0
|
1 |
/*
|
|
2 |
* jdhuff.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1991-1997, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains Huffman entropy decoding routines.
|
|
9 |
*
|
|
10 |
* Much of the complexity here has to do with supporting input suspension.
|
|
11 |
* If the data source module demands suspension, we want to be able to back
|
|
12 |
* up to the start of the current MCU. To do this, we copy state variables
|
|
13 |
* into local working storage, and update them back to the permanent
|
|
14 |
* storage only upon successful completion of an MCU.
|
|
15 |
*/
|
|
16 |
|
|
17 |
#define JPEG_INTERNALS
|
|
18 |
#include "jinclude.h"
|
|
19 |
#include "jpeglib.h"
|
|
20 |
#include "jdhuff.h" /* Declarations shared with jdphuff.c */
|
|
21 |
|
|
22 |
|
|
23 |
/*
|
|
24 |
* Expanded entropy decoder object for Huffman decoding.
|
|
25 |
*
|
|
26 |
* The savable_state subrecord contains fields that change within an MCU,
|
|
27 |
* but must not be updated permanently until we complete the MCU.
|
|
28 |
*/
|
|
29 |
|
|
30 |
typedef struct {
|
|
31 |
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
|
32 |
} savable_state;
|
|
33 |
|
|
34 |
/* This macro is to work around compilers with missing or broken
|
|
35 |
* structure assignment. You'll need to fix this code if you have
|
|
36 |
* such a compiler and you change MAX_COMPS_IN_SCAN.
|
|
37 |
*/
|
|
38 |
|
|
39 |
#ifndef NO_STRUCT_ASSIGN
|
|
40 |
#define ASSIGN_STATE(dest,src) ((dest) = (src))
|
|
41 |
#else
|
|
42 |
#if MAX_COMPS_IN_SCAN == 4
|
|
43 |
#define ASSIGN_STATE(dest,src) \
|
|
44 |
((dest).last_dc_val[0] = (src).last_dc_val[0], \
|
|
45 |
(dest).last_dc_val[1] = (src).last_dc_val[1], \
|
|
46 |
(dest).last_dc_val[2] = (src).last_dc_val[2], \
|
|
47 |
(dest).last_dc_val[3] = (src).last_dc_val[3])
|
|
48 |
#endif
|
|
49 |
#endif
|
|
50 |
|
|
51 |
|
|
52 |
typedef struct {
|
|
53 |
struct jpeg_entropy_decoder pub; /* public fields */
|
|
54 |
|
|
55 |
/* These fields are loaded into local variables at start of each MCU.
|
|
56 |
* In case of suspension, we exit WITHOUT updating them.
|
|
57 |
*/
|
|
58 |
bitread_perm_state bitstate; /* Bit buffer at start of MCU */
|
|
59 |
savable_state saved; /* Other state at start of MCU */
|
|
60 |
|
|
61 |
/* These fields are NOT loaded into local working state. */
|
|
62 |
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
|
63 |
|
|
64 |
/* Pointers to derived tables (these workspaces have image lifespan) */
|
|
65 |
d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
|
66 |
d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
|
67 |
|
|
68 |
/* Precalculated info set up by start_pass for use in decode_mcu: */
|
|
69 |
|
|
70 |
/* Pointers to derived tables to be used for each block within an MCU */
|
|
71 |
d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
|
72 |
d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
|
73 |
/* Whether we care about the DC and AC coefficient values for each block */
|
|
74 |
boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
|
|
75 |
boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
|
|
76 |
} huff_entropy_decoder;
|
|
77 |
|
|
78 |
typedef huff_entropy_decoder * huff_entropy_ptr;
|
|
79 |
|
|
80 |
|
|
81 |
/*
|
|
82 |
* Initialize for a Huffman-compressed scan.
|
|
83 |
*/
|
|
84 |
|
|
85 |
METHODDEF(void)
|
|
86 |
start_pass_huff_decoder (j_decompress_ptr cinfo)
|
|
87 |
{
|
|
88 |
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
|
89 |
int ci, blkn, dctbl, actbl;
|
|
90 |
jpeg_component_info * compptr;
|
|
91 |
|
|
92 |
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
|
93 |
* This ought to be an error condition, but we make it a warning because
|
|
94 |
* there are some baseline files out there with all zeroes in these bytes.
