0
|
1 |
/*
|
|
2 |
* Implementation of DES encryption for NTLM
|
|
3 |
*
|
|
4 |
* Copyright 1997-2005 Simon Tatham.
|
|
5 |
*
|
|
6 |
* This software is released under the MIT license.
|
|
7 |
*/
|
|
8 |
|
|
9 |
/*
|
|
10 |
* Description of DES
|
|
11 |
* ------------------
|
|
12 |
*
|
|
13 |
* Unlike the description in FIPS 46, I'm going to use _sensible_ indices:
|
|
14 |
* bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB.
|
|
15 |
* And S-boxes are indexed by six consecutive bits, not by the outer two
|
|
16 |
* followed by the middle four.
|
|
17 |
*
|
|
18 |
* The DES encryption routine requires a 64-bit input, and a key schedule K
|
|
19 |
* containing 16 48-bit elements.
|
|
20 |
*
|
|
21 |
* First the input is permuted by the initial permutation IP.
|
|
22 |
* Then the input is split into 32-bit words L and R. (L is the MSW.)
|
|
23 |
* Next, 16 rounds. In each round:
|
|
24 |
* (L, R) <- (R, L xor f(R, K[i]))
|
|
25 |
* Then the pre-output words L and R are swapped.
|
|
26 |
* Then L and R are glued back together into a 64-bit word. (L is the MSW,
|
|
27 |
* again, but since we just swapped them, the MSW is the R that came out
|
|
28 |
* of the last round.)
|
|
29 |
* The 64-bit output block is permuted by the inverse of IP and returned.
|
|
30 |
*
|
|
31 |
* Decryption is identical except that the elements of K are used in the
|
|
32 |
* opposite order. (This wouldn't work if that word swap didn't happen.)
|
|
33 |
*
|
|
34 |
* The function f, used in each round, accepts a 32-bit word R and a
|
|
35 |
* 48-bit key block K. It produces a 32-bit output.
|
|
36 |
*
|
|
37 |
* First R is expanded to 48 bits using the bit-selection function E.
|
|
38 |
* The resulting 48-bit block is XORed with the key block K to produce
|
|
39 |
* a 48-bit block X.
|
|
40 |
* This block X is split into eight groups of 6 bits. Each group of 6
|
|
41 |
* bits is then looked up in one of the eight S-boxes to convert
|
|
42 |
* it to 4 bits. These eight groups of 4 bits are glued back
|
|
43 |
* together to produce a 32-bit preoutput block.
|
|
44 |
* The preoutput block is permuted using the permutation P and returned.
|
|
45 |
*
|
|
46 |
* Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although
|
|
47 |
* the approved input format for the key is a 64-bit word, eight of the
|
|
48 |
* bits are discarded, so the actual quantity of key used is 56 bits.
|
|
49 |
*
|
|
50 |
* First the input key is converted to two 28-bit words C and D using
|
|
51 |
* the bit-selection function PC1.
|
|
52 |
* Then 16 rounds of key setup occur. In each round, C and D are each
|
|
53 |
* rotated left by either 1 or 2 bits (depending on which round), and
|
|
54 |
* then converted into a key schedule element using the bit-selection
|
|
55 |
* function PC2.
|
|
56 |
*
|
|
57 |
* That's the actual algorithm. Now for the tedious details: all those
|
|
58 |
* painful permutations and lookup tables.
|
|
59 |
*
|
|
60 |
* IP is a 64-to-64 bit permutation. Its output contains the following
|
|
61 |
* bits of its input (listed in order MSB to LSB of output).
|
|
62 |
*
|
|
63 |
* 6 14 22 30 38 46 54 62 4 12 20 28 36 44 52 60
|
|
64 |
* 2 10 18 26 34 42 50 58 0 8 16 24 32 40 48 56
|
|
65 |
* 7 15 23 31 39 47 55 63 5 13 21 29 37 45 53 61
|
|
66 |
* 3 11 19 27 35 43 51 59 1 9 17 25 33 41 49 57
|
|
67 |
*
|
|
68 |
* E is a 32-to-48 bit selection function. Its output contains the following
|
|
69 |
* bits of its input (listed in order MSB to LSB of output).
|
|
70 |
*
|
|
71 |
* 0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15
|
|
72 |
* 16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31
|
|
73 |
*
|
|
74 |
* The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a
|
|
75 |
* 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers.
|
|
76 |
* The S-boxes are listed below. The first S-box listed is applied to the
|
|
77 |
* most significant six bits of the block X; the last one is applied to the
|
|
78 |
* least significant.
