0
|
1 |
/****************************************************************************
|
|
2 |
**
|
|
3 |
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
4 |
** All rights reserved.
|
|
5 |
** Contact: Nokia Corporation (qt-info@nokia.com)
|
|
6 |
**
|
|
7 |
** This file is part of the QtGui module of the Qt Toolkit.
|
|
8 |
**
|
|
9 |
** $QT_BEGIN_LICENSE:LGPL$
|
|
10 |
** No Commercial Usage
|
|
11 |
** This file contains pre-release code and may not be distributed.
|
|
12 |
** You may use this file in accordance with the terms and conditions
|
|
13 |
** contained in the Technology Preview License Agreement accompanying
|
|
14 |
** this package.
|
|
15 |
**
|
|
16 |
** GNU Lesser General Public License Usage
|
|
17 |
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
18 |
** General Public License version 2.1 as published by the Free Software
|
|
19 |
** Foundation and appearing in the file LICENSE.LGPL included in the
|
|
20 |
** packaging of this file. Please review the following information to
|
|
21 |
** ensure the GNU Lesser General Public License version 2.1 requirements
|
|
22 |
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
23 |
**
|
|
24 |
** In addition, as a special exception, Nokia gives you certain additional
|
|
25 |
** rights. These rights are described in the Nokia Qt LGPL Exception
|
|
26 |
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
27 |
**
|
|
28 |
** If you have questions regarding the use of this file, please contact
|
|
29 |
** Nokia at qt-info@nokia.com.
|
|
30 |
**
|
|
31 |
**
|
|
32 |
**
|
|
33 |
**
|
|
34 |
**
|
|
35 |
**
|
|
36 |
**
|
|
37 |
**
|
|
38 |
** $QT_END_LICENSE$
|
|
39 |
**
|
|
40 |
****************************************************************************/
|
|
41 |
|
|
42 |
#include "qquaternion.h"
|
|
43 |
#include <QtCore/qmath.h>
|
|
44 |
#include <QtCore/qvariant.h>
|
|
45 |
#include <QtCore/qdebug.h>
|
|
46 |
|
|
47 |
QT_BEGIN_NAMESPACE
|
|
48 |
|
|
49 |
#ifndef QT_NO_QUATERNION
|
|
50 |
|
|
51 |
/*!
|
|
52 |
\class QQuaternion
|
|
53 |
\brief The QQuaternion class represents a quaternion consisting of a vector and scalar.
|
|
54 |
\since 4.6
|
|
55 |
\ingroup painting-3D
|
|
56 |
|
|
57 |
Quaternions are used to represent rotations in 3D space, and
|
|
58 |
consist of a 3D rotation axis specified by the x, y, and z
|
|
59 |
coordinates, and a scalar representing the rotation angle.
|
|
60 |
*/
|
|
61 |
|
|
62 |
/*!
|
|
63 |
\fn QQuaternion::QQuaternion()
|
|
64 |
|
|
65 |
Constructs an identity quaternion, i.e. with coordinates (1, 0, 0, 0).
|
|
66 |
*/
|
|
67 |
|
|
68 |
/*!
|
|
69 |
\fn QQuaternion::QQuaternion(qreal scalar, qreal xpos, qreal ypos, qreal zpos)
|
|
70 |
|
|
71 |
Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos)
|
|
72 |
and \a scalar.
|
|
73 |
*/
|
|
74 |
|
|
75 |
#ifndef QT_NO_VECTOR3D
|
|
76 |
|
|
77 |
/*!
|
|
78 |
\fn QQuaternion::QQuaternion(qreal scalar, const QVector3D& vector)
|
|
79 |
|
|
80 |
Constructs a quaternion vector from the specified \a vector and
|
|
81 |
\a scalar.
|
|
82 |
|
|
83 |
\sa vector(), scalar()
|
|
84 |
*/
|
|
85 |
|
|
86 |
/*!
|
|
87 |
\fn QVector3D QQuaternion::vector() const
|
|
88 |
|
|
89 |
Returns the vector component of this quaternion.
|
|
90 |
|
|
91 |
\sa setVector(), scalar()
|
|
92 |
*/
|
|
93 |
|
|
94 |
/*!