|
|
95 |
*/
|
|
96 |
if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
|
|
97 |
cinfo->Ah != 0 || cinfo->Al != 0)
|
|
98 |
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
|
|
99 |
|
|
100 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
101 |
compptr = cinfo->cur_comp_info[ci];
|
|
102 |
dctbl = compptr->dc_tbl_no;
|
|
103 |
actbl = compptr->ac_tbl_no;
|
|
104 |
/* Compute derived values for Huffman tables */
|
|
105 |
/* We may do this more than once for a table, but it's not expensive */
|
|
106 |
jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
|
|
107 |
& entropy->dc_derived_tbls[dctbl]);
|
|
108 |
jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
|
|
109 |
& entropy->ac_derived_tbls[actbl]);
|
|
110 |
/* Initialize DC predictions to 0 */
|
|
111 |
entropy->saved.last_dc_val[ci] = 0;
|
|
112 |
}
|
|
113 |
|
|
114 |
/* Precalculate decoding info for each block in an MCU of this scan */
|
|
115 |
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
116 |
ci = cinfo->MCU_membership[blkn];
|
|
117 |
compptr = cinfo->cur_comp_info[ci];
|
|
118 |
/* Precalculate which table to use for each block */
|
|
119 |
entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
|
|
120 |
entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
|
|
121 |
/* Decide whether we really care about the coefficient values */
|
|
122 |
if (compptr->component_needed) {
|
|
123 |
entropy->dc_needed[blkn] = TRUE;
|
|
124 |
/* we don't need the ACs if producing a 1/8th-size image */
|
|
125 |
entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
|
|
126 |
} else {
|
|
127 |
entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
|
|
128 |
}
|
|
129 |
}
|
|
130 |
|
|
131 |
/* Initialize bitread state variables */
|
|
132 |
entropy->bitstate.bits_left = 0;
|
|
133 |
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
|
|
134 |
entropy->pub.insufficient_data = FALSE;
|
|
135 |
|
|
136 |
/* Initialize restart counter */
|
|
137 |
entropy->restarts_to_go = cinfo->restart_interval;
|
|
138 |
}
|
|
139 |
|
|
140 |
|
|
141 |
/*
|
|
142 |
* Compute the derived values for a Huffman table.
|
|
143 |
* This routine also performs some validation checks on the table.
|
|
144 |
*
|
|
145 |
* Note this is also used by jdphuff.c.
|
|
146 |
*/
|
|
147 |
|
|
148 |
GLOBAL(void)
|
|
149 |
jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
|
|
150 |
d_derived_tbl ** pdtbl)
|
|
151 |
{
|
|
152 |
JHUFF_TBL *htbl;
|
|
153 |
d_derived_tbl *dtbl;
|
|
154 |
int p, i, l, si, numsymbols;
|
|
155 |
int lookbits, ctr;
|
|
156 |
char huffsize[257];
|
|
157 |
unsigned int huffcode[257];
|
|
158 |
unsigned int code;
|
|
159 |
|
|
160 |
/* Note that huffsize[] and huffcode[] are filled in code-length order,
|
|
161 |
* paralleling the order of the symbols themselves in htbl->huffval[].
|
|
162 |
*/
|
|
163 |
|
|
164 |
/* Find the input Huffman table */
|
|
165 |
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
|
166 |
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
|
167 |
htbl =
|
|
168 |
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
|
169 |
if (htbl == NULL)
|
|
170 |
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
|
171 |
|
|
172 |
/* Allocate a workspace if we haven't already done so. */
|
|
173 |
if (*pdtbl == NULL)
|
|
174 |
*pdtbl = (d_derived_tbl *)
|
|
175 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
176 |
SIZEOF(d_derived_tbl));
|
|
177 |
dtbl = *pdtbl;
|
|
178 |
dtbl->pub = htbl; /* fill in back link */
|
|
179 |
|
|
180 |
/* Figure C.1: make table of Huffman code length for each symbol */
|
|
181 |
|
|
182 |
p = 0;
|
|
183 |
for (l = 1; l <= 16; l++) {
|
|
184 |
i = (int) htbl->bits[l];
|
|
185 |
if (i < 0 || p + i > 256) /* protect against table overrun */
|
|
186 |
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
|
187 |
while (i--)
|
|
188 |
huffsize[p++] = (char) l;
|
|
189 |
}
|
|
190 |
huffsize[p] = 0;
|
|
191 |
numsymbols = p;
|
|
192 |
|
|
193 |
/* Figure C.2: generate the codes themselves */
|
|
194 |
/* We also validate that the counts represent a legal Huffman code tree. */
|
|
195 |
|
|
196 |
code = 0;
|
|
197 |
si = huffsize[0];
|
|
198 |
p = 0;
|
|
199 |
while (huffsize[p]) {
|
|
200 |
while (((int) huffsize[p]) == si) {
|
|
201 |
huffcode[p++] = code;
|
|
202 |
code++;
|
|
203 |
}
|
|
204 |
/* code is now 1 more than the last code used for codelength si; but
|
|
205 |
* it must still fit in si bits, since no code is allowed to be all ones.