|
|
79 |
*
|
|
80 |
* 14 0 4 15 13 7 1 4 2 14 15 2 11 13 8 1
|
|
81 |
* 3 10 10 6 6 12 12 11 5 9 9 5 0 3 7 8
|
|
82 |
* 4 15 1 12 14 8 8 2 13 4 6 9 2 1 11 7
|
|
83 |
* 15 5 12 11 9 3 7 14 3 10 10 0 5 6 0 13
|
|
84 |
*
|
|
85 |
* 15 3 1 13 8 4 14 7 6 15 11 2 3 8 4 14
|
|
86 |
* 9 12 7 0 2 1 13 10 12 6 0 9 5 11 10 5
|
|
87 |
* 0 13 14 8 7 10 11 1 10 3 4 15 13 4 1 2
|
|
88 |
* 5 11 8 6 12 7 6 12 9 0 3 5 2 14 15 9
|
|
89 |
*
|
|
90 |
* 10 13 0 7 9 0 14 9 6 3 3 4 15 6 5 10
|
|
91 |
* 1 2 13 8 12 5 7 14 11 12 4 11 2 15 8 1
|
|
92 |
* 13 1 6 10 4 13 9 0 8 6 15 9 3 8 0 7
|
|
93 |
* 11 4 1 15 2 14 12 3 5 11 10 5 14 2 7 12
|
|
94 |
*
|
|
95 |
* 7 13 13 8 14 11 3 5 0 6 6 15 9 0 10 3
|
|
96 |
* 1 4 2 7 8 2 5 12 11 1 12 10 4 14 15 9
|
|
97 |
* 10 3 6 15 9 0 0 6 12 10 11 1 7 13 13 8
|
|
98 |
* 15 9 1 4 3 5 14 11 5 12 2 7 8 2 4 14
|
|
99 |
*
|
|
100 |
* 2 14 12 11 4 2 1 12 7 4 10 7 11 13 6 1
|
|
101 |
* 8 5 5 0 3 15 15 10 13 3 0 9 14 8 9 6
|
|
102 |
* 4 11 2 8 1 12 11 7 10 1 13 14 7 2 8 13
|
|
103 |
* 15 6 9 15 12 0 5 9 6 10 3 4 0 5 14 3
|
|
104 |
*
|
|
105 |
* 12 10 1 15 10 4 15 2 9 7 2 12 6 9 8 5
|
|
106 |
* 0 6 13 1 3 13 4 14 14 0 7 11 5 3 11 8
|
|
107 |
* 9 4 14 3 15 2 5 12 2 9 8 5 12 15 3 10
|
|
108 |
* 7 11 0 14 4 1 10 7 1 6 13 0 11 8 6 13
|
|
109 |
*
|
|
110 |
* 4 13 11 0 2 11 14 7 15 4 0 9 8 1 13 10
|
|
111 |
* 3 14 12 3 9 5 7 12 5 2 10 15 6 8 1 6
|
|
112 |
* 1 6 4 11 11 13 13 8 12 1 3 4 7 10 14 7
|
|
113 |
* 10 9 15 5 6 0 8 15 0 14 5 2 9 3 2 12
|
|
114 |
*
|
|
115 |
* 13 1 2 15 8 13 4 8 6 10 15 3 11 7 1 4
|
|
116 |
* 10 12 9 5 3 6 14 11 5 0 0 14 12 9 7 2
|
|
117 |
* 7 2 11 1 4 14 1 7 9 4 12 10 14 8 2 13
|
|
118 |
* 0 15 6 12 10 9 13 0 15 3 3 5 5 6 8 11
|
|
119 |
*
|
|
120 |
* P is a 32-to-32 bit permutation. Its output contains the following
|
|
121 |
* bits of its input (listed in order MSB to LSB of output).
|
|
122 |
*
|
|
123 |
* 16 25 12 11 3 20 4 15 31 17 9 6 27 14 1 22
|
|
124 |
* 30 24 8 18 0 5 29 23 13 19 2 26 10 21 28 7
|
|
125 |
*
|
|
126 |
* PC1 is a 64-to-56 bit selection function. Its output is in two words,
|
|
127 |
* C and D. The word C contains the following bits of its input (listed
|
|
128 |
* in order MSB to LSB of output).
|
|
129 |
*
|
|
130 |
* 7 15 23 31 39 47 55 63 6 14 22 30 38 46
|
|
131 |
* 54 62 5 13 21 29 37 45 53 61 4 12 20 28
|
|
132 |
*
|
|
133 |
* And the word D contains these bits.
|
|
134 |
*
|
|
135 |
* 1 9 17 25 33 41 49 57 2 10 18 26 34 42
|
|
136 |
* 50 58 3 11 19 27 35 43 51 59 36 44 52 60
|
|
137 |
*
|
|
138 |
* PC2 is a 56-to-48 bit selection function. Its input is in two words,
|
|
139 |
* C and D. These are treated as one 56-bit word (with C more significant,
|
|
140 |
* so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to
|
|
141 |
* 0 of the word are bits 27 to 0 of D). The output contains the following
|
|
142 |
* bits of this 56-bit input word (listed in order MSB to LSB of output).
|
|
143 |
*
|
|
144 |
* 42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54
|
|
145 |
* 15 4 25 19 9 1 26 16 5 11 23 8 12 7 17 0 22 3 10 14 6 20 27 24
|
|
146 |
*/
|
|
147 |
|
|
148 |
/*
|
|
149 |
* Implementation details
|
|
150 |
* ----------------------
|
|
151 |
*
|
|
152 |
* If you look at the code in this module, you'll find it looks
|
|
153 |
* nothing _like_ the above algorithm. Here I explain the
|
|
154 |
* differences...
