0
|
1 |
/*
|
|
2 |
* jidctint.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1991-1998, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains a slow-but-accurate integer implementation of the
|
|
9 |
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
|
10 |
* must also perform dequantization of the input coefficients.
|
|
11 |
*
|
|
12 |
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
|
13 |
* on each row (or vice versa, but it's more convenient to emit a row at
|
|
14 |
* a time). Direct algorithms are also available, but they are much more
|
|
15 |
* complex and seem not to be any faster when reduced to code.
|
|
16 |
*
|
|
17 |
* This implementation is based on an algorithm described in
|
|
18 |
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
|
|
19 |
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
|
|
20 |
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
|
|
21 |
* The primary algorithm described there uses 11 multiplies and 29 adds.
|
|
22 |
* We use their alternate method with 12 multiplies and 32 adds.
|
|
23 |
* The advantage of this method is that no data path contains more than one
|
|
24 |
* multiplication; this allows a very simple and accurate implementation in
|
|
25 |
* scaled fixed-point arithmetic, with a minimal number of shifts.
|
|
26 |
*/
|
|
27 |
|
|
28 |
#define JPEG_INTERNALS
|
|
29 |
#include "jinclude.h"
|
|
30 |
#include "jpeglib.h"
|
|
31 |
#include "jdct.h" /* Private declarations for DCT subsystem */
|
|
32 |
|
|
33 |
#ifdef DCT_ISLOW_SUPPORTED
|
|
34 |
|
|
35 |
|
|
36 |
/*
|
|
37 |
* This module is specialized to the case DCTSIZE = 8.
|
|
38 |
*/
|
|
39 |
|
|
40 |
#if DCTSIZE != 8
|
|
41 |
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
|
42 |
#endif
|
|
43 |
|
|
44 |
|
|
45 |
/*
|
|
46 |
* The poop on this scaling stuff is as follows:
|
|
47 |
*
|
|
48 |
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
|
|
49 |
* larger than the true IDCT outputs. The final outputs are therefore
|
|
50 |
* a factor of N larger than desired; since N=8 this can be cured by
|
|
51 |
* a simple right shift at the end of the algorithm. The advantage of
|
|
52 |
* this arrangement is that we save two multiplications per 1-D IDCT,
|
|
53 |
* because the y0 and y4 inputs need not be divided by sqrt(N).
|
|
54 |
*
|
|
55 |
* We have to do addition and subtraction of the integer inputs, which
|
|
56 |
* is no problem, and multiplication by fractional constants, which is
|
|
57 |
* a problem to do in integer arithmetic. We multiply all the constants
|
|
58 |
* by CONST_SCALE and convert them to integer constants (thus retaining
|
|
59 |
* CONST_BITS bits of precision in the constants). After doing a
|
|
60 |
* multiplication we have to divide the product by CONST_SCALE, with proper
|
|
61 |
* rounding, to produce the correct output. This division can be done
|
|
62 |
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
|
|
63 |
* as long as possible so that partial sums can be added together with
|
|
64 |
* full fractional precision.
|
|
65 |
*
|
|
66 |
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
|
|
67 |
* they are represented to better-than-integral precision. These outputs
|
|
68 |
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
|
|
69 |
* with the recommended scaling. (To scale up 12-bit sample data further, an
|
|
70 |
* intermediate INT32 array would be needed.)
|
|
71 |
*
|
|
72 |
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
|
|
73 |
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
|
|
74 |
* shows that the values given below are the most effective.
|
|
75 |
*/
|
|
76 |
|
|
77 |
#if BITS_IN_JSAMPLE == 8
|
|
78 |
#define CONST_BITS 13
|
|
79 |
#define PASS1_BITS 2
|
|
80 |
#else
|
|
81 |
#define CONST_BITS 13
|
|
82 |
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
|
83 |
#endif
|
|
84 |
|
|
85 |
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
|
86 |
* causing a lot of useless floating-point operations at run time.
|
|
87 |
* To get around this we use the following pre-calculated constants.
|
|
88 |
* If you change CONST_BITS you may want to add appropriate values.
