0
|
1 |
/*
|
|
2 |
* jcphuff.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1995-1997, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains Huffman entropy encoding routines for progressive JPEG.
|
|
9 |
*
|
|
10 |
* We do not support output suspension in this module, since the library
|
|
11 |
* currently does not allow multiple-scan files to be written with output
|
|
12 |
* suspension.
|
|
13 |
*/
|
|
14 |
|
|
15 |
#define JPEG_INTERNALS
|
|
16 |
#include "jinclude.h"
|
|
17 |
#include "jpeglib.h"
|
|
18 |
#include "jchuff.h" /* Declarations shared with jchuff.c */
|
|
19 |
|
|
20 |
#ifdef C_PROGRESSIVE_SUPPORTED
|
|
21 |
|
|
22 |
/* Expanded entropy encoder object for progressive Huffman encoding. */
|
|
23 |
|
|
24 |
typedef struct {
|
|
25 |
struct jpeg_entropy_encoder pub; /* public fields */
|
|
26 |
|
|
27 |
/* Mode flag: TRUE for optimization, FALSE for actual data output */
|
|
28 |
boolean gather_statistics;
|
|
29 |
|
|
30 |
/* Bit-level coding status.
|
|
31 |
* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
|
|
32 |
*/
|
|
33 |
JOCTET * next_output_byte; /* => next byte to write in buffer */
|
|
34 |
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
|
35 |
INT32 put_buffer; /* current bit-accumulation buffer */
|
|
36 |
int put_bits; /* # of bits now in it */
|
|
37 |
j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
|
|
38 |
|
|
39 |
/* Coding status for DC components */
|
|
40 |
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
|
41 |
|
|
42 |
/* Coding status for AC components */
|
|
43 |
int ac_tbl_no; /* the table number of the single component */
|
|
44 |
unsigned int EOBRUN; /* run length of EOBs */
|
|
45 |
unsigned int BE; /* # of buffered correction bits before MCU */
|
|
46 |
char * bit_buffer; /* buffer for correction bits (1 per char) */
|
|
47 |
/* packing correction bits tightly would save some space but cost time... */
|
|
48 |
|
|
49 |
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
|
50 |
int next_restart_num; /* next restart number to write (0-7) */
|
|
51 |
|
|
52 |
/* Pointers to derived tables (these workspaces have image lifespan).
|
|
53 |
* Since any one scan codes only DC or only AC, we only need one set
|
|
54 |
* of tables, not one for DC and one for AC.
|
|
55 |
*/
|
|
56 |
c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
|
|
57 |
|
|
58 |
/* Statistics tables for optimization; again, one set is enough */
|
|
59 |
long * count_ptrs[NUM_HUFF_TBLS];
|
|
60 |
} phuff_entropy_encoder;
|
|
61 |
|
|
62 |
typedef phuff_entropy_encoder * phuff_entropy_ptr;
|
|
63 |
|
|
64 |
/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
|
|
65 |
* buffer can hold. Larger sizes may slightly improve compression, but
|
|
66 |
* 1000 is already well into the realm of overkill.
|
|
67 |
* The minimum safe size is 64 bits.
|
|
68 |
*/
|
|
69 |
|
|
70 |
#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
|
|
71 |
|
|
72 |
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
|
73 |
* We assume that int right shift is unsigned if INT32 right shift is,
|
|
74 |
* which should be safe.
|
|
75 |
*/
|
|
76 |
|
|
77 |
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
|
78 |
#define ISHIFT_TEMPS int ishift_temp;
|
|
79 |
#define IRIGHT_SHIFT(x,shft) \
|
|
80 |
((ishift_temp = (x)) < 0 ? \
|
|
81 |
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
|
82 |
(ishift_temp >> (shft)))
|
|
83 |
#else
|
|
84 |
#define ISHIFT_TEMPS
|
|
85 |
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
|
86 |
#endif
|
|
87 |
|
|
88 |
/* Forward declarations */
|
|
89 |
METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
|
|
90 |
JBLOCKROW *MCU_data));
|
|
91 |
METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
|
|
92 |
JBLOCKROW *MCU_data));
|
|
93 |
METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
|
|
94 |
JBLOCKROW *MCU_data));
|
|
95 |
METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
|
|
96 |
JBLOCKROW *MCU_data));
|
|
97 |
METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
|
|
98 |
METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
|
|
99 |
|
|
100 |
|
|
101 |
/*
|
|
102 |
* Initialize for a Huffman-compressed scan using progressive JPEG.
