0
|
1 |
/*
|
|
2 |
* jidctflt.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1994-1998, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains a floating-point implementation of the
|
|
9 |
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
|
10 |
* must also perform dequantization of the input coefficients.
|
|
11 |
*
|
|
12 |
* This implementation should be more accurate than either of the integer
|
|
13 |
* IDCT implementations. However, it may not give the same results on all
|
|
14 |
* machines because of differences in roundoff behavior. Speed will depend
|
|
15 |
* on the hardware's floating point capacity.
|
|
16 |
*
|
|
17 |
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
|
18 |
* on each row (or vice versa, but it's more convenient to emit a row at
|
|
19 |
* a time). Direct algorithms are also available, but they are much more
|
|
20 |
* complex and seem not to be any faster when reduced to code.
|
|
21 |
*
|
|
22 |
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
|
23 |
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
|
24 |
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
|
25 |
* JPEG textbook (see REFERENCES section in file README). The following code
|
|
26 |
* is based directly on figure 4-8 in P&M.
|
|
27 |
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
|
28 |
* possible to arrange the computation so that many of the multiplies are
|
|
29 |
* simple scalings of the final outputs. These multiplies can then be
|
|
30 |
* folded into the multiplications or divisions by the JPEG quantization
|
|
31 |
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
|
32 |
* to be done in the DCT itself.
|
|
33 |
* The primary disadvantage of this method is that with a fixed-point
|
|
34 |
* implementation, accuracy is lost due to imprecise representation of the
|
|
35 |
* scaled quantization values. However, that problem does not arise if
|
|
36 |
* we use floating point arithmetic.
|
|
37 |
*/
|
|
38 |
|
|
39 |
#define JPEG_INTERNALS
|
|
40 |
#include "jinclude.h"
|
|
41 |
#include "jpeglib.h"
|
|
42 |
#include "jdct.h" /* Private declarations for DCT subsystem */
|
|
43 |
|
|
44 |
#ifdef DCT_FLOAT_SUPPORTED
|
|
45 |
|
|
46 |
|
|
47 |
/*
|
|
48 |
* This module is specialized to the case DCTSIZE = 8.
|
|
49 |
*/
|
|
50 |
|
|
51 |
#if DCTSIZE != 8
|
|
52 |
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
|
53 |
#endif
|
|
54 |
|
|
55 |
|
|
56 |
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
|
57 |
* entry; produce a float result.
|
|
58 |
*/
|
|
59 |
|
|
60 |
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
|
|
61 |
|
|
62 |
|
|
63 |
/*
|
|
64 |
* Perform dequantization and inverse DCT on one block of coefficients.
|
|
65 |
*/
|
|
66 |
|
|
67 |
GLOBAL(void)
|
|
68 |
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
69 |
JCOEFPTR coef_block,
|
|
70 |
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
71 |
{
|
|
72 |
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
|
73 |
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
|
74 |
FAST_FLOAT z5, z10, z11, z12, z13;
|
|
75 |
JCOEFPTR inptr;
|
|
76 |
FLOAT_MULT_TYPE * quantptr;
|
|
77 |
FAST_FLOAT * wsptr;
|
|
78 |
JSAMPROW outptr;
|
|
79 |
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
80 |
int ctr;
|
|
81 |
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
|
|
82 |
SHIFT_TEMPS
|
|
83 |
|
|
84 |
/* Pass 1: process columns from input, store into work array. */
|
|
85 |
|
|
86 |
inptr = coef_block;
|
|
87 |
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
|
88 |
wsptr = workspace;
|
|
89 |
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
|
90 |
/* Due to quantization, we will usually find that many of the input
|
|
91 |
* coefficients are zero, especially the AC terms. We can exploit this
|
|
92 |
* by short-circuiting the IDCT calculation for any column in which all
|
|
93 |
* the AC terms are zero. In that case each output is equal to the
|
|
94 |
* DC coefficient (with scale factor as needed).
|
|
95 |
* With typical images and quantization tables, half or more of the
|
|
96 |
* column DCT calculations can be simplified this way.