|
|
89 |
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
|
90 |
*/
|
|
91 |
|
|
92 |
#if CONST_BITS == 13
|
|
93 |
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
|
|
94 |
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
|
|
95 |
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
|
|
96 |
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
|
|
97 |
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
|
|
98 |
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
|
|
99 |
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
|
|
100 |
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
|
|
101 |
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
|
|
102 |
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
|
|
103 |
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
|
|
104 |
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
|
|
105 |
#else
|
|
106 |
#define FIX_0_298631336 FIX(0.298631336)
|
|
107 |
#define FIX_0_390180644 FIX(0.390180644)
|
|
108 |
#define FIX_0_541196100 FIX(0.541196100)
|
|
109 |
#define FIX_0_765366865 FIX(0.765366865)
|
|
110 |
#define FIX_0_899976223 FIX(0.899976223)
|
|
111 |
#define FIX_1_175875602 FIX(1.175875602)
|
|
112 |
#define FIX_1_501321110 FIX(1.501321110)
|
|
113 |
#define FIX_1_847759065 FIX(1.847759065)
|
|
114 |
#define FIX_1_961570560 FIX(1.961570560)
|
|
115 |
#define FIX_2_053119869 FIX(2.053119869)
|
|
116 |
#define FIX_2_562915447 FIX(2.562915447)
|
|
117 |
#define FIX_3_072711026 FIX(3.072711026)
|
|
118 |
#endif
|
|
119 |
|
|
120 |
|
|
121 |
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
|
122 |
* For 8-bit samples with the recommended scaling, all the variable
|
|
123 |
* and constant values involved are no more than 16 bits wide, so a
|
|
124 |
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
|
125 |
* For 12-bit samples, a full 32-bit multiplication will be needed.
|
|
126 |
*/
|
|
127 |
|
|
128 |
#if BITS_IN_JSAMPLE == 8
|
|
129 |
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
|
130 |
#else
|
|
131 |
#define MULTIPLY(var,const) ((var) * (const))
|
|
132 |
#endif
|
|
133 |
|
|
134 |
|
|
135 |
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
|
136 |
* entry; produce an int result. In this module, both inputs and result
|
|
137 |
* are 16 bits or less, so either int or short multiply will work.
|
|
138 |
*/
|
|
139 |
|
|
140 |
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
|
|
141 |
|
|
142 |
|
|
143 |
/*
|
|
144 |
* Perform dequantization and inverse DCT on one block of coefficients.
|
|
145 |
*/
|
|
146 |
|
|
147 |
GLOBAL(void)
|
|
148 |
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
149 |
JCOEFPTR coef_block,
|
|
150 |
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
151 |
{
|
|
152 |
INT32 tmp0, tmp1, tmp2, tmp3;
|
|
153 |
INT32 tmp10, tmp11, tmp12, tmp13;
|
|
154 |
INT32 z1, z2, z3, z4, z5;
|
|
155 |
JCOEFPTR inptr;
|
|
156 |
ISLOW_MULT_TYPE * quantptr;
|
|
157 |
int * wsptr;
|
|
158 |
JSAMPROW outptr;
|
|
159 |
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
160 |
int ctr;
|
|
161 |
int workspace[DCTSIZE2]; /* buffers data between passes */
|
|
162 |
SHIFT_TEMPS
|
|
163 |
|
|
164 |
/* Pass 1: process columns from input, store into work array. */
|
|
165 |
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
|
|
166 |
/* furthermore, we scale the results by 2**PASS1_BITS. */
|
|
167 |
|
|
168 |
inptr = coef_block;
|
|
169 |
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
170 |
wsptr = workspace;
|
|
171 |
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
|
172 |
/* Due to quantization, we will usually find that many of the input
|
|
173 |
* coefficients are zero, especially the AC terms. We can exploit this
|
|
174 |
* by short-circuiting the IDCT calculation for any column in which all
|
|
175 |
* the AC terms are zero. In that case each output is equal to the
|
|
176 |
* DC coefficient (with scale factor as needed).
|
|
177 |
* With typical images and quantization tables, half or more of the
|
|
178 |
* column DCT calculations can be simplified this way.