|
|
95 |
\fn void QQuaternion::setVector(const QVector3D& vector)
|
|
96 |
|
|
97 |
Sets the vector component of this quaternion to \a vector.
|
|
98 |
|
|
99 |
\sa vector(), setScalar()
|
|
100 |
*/
|
|
101 |
|
|
102 |
#endif
|
|
103 |
|
|
104 |
/*!
|
|
105 |
\fn void QQuaternion::setVector(qreal x, qreal y, qreal z)
|
|
106 |
|
|
107 |
Sets the vector component of this quaternion to (\a x, \a y, \a z).
|
|
108 |
|
|
109 |
\sa vector(), setScalar()
|
|
110 |
*/
|
|
111 |
|
|
112 |
#ifndef QT_NO_VECTOR4D
|
|
113 |
|
|
114 |
/*!
|
|
115 |
\fn QQuaternion::QQuaternion(const QVector4D& vector)
|
|
116 |
|
|
117 |
Constructs a quaternion from the components of \a vector.
|
|
118 |
*/
|
|
119 |
|
|
120 |
/*!
|
|
121 |
\fn QVector4D QQuaternion::toVector4D() const
|
|
122 |
|
|
123 |
Returns this quaternion as a 4D vector.
|
|
124 |
*/
|
|
125 |
|
|
126 |
#endif
|
|
127 |
|
|
128 |
/*!
|
|
129 |
\fn bool QQuaternion::isNull() const
|
|
130 |
|
|
131 |
Returns true if the x, y, z, and scalar components of this
|
|
132 |
quaternion are set to 0.0; otherwise returns false.
|
|
133 |
*/
|
|
134 |
|
|
135 |
/*!
|
|
136 |
\fn bool QQuaternion::isIdentity() const
|
|
137 |
|
|
138 |
Returns true if the x, y, and z components of this
|
|
139 |
quaternion are set to 0.0, and the scalar component is set
|
|
140 |
to 1.0; otherwise returns false.
|
|
141 |
*/
|
|
142 |
|
|
143 |
/*!
|
|
144 |
\fn qreal QQuaternion::x() const
|
|
145 |
|
|
146 |
Returns the x coordinate of this quaternion's vector.
|
|
147 |
|
|
148 |
\sa setX(), y(), z(), scalar()
|
|
149 |
*/
|
|
150 |
|
|
151 |
/*!
|
|
152 |
\fn qreal QQuaternion::y() const
|
|
153 |
|
|
154 |
Returns the y coordinate of this quaternion's vector.
|
|
155 |
|
|
156 |
\sa setY(), x(), z(), scalar()
|
|
157 |
*/
|
|
158 |
|
|
159 |
/*!
|
|
160 |
\fn qreal QQuaternion::z() const
|
|
161 |
|
|
162 |
Returns the z coordinate of this quaternion's vector.
|
|
163 |
|
|
164 |
\sa setZ(), x(), y(), scalar()
|
|
165 |
*/
|
|
166 |
|
|
167 |
/*!
|
|
168 |
\fn qreal QQuaternion::scalar() const
|
|
169 |
|
|
170 |
Returns the scalar component of this quaternion.
|
|
171 |
|
|
172 |
\sa setScalar(), x(), y(), z()
|
|
173 |
*/
|
|
174 |
|
|
175 |
/*!
|
|
176 |
\fn void QQuaternion::setX(qreal x)
|
|
177 |
|
|
178 |
Sets the x coordinate of this quaternion's vector to the given
|
|
179 |
\a x coordinate.
|
|
180 |
|
|
181 |
\sa x(), setY(), setZ(), setScalar()
|
|
182 |
*/
|
|
183 |
|
|
184 |
/*!
|
|
185 |
\fn void QQuaternion::setY(qreal y)
|
|
186 |
|
|
187 |
Sets the y coordinate of this quaternion's vector to the given
|
|
188 |
\a y coordinate.
|
|
189 |
|
|
190 |
\sa y(), setX(), setZ(), setScalar()
|
|
191 |
*/
|
|
192 |
|
|
193 |
/*!