|
|
103 |
*/
|
|
104 |
|
|
105 |
METHODDEF(void)
|
|
106 |
start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
|
|
107 |
{
|
|
108 |
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
|
109 |
boolean is_DC_band;
|
|
110 |
int ci, tbl;
|
|
111 |
jpeg_component_info * compptr;
|
|
112 |
|
|
113 |
entropy->cinfo = cinfo;
|
|
114 |
entropy->gather_statistics = gather_statistics;
|
|
115 |
|
|
116 |
is_DC_band = (cinfo->Ss == 0);
|
|
117 |
|
|
118 |
/* We assume jcmaster.c already validated the scan parameters. */
|
|
119 |
|
|
120 |
/* Select execution routines */
|
|
121 |
if (cinfo->Ah == 0) {
|
|
122 |
if (is_DC_band)
|
|
123 |
entropy->pub.encode_mcu = encode_mcu_DC_first;
|
|
124 |
else
|
|
125 |
entropy->pub.encode_mcu = encode_mcu_AC_first;
|
|
126 |
} else {
|
|
127 |
if (is_DC_band)
|
|
128 |
entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
|
129 |
else {
|
|
130 |
entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
|
131 |
/* AC refinement needs a correction bit buffer */
|
|
132 |
if (entropy->bit_buffer == NULL)
|
|
133 |
entropy->bit_buffer = (char *)
|
|
134 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
135 |
MAX_CORR_BITS * SIZEOF(char));
|
|
136 |
}
|
|
137 |
}
|
|
138 |
if (gather_statistics)
|
|
139 |
entropy->pub.finish_pass = finish_pass_gather_phuff;
|
|
140 |
else
|
|
141 |
entropy->pub.finish_pass = finish_pass_phuff;
|
|
142 |
|
|
143 |
/* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
|
|
144 |
* for AC coefficients.
|
|
145 |
*/
|
|
146 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
147 |
compptr = cinfo->cur_comp_info[ci];
|
|
148 |
/* Initialize DC predictions to 0 */
|
|
149 |
entropy->last_dc_val[ci] = 0;
|
|
150 |
/* Get table index */
|
|
151 |
if (is_DC_band) {
|
|
152 |
if (cinfo->Ah != 0) /* DC refinement needs no table */
|
|
153 |
continue;
|
|
154 |
tbl = compptr->dc_tbl_no;
|
|
155 |
} else {
|
|
156 |
entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
|
|
157 |
}
|
|
158 |
if (gather_statistics) {
|
|
159 |
/* Check for invalid table index */
|
|
160 |
/* (make_c_derived_tbl does this in the other path) */
|
|
161 |
if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
|
|
162 |
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
|
|
163 |
/* Allocate and zero the statistics tables */
|
|
164 |
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
|
165 |
if (entropy->count_ptrs[tbl] == NULL)
|
|
166 |
entropy->count_ptrs[tbl] = (long *)
|
|
167 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
168 |
257 * SIZEOF(long));
|
|
169 |
MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
|
|
170 |
} else {
|
|
171 |
/* Compute derived values for Huffman table */
|
|
172 |
/* We may do this more than once for a table, but it's not expensive */
|
|
173 |
jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
|
|
174 |
& entropy->derived_tbls[tbl]);
|
|
175 |
}
|
|
176 |
}
|
|
177 |
|
|
178 |
/* Initialize AC stuff */
|
|
179 |
entropy->EOBRUN = 0;
|
|
180 |
entropy->BE = 0;
|
|
181 |
|
|
182 |
/* Initialize bit buffer to empty */
|
|
183 |
entropy->put_buffer = 0;
|
|
184 |
entropy->put_bits = 0;
|
|
185 |
|
|
186 |
/* Initialize restart stuff */
|
|
187 |
entropy->restarts_to_go = cinfo->restart_interval;
|
|
188 |
entropy->next_restart_num = 0;
|
|
189 |
}
|
|
190 |
|
|
191 |
|
|
192 |
/* Outputting bytes to the file.
|
|
193 |
* NB: these must be called only when actually outputting,
|
|
194 |
* that is, entropy->gather_statistics == FALSE.
