16);
|
|
149 |
}
|