|
|
194 |
\fn void QQuaternion::setZ(qreal z)
|
|
195 |
|
|
196 |
Sets the z coordinate of this quaternion's vector to the given
|
|
197 |
\a z coordinate.
|
|
198 |
|
|
199 |
\sa z(), setX(), setY(), setScalar()
|
|
200 |
*/
|
|
201 |
|
|
202 |
/*!
|
|
203 |
\fn void QQuaternion::setScalar(qreal scalar)
|
|
204 |
|
|
205 |
Sets the scalar component of this quaternion to \a scalar.
|
|
206 |
|
|
207 |
\sa scalar(), setX(), setY(), setZ()
|
|
208 |
*/
|
|
209 |
|
|
210 |
/*!
|
|
211 |
Returns the length of the quaternion. This is also called the "norm".
|
|
212 |
|
|
213 |
\sa lengthSquared(), normalized()
|
|
214 |
*/
|
|
215 |
qreal QQuaternion::length() const
|
|
216 |
{
|
|
217 |
return qSqrt(xp * xp + yp * yp + zp * zp + wp * wp);
|
|
218 |
}
|
|
219 |
|
|
220 |
/*!
|
|
221 |
Returns the squared length of the quaternion.
|
|
222 |
|
|
223 |
\sa length()
|
|
224 |
*/
|
|
225 |
qreal QQuaternion::lengthSquared() const
|
|
226 |
{
|
|
227 |
return xp * xp + yp * yp + zp * zp + wp * wp;
|
|
228 |
}
|
|
229 |
|
|
230 |
/*!
|
|
231 |
Returns the normalized unit form of this quaternion.
|
|
232 |
|
|
233 |
If this quaternion is null, then a null quaternion is returned.
|
|
234 |
If the length of the quaternion is very close to 1, then the quaternion
|
|
235 |
will be returned as-is. Otherwise the normalized form of the
|
|
236 |
quaternion of length 1 will be returned.
|
|
237 |
|
|
238 |
\sa length(), normalize()
|
|
239 |
*/
|
|
240 |
QQuaternion QQuaternion::normalized() const
|
|
241 |
{
|
|
242 |
// Need some extra precision if the length is very small.
|
|
243 |
double len = double(xp) * double(xp) +
|
|
244 |
double(yp) * double(yp) +
|
|
245 |
double(zp) * double(zp) +
|
|
246 |
double(wp) * double(wp);
|
|
247 |
if (qFuzzyIsNull(len - 1.0f))
|
|
248 |
return *this;
|
|
249 |
else if (!qFuzzyIsNull(len))
|
|
250 |
return *this / qSqrt(len);
|
|
251 |
else
|
|
252 |
return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f);
|
|
253 |
}
|
|
254 |
|
|
255 |
/*!
|
|
256 |
Normalizes the currect quaternion in place. Nothing happens if this
|
|
257 |
is a null quaternion or the length of the quaternion is very close to 1.
|
|
258 |
|
|
259 |
\sa length(), normalized()
|
|
260 |
*/
|
|
261 |
void QQuaternion::normalize()
|
|
262 |
{
|
|
263 |
// Need some extra precision if the length is very small.
|
|
264 |
double len = double(xp) * double(xp) +
|
|
265 |
double(yp) * double(yp) +
|
|
266 |
double(zp) * double(zp) +
|
|
267 |
double(wp) * double(wp);
|
|
268 |
if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len))
|
|
269 |
return;
|
|
270 |
|
|
271 |
len = qSqrt(len);
|
|
272 |
|
|
273 |
xp /= len;
|
|
274 |
yp /= len;
|
|
275 |
zp /= len;
|
|
276 |
wp /= len;
|
|
277 |
}
|
|
278 |
|
|
279 |
/*!
|
|
280 |
\fn QQuaternion QQuaternion::conjugate() const
|
|
281 |
|
|
282 |
Returns the conjugate of this quaternion, which is
|
|
283 |
(-x, -y, -z, scalar).
|
|
284 |
*/
|
|
285 |
|
|
286 |
/*!