|
|
195 |
*/
|
|
196 |
|
|
197 |
/* Emit a byte */
|
|
198 |
#define emit_byte(entropy,val) \
|
|
199 |
{ *(entropy)->next_output_byte++ = (JOCTET) (val); \
|
|
200 |
if (--(entropy)->free_in_buffer == 0) \
|
|
201 |
dump_buffer(entropy); }
|
|
202 |
|
|
203 |
|
|
204 |
LOCAL(void)
|
|
205 |
dump_buffer (phuff_entropy_ptr entropy)
|
|
206 |
/* Empty the output buffer; we do not support suspension in this module. */
|
|
207 |
{
|
|
208 |
struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
|
|
209 |
|
|
210 |
if (! (*dest->empty_output_buffer) (entropy->cinfo))
|
|
211 |
ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
|
|
212 |
/* After a successful buffer dump, must reset buffer pointers */
|
|
213 |
entropy->next_output_byte = dest->next_output_byte;
|
|
214 |
entropy->free_in_buffer = dest->free_in_buffer;
|
|
215 |
}
|
|
216 |
|
|
217 |
|
|
218 |
/* Outputting bits to the file */
|
|
219 |
|
|
220 |
/* Only the right 24 bits of put_buffer are used; the valid bits are
|
|
221 |
* left-justified in this part. At most 16 bits can be passed to emit_bits
|
|
222 |
* in one call, and we never retain more than 7 bits in put_buffer
|
|
223 |
* between calls, so 24 bits are sufficient.
|
|
224 |
*/
|
|
225 |
|
|
226 |
INLINE
|
|
227 |
LOCAL(void)
|
|
228 |
emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
|
|
229 |
/* Emit some bits, unless we are in gather mode */
|
|
230 |
{
|
|
231 |
/* This routine is heavily used, so it's worth coding tightly. */
|
|
232 |
register INT32 put_buffer = (INT32) code;
|
|
233 |
register int put_bits = entropy->put_bits;
|
|
234 |
|
|
235 |
/* if size is 0, caller used an invalid Huffman table entry */
|
|
236 |
if (size == 0)
|
|
237 |
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
|
238 |
|
|
239 |
if (entropy->gather_statistics)
|
|
240 |
return; /* do nothing if we're only getting stats */
|
|
241 |
|
|
242 |
put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
|
|
243 |
|
|
244 |
put_bits += size; /* new number of bits in buffer */
|
|
245 |
|
|
246 |
put_buffer <<= 24 - put_bits; /* align incoming bits */
|
|
247 |
|
|
248 |
put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
|
|
249 |
|
|
250 |
while (put_bits >= 8) {
|
|
251 |
int c = (int) ((put_buffer >> 16) & 0xFF);
|
|
252 |
|
|
253 |
emit_byte(entropy, c);
|
|
254 |
if (c == 0xFF) { /* need to stuff a zero byte? */
|
|
255 |
emit_byte(entropy, 0);
|
|
256 |
}
|
|
257 |
put_buffer <<= 8;
|
|
258 |
put_bits -= 8;
|
|
259 |
}
|
|
260 |
|
|
261 |
entropy->put_buffer = put_buffer; /* update variables */
|
|
262 |
entropy->put_bits = put_bits;
|
|
263 |
}
|
|
264 |
|
|
265 |
|
|
266 |
LOCAL(void)
|
|
267 |
flush_bits (phuff_entropy_ptr entropy)
|
|
268 |
{
|
|
269 |
emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
|
|
270 |
entropy->put_buffer = 0; /* and reset bit-buffer to empty */
|
|
271 |
entropy->put_bits = 0;
|
|
272 |
}
|
|
273 |
|
|
274 |
|
|
275 |
/*
|
|
276 |
* Emit (or just count) a Huffman symbol.
|
|
277 |
*/
|
|
278 |
|
|
279 |
INLINE
|
|
280 |
LOCAL(void)
|
|
281 |
emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
|
|
282 |
{
|
|
283 |
if (entropy->gather_statistics)
|
|
284 |
entropy->count_ptrs[tbl_no][symbol]++;
|
|
285 |
else {
|
|
286 |
c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
|
|
287 |
emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
|
|
288 |
}
|
|
289 |
}
|
|
290 |
|
|
291 |
|
|
292 |
/*
|
|
293 |
* Emit bits from a correction bit buffer.
|
|
294 |
*/
|
|
295 |
|
|
296 |
LOCAL(void)
|
|
297 |
emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
|
|
298 |
unsigned int nbits)
|
|
299 |
{
|
|
300 |
if (entropy->gather_statistics)
|
|
301 |
return; /* no real work */
|
|
302 |
|
|
303 |
while (nbits > 0) {
|
|
304 |
emit_bits(entropy, (unsigned int) (*bufstart), 1);
|
|
305 |
bufstart++;
|
|
306 |
nbits--;
|
|
307 |
}
|
|
308 |
}
|
|
309 |
|
|
310 |
|
|
311 |
/*
|
|
312 |
* Emit any pending EOBRUN symbol.