|
|
155 |
*
|
|
156 |
* Key setup has not been heavily optimised here. We are not
|
|
157 |
* concerned with key agility: we aren't codebreakers. We don't
|
|
158 |
* mind a little delay (and it really is a little one; it may be a
|
|
159 |
* factor of five or so slower than it could be but it's still not
|
|
160 |
* an appreciable length of time) while setting up. The only tweaks
|
|
161 |
* in the key setup are ones which change the format of the key
|
|
162 |
* schedule to speed up the actual encryption. I'll describe those
|
|
163 |
* below.
|
|
164 |
*
|
|
165 |
* The first and most obvious optimisation is the S-boxes. Since
|
|
166 |
* each S-box always targets the same four bits in the final 32-bit
|
|
167 |
* word, so the output from (for example) S-box 0 must always be
|
|
168 |
* shifted left 28 bits, we can store the already-shifted outputs
|
|
169 |
* in the lookup tables. This reduces lookup-and-shift to lookup,
|
|
170 |
* so the S-box step is now just a question of ORing together eight
|
|
171 |
* table lookups.
|
|
172 |
*
|
|
173 |
* The permutation P is just a bit order change; it's invariant
|
|
174 |
* with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we
|
|
175 |
* can apply P to every entry of the S-box tables and then we don't
|
|
176 |
* have to do it in the code of f(). This yields a set of tables
|
|
177 |
* which might be called SP-boxes.
|
|
178 |
*
|
|
179 |
* The bit-selection function E is our next target. Note that E is
|
|
180 |
* immediately followed by the operation of splitting into 6-bit
|
|
181 |
* chunks. Examining the 6-bit chunks coming out of E we notice
|
|
182 |
* they're all contiguous within the word (speaking cyclically -
|
|
183 |
* the end two wrap round); so we can extract those bit strings
|
|
184 |
* individually rather than explicitly running E. This would yield
|
|
185 |
* code such as
|
|
186 |
*
|
|
187 |
* y |= SPboxes[0][ (rotl(R, 5) ^ top6bitsofK) & 0x3F ];
|
|
188 |
* t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ];
|
|
189 |
*
|
|
190 |
* and so on; and the key schedule preparation would have to
|
|
191 |
* provide each 6-bit chunk separately.
|
|
192 |
*
|
|
193 |
* Really we'd like to XOR in the key schedule element before
|
|
194 |
* looking up bit strings in R. This we can't do, naively, because
|
|
195 |
* the 6-bit strings we want overlap. But look at the strings:
|
|
196 |
*
|
|
197 |
* 3322222222221111111111
|
|
198 |
* bit 10987654321098765432109876543210
|
|
199 |
*
|
|
200 |
* box0 XXXXX X
|
|
201 |
* box1 XXXXXX
|
|
202 |
* box2 XXXXXX
|
|
203 |
* box3 XXXXXX
|
|
204 |
* box4 XXXXXX
|
|
205 |
* box5 XXXXXX
|
|
206 |
* box6 XXXXXX
|
|
207 |
* box7 X XXXXX
|
|
208 |
*
|
|
209 |
* The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't
|
|
210 |
* overlap with each other. Neither do the ones for boxes 1, 3, 5
|
|
211 |
* and 7. So we could provide the key schedule in the form of two
|
|
212 |
* words that we can separately XOR into R, and then every S-box
|
|
213 |
* index is available as a (cyclically) contiguous 6-bit substring
|
|
214 |
* of one or the other of the results.
|
|
215 |
*
|
|
216 |
* The comments in Eric Young's libdes implementation point out
|
|
217 |
* that two of these bit strings require a rotation (rather than a
|
|
218 |
* simple shift) to extract. It's unavoidable that at least _one_
|
|
219 |
* must do; but we can actually run the whole inner algorithm (all
|
|
220 |
* 16 rounds) rotated one bit to the left, so that what the `real'
|
|
221 |
* DES description sees as L=0x80000001 we see as L=0x00000003.
|
|
222 |
* This requires rotating all our SP-box entries one bit to the
|
|
223 |
* left, and rotating each word of the key schedule elements one to
|
|
224 |
* the left, and rotating L and R one bit left just after IP and
|
|
225 |
* one bit right again just before FP. And in each round we convert
|
|
226 |
* a rotate into a shift, so we've saved a few per cent.
|
|
227 |
*
|
|
228 |
* That's about it for the inner loop; the SP-box tables as listed
|
|
229 |
* below are what I've described here (the original S value,
|
|
230 |
* shifted to its final place in the input to P, run through P, and
|
|
231 |
* then rotated one bit left). All that remains is to optimise the
|
|
232 |
* initial permutation IP.