|
|
206 |
*/
|
|
207 |
if (((INT32) code) >= (((INT32) 1) << si))
|
|
208 |
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
|
209 |
code <<= 1;
|
|
210 |
si++;
|
|
211 |
}
|
|
212 |
|
|
213 |
/* Figure F.15: generate decoding tables for bit-sequential decoding */
|
|
214 |
|
|
215 |
p = 0;
|
|
216 |
for (l = 1; l <= 16; l++) {
|
|
217 |
if (htbl->bits[l]) {
|
|
218 |
/* valoffset[l] = huffval[] index of 1st symbol of code length l,
|
|
219 |
* minus the minimum code of length l
|
|
220 |
*/
|
|
221 |
dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
|
|
222 |
p += htbl->bits[l];
|
|
223 |
dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
|
|
224 |
} else {
|
|
225 |
dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
|
|
226 |
}
|
|
227 |
}
|
|
228 |
dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
|
|
229 |
|
|
230 |
/* Compute lookahead tables to speed up decoding.
|
|
231 |
* First we set all the table entries to 0, indicating "too long";
|
|
232 |
* then we iterate through the Huffman codes that are short enough and
|
|
233 |
* fill in all the entries that correspond to bit sequences starting
|
|
234 |
* with that code.
|
|
235 |
*/
|
|
236 |
|
|
237 |
MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
|
|
238 |
|
|
239 |
p = 0;
|
|
240 |
for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
|
|
241 |
for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
|
|
242 |
/* l = current code's length, p = its index in huffcode[] & huffval[]. */
|
|
243 |
/* Generate left-justified code followed by all possible bit sequences */
|
|
244 |
lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
|
|
245 |
for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
|
|
246 |
dtbl->look_nbits[lookbits] = l;
|
|
247 |
dtbl->look_sym[lookbits] = htbl->huffval[p];
|
|
248 |
lookbits++;
|
|
249 |
}
|
|
250 |
}
|
|
251 |
}
|
|
252 |
|
|
253 |
/* Validate symbols as being reasonable.
|
|
254 |
* For AC tables, we make no check, but accept all byte values 0..255.
|
|
255 |
* For DC tables, we require the symbols to be in range 0..15.
|
|
256 |
* (Tighter bounds could be applied depending on the data depth and mode,
|
|
257 |
* but this is sufficient to ensure safe decoding.)
|
|
258 |
*/
|
|
259 |
if (isDC) {
|
|
260 |
for (i = 0; i < numsymbols; i++) {
|
|
261 |
int sym = htbl->huffval[i];
|
|
262 |
if (sym < 0 || sym > 15)
|
|
263 |
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
|
264 |
}
|
|
265 |
}
|
|
266 |
}
|
|
267 |
|
|
268 |
|
|
269 |
/*
|
|
270 |
* Out-of-line code for bit fetching (shared with jdphuff.c).
|
|
271 |
* See jdhuff.h for info about usage.
|
|
272 |
* Note: current values of get_buffer and bits_left are passed as parameters,
|
|
273 |
* but are returned in the corresponding fields of the state struct.
|
|
274 |
*
|
|
275 |
* On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
|
|
276 |
* of get_buffer to be used. (On machines with wider words, an even larger
|
|
277 |
* buffer could be used.) However, on some machines 32-bit shifts are
|
|
278 |
* quite slow and take time proportional to the number of places shifted.