|
|
313 |
*/
|
|
314 |
|
|
315 |
LOCAL(void)
|
|
316 |
emit_eobrun (phuff_entropy_ptr entropy)
|
|
317 |
{
|
|
318 |
register int temp, nbits;
|
|
319 |
|
|
320 |
if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
|
|
321 |
temp = entropy->EOBRUN;
|
|
322 |
nbits = 0;
|
|
323 |
while ((temp >>= 1))
|
|
324 |
nbits++;
|
|
325 |
/* safety check: shouldn't happen given limited correction-bit buffer */
|
|
326 |
if (nbits > 14)
|
|
327 |
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
|
328 |
|
|
329 |
emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
|
|
330 |
if (nbits)
|
|
331 |
emit_bits(entropy, entropy->EOBRUN, nbits);
|
|
332 |
|
|
333 |
entropy->EOBRUN = 0;
|
|
334 |
|
|
335 |
/* Emit any buffered correction bits */
|
|
336 |
emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
|
|
337 |
entropy->BE = 0;
|
|
338 |
}
|
|
339 |
}
|
|
340 |
|
|
341 |
|
|
342 |
/*
|
|
343 |
* Emit a restart marker & resynchronize predictions.
|
|
344 |
*/
|
|
345 |
|
|
346 |
LOCAL(void)
|
|
347 |
emit_restart (phuff_entropy_ptr entropy, int restart_num)
|
|
348 |
{
|
|
349 |
int ci;
|
|
350 |
|
|
351 |
emit_eobrun(entropy);
|
|
352 |
|
|
353 |
if (! entropy->gather_statistics) {
|
|
354 |
flush_bits(entropy);
|
|
355 |
emit_byte(entropy, 0xFF);
|
|
356 |
emit_byte(entropy, JPEG_RST0 + restart_num);
|
|
357 |
}
|
|
358 |
|
|
359 |
if (entropy->cinfo->Ss == 0) {
|
|
360 |
/* Re-initialize DC predictions to 0 */
|
|
361 |
for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
|
|
362 |
entropy->last_dc_val[ci] = 0;
|
|
363 |
} else {
|
|
364 |
/* Re-initialize all AC-related fields to 0 */
|
|
365 |
entropy->EOBRUN = 0;
|
|
366 |
entropy->BE = 0;
|
|
367 |
}
|
|
368 |
}
|
|
369 |
|
|
370 |
|
|
371 |
/*
|
|
372 |
* MCU encoding for DC initial scan (either spectral selection,
|
|
373 |
* or first pass of successive approximation).
|
|
374 |
*/
|
|
375 |
|
|
376 |
METHODDEF(boolean)
|
|
377 |
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
378 |
{
|
|
379 |
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
|
380 |
register int temp, temp2;
|
|
381 |
register int nbits;
|
|
382 |
int blkn, ci;
|
|
383 |
int Al = cinfo->Al;
|
|
384 |
JBLOCKROW block;
|
|
385 |
jpeg_component_info * compptr;
|
|
386 |
ISHIFT_TEMPS
|
|
387 |
|
|
388 |
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
389 |
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
390 |
|
|
391 |
/* Emit restart marker if needed */
|
|
392 |
if (cinfo->restart_interval)
|
|
393 |
if (entropy->restarts_to_go == 0)
|
|
394 |
emit_restart(entropy, entropy->next_restart_num);
|
|
395 |
|
|
396 |
/* Encode the MCU data blocks */
|
|
397 |
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
398 |
block = MCU_data[blkn];
|
|
399 |
ci = cinfo->MCU_membership[blkn];
|
|
400 |
compptr = cinfo->cur_comp_info[ci];
|
|
401 |
|
|
402 |
/* Compute the DC value after the required point transform by Al.
|
|
403 |
* This is simply an arithmetic right shift.
|
|
404 |
*/
|
|
405 |
temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
|
|
406 |
|
|
407 |
/* DC differences are figured on the point-transformed values. */
|
|
408 |
temp = temp2 - entropy->last_dc_val[ci];
|
|
409 |
entropy->last_dc_val[ci] = temp2;
|
|
410 |
|
|
411 |
/* Encode the DC coefficient difference per section G.1.2.1 */
|
|
412 |
temp2 = temp;
|
|
413 |
if (temp < 0) {
|
|
414 |
temp = -temp; /* temp is abs value of input */
|
|
415 |
/* For a negative input, want temp2 = bitwise complement of abs(input) */
|
|
416 |
/* This code assumes we are on a two's complement machine */
|
|
417 |
temp2--;
|
|
418 |
}
|
|
419 |
|
|
420 |
/* Find the number of bits needed for the magnitude of the coefficient */
|
|
421 |
nbits = 0;
|
|
422 |
while (temp) {
|
|
423 |
nbits++;
|
|
424 |
temp >>= 1;
|
|
425 |
}
|
|
426 |
/* Check for out-of-range coefficient values.