|
|
179 |
*/
|
|
180 |
|
|
181 |
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
|
182 |
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
|
183 |
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
|
184 |
inptr[DCTSIZE*7] == 0) {
|
|
185 |
/* AC terms all zero */
|
|
186 |
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
|
187 |
|
|
188 |
wsptr[DCTSIZE*0] = dcval;
|
|
189 |
wsptr[DCTSIZE*1] = dcval;
|
|
190 |
wsptr[DCTSIZE*2] = dcval;
|
|
191 |
wsptr[DCTSIZE*3] = dcval;
|
|
192 |
wsptr[DCTSIZE*4] = dcval;
|
|
193 |
wsptr[DCTSIZE*5] = dcval;
|
|
194 |
wsptr[DCTSIZE*6] = dcval;
|
|
195 |
wsptr[DCTSIZE*7] = dcval;
|
|
196 |
|
|
197 |
inptr++; /* advance pointers to next column */
|
|
198 |
quantptr++;
|
|
199 |
wsptr++;
|
|
200 |
continue;
|
|
201 |
}
|
|
202 |
|
|
203 |
/* Even part: reverse the even part of the forward DCT. */
|
|
204 |
/* The rotator is sqrt(2)*c(-6). */
|
|
205 |
|
|
206 |
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
207 |
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
208 |
|
|
209 |
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
|
|
210 |
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
|
|
211 |
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
|
|
212 |
|
|
213 |
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
214 |
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
215 |
|
|
216 |
tmp0 = (z2 + z3) << CONST_BITS;
|
|
217 |
tmp1 = (z2 - z3) << CONST_BITS;
|
|
218 |
|
|
219 |
tmp10 = tmp0 + tmp3;
|
|
220 |
tmp13 = tmp0 - tmp3;
|
|
221 |
tmp11 = tmp1 + tmp2;
|
|
222 |
tmp12 = tmp1 - tmp2;
|
|
223 |
|
|
224 |
/* Odd part per figure 8; the matrix is unitary and hence its
|
|
225 |
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
|
226 |
*/
|
|
227 |
|
|
228 |
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
229 |
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
230 |
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
231 |
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
232 |
|
|
233 |
z1 = tmp0 + tmp3;
|
|
234 |
z2 = tmp1 + tmp2;
|
|
235 |
z3 = tmp0 + tmp2;
|
|
236 |
z4 = tmp1 + tmp3;
|
|
237 |
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
|
238 |
|
|
239 |
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
|
240 |
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
|
241 |
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
|
242 |
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
|
243 |
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
|
244 |
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
|
245 |
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
|
246 |
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
|
247 |
|
|
248 |
z3 += z5;
|
|
249 |
z4 += z5;
|
|
250 |
|
|
251 |
tmp0 += z1 + z3;
|
|
252 |
tmp1 += z2 + z4;
|
|
253 |
tmp2 += z2 + z3;
|
|
254 |
tmp3 += z1 + z4;
|
|
255 |
|
|
256 |
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
|
257 |
|
|
258 |
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
|
|
259 |
wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
|
|
260 |
wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
|
|
261 |
wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
|
|
262 |
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
|
|
263 |
wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
|
|
264 |
wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
|
|
265 |
wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
|
|
266 |
|
|
267 |
inptr++; /* advance pointers to next column */
|
|
268 |
quantptr++;
|
|
269 |
wsptr++;
|
|
270 |
}
|
|
271 |
|
|
272 |
/* Pass 2: process rows from work array, store into output array. */
|
|
273 |
/* Note that we must descale the results by a factor of 8 == 2**3, */
|
|
274 |
/* and also undo the PASS1_BITS scaling. */
|
|
275 |
|
|
276 |
wsptr = workspace;
|
|
277 |
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
|
278 |
outptr = output_buf[ctr] + output_col;
|
|
279 |
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
|
280 |
* However, the column calculation has created many nonzero AC terms, so
|
|
281 |
* the simplification applies less often (typically 5% to 10% of the time).
|
|
282 |
* On machines with very fast multiplication, it's possible that the
|
|
283 |
* test takes more time than it's worth. In that case this section
|
|
284 |
* may be commented out.