|
|
233 |
*
|
|
234 |
* IP is not an arbitrary permutation. It has the nice property
|
|
235 |
* that if you take any bit number, write it in binary (6 bits),
|
|
236 |
* permute those 6 bits and invert some of them, you get the final
|
|
237 |
* position of that bit. Specifically, the bit whose initial
|
|
238 |
* position is given (in binary) as fedcba ends up in position
|
|
239 |
* AcbFED (where a capital letter denotes the inverse of a bit).
|
|
240 |
*
|
|
241 |
* We have the 64-bit data in two 32-bit words L and R, where bits
|
|
242 |
* in L are those with f=1 and bits in R are those with f=0. We
|
|
243 |
* note that we can do a simple transformation: suppose we exchange
|
|
244 |
* the bits with f=1,c=0 and the bits with f=0,c=1. This will cause
|
|
245 |
* the bit fedcba to be in position cedfba - we've `swapped' bits c
|
|
246 |
* and f in the position of each bit!
|
|
247 |
*
|
|
248 |
* Better still, this transformation is easy. In the example above,
|
|
249 |
* bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1
|
|
250 |
* are 0xF0F0F0F0. So we can do
|
|
251 |
*
|
|
252 |
* difference = ((R >> 4) ^ L) & 0x0F0F0F0F
|
|
253 |
* R ^= (difference << 4)
|
|
254 |
* L ^= difference
|
|
255 |
*
|
|
256 |
* to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F).
|
|
257 |
* Also, we can invert the bit at the top just by exchanging L and
|
|
258 |
* R. So in a few swaps and a few of these bit operations we can
|
|
259 |
* do:
|
|
260 |
*
|
|
261 |
* Initially the position of bit fedcba is fedcba
|
|
262 |
* Swap L with R to make it Fedcba
|
|
263 |
* Perform bitswap( 4,0x0F0F0F0F) to make it cedFba
|
|
264 |
* Perform bitswap(16,0x0000FFFF) to make it ecdFba
|
|
265 |
* Swap L with R to make it EcdFba
|
|
266 |
* Perform bitswap( 2,0x33333333) to make it bcdFEa
|
|
267 |
* Perform bitswap( 8,0x00FF00FF) to make it dcbFEa
|
|
268 |
* Swap L with R to make it DcbFEa
|
|
269 |
* Perform bitswap( 1,0x55555555) to make it acbFED
|
|
270 |
* Swap L with R to make it AcbFED
|
|
271 |
*
|
|
272 |
* (In the actual code the four swaps are implicit: R and L are
|
|
273 |
* simply used the other way round in the first, second and last
|
|
274 |
* bitswap operations.)
|
|
275 |
*
|
|
276 |
* The final permutation is just the inverse of IP, so it can be
|
|
277 |
* performed by a similar set of operations.
|
|
278 |
*/
|
|
279 |
|
|
280 |
struct des_context {
|
|
281 |
quint32 k0246[16], k1357[16];
|
|
282 |
};
|
|
283 |
|
|
284 |
#define rotl(x, c) ( (x << c) | (x >> (32-c)) )
|
|
285 |
#define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF)
|
|
286 |
|
|
287 |
static quint32 bitsel(quint32 * input, const int *bitnums, int size)
|
|
288 |
{
|
|
289 |
quint32 ret = 0;
|
|
290 |
while (size--) {
|
|
291 |
int bitpos = *bitnums++;
|
|
292 |
ret <<= 1;
|
|
293 |
if (bitpos >= 0)
|
|
294 |
ret |= 1 & (input[bitpos / 32] >> (bitpos % 32));
|
|
295 |
}
|
|
296 |
return ret;
|
|
297 |
}
|
|
298 |
|
|
299 |
static inline void des_key_setup(quint32 key_msw, quint32 key_lsw,
|
|
300 |
struct des_context *sched)
|
|
301 |
{
|
|
302 |
/* Tables are modified to work with 56-bit key */
|
|
303 |
static const int PC1_Cbits[] = {
|
|
304 |
6, 13, 20, 27, 34, 41, 48, 55, 5, 12, 19, 26, 33, 40,
|
|
305 |
47, 54, 4, 11, 18, 25, 32, 39, 46, 53, 3, 10, 17, 24
|
|
306 |
};
|
|
307 |
static const int PC1_Dbits[] = {
|
|
308 |
0, 7, 14, 21, 28, 35, 42, 49, 1, 8, 15, 22, 29, 36,
|
|
309 |
43, 50, 2, 9, 16, 23, 30, 37, 44, 51, 31, 38, 45, 52
|
|
310 |
};
|
|
311 |
/*
|
|
312 |
* The bit numbers in the two lists below don't correspond to
|
|
313 |
* the ones in the above description of PC2, because in the
|
|
314 |
* above description C and D are concatenated so `bit 28' means
|
|
315 |
* bit 0 of C. In this implementation we're using the standard
|
|
316 |
* `bitsel' function above and C is in the second word, so bit
|
|
317 |
* 0 of C is addressed by writing `32' here.