|
|
427 |
* Since we're encoding a difference, the range limit is twice as much.
|
|
428 |
*/
|
|
429 |
if (nbits > MAX_COEF_BITS+1)
|
|
430 |
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
|
431 |
|
|
432 |
/* Count/emit the Huffman-coded symbol for the number of bits */
|
|
433 |
emit_symbol(entropy, compptr->dc_tbl_no, nbits);
|
|
434 |
|
|
435 |
/* Emit that number of bits of the value, if positive, */
|
|
436 |
/* or the complement of its magnitude, if negative. */
|
|
437 |
if (nbits) /* emit_bits rejects calls with size 0 */
|
|
438 |
emit_bits(entropy, (unsigned int) temp2, nbits);
|
|
439 |
}
|
|
440 |
|
|
441 |
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
442 |
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
443 |
|
|
444 |
/* Update restart-interval state too */
|
|
445 |
if (cinfo->restart_interval) {
|
|
446 |
if (entropy->restarts_to_go == 0) {
|
|
447 |
entropy->restarts_to_go = cinfo->restart_interval;
|
|
448 |
entropy->next_restart_num++;
|
|
449 |
entropy->next_restart_num &= 7;
|
|
450 |
}
|
|
451 |
entropy->restarts_to_go--;
|
|
452 |
}
|
|
453 |
|
|
454 |
return TRUE;
|
|
455 |
}
|
|
456 |
|
|
457 |
|
|
458 |
/*
|
|
459 |
* MCU encoding for AC initial scan (either spectral selection,
|
|
460 |
* or first pass of successive approximation).
|
|
461 |
*/
|
|
462 |
|
|
463 |
METHODDEF(boolean)
|
|
464 |
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
465 |
{
|
|
466 |
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
|
467 |
register int temp, temp2;
|
|
468 |
register int nbits;
|
|
469 |
register int r, k;
|
|
470 |
int Se = cinfo->Se;
|
|
471 |
int Al = cinfo->Al;
|
|
472 |
JBLOCKROW block;
|
|
473 |
|
|
474 |
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
475 |
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
476 |
|
|
477 |
/* Emit restart marker if needed */
|
|
478 |
if (cinfo->restart_interval)
|
|
479 |
if (entropy->restarts_to_go == 0)
|
|
480 |
emit_restart(entropy, entropy->next_restart_num);
|
|
481 |
|
|
482 |
/* Encode the MCU data block */
|
|
483 |
block = MCU_data[0];
|
|
484 |
|
|
485 |
/* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
|
|
486 |
|
|
487 |
r = 0; /* r = run length of zeros */
|
|
488 |
|
|
489 |
for (k = cinfo->Ss; k <= Se; k++) {
|
|
490 |
if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
|
|
491 |
r++;
|
|
492 |
continue;
|
|
493 |
}
|
|
494 |
/* We must apply the point transform by Al. For AC coefficients this
|
|
495 |
* is an integer division with rounding towards 0. To do this portably
|
|
496 |
* in C, we shift after obtaining the absolute value; so the code is
|
|
497 |
* interwoven with finding the abs value (temp) and output bits (temp2).