|
|
287 |
Rotates \a vector with this quaternion to produce a new vector
|
|
288 |
in 3D space. The following code:
|
|
289 |
|
|
290 |
\code
|
|
291 |
QVector3D result = q.rotateVector(vector);
|
|
292 |
\endcode
|
|
293 |
|
|
294 |
is equivalent to the following:
|
|
295 |
|
|
296 |
\code
|
|
297 |
QVector3D result = (q * QQuaternion(0, vector) * q.conjugate()).vector();
|
|
298 |
\endcode
|
|
299 |
*/
|
|
300 |
QVector3D QQuaternion::rotateVector(const QVector3D& vector) const
|
|
301 |
{
|
|
302 |
return (*this * QQuaternion(0, vector) * conjugate()).vector();
|
|
303 |
}
|
|
304 |
|
|
305 |
/*!
|
|
306 |
\fn QQuaternion &QQuaternion::operator+=(const QQuaternion &quaternion)
|
|
307 |
|
|
308 |
Adds the given \a quaternion to this quaternion and returns a reference to
|
|
309 |
this quaternion.
|
|
310 |
|
|
311 |
\sa operator-=()
|
|
312 |
*/
|
|
313 |
|
|
314 |
/*!
|
|
315 |
\fn QQuaternion &QQuaternion::operator-=(const QQuaternion &quaternion)
|
|
316 |
|
|
317 |
Subtracts the given \a quaternion from this quaternion and returns a
|
|
318 |
reference to this quaternion.
|
|
319 |
|
|
320 |
\sa operator+=()
|
|
321 |
*/
|
|
322 |
|
|
323 |
/*!
|
|
324 |
\fn QQuaternion &QQuaternion::operator*=(qreal factor)
|
|
325 |
|
|
326 |
Multiplies this quaternion's components by the given \a factor, and
|
|
327 |
returns a reference to this quaternion.
|
|
328 |
|
|
329 |
\sa operator/=()
|
|
330 |
*/
|
|
331 |
|
|
332 |
/*!
|
|
333 |
\fn QQuaternion &QQuaternion::operator*=(const QQuaternion &quaternion)
|
|
334 |
|
|
335 |
Multiplies this quaternion by \a quaternion and returns a reference
|
|
336 |
to this quaternion.
|
|
337 |
*/
|
|
338 |
|
|
339 |
/*!
|
|
340 |
\fn QQuaternion &QQuaternion::operator/=(qreal divisor)
|
|
341 |
|
|
342 |
Divides this quaternion's components by the given \a divisor, and
|
|
343 |
returns a reference to this quaternion.
|
|
344 |
|
|
345 |
\sa operator*=()
|
|
346 |
*/
|
|
347 |
|
|
348 |
#ifndef QT_NO_VECTOR3D
|
|
349 |
|
|
350 |
/*!
|
|
351 |
Creates a normalized quaternion that corresponds to rotating through
|
|
352 |
\a angle degrees about the specified 3D \a axis.
|
|
353 |
*/
|
|
354 |
QQuaternion QQuaternion::fromAxisAndAngle(const QVector3D& axis, qreal angle)
|
|
355 |
{
|
|
356 |
// Algorithm from:
|
|
357 |
// http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
|
|
358 |
// We normalize the result just in case the values are close
|
|
359 |
// to zero, as suggested in the above FAQ.
|
|
360 |
qreal a = (angle / 2.0f) * M_PI / 180.0f;
|
|
361 |
qreal s = qSin(a);
|
|
362 |
qreal c = qCos(a);
|
|
363 |
QVector3D ax = axis.normalized();
|
|
364 |
return QQuaternion(c, ax.x() * s, ax.y() * s, ax.z() * s).normalized();
|
|
365 |
}
|
|
366 |
|
|
367 |
#endif
|
|
368 |
|
|
369 |
/*!
|
|
370 |
Creates a normalized quaternion that corresponds to rotating through
|
|
371 |
\a angle degrees about the 3D axis (\a x, \a y, \a z).