|
|
285 |
*/
|
|
286 |
|
|
287 |
#ifndef NO_ZERO_ROW_TEST
|
|
288 |
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
|
|
289 |
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
|
|
290 |
/* AC terms all zero */
|
|
291 |
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
|
292 |
& RANGE_MASK];
|
|
293 |
|
|
294 |
outptr[0] = dcval;
|
|
295 |
outptr[1] = dcval;
|
|
296 |
outptr[2] = dcval;
|
|
297 |
outptr[3] = dcval;
|
|
298 |
outptr[4] = dcval;
|
|
299 |
outptr[5] = dcval;
|
|
300 |
outptr[6] = dcval;
|
|
301 |
outptr[7] = dcval;
|
|
302 |
|
|
303 |
wsptr += DCTSIZE; /* advance pointer to next row */
|
|
304 |
continue;
|
|
305 |
}
|
|
306 |
#endif
|
|
307 |
|
|
308 |
/* Even part: reverse the even part of the forward DCT. */
|
|
309 |
/* The rotator is sqrt(2)*c(-6). */
|
|
310 |
|
|
311 |
z2 = (INT32) wsptr[2];
|
|
312 |
z3 = (INT32) wsptr[6];
|
|
313 |
|
|
314 |
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
|
|
315 |
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
|
|
316 |
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
|
|
317 |
|
|
318 |
tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
|
|
319 |
tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
|
|
320 |
|
|
321 |
tmp10 = tmp0 + tmp3;
|
|
322 |
tmp13 = tmp0 - tmp3;
|
|
323 |
tmp11 = tmp1 + tmp2;
|
|
324 |
tmp12 = tmp1 - tmp2;
|
|
325 |
|
|
326 |
/* Odd part per figure 8; the matrix is unitary and hence its
|
|
327 |
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
|
328 |
*/
|
|
329 |
|
|
330 |
tmp0 = (INT32) wsptr[7];
|
|
331 |
tmp1 = (INT32) wsptr[5];
|
|
332 |
tmp2 = (INT32) wsptr[3];
|
|
333 |
tmp3 = (INT32) wsptr[1];
|
|
334 |
|
|
335 |
z1 = tmp0 + tmp3;
|
|
336 |
z2 = tmp1 + tmp2;
|
|
337 |
z3 = tmp0 + tmp2;
|
|
338 |
z4 = tmp1 + tmp3;
|
|
339 |
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
|
340 |
|
|
341 |
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
|
342 |
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
|
343 |
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
|
344 |
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
|
345 |
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
|
346 |
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
|
347 |
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
|
348 |
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
|
349 |
|
|
350 |
z3 += z5;
|
|
351 |
z4 += z5;
|
|
352 |
|
|
353 |
tmp0 += z1 + z3;
|
|
354 |
tmp1 += z2 + z4;
|
|
355 |
tmp2 += z2 + z3;
|
|
356 |
tmp3 += z1 + z4;
|
|
357 |
|
|
358 |
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
|
359 |
|
|
360 |
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
|
|
361 |
CONST_BITS+PASS1_BITS+3)
|
|
362 |
& RANGE_MASK];
|
|
363 |
outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
|
|
364 |
CONST_BITS+PASS1_BITS+3)
|
|
365 |
& RANGE_MASK];
|
|
366 |
outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
|
|
367 |
CONST_BITS+PASS1_BITS+3)
|
|
368 |
& RANGE_MASK];
|
|
369 |
outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
|
|
370 |
CONST_BITS+PASS1_BITS+3)
|
|
371 |
& RANGE_MASK];
|
|
372 |
outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
|
|
373 |
CONST_BITS+PASS1_BITS+3)
|
|
374 |
& RANGE_MASK];
|
|
375 |
outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
|
|
376 |
CONST_BITS+PASS1_BITS+3)
|
|
377 |
& RANGE_MASK];
|
|
378 |
outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
|
|
379 |
CONST_BITS+PASS1_BITS+3)
|
|
380 |
& RANGE_MASK];
|
|
381 |
outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
|
|
382 |
CONST_BITS+PASS1_BITS+3)
|
|
383 |
& RANGE_MASK];
|
|
384 |
|
|
385 |
wsptr += DCTSIZE; /* advance pointer to next row */
|
|
386 |
}
|
|
387 |
}
|
|
388 |
|
|
389 |
#endif /* DCT_ISLOW_SUPPORTED */
|