|
|
498 |
*/
|
|
499 |
if (temp < 0) {
|
|
500 |
temp = -temp; /* temp is abs value of input */
|
|
501 |
temp >>= Al; /* apply the point transform */
|
|
502 |
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */
|
|
503 |
temp2 = ~temp;
|
|
504 |
} else {
|
|
505 |
temp >>= Al; /* apply the point transform */
|
|
506 |
temp2 = temp;
|
|
507 |
}
|
|
508 |
/* Watch out for case that nonzero coef is zero after point transform */
|
|
509 |
if (temp == 0) {
|
|
510 |
r++;
|
|
511 |
continue;
|
|
512 |
}
|
|
513 |
|
|
514 |
/* Emit any pending EOBRUN */
|
|
515 |
if (entropy->EOBRUN > 0)
|
|
516 |
emit_eobrun(entropy);
|
|
517 |
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
|
518 |
while (r > 15) {
|
|
519 |
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
|
520 |
r -= 16;
|
|
521 |
}
|
|
522 |
|
|
523 |
/* Find the number of bits needed for the magnitude of the coefficient */
|
|
524 |
nbits = 1; /* there must be at least one 1 bit */
|
|
525 |
while ((temp >>= 1))
|
|
526 |
nbits++;
|
|
527 |
/* Check for out-of-range coefficient values */
|
|
528 |
if (nbits > MAX_COEF_BITS)
|
|
529 |
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
|
530 |
|
|
531 |
/* Count/emit Huffman symbol for run length / number of bits */
|
|
532 |
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
|
|
533 |
|
|
534 |
/* Emit that number of bits of the value, if positive, */
|
|
535 |
/* or the complement of its magnitude, if negative. */
|
|
536 |
emit_bits(entropy, (unsigned int) temp2, nbits);
|
|
537 |
|
|
538 |
r = 0; /* reset zero run length */
|
|
539 |
}
|
|
540 |
|
|
541 |
if (r > 0) { /* If there are trailing zeroes, */
|
|
542 |
entropy->EOBRUN++; /* count an EOB */
|
|
543 |
if (entropy->EOBRUN == 0x7FFF)
|
|
544 |
emit_eobrun(entropy); /* force it out to avoid overflow */
|
|
545 |
}
|
|
546 |
|
|
547 |
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
548 |
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
549 |
|
|
550 |
/* Update restart-interval state too */
|
|
551 |
if (cinfo->restart_interval) {
|
|
552 |
if (entropy->restarts_to_go == 0) {
|
|
553 |
entropy->restarts_to_go = cinfo->restart_interval;
|
|
554 |
entropy->next_restart_num++;
|
|
555 |
entropy->next_restart_num &= 7;
|
|
556 |
}
|
|
557 |
entropy->restarts_to_go--;
|
|
558 |
}
|
|
559 |
|
|
560 |
return TRUE;
|
|
561 |
}
|
|
562 |
|
|
563 |
|
|
564 |
/*
|
|
565 |
* MCU encoding for DC successive approximation refinement scan.
|
|
566 |
* Note: we assume such scans can be multi-component, although the spec
|
|
567 |
* is not very clear on the point.
|
|
568 |
*/
|
|
569 |
|
|
570 |
METHODDEF(boolean)
|
|
571 |
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
572 |
{
|
|
573 |
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
|
574 |
register int temp;
|
|
575 |
int blkn;
|
|
576 |
int Al = cinfo->Al;
|
|
577 |
JBLOCKROW block;
|
|
578 |
|
|
579 |
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
580 |
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
581 |
|
|
582 |
/* Emit restart marker if needed */
|
|
583 |
if (cinfo->restart_interval)
|
|
584 |
if (entropy->restarts_to_go == 0)
|
|
585 |
emit_restart(entropy, entropy->next_restart_num);
|
|
586 |
|
|
587 |
/* Encode the MCU data blocks */
|
|
588 |
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
589 |
block = MCU_data[blkn];
|
|
590 |
|
|
591 |
/* We simply emit the Al'th bit of the DC coefficient value. */
|
|
592 |
temp = (*block)[0];
|
|
593 |
emit_bits(entropy, (unsigned int) (temp >> Al), 1);
|
|
594 |
}
|
|
595 |
|
|
596 |
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
597 |
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
598 |
|
|
599 |
/* Update restart-interval state too */
|
|
600 |
if (cinfo->restart_interval) {
|
|
601 |
if (entropy->restarts_to_go == 0) {
|
|
602 |
entropy->restarts_to_go = cinfo->restart_interval;
|
|
603 |
entropy->next_restart_num++;
|
|
604 |
entropy->next_restart_num &= 7;
|
|
605 |
}
|
|
606 |
entropy->restarts_to_go--;
|
|
607 |
}
|
|
608 |
|
|
609 |
return TRUE;
|
|
610 |
}
|
|
611 |
|
|
612 |
|
|
613 |
/*
|
|
614 |
* MCU encoding for AC successive approximation refinement scan.