|
|
372 |
*/
|
|
373 |
QQuaternion QQuaternion::fromAxisAndAngle
|
|
374 |
(qreal x, qreal y, qreal z, qreal angle)
|
|
375 |
{
|
|
376 |
qreal length = qSqrt(x * x + y * y + z * z);
|
|
377 |
if (!qFuzzyIsNull(length - 1.0f) && !qFuzzyIsNull(length)) {
|
|
378 |
x /= length;
|
|
379 |
y /= length;
|
|
380 |
z /= length;
|
|
381 |
}
|
|
382 |
qreal a = (angle / 2.0f) * M_PI / 180.0f;
|
|
383 |
qreal s = qSin(a);
|
|
384 |
qreal c = qCos(a);
|
|
385 |
return QQuaternion(c, x * s, y * s, z * s).normalized();
|
|
386 |
}
|
|
387 |
|
|
388 |
/*!
|
|
389 |
\fn bool operator==(const QQuaternion &q1, const QQuaternion &q2)
|
|
390 |
\relates QQuaternion
|
|
391 |
|
|
392 |
Returns true if \a q1 is equal to \a q2; otherwise returns false.
|
|
393 |
This operator uses an exact floating-point comparison.
|
|
394 |
*/
|
|
395 |
|
|
396 |
/*!
|
|
397 |
\fn bool operator!=(const QQuaternion &q1, const QQuaternion &q2)
|
|
398 |
\relates QQuaternion
|
|
399 |
|
|
400 |
Returns true if \a q1 is not equal to \a q2; otherwise returns false.
|
|
401 |
This operator uses an exact floating-point comparison.
|
|
402 |
*/
|
|
403 |
|
|
404 |
/*!
|
|
405 |
\fn const QQuaternion operator+(const QQuaternion &q1, const QQuaternion &q2)
|
|
406 |
\relates QQuaternion
|
|
407 |
|
|
408 |
Returns a QQuaternion object that is the sum of the given quaternions,
|
|
409 |
\a q1 and \a q2; each component is added separately.
|
|
410 |
|
|
411 |
\sa QQuaternion::operator+=()
|
|
412 |
*/
|
|
413 |
|
|
414 |
/*!
|
|
415 |
\fn const QQuaternion operator-(const QQuaternion &q1, const QQuaternion &q2)
|
|
416 |
\relates QQuaternion
|
|
417 |
|
|
418 |
Returns a QQuaternion object that is formed by subtracting
|
|
419 |
\a q2 from \a q1; each component is subtracted separately.
|
|
420 |
|
|
421 |
\sa QQuaternion::operator-=()
|
|
422 |
*/
|
|
423 |
|
|
424 |
/*!
|
|
425 |
\fn const QQuaternion operator*(qreal factor, const QQuaternion &quaternion)
|
|
426 |
\relates QQuaternion
|
|
427 |
|
|
428 |
Returns a copy of the given \a quaternion, multiplied by the
|
|
429 |
given \a factor.
|
|
430 |
|
|
431 |
\sa QQuaternion::operator*=()
|
|
432 |
*/
|
|
433 |
|
|
434 |
/*!
|
|
435 |
\fn const QQuaternion operator*(const QQuaternion &quaternion, qreal factor)
|
|
436 |
\relates QQuaternion
|
|
437 |
|
|
438 |
Returns a copy of the given \a quaternion, multiplied by the
|
|
439 |
given \a factor.
|
|
440 |
|
|
441 |
\sa QQuaternion::operator*=()
|
|
442 |
*/
|
|
443 |
|
|
444 |
/*!
|
|
445 |
\fn const QQuaternion operator*(const QQuaternion &q1, const QQuaternion& q2)
|
|
446 |
\relates QQuaternion
|
|
447 |
|
|
448 |
Multiplies \a q1 and \a q2 using quaternion multiplication.
|
|
449 |
The result corresponds to applying both of the rotations specified
|
|
450 |
by \a q1 and \a q2.
|
|
451 |
|
|
452 |
\sa QQuaternion::operator*=()
|
|
453 |
*/
|
|
454 |
|
|
455 |
/*!
|
|
456 |
\fn const QQuaternion operator-(const QQuaternion &quaternion)
|
|
457 |
\relates QQuaternion
|
|
458 |
\overload
|
|
459 |
|
|
460 |
Returns a QQuaternion object that is formed by changing the sign of
|
|
461 |
all three components of the given \a quaternion.