|
|
279 |
* (This is true with most PC compilers, for instance.) In this case it may
|
|
280 |
* be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
|
|
281 |
* average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
|
|
282 |
*/
|
|
283 |
|
|
284 |
#ifdef SLOW_SHIFT_32
|
|
285 |
#define MIN_GET_BITS 15 /* minimum allowable value */
|
|
286 |
#else
|
|
287 |
#define MIN_GET_BITS (BIT_BUF_SIZE-7)
|
|
288 |
#endif
|
|
289 |
|
|
290 |
|
|
291 |
GLOBAL(boolean)
|
|
292 |
jpeg_fill_bit_buffer (bitread_working_state * state,
|
|
293 |
register bit_buf_type get_buffer, register int bits_left,
|
|
294 |
int nbits)
|
|
295 |
/* Load up the bit buffer to a depth of at least nbits */
|
|
296 |
{
|
|
297 |
/* Copy heavily used state fields into locals (hopefully registers) */
|
|
298 |
register const JOCTET * next_input_byte = state->next_input_byte;
|
|
299 |
register size_t bytes_in_buffer = state->bytes_in_buffer;
|
|
300 |
j_decompress_ptr cinfo = state->cinfo;
|
|
301 |
|
|
302 |
/* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
|
|
303 |
/* (It is assumed that no request will be for more than that many bits.) */
|
|
304 |
/* We fail to do so only if we hit a marker or are forced to suspend. */
|
|
305 |
|
|
306 |
if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
|
|
307 |
while (bits_left < MIN_GET_BITS) {
|
|
308 |
register int c;
|
|
309 |
|
|
310 |
/* Attempt to read a byte */
|
|
311 |
if (bytes_in_buffer == 0) {
|
|
312 |
if (! (*cinfo->src->fill_input_buffer) (cinfo))
|
|
313 |
return FALSE;
|
|
314 |
next_input_byte = cinfo->src->next_input_byte;
|
|
315 |
bytes_in_buffer = cinfo->src->bytes_in_buffer;
|
|
316 |
}
|
|
317 |
bytes_in_buffer--;
|
|
318 |
c = GETJOCTET(*next_input_byte++);
|
|
319 |
|
|
320 |
/* If it's 0xFF, check and discard stuffed zero byte */
|
|
321 |
if (c == 0xFF) {
|
|
322 |
/* Loop here to discard any padding FF's on terminating marker,
|
|
323 |
* so that we can save a valid unread_marker value. NOTE: we will
|
|
324 |
* accept multiple FF's followed by a 0 as meaning a single FF data
|
|
325 |
* byte. This data pattern is not valid according to the standard.
|
|
326 |
*/
|
|
327 |
do {
|
|
328 |
if (bytes_in_buffer == 0) {
|
|
329 |
if (! (*cinfo->src->fill_input_buffer) (cinfo))
|
|
330 |
return FALSE;
|
|
331 |
next_input_byte = cinfo->src->next_input_byte;
|
|
332 |
bytes_in_buffer = cinfo->src->bytes_in_buffer;
|
|
333 |
}
|
|
334 |
bytes_in_buffer--;
|
|
335 |
c = GETJOCTET(*next_input_byte++);
|
|
336 |
} while (c == 0xFF);
|
|
337 |
|
|
338 |
if (c == 0) {
|
|
339 |
/* Found FF/00, which represents an FF data byte */
|
|
340 |
c = 0xFF;
|
|
341 |
} else {
|
|
342 |
/* Oops, it's actually a marker indicating end of compressed data.
|
|
343 |
* Save the marker code for later use.
|
|
344 |
* Fine point: it might appear that we should save the marker into
|
|
345 |
* bitread working state, not straight into permanent state. But
|
|
346 |
* once we have hit a marker, we cannot need to suspend within the
|
|
347 |
* current MCU, because we will read no more bytes from the data
|
|
348 |
* source. So it is OK to update permanent state right away.