|
|
615 |
*/
|
|
616 |
|
|
617 |
METHODDEF(boolean)
|
|
618 |
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
619 |
{
|
|
620 |
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
|
621 |
register int temp;
|
|
622 |
register int r, k;
|
|
623 |
int EOB;
|
|
624 |
char *BR_buffer;
|
|
625 |
unsigned int BR;
|
|
626 |
int Se = cinfo->Se;
|
|
627 |
int Al = cinfo->Al;
|
|
628 |
JBLOCKROW block;
|
|
629 |
int absvalues[DCTSIZE2];
|
|
630 |
|
|
631 |
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
632 |
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
633 |
|
|
634 |
/* Emit restart marker if needed */
|
|
635 |
if (cinfo->restart_interval)
|
|
636 |
if (entropy->restarts_to_go == 0)
|
|
637 |
emit_restart(entropy, entropy->next_restart_num);
|
|
638 |
|
|
639 |
/* Encode the MCU data block */
|
|
640 |
block = MCU_data[0];
|
|
641 |
|
|
642 |
/* It is convenient to make a pre-pass to determine the transformed
|
|
643 |
* coefficients' absolute values and the EOB position.
|
|
644 |
*/
|
|
645 |
EOB = 0;
|
|
646 |
for (k = cinfo->Ss; k <= Se; k++) {
|
|
647 |
temp = (*block)[jpeg_natural_order[k]];
|
|
648 |
/* We must apply the point transform by Al. For AC coefficients this
|
|
649 |
* is an integer division with rounding towards 0. To do this portably
|
|
650 |
* in C, we shift after obtaining the absolute value.
|
|
651 |
*/
|
|
652 |
if (temp < 0)
|
|
653 |
temp = -temp; /* temp is abs value of input */
|
|
654 |
temp >>= Al; /* apply the point transform */
|
|
655 |
absvalues[k] = temp; /* save abs value for main pass */
|
|
656 |
if (temp == 1)
|
|
657 |
EOB = k; /* EOB = index of last newly-nonzero coef */
|
|
658 |
}
|
|
659 |
|
|
660 |
/* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
|
|
661 |
|
|
662 |
r = 0; /* r = run length of zeros */
|
|
663 |
BR = 0; /* BR = count of buffered bits added now */
|
|
664 |
BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
|
|
665 |
|
|
666 |
for (k = cinfo->Ss; k <= Se; k++) {
|
|
667 |
if ((temp = absvalues[k]) == 0) {
|
|
668 |
r++;
|
|
669 |
continue;
|
|
670 |
}
|
|
671 |
|
|
672 |
/* Emit any required ZRLs, but not if they can be folded into EOB */
|
|
673 |
while (r > 15 && k <= EOB) {
|
|
674 |
/* emit any pending EOBRUN and the BE correction bits */
|
|
675 |
emit_eobrun(entropy);
|
|
676 |
/* Emit ZRL */
|
|
677 |
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
|
678 |
r -= 16;
|
|
679 |
/* Emit buffered correction bits that must be associated with ZRL */
|
|
680 |
emit_buffered_bits(entropy, BR_buffer, BR);
|
|
681 |
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
|
682 |
BR = 0;
|
|
683 |
}
|
|
684 |
|
|
685 |
/* If the coef was previously nonzero, it only needs a correction bit.
|
|
686 |
* NOTE: a straight translation of the spec's figure G.7 would suggest
|
|
687 |
* that we also need to test r > 15. But if r > 15, we can only get here
|
|
688 |
* if k > EOB, which implies that this coefficient is not 1.
|
|
689 |
*/
|
|
690 |
if (temp > 1) {
|
|
691 |
/* The correction bit is the next bit of the absolute value. */
|
|
692 |
BR_buffer[BR++] = (char) (temp & 1);
|
|
693 |
continue;
|
|
694 |
}
|
|
695 |
|
|
696 |
/* Emit any pending EOBRUN and the BE correction bits */
|
|
697 |
emit_eobrun(entropy);
|
|
698 |
|
|
699 |
/* Count/emit Huffman symbol for run length / number of bits */
|
|
700 |
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
|
|
701 |
|
|
702 |
/* Emit output bit for newly-nonzero coef */
|
|
703 |
temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
|
|
704 |
emit_bits(entropy, (unsigned int) temp, 1);
|
|
705 |
|
|
706 |
/* Emit buffered correction bits that must be associated with this code */
|
|
707 |
emit_buffered_bits(entropy, BR_buffer, BR);
|
|
708 |
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
|
709 |
BR = 0;
|
|
710 |
r = 0; /* reset zero run length */
|
|
711 |
}
|
|
712 |
|
|
713 |
if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
|
|
714 |
entropy->EOBRUN++; /* count an EOB */
|
|
715 |
entropy->BE += BR; /* concat my correction bits to older ones */
|
|
716 |
/* We force out the EOB if we risk either:
|
|
717 |
* 1. overflow of the EOB counter;
|
|
718 |
* 2. overflow of the correction bit buffer during the next MCU.