|
|
462 |
|
|
463 |
Equivalent to \c {QQuaternion(0,0,0,0) - quaternion}.
|
|
464 |
*/
|
|
465 |
|
|
466 |
/*!
|
|
467 |
\fn const QQuaternion operator/(const QQuaternion &quaternion, qreal divisor)
|
|
468 |
\relates QQuaternion
|
|
469 |
|
|
470 |
Returns the QQuaternion object formed by dividing all components of
|
|
471 |
the given \a quaternion by the given \a divisor.
|
|
472 |
|
|
473 |
\sa QQuaternion::operator/=()
|
|
474 |
*/
|
|
475 |
|
|
476 |
/*!
|
|
477 |
\fn bool qFuzzyCompare(const QQuaternion& q1, const QQuaternion& q2)
|
|
478 |
\relates QQuaternion
|
|
479 |
|
|
480 |
Returns true if \a q1 and \a q2 are equal, allowing for a small
|
|
481 |
fuzziness factor for floating-point comparisons; false otherwise.
|
|
482 |
*/
|
|
483 |
|
|
484 |
/*!
|
|
485 |
Interpolates along the shortest spherical path between the
|
|
486 |
rotational positions \a q1 and \a q2. The value \a t should
|
|
487 |
be between 0 and 1, indicating the spherical distance to travel
|
|
488 |
between \a q1 and \a q2.
|
|
489 |
|
|
490 |
If \a t is less than or equal to 0, then \a q1 will be returned.
|
|
491 |
If \a t is greater than or equal to 1, then \a q2 will be returned.
|
|
492 |
|
|
493 |
\sa nlerp()
|
|
494 |
*/
|
|
495 |
QQuaternion QQuaternion::slerp
|
|
496 |
(const QQuaternion& q1, const QQuaternion& q2, qreal t)
|
|
497 |
{
|
|
498 |
// Handle the easy cases first.
|
|
499 |
if (t <= 0.0f)
|
|
500 |
return q1;
|
|
501 |
else if (t >= 1.0f)
|
|
502 |
return q2;
|
|
503 |
|
|
504 |
// Determine the angle between the two quaternions.
|
|
505 |
QQuaternion q2b;
|
|
506 |
qreal dot;
|
|
507 |
dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp;
|
|
508 |
if (dot >= 0.0f) {
|
|
509 |
q2b = q2;
|
|
510 |
} else {
|
|
511 |
q2b = -q2;
|
|
512 |
dot = -dot;
|
|
513 |
}
|
|
514 |
|
|
515 |
// Get the scale factors. If they are too small,
|
|
516 |
// then revert to simple linear interpolation.
|
|
517 |
qreal factor1 = 1.0f - t;
|
|
518 |
qreal factor2 = t;
|
|
519 |
if ((1.0f - dot) > 0.0000001) {
|
|
520 |
qreal angle = qreal(qAcos(dot));
|
|
521 |
qreal sinOfAngle = qreal(qSin(angle));
|
|
522 |
if (sinOfAngle > 0.0000001) {
|
|
523 |
factor1 = qreal(qSin((1.0f - t) * angle)) / sinOfAngle;
|
|
524 |
factor2 = qreal(qSin(t * angle)) / sinOfAngle;
|
|
525 |
}
|
|
526 |
}
|
|
527 |
|
|
528 |
// Construct the result quaternion.
|
|
529 |
return q1 * factor1 + q2b * factor2;
|
|
530 |
}
|
|
531 |
|
|
532 |
/*!
|
|
533 |
Interpolates along the shortest linear path between the rotational
|
|
534 |
positions \a q1 and \a q2. The value \a t should be between 0 and 1,
|
|
535 |
indicating the distance to travel between \a q1 and \a q2.
|
|
536 |
The result will be normalized().
|
|
537 |
|
|
538 |
If \a t is less than or equal to 0, then \a q1 will be returned.
|
|
539 |
If \a t is greater than or equal to 1, then \a q2 will be returned.