|
|
318 |
*/
|
|
319 |
static const int PC2_0246[] = {
|
|
320 |
49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4,
|
|
321 |
25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43
|
|
322 |
};
|
|
323 |
static const int PC2_1357[] = {
|
|
324 |
-1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58,
|
|
325 |
-1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24
|
|
326 |
};
|
|
327 |
static const int leftshifts[] = {
|
|
328 |
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
|
|
329 |
};
|
|
330 |
|
|
331 |
quint32 C, D;
|
|
332 |
quint32 buf[2];
|
|
333 |
int i;
|
|
334 |
|
|
335 |
buf[0] = key_lsw;
|
|
336 |
buf[1] = key_msw;
|
|
337 |
|
|
338 |
C = bitsel(buf, PC1_Cbits, 28);
|
|
339 |
D = bitsel(buf, PC1_Dbits, 28);
|
|
340 |
|
|
341 |
for (i = 0; i < 16; i++) {
|
|
342 |
C = rotl28(C, leftshifts[i]);
|
|
343 |
D = rotl28(D, leftshifts[i]);
|
|
344 |
buf[0] = D;
|
|
345 |
buf[1] = C;
|
|
346 |
sched->k0246[i] = bitsel(buf, PC2_0246, 32);
|
|
347 |
sched->k1357[i] = bitsel(buf, PC2_1357, 32);
|
|
348 |
}
|
|
349 |
}
|
|
350 |
|
|
351 |
static const quint32 SPboxes[8][64] = {
|
|
352 |
{0x01010400, 0x00000000, 0x00010000, 0x01010404,
|
|
353 |
0x01010004, 0x00010404, 0x00000004, 0x00010000,
|
|
354 |
0x00000400, 0x01010400, 0x01010404, 0x00000400,
|
|
355 |
0x01000404, 0x01010004, 0x01000000, 0x00000004,
|
|
356 |
0x00000404, 0x01000400, 0x01000400, 0x00010400,
|
|
357 |
0x00010400, 0x01010000, 0x01010000, 0x01000404,
|
|
358 |
0x00010004, 0x01000004, 0x01000004, 0x00010004,
|
|
359 |
0x00000000, 0x00000404, 0x00010404, 0x01000000,
|
|
360 |
0x00010000, 0x01010404, 0x00000004, 0x01010000,
|
|
361 |
0x01010400, 0x01000000, 0x01000000, 0x00000400,
|
|
362 |
0x01010004, 0x00010000, 0x00010400, 0x01000004,
|
|
363 |
0x00000400, 0x00000004, 0x01000404, 0x00010404,
|
|
364 |
0x01010404, 0x00010004, 0x01010000, 0x01000404,
|
|
365 |
0x01000004, 0x00000404, 0x00010404, 0x01010400,
|
|
366 |
0x00000404, 0x01000400, 0x01000400, 0x00000000,
|
|
367 |
0x00010004, 0x00010400, 0x00000000, 0x01010004},
|
|
368 |
|
|
369 |
{0x80108020, 0x80008000, 0x00008000, 0x00108020,
|
|
370 |
0x00100000, 0x00000020, 0x80100020, 0x80008020,
|
|
371 |
0x80000020, 0x80108020, 0x80108000, 0x80000000,
|
|
372 |
0x80008000, 0x00100000, 0x00000020, 0x80100020,
|
|
373 |
0x00108000, 0x00100020, 0x80008020, 0x00000000,
|
|
374 |
0x80000000, 0x00008000, 0x00108020, 0x80100000,
|
|
375 |
0x00100020, 0x80000020, 0x00000000, 0x00108000,
|
|
376 |
0x00008020, 0x80108000, 0x80100000, 0x00008020,
|
|
377 |
0x00000000, 0x00108020, 0x80100020, 0x00100000,
|
|
378 |
0x80008020, 0x80100000, 0x80108000, 0x00008000,
|
|
379 |
0x80100000, 0x80008000, 0x00000020, 0x80108020,
|
|
380 |
0x00108020, 0x00000020, 0x00008000, 0x80000000,
|
|
381 |
0x00008020, 0x80108000, 0x00100000, 0x80000020,
|
|
382 |
0x00100020, 0x80008020, 0x80000020, 0x00100020,
|
|
383 |
0x00108000, 0x00000000, 0x80008000, 0x00008020,
|
|
384 |
0x80000000, 0x80100020, 0x80108020, 0x00108000},
|
|
385 |
|
|
386 |
{0x00000208, 0x08020200, 0x00000000, 0x08020008,
|
|
387 |
0x08000200, 0x00000000, 0x00020208, 0x08000200,
|
|
388 |
0x00020008, 0x08000008, 0x08000008, 0x00020000,