|
|
349 |
*/
|
|
350 |
cinfo->unread_marker = c;
|
|
351 |
/* See if we need to insert some fake zero bits. */
|
|
352 |
goto no_more_bytes;
|
|
353 |
}
|
|
354 |
}
|
|
355 |
|
|
356 |
/* OK, load c into get_buffer */
|
|
357 |
get_buffer = (get_buffer << 8) | c;
|
|
358 |
bits_left += 8;
|
|
359 |
} /* end while */
|
|
360 |
} else {
|
|
361 |
no_more_bytes:
|
|
362 |
/* We get here if we've read the marker that terminates the compressed
|
|
363 |
* data segment. There should be enough bits in the buffer register
|
|
364 |
* to satisfy the request; if so, no problem.
|
|
365 |
*/
|
|
366 |
if (nbits > bits_left) {
|
|
367 |
/* Uh-oh. Report corrupted data to user and stuff zeroes into
|
|
368 |
* the data stream, so that we can produce some kind of image.
|
|
369 |
* We use a nonvolatile flag to ensure that only one warning message
|
|
370 |
* appears per data segment.
|
|
371 |
*/
|
|
372 |
if (! cinfo->entropy->insufficient_data) {
|
|
373 |
WARNMS(cinfo, JWRN_HIT_MARKER);
|
|
374 |
cinfo->entropy->insufficient_data = TRUE;
|
|
375 |
}
|
|
376 |
/* Fill the buffer with zero bits */
|
|
377 |
get_buffer <<= MIN_GET_BITS - bits_left;
|
|
378 |
bits_left = MIN_GET_BITS;
|
|
379 |
}
|
|
380 |
}
|
|
381 |
|
|
382 |
/* Unload the local registers */
|
|
383 |
state->next_input_byte = next_input_byte;
|
|
384 |
state->bytes_in_buffer = bytes_in_buffer;
|
|
385 |
state->get_buffer = get_buffer;
|
|
386 |
state->bits_left = bits_left;
|
|
387 |
|
|
388 |
return TRUE;
|
|
389 |
}
|
|
390 |
|
|
391 |
|
|
392 |
/*
|
|
393 |
* Out-of-line code for Huffman code decoding.
|
|
394 |
* See jdhuff.h for info about usage.
|
|
395 |
*/
|
|
396 |
|
|
397 |
GLOBAL(int)
|
|
398 |
jpeg_huff_decode (bitread_working_state * state,
|
|
399 |
register bit_buf_type get_buffer, register int bits_left,
|
|
400 |
d_derived_tbl * htbl, int min_bits)
|
|
401 |
{
|
|
402 |
register int l = min_bits;
|
|
403 |
register INT32 code;
|
|
404 |
|
|
405 |
/* HUFF_DECODE has determined that the code is at least min_bits */
|
|
406 |
/* bits long, so fetch that many bits in one swoop. */
|
|
407 |
|
|
408 |
CHECK_BIT_BUFFER(*state, l, return -1);
|
|
409 |
code = GET_BITS(l);
|
|
410 |
|
|
411 |
/* Collect the rest of the Huffman code one bit at a time. */
|
|
412 |
/* This is per Figure F.16 in the JPEG spec. */
|
|
413 |
|
|
414 |
while (code > htbl->maxcode[l]) {
|
|
415 |
code <<= 1;
|
|
416 |
CHECK_BIT_BUFFER(*state, 1, return -1);
|
|
417 |
code |= GET_BITS(1);
|
|
418 |
l++;
|
|
419 |
}
|
|
420 |
|
|
421 |
/* Unload the local registers */
|
|
422 |
state->get_buffer = get_buffer;
|
|
423 |
state->bits_left = bits_left;
|
|
424 |
|
|
425 |
/* With garbage input we may reach the sentinel value l = 17. */
|
|
426 |
|
|
427 |
if (l > 16) {
|
|
428 |
WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
|
|
429 |
return 0; /* fake a zero as the safest result */
|
|
430 |
}
|
|
431 |
|
|
432 |
return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
|
|
433 |
}
|
|
434 |
|
|
435 |
|
|
436 |
/*
|
|
437 |
* Figure F.12: extend sign bit.
|
|
438 |
* On some machines, a shift and add will be faster than a table lookup.