|
|
97 |
*/
|
|
98 |
|
|
99 |
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
|
100 |
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
|
101 |
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
|
102 |
inptr[DCTSIZE*7] == 0) {
|
|
103 |
/* AC terms all zero */
|
|
104 |
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
105 |
|
|
106 |
wsptr[DCTSIZE*0] = dcval;
|
|
107 |
wsptr[DCTSIZE*1] = dcval;
|
|
108 |
wsptr[DCTSIZE*2] = dcval;
|
|
109 |
wsptr[DCTSIZE*3] = dcval;
|
|
110 |
wsptr[DCTSIZE*4] = dcval;
|
|
111 |
wsptr[DCTSIZE*5] = dcval;
|
|
112 |
wsptr[DCTSIZE*6] = dcval;
|
|
113 |
wsptr[DCTSIZE*7] = dcval;
|
|
114 |
|
|
115 |
inptr++; /* advance pointers to next column */
|
|
116 |
quantptr++;
|
|
117 |
wsptr++;
|
|
118 |
continue;
|
|
119 |
}
|
|
120 |
|
|
121 |
/* Even part */
|
|
122 |
|
|
123 |
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
124 |
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
125 |
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
126 |
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
127 |
|
|
128 |
tmp10 = tmp0 + tmp2; /* phase 3 */
|
|
129 |
tmp11 = tmp0 - tmp2;
|
|
130 |
|
|
131 |
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
|
132 |
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
|
|
133 |
|
|
134 |
tmp0 = tmp10 + tmp13; /* phase 2 */
|
|
135 |
tmp3 = tmp10 - tmp13;
|
|
136 |
tmp1 = tmp11 + tmp12;
|
|
137 |
tmp2 = tmp11 - tmp12;
|
|
138 |
|
|
139 |
/* Odd part */
|
|
140 |
|
|
141 |
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
142 |
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
143 |
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
144 |
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
145 |
|
|
146 |
z13 = tmp6 + tmp5; /* phase 6 */
|
|
147 |
z10 = tmp6 - tmp5;
|
|
148 |
z11 = tmp4 + tmp7;
|
|
149 |
z12 = tmp4 - tmp7;
|
|
150 |
|
|
151 |
tmp7 = z11 + z13; /* phase 5 */
|
|
152 |
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
|
|
153 |
|
|
154 |
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
|
155 |
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
|
156 |
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
|
157 |
|
|
158 |
tmp6 = tmp12 - tmp7; /* phase 2 */
|
|
159 |
tmp5 = tmp11 - tmp6;
|
|
160 |
tmp4 = tmp10 + tmp5;
|
|
161 |
|
|
162 |
wsptr[DCTSIZE*0] = tmp0 + tmp7;
|
|
163 |
wsptr[DCTSIZE*7] = tmp0 - tmp7;
|
|
164 |
wsptr[DCTSIZE*1] = tmp1 + tmp6;
|
|
165 |
wsptr[DCTSIZE*6] = tmp1 - tmp6;
|
|
166 |
wsptr[DCTSIZE*2] = tmp2 + tmp5;
|
|
167 |
wsptr[DCTSIZE*5] = tmp2 - tmp5;
|
|
168 |
wsptr[DCTSIZE*4] = tmp3 + tmp4;
|
|
169 |
wsptr[DCTSIZE*3] = tmp3 - tmp4;
|
|
170 |
|
|
171 |
inptr++; /* advance pointers to next column */
|
|
172 |
quantptr++;
|
|
173 |
wsptr++;
|
|
174 |
}
|
|
175 |
|
|
176 |
/* Pass 2: process rows from work array, store into output array. */
|
|
177 |
/* Note that we must descale the results by a factor of 8 == 2**3. */
|
|
178 |
|
|
179 |
wsptr = workspace;
|
|
180 |
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
|
181 |
outptr = output_buf[ctr] + output_col;
|
|
182 |
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
|
183 |
* However, the column calculation has created many nonzero AC terms, so
|
|
184 |
* the simplification applies less often (typically 5% to 10% of the time).
|
|
185 |
* And testing floats for zero is relatively expensive, so we don't bother.
|
|
186 |
*/
|
|
187 |
|
|
188 |
/* Even part */
|
|
189 |
|
|
190 |
tmp10 = wsptr[0] + wsptr[4];
|
|
191 |
tmp11 = wsptr[0] - wsptr[4];
|
|
192 |
|
|
193 |
tmp13 = wsptr[2] + wsptr[6];
|
|
194 |
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
|
|
195 |
|
|
196 |
tmp0 = tmp10 + tmp13;
|
|
197 |
tmp3 = tmp10 - tmp13;
|
|
198 |
tmp1 = tmp11 + tmp12;
|
|
199 |
tmp2 = tmp11 - tmp12;
|
|
200 |
|
|
201 |
/* Odd part */
|
|
202 |
|
|
203 |
z13 = wsptr[5] + wsptr[3];
|
|
204 |
z10 = wsptr[5] - wsptr[3];
|
|
205 |
z11 = wsptr[1] + wsptr[7];
|
|
206 |
z12 = wsptr[1] - wsptr[7];
|
|
207 |
|
|
208 |
tmp7 = z11 + z13;
|
|
209 |
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
|
|
210 |
|
|
211 |
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
|
212 |
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
|
213 |
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
|
214 |
|
|
215 |
tmp6 = tmp12 - tmp7;
|
|
216 |
tmp5 = tmp11 - tmp6;
|
|
217 |
tmp4 = tmp10 + tmp5;
|
|
218 |
|
|
219 |
/* Final output stage: scale down by a factor of 8 and range-limit */
|
|
220 |
|
|
221 |
outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
|
|
222 |
& RANGE_MASK];
|
|
223 |
outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
|
|
224 |
& RANGE_MASK];
|
|
225 |
outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
|
|
226 |
& RANGE_MASK];
|
|
227 |
outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
|
|
228 |
& RANGE_MASK];
|
|
229 |
outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
|
|
230 |
& RANGE_MASK];
|
|
231 |
outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
|
|
232 |
& RANGE_MASK];
|
|
233 |
outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
|
|
234 |
& RANGE_MASK];
|
|
235 |
outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
|
|
236 |
& RANGE_MASK];
|
|
237 |
|
|
238 |
wsptr += DCTSIZE; /* advance pointer to next row */
|
|
239 |
}
|
|
240 |
}
|
|
241 |
|
|
242 |
#endif /* DCT_FLOAT_SUPPORTED */
|