|
|
389 |
0x08020208, 0x00020008, 0x08020000, 0x00000208,
|
|
390 |
0x08000000, 0x00000008, 0x08020200, 0x00000200,
|
|
391 |
0x00020200, 0x08020000, 0x08020008, 0x00020208,
|
|
392 |
0x08000208, 0x00020200, 0x00020000, 0x08000208,
|
|
393 |
0x00000008, 0x08020208, 0x00000200, 0x08000000,
|
|
394 |
0x08020200, 0x08000000, 0x00020008, 0x00000208,
|
|
395 |
0x00020000, 0x08020200, 0x08000200, 0x00000000,
|
|
396 |
0x00000200, 0x00020008, 0x08020208, 0x08000200,
|
|
397 |
0x08000008, 0x00000200, 0x00000000, 0x08020008,
|
|
398 |
0x08000208, 0x00020000, 0x08000000, 0x08020208,
|
|
399 |
0x00000008, 0x00020208, 0x00020200, 0x08000008,
|
|
400 |
0x08020000, 0x08000208, 0x00000208, 0x08020000,
|
|
401 |
0x00020208, 0x00000008, 0x08020008, 0x00020200},
|
|
402 |
|
|
403 |
{0x00802001, 0x00002081, 0x00002081, 0x00000080,
|
|
404 |
0x00802080, 0x00800081, 0x00800001, 0x00002001,
|
|
405 |
0x00000000, 0x00802000, 0x00802000, 0x00802081,
|
|
406 |
0x00000081, 0x00000000, 0x00800080, 0x00800001,
|
|
407 |
0x00000001, 0x00002000, 0x00800000, 0x00802001,
|
|
408 |
0x00000080, 0x00800000, 0x00002001, 0x00002080,
|
|
409 |
0x00800081, 0x00000001, 0x00002080, 0x00800080,
|
|
410 |
0x00002000, 0x00802080, 0x00802081, 0x00000081,
|
|
411 |
0x00800080, 0x00800001, 0x00802000, 0x00802081,
|
|
412 |
0x00000081, 0x00000000, 0x00000000, 0x00802000,
|
|
413 |
0x00002080, 0x00800080, 0x00800081, 0x00000001,
|
|
414 |
0x00802001, 0x00002081, 0x00002081, 0x00000080,
|
|
415 |
0x00802081, 0x00000081, 0x00000001, 0x00002000,
|
|
416 |
0x00800001, 0x00002001, 0x00802080, 0x00800081,
|
|
417 |
0x00002001, 0x00002080, 0x00800000, 0x00802001,
|
|
418 |
0x00000080, 0x00800000, 0x00002000, 0x00802080},
|
|
419 |
|
|
420 |
{0x00000100, 0x02080100, 0x02080000, 0x42000100,
|
|
421 |
0x00080000, 0x00000100, 0x40000000, 0x02080000,
|
|
422 |
0x40080100, 0x00080000, 0x02000100, 0x40080100,
|
|
423 |
0x42000100, 0x42080000, 0x00080100, 0x40000000,
|
|
424 |
0x02000000, 0x40080000, 0x40080000, 0x00000000,
|
|
425 |
0x40000100, 0x42080100, 0x42080100, 0x02000100,
|
|
426 |
0x42080000, 0x40000100, 0x00000000, 0x42000000,
|
|
427 |
0x02080100, 0x02000000, 0x42000000, 0x00080100,
|
|
428 |
0x00080000, 0x42000100, 0x00000100, 0x02000000,
|
|
429 |
0x40000000, 0x02080000, 0x42000100, 0x40080100,
|
|
430 |
0x02000100, 0x40000000, 0x42080000, 0x02080100,
|
|
431 |
0x40080100, 0x00000100, 0x02000000, 0x42080000,
|
|
432 |
0x42080100, 0x00080100, 0x42000000, 0x42080100,
|
|
433 |
0x02080000, 0x00000000, 0x40080000, 0x42000000,
|
|
434 |
0x00080100, 0x02000100, 0x40000100, 0x00080000,
|
|
435 |
0x00000000, 0x40080000, 0x02080100, 0x40000100},
|
|
436 |
|
|
437 |
{0x20000010, 0x20400000, 0x00004000, 0x20404010,
|
|
438 |
0x20400000, 0x00000010, 0x20404010, 0x00400000,
|
|
439 |
0x20004000, 0x00404010, 0x00400000, 0x20000010,
|
|
440 |
0x00400010, 0x20004000, 0x20000000, 0x00004010,
|
|
441 |
0x00000000, 0x00400010, 0x20004010, 0x00004000,
|
|
442 |
0x00404000, 0x20004010, 0x00000010, 0x20400010,
|
|
443 |
0x20400010, 0x00000000, 0x00404010, 0x20404000,
|
|
444 |
0x00004010, 0x00404000, 0x20404000, 0x20000000,
|
|
445 |