|
|
439 |
*/
|
|
440 |
|
|
441 |
#ifdef AVOID_TABLES
|
|
442 |
|
|
443 |
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
|
|
444 |
|
|
445 |
#else
|
|
446 |
|
|
447 |
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
|
|
448 |
|
|
449 |
static const int extend_test[16] = /* entry n is 2**(n-1) */
|
|
450 |
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
|
|
451 |
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
|
|
452 |
|
|
453 |
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
|
|
454 |
{ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
|
|
455 |
((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
|
|
456 |
((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
|
|
457 |
((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
|
|
458 |
|
|
459 |
#endif /* AVOID_TABLES */
|
|
460 |
|
|
461 |
|
|
462 |
/*
|
|
463 |
* Check for a restart marker & resynchronize decoder.
|
|
464 |
* Returns FALSE if must suspend.
|
|
465 |
*/
|
|
466 |
|
|
467 |
LOCAL(boolean)
|
|
468 |
process_restart (j_decompress_ptr cinfo)
|
|
469 |
{
|
|
470 |
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
|
471 |
int ci;
|
|
472 |
|
|
473 |
/* Throw away any unused bits remaining in bit buffer; */
|
|
474 |
/* include any full bytes in next_marker's count of discarded bytes */
|
|
475 |
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
|
|
476 |
entropy->bitstate.bits_left = 0;
|
|
477 |
|
|
478 |
/* Advance past the RSTn marker */
|
|
479 |
if (! (*cinfo->marker->read_restart_marker) (cinfo))
|
|
480 |
return FALSE;
|
|
481 |
|
|
482 |
/* Re-initialize DC predictions to 0 */
|
|
483 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
|
484 |
entropy->saved.last_dc_val[ci] = 0;
|
|
485 |
|
|
486 |
/* Reset restart counter */
|
|
487 |
entropy->restarts_to_go = cinfo->restart_interval;
|
|
488 |
|
|
489 |
/* Reset out-of-data flag, unless read_restart_marker left us smack up
|
|
490 |
* against a marker. In that case we will end up treating the next data
|
|
491 |
* segment as empty, and we can avoid producing bogus output pixels by
|
|
492 |
* leaving the flag set.
|
|
493 |
*/
|
|
494 |
if (cinfo->unread_marker == 0)
|
|
495 |
entropy->pub.insufficient_data = FALSE;
|
|
496 |
|
|
497 |
return TRUE;
|
|
498 |
}
|
|
499 |
|
|
500 |
|
|
501 |
/*
|
|
502 |
* Decode and return one MCU's worth of Huffman-compressed coefficients.
|
|
503 |
* The coefficients are reordered from zigzag order into natural array order,
|
|
504 |
* but are not dequantized.
|
|
505 |
*
|
|
506 |
* The i'th block of the MCU is stored into the block pointed to by
|
|
507 |
* MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
|
|
508 |
* (Wholesale zeroing is usually a little faster than retail...)
|
|
509 |
*
|
|
510 |
* Returns FALSE if data source requested suspension. In that case no
|
|
511 |
* changes have been made to permanent state. (Exception: some output
|
|
512 |
* coefficients may already have been assigned. This is harmless for
|
|
513 |
* this module, since we'll just re-assign them on the next call.)
|
|
514 |
*/
|
|
515 |
|
|
516 |
METHODDEF(boolean)
|
|
517 |
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
518 |
{
|
|
519 |
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
|
520 |
int blkn;
|
|
521 |
BITREAD_STATE_VARS;
|
|
522 |
savable_state state;
|
|
523 |
|
|
524 |
/* Process restart marker if needed; may have to suspend */
|
|
525 |
if (cinfo->restart_interval) {
|
|
526 |
if (entropy->restarts_to_go == 0)
|
|
527 |
if (! process_restart(cinfo))
|
|
528 |
return FALSE;
|
|
529 |
}
|
|
530 |
|
|
531 |
/* If we've run out of data, just leave the MCU set to zeroes.
|
|
532 |
* This way, we return uniform gray for the remainder of the segment.