|
|
719 |
*/
|
|
720 |
if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
|
|
721 |
emit_eobrun(entropy);
|
|
722 |
}
|
|
723 |
|
|
724 |
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
725 |
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
726 |
|
|
727 |
/* Update restart-interval state too */
|
|
728 |
if (cinfo->restart_interval) {
|
|
729 |
if (entropy->restarts_to_go == 0) {
|
|
730 |
entropy->restarts_to_go = cinfo->restart_interval;
|
|
731 |
entropy->next_restart_num++;
|
|
732 |
entropy->next_restart_num &= 7;
|
|
733 |
}
|
|
734 |
entropy->restarts_to_go--;
|
|
735 |
}
|
|
736 |
|
|
737 |
return TRUE;
|
|
738 |
}
|
|
739 |
|
|
740 |
|
|
741 |
/*
|
|
742 |
* Finish up at the end of a Huffman-compressed progressive scan.
|
|
743 |
*/
|
|
744 |
|
|
745 |
METHODDEF(void)
|
|
746 |
finish_pass_phuff (j_compress_ptr cinfo)
|
|
747 |
{
|
|
748 |
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
|
749 |
|
|
750 |
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
751 |
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
752 |
|
|
753 |
/* Flush out any buffered data */
|
|
754 |
emit_eobrun(entropy);
|
|
755 |
flush_bits(entropy);
|
|
756 |
|
|
757 |
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
758 |
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
759 |
}
|
|
760 |
|
|
761 |
|
|
762 |
/*
|
|
763 |
* Finish up a statistics-gathering pass and create the new Huffman tables.
|
|
764 |
*/
|
|
765 |
|
|
766 |
METHODDEF(void)
|
|
767 |
finish_pass_gather_phuff (j_compress_ptr cinfo)
|
|
768 |
{
|
|
769 |
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
|
770 |
boolean is_DC_band;
|
|
771 |
int ci, tbl;
|
|
772 |
jpeg_component_info * compptr;
|
|
773 |
JHUFF_TBL **htblptr;
|
|
774 |
boolean did[NUM_HUFF_TBLS];
|
|
775 |
|
|
776 |
/* Flush out buffered data (all we care about is counting the EOB symbol) */
|
|
777 |
emit_eobrun(entropy);
|
|
778 |
|
|
779 |
is_DC_band = (cinfo->Ss == 0);
|
|
780 |
|
|
781 |
/* It's important not to apply jpeg_gen_optimal_table more than once
|
|
782 |
* per table, because it clobbers the input frequency counts!
|
|
783 |
*/
|
|
784 |
MEMZERO(did, SIZEOF(did));
|
|
785 |
|
|
786 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
787 |
compptr = cinfo->cur_comp_info[ci];
|
|
788 |
if (is_DC_band) {
|
|
789 |
if (cinfo->Ah != 0) /* DC refinement needs no table */
|
|
790 |
continue;
|
|
791 |
tbl = compptr->dc_tbl_no;
|
|
792 |
} else {
|
|
793 |
tbl = compptr->ac_tbl_no;
|
|
794 |
}
|
|
795 |
if (! did[tbl]) {
|
|
796 |
if (is_DC_band)
|
|
797 |
htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
|
|
798 |
else
|
|
799 |
htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
|
|
800 |
if (*htblptr == NULL)
|
|
801 |
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
|
802 |
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
|
|
803 |
did[tbl] = TRUE;
|
|
804 |
}
|
|
805 |
}
|
|
806 |
}
|
|
807 |
|
|
808 |
|
|
809 |
/*
|
|
810 |
* Module initialization routine for progressive Huffman entropy encoding.
|
|
811 |
*/
|
|
812 |
|
|
813 |
GLOBAL(void)
|
|
814 |
jinit_phuff_encoder (j_compress_ptr cinfo)
|
|
815 |
{
|
|
816 |
phuff_entropy_ptr entropy;
|
|
817 |
int i;
|
|
818 |
|
|
819 |
entropy = (phuff_entropy_ptr)
|
|
820 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
821 |
SIZEOF(phuff_entropy_encoder));
|
|
822 |
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
|
823 |
entropy->pub.start_pass = start_pass_phuff;
|
|
824 |
|
|
825 |
/* Mark tables unallocated */
|
|
826 |
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
|
827 |
entropy->derived_tbls[i] = NULL;
|
|
828 |
entropy->count_ptrs[i] = NULL;
|
|
829 |
}
|
|
830 |
entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
|
|
831 |
}
|
|
832 |
|
|
833 |
#endif /* C_PROGRESSIVE_SUPPORTED */
|