0x20004000, 0x00000010, 0x20400010, 0x00404000,
|
|
446 |
0x20404010, 0x00400000, 0x00004010, 0x20000010,
|
|
447 |
0x00400000, 0x20004000, 0x20000000, 0x00004010,
|
|
448 |
0x20000010, 0x20404010, 0x00404000, 0x20400000,
|
|
449 |
0x00404010, 0x20404000, 0x00000000, 0x20400010,
|
|
450 |
0x00000010, 0x00004000, 0x20400000, 0x00404010,
|
|
451 |
0x00004000, 0x00400010, 0x20004010, 0x00000000,
|
|
452 |
0x20404000, 0x20000000, 0x00400010, 0x20004010},
|
|
453 |
|
|
454 |
{0x00200000, 0x04200002, 0x04000802, 0x00000000,
|
|
455 |
0x00000800, 0x04000802, 0x00200802, 0x04200800,
|
|
456 |
0x04200802, 0x00200000, 0x00000000, 0x04000002,
|
|
457 |
0x00000002, 0x04000000, 0x04200002, 0x00000802,
|
|
458 |
0x04000800, 0x00200802, 0x00200002, 0x04000800,
|
|
459 |
0x04000002, 0x04200000, 0x04200800, 0x00200002,
|
|
460 |
0x04200000, 0x00000800, 0x00000802, 0x04200802,
|
|
461 |
0x00200800, 0x00000002, 0x04000000, 0x00200800,
|
|
462 |
0x04000000, 0x00200800, 0x00200000, 0x04000802,
|
|
463 |
0x04000802, 0x04200002, 0x04200002, 0x00000002,
|
|
464 |
0x00200002, 0x04000000, 0x04000800, 0x00200000,
|
|
465 |
0x04200800, 0x00000802, 0x00200802, 0x04200800,
|
|
466 |
0x00000802, 0x04000002, 0x04200802, 0x04200000,
|
|
467 |
0x00200800, 0x00000000, 0x00000002, 0x04200802,
|
|
468 |
0x00000000, 0x00200802, 0x04200000, 0x00000800,
|
|
469 |
0x04000002, 0x04000800, 0x00000800, 0x00200002},
|
|
470 |
|
|
471 |
{0x10001040, 0x00001000, 0x00040000, 0x10041040,
|
|
472 |
0x10000000, 0x10001040, 0x00000040, 0x10000000,
|
|
473 |
0x00040040, 0x10040000, 0x10041040, 0x00041000,
|
|
474 |
0x10041000, 0x00041040, 0x00001000, 0x00000040,
|
|
475 |
0x10040000, 0x10000040, 0x10001000, 0x00001040,
|
|
476 |
0x00041000, 0x00040040, 0x10040040, 0x10041000,
|
|
477 |
0x00001040, 0x00000000, 0x00000000, 0x10040040,
|
|
478 |
0x10000040, 0x10001000, 0x00041040, 0x00040000,
|
|
479 |
0x00041040, 0x00040000, 0x10041000, 0x00001000,
|
|
480 |
0x00000040, 0x10040040, 0x00001000, 0x00041040,
|
|
481 |
0x10001000, 0x00000040, 0x10000040, 0x10040000,
|
|
482 |
0x10040040, 0x10000000, 0x00040000, 0x10001040,
|
|
483 |
0x00000000, 0x10041040, 0x00040040, 0x10000040,
|
|
484 |
0x10040000, 0x10001000, 0x10001040, 0x00000000,
|
|
485 |
0x10041040, 0x00041000, 0x00041000, 0x00001040,
|
|
486 |
0x00001040, 0x00040040, 0x10000000, 0x10041000}
|
|
487 |
};
|
|
488 |
|
|
489 |
#define f(R, K0246, K1357) (\
|
|
490 |
s0246 = R ^ K0246, \
|
|
491 |
s1357 = R ^ K1357, \
|
|
492 |
s0246 = rotl(s0246, 28), \
|
|
493 |
SPboxes[0] [(s0246 >> 24) & 0x3F] | \
|
|
494 |
SPboxes[1] [(s1357 >> 24) & 0x3F] | \
|
|
495 |
SPboxes[2] [(s0246 >> 16) & 0x3F] | \
|
|
496 |
SPboxes[3] [(s1357 >> 16) & 0x3F] | \
|
|
497 |
SPboxes[4] [(s0246 >> 8) & 0x3F] | \
|
|
498 |
SPboxes[5] [(s1357 >> 8) & 0x3F] | \
|
|
499 |
SPboxes[6] [(s0246 ) & 0x3F] | \
|
|
500 |
SPboxes[7] [(s1357 ) & 0x3F])
|
|
501 |
|
|
502 |
#define bitswap(L, R, n, mask) (\
|
|
503 |
swap = mask & ( (R >> n) ^ L ), \
|
|
504 |
R ^= swap << n, \
|
|
505 |
L ^= swap)
|
|
506 |
|
|
507 |
/* Initial permutation */
|
|
508 |
#define IP(L, R) (\
|
|
509 |
bitswap(R, L, 4, 0x0F0F0F0F), \
|
|
510 |
bitswap(R, L, 16, 0x0000FFFF), \
|
|