|
|
533 |
*/
|
|
534 |
if (! entropy->pub.insufficient_data) {
|
|
535 |
|
|
536 |
/* Load up working state */
|
|
537 |
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
|
538 |
ASSIGN_STATE(state, entropy->saved);
|
|
539 |
|
|
540 |
/* Outer loop handles each block in the MCU */
|
|
541 |
|
|
542 |
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
543 |
JBLOCKROW block = MCU_data[blkn];
|
|
544 |
d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
|
|
545 |
d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
|
|
546 |
register int s, k, r;
|
|
547 |
|
|
548 |
/* Decode a single block's worth of coefficients */
|
|
549 |
|
|
550 |
/* Section F.2.2.1: decode the DC coefficient difference */
|
|
551 |
HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
|
|
552 |
if (s) {
|
|
553 |
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
|
554 |
r = GET_BITS(s);
|
|
555 |
s = HUFF_EXTEND(r, s);
|
|
556 |
}
|
|
557 |
|
|
558 |
if (entropy->dc_needed[blkn]) {
|
|
559 |
/* Convert DC difference to actual value, update last_dc_val */
|
|
560 |
int ci = cinfo->MCU_membership[blkn];
|
|
561 |
s += state.last_dc_val[ci];
|
|
562 |
state.last_dc_val[ci] = s;
|
|
563 |
/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
|
|
564 |
(*block)[0] = (JCOEF) s;
|
|
565 |
}
|
|
566 |
|
|
567 |
if (entropy->ac_needed[blkn]) {
|
|
568 |
|
|
569 |
/* Section F.2.2.2: decode the AC coefficients */
|
|
570 |
/* Since zeroes are skipped, output area must be cleared beforehand */
|
|
571 |
for (k = 1; k < DCTSIZE2; k++) {
|
|
572 |
HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
|
|
573 |
|
|
574 |
r = s >> 4;
|
|
575 |
s &= 15;
|
|
576 |
|
|
577 |
if (s) {
|
|
578 |
k += r;
|
|
579 |
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
|
580 |
r = GET_BITS(s);
|
|
581 |
s = HUFF_EXTEND(r, s);
|
|
582 |
/* Output coefficient in natural (dezigzagged) order.
|
|
583 |
* Note: the extra entries in jpeg_natural_order[] will save us
|
|
584 |
* if k >= DCTSIZE2, which could happen if the data is corrupted.
|
|
585 |
*/
|
|
586 |
(*block)[jpeg_natural_order[k]] = (JCOEF) s;
|
|
587 |
} else {
|
|
588 |
if (r != 15)
|
|
589 |
break;
|
|
590 |
k += 15;
|
|
591 |
}
|
|
592 |
}
|
|
593 |
|
|
594 |
} else {
|
|
595 |
|
|
596 |
/* Section F.2.2.2: decode the AC coefficients */
|
|
597 |
/* In this path we just discard the values */
|
|
598 |
for (k = 1; k < DCTSIZE2; k++) {
|
|
599 |
HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
|
|
600 |
|
|
601 |
r = s >> 4;
|
|
602 |
s &= 15;
|
|
603 |
|
|
604 |
if (s) {
|
|
605 |
k += r;
|
|
606 |
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
|
607 |
DROP_BITS(s);
|
|
608 |
} else {
|
|
609 |
if (r != 15)
|
|
610 |
break;
|
|
611 |
k += 15;
|
|
612 |
}
|
|
613 |
}
|
|
614 |
|
|
615 |
}
|
|
616 |
}
|
|
617 |
|
|
618 |
/* Completed MCU, so update state */
|
|
619 |
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
|
620 |
ASSIGN_STATE(entropy->saved, state);
|
|
621 |
}
|
|
622 |
|
|
623 |
/* Account for restart interval (no-op if not using restarts) */
|
|
624 |
entropy->restarts_to_go--;
|
|
625 |
|
|
626 |
return TRUE;
|
|
627 |
}
|
|
628 |
|
|
629 |
|
|
630 |
/*
|
|
631 |
* Module initialization routine for Huffman entropy decoding.
|
|
632 |
*/
|
|
633 |
|
|
634 |
GLOBAL(void)
|
|
635 |
jinit_huff_decoder (j_decompress_ptr cinfo)
|
|
636 |
{
|
|
637 |
huff_entropy_ptr entropy;
|
|
638 |
int i;
|
|
639 |
|
|
640 |
entropy = (huff_entropy_ptr)
|
|
641 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
642 |
SIZEOF(huff_entropy_decoder));
|
|
643 |
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
|
|
644 |
entropy->pub.start_pass = start_pass_huff_decoder;
|
|
645 |
entropy->pub.decode_mcu = decode_mcu;
|
|
646 |
|
|
647 |
/* Mark tables unallocated */
|
|
648 |
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
|
649 |
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
|
650 |
}
|
|
651 |
}
|