|
|
540 |
|
|
541 |
The nlerp() function is typically faster than slerp() and will
|
|
542 |
give approximate results to spherical interpolation that are
|
|
543 |
good enough for some applications.
|
|
544 |
|
|
545 |
\sa slerp()
|
|
546 |
*/
|
|
547 |
QQuaternion QQuaternion::nlerp
|
|
548 |
(const QQuaternion& q1, const QQuaternion& q2, qreal t)
|
|
549 |
{
|
|
550 |
// Handle the easy cases first.
|
|
551 |
if (t <= 0.0f)
|
|
552 |
return q1;
|
|
553 |
else if (t >= 1.0f)
|
|
554 |
return q2;
|
|
555 |
|
|
556 |
// Determine the angle between the two quaternions.
|
|
557 |
QQuaternion q2b;
|
|
558 |
qreal dot;
|
|
559 |
dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp;
|
|
560 |
if (dot >= 0.0f)
|
|
561 |
q2b = q2;
|
|
562 |
else
|
|
563 |
q2b = -q2;
|
|
564 |
|
|
565 |
// Perform the linear interpolation.
|
|
566 |
return (q1 * (1.0f - t) + q2b * t).normalized();
|
|
567 |
}
|
|
568 |
|
|
569 |
/*!
|
|
570 |
Returns the quaternion as a QVariant.
|
|
571 |
*/
|
|
572 |
QQuaternion::operator QVariant() const
|
|
573 |
{
|
|
574 |
return QVariant(QVariant::Quaternion, this);
|
|
575 |
}
|
|
576 |
|
|
577 |
#ifndef QT_NO_DEBUG_STREAM
|
|
578 |
|
|
579 |
QDebug operator<<(QDebug dbg, const QQuaternion &q)
|
|
580 |
{
|
|
581 |
dbg.nospace() << "QQuaternion(scalar:" << q.scalar()
|
|
582 |
<< ", vector:(" << q.x() << ", "
|
|
583 |
<< q.y() << ", " << q.z() << "))";
|
|
584 |
return dbg.space();
|
|
585 |
}
|
|
586 |
|
|
587 |
#endif
|
|
588 |
|
|
589 |
#ifndef QT_NO_DATASTREAM
|
|
590 |
|
|
591 |
/*!
|
|
592 |
\fn QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion)
|
|
593 |
\relates QQuaternion
|
|
594 |
|
|
595 |
Writes the given \a quaternion to the given \a stream and returns a
|
|
596 |
reference to the stream.
|
|
597 |
|
|
598 |
\sa {Format of the QDataStream Operators}
|
|
599 |
*/
|
|
600 |
|
|
601 |
QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion)
|
|
602 |
{
|
|
603 |
stream << double(quaternion.scalar()) << double(quaternion.x())
|
|
604 |
<< double(quaternion.y()) << double(quaternion.z());
|
|
605 |
return stream;
|
|
606 |
}
|
|
607 |
|
|
608 |
/*!
|
|
609 |
\fn QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion)
|
|
610 |
\relates QQuaternion
|
|
611 |
|
|
612 |
Reads a quaternion from the given \a stream into the given \a quaternion
|
|
613 |
and returns a reference to the stream.
|
|
614 |
|
|
615 |
\sa {Format of the QDataStream Operators}
|
|
616 |
*/
|
|
617 |
|
|
618 |
QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion)
|
|
619 |
{
|
|
620 |
double scalar, x, y, z;
|
|
621 |
stream >> scalar;
|
|
622 |
stream >> x;
|
|
623 |
stream >> y;
|
|
624 |
stream >> z;
|
|
625 |
quaternion.setScalar(qreal(scalar));
|
|
626 |
quaternion.setX(qreal(x));
|
|
627 |
quaternion.setY(qreal(y));
|
|
628 |
quaternion.setZ(qreal(z));
|
|
629 |
return stream;
|
|
630 |
}
|
|
631 |
|
|
632 |
#endif // QT_NO_DATASTREAM
|
|
633 |
|
|
634 |
#endif
|
|
635 |
|
|
636 |
QT_END_NAMESPACE
|