511 |
bitswap(L, R, 2, 0x33333333), \
|
|
512 |
bitswap(L, R, 8, 0x00FF00FF), \
|
|
513 |
bitswap(R, L, 1, 0x55555555))
|
|
514 |
|
|
515 |
/* Final permutation */
|
|
516 |
#define FP(L, R) (\
|
|
517 |
bitswap(R, L, 1, 0x55555555), \
|
|
518 |
bitswap(L, R, 8, 0x00FF00FF), \
|
|
519 |
bitswap(L, R, 2, 0x33333333), \
|
|
520 |
bitswap(R, L, 16, 0x0000FFFF), \
|
|
521 |
bitswap(R, L, 4, 0x0F0F0F0F))
|
|
522 |
|
|
523 |
static void
|
|
524 |
des_encipher(quint32 *output, quint32 L, quint32 R,
|
|
525 |
struct des_context *sched)
|
|
526 |
{
|
|
527 |
quint32 swap, s0246, s1357;
|
|
528 |
|
|
529 |
IP(L, R);
|
|
530 |
|
|
531 |
L = rotl(L, 1);
|
|
532 |
R = rotl(R, 1);
|
|
533 |
|
|
534 |
L ^= f(R, sched->k0246[0], sched->k1357[0]);
|
|
535 |
R ^= f(L, sched->k0246[1], sched->k1357[1]);
|
|
536 |
L ^= f(R, sched->k0246[2], sched->k1357[2]);
|
|
537 |
R ^= f(L, sched->k0246[3], sched->k1357[3]);
|
|
538 |
L ^= f(R, sched->k0246[4], sched->k1357[4]);
|
|
539 |
R ^= f(L, sched->k0246[5], sched->k1357[5]);
|
|
540 |
L ^= f(R, sched->k0246[6], sched->k1357[6]);
|
|
541 |
R ^= f(L, sched->k0246[7], sched->k1357[7]);
|
|
542 |
L ^= f(R, sched->k0246[8], sched->k1357[8]);
|
|
543 |
R ^= f(L, sched->k0246[9], sched->k1357[9]);
|
|
544 |
L ^= f(R, sched->k0246[10], sched->k1357[10]);
|
|
545 |
R ^= f(L, sched->k0246[11], sched->k1357[11]);
|
|
546 |
L ^= f(R, sched->k0246[12], sched->k1357[12]);
|
|
547 |
R ^= f(L, sched->k0246[13], sched->k1357[13]);
|
|
548 |
L ^= f(R, sched->k0246[14], sched->k1357[14]);
|
|
549 |
R ^= f(L, sched->k0246[15], sched->k1357[15]);
|
|
550 |
|
|
551 |
L = rotl(L, 31);
|
|
552 |
R = rotl(R, 31);
|
|
553 |
|
|
554 |
swap = L;
|
|
555 |
L = R;
|
|
556 |
R = swap;
|
|
557 |
|
|
558 |
FP(L, R);
|
|
559 |
|
|
560 |
output[0] = L;
|
|
561 |
output[1] = R;
|
|
562 |
}
|
|
563 |
|
|
564 |
#define GET_32BIT_MSB_FIRST(cp) \
|
|
565 |
(((unsigned long)(unsigned char)(cp)[3]) | \
|
|
566 |
((unsigned long)(unsigned char)(cp)[2] << 8) | \
|
|
567 |
((unsigned long)(unsigned char)(cp)[1] << 16) | \
|
|
568 |
((unsigned long)(unsigned char)(cp)[0] << 24))
|
|
569 |
|
|
570 |
#define PUT_32BIT_MSB_FIRST(cp, value) do { \
|
|
571 |
(cp)[3] = (value); \
|
|
572 |
(cp)[2] = (value) >> 8; \
|
|
573 |
(cp)[1] = (value) >> 16; \
|
|
574 |
(cp)[0] = (value) >> 24; } while (0)
|
|
575 |
|
|
576 |
static inline void
|
|
577 |
des_cbc_encrypt(unsigned char *dest, const unsigned char *src,
|
|
578 |
struct des_context *sched)
|
|
579 |
{
|
|
580 |
quint32 out[2], L, R;
|
|
581 |
|
|
582 |
L = GET_32BIT_MSB_FIRST(src);
|
|
583 |
R = GET_32BIT_MSB_FIRST(src + 4);
|
|
584 |
des_encipher(out, L, R, sched);
|
|
585 |
PUT_32BIT_MSB_FIRST(dest, out[0]);
|
|
586 |
PUT_32BIT_MSB_FIRST(dest + 4, out[1]);
|
|
587 |
}
|
|
588 |
|
|
589 |
|
|
590 |
static unsigned char *
|
|
591 |
deshash(unsigned char *dst, const unsigned char *key,
|
|
592 |
const unsigned char *src)
|
|
593 |
{
|
|
594 |
struct des_context ctx;
|
|
595 |
|
|
596 |
des_key_setup(GET_32BIT_MSB_FIRST(key) >> 8,
|
|
597 |
GET_32BIT_MSB_FIRST(key + 3), &ctx);
|
|
598 |
|
|
599 |
des_cbc_encrypt(dst, src, &ctx);
|
|
600 |
|
|
601 |
return dst;
|
|
602 |
}
|