0
|
1 |
/*
|
|
2 |
* jquant2.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1991-1996, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains 2-pass color quantization (color mapping) routines.
|
|
9 |
* These routines provide selection of a custom color map for an image,
|
|
10 |
* followed by mapping of the image to that color map, with optional
|
|
11 |
* Floyd-Steinberg dithering.
|
|
12 |
* It is also possible to use just the second pass to map to an arbitrary
|
|
13 |
* externally-given color map.
|
|
14 |
*
|
|
15 |
* Note: ordered dithering is not supported, since there isn't any fast
|
|
16 |
* way to compute intercolor distances; it's unclear that ordered dither's
|
|
17 |
* fundamental assumptions even hold with an irregularly spaced color map.
|
|
18 |
*/
|
|
19 |
|
|
20 |
#define JPEG_INTERNALS
|
|
21 |
#include "jinclude.h"
|
|
22 |
#include "jpeglib.h"
|
|
23 |
|
|
24 |
#ifdef QUANT_2PASS_SUPPORTED
|
|
25 |
|
|
26 |
|
|
27 |
/*
|
|
28 |
* This module implements the well-known Heckbert paradigm for color
|
|
29 |
* quantization. Most of the ideas used here can be traced back to
|
|
30 |
* Heckbert's seminal paper
|
|
31 |
* Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
|
|
32 |
* Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
|
|
33 |
*
|
|
34 |
* In the first pass over the image, we accumulate a histogram showing the
|
|
35 |
* usage count of each possible color. To keep the histogram to a reasonable
|
|
36 |
* size, we reduce the precision of the input; typical practice is to retain
|
|
37 |
* 5 or 6 bits per color, so that 8 or 4 different input values are counted
|
|
38 |
* in the same histogram cell.
|
|
39 |
*
|
|
40 |
* Next, the color-selection step begins with a box representing the whole
|
|
41 |
* color space, and repeatedly splits the "largest" remaining box until we
|
|
42 |
* have as many boxes as desired colors. Then the mean color in each
|
|
43 |
* remaining box becomes one of the possible output colors.
|
|
44 |
*
|
|
45 |
* The second pass over the image maps each input pixel to the closest output
|
|
46 |
* color (optionally after applying a Floyd-Steinberg dithering correction).
|
|
47 |
* This mapping is logically trivial, but making it go fast enough requires
|
|
48 |
* considerable care.
|
|
49 |
*
|
|
50 |
* Heckbert-style quantizers vary a good deal in their policies for choosing
|
|
51 |
* the "largest" box and deciding where to cut it. The particular policies
|
|
52 |
* used here have proved out well in experimental comparisons, but better ones
|
|
53 |
* may yet be found.
|
|
54 |
*
|
|
55 |
* In earlier versions of the IJG code, this module quantized in YCbCr color
|
|
56 |
* space, processing the raw upsampled data without a color conversion step.
|
|
57 |
* This allowed the color conversion math to be done only once per colormap
|
|
58 |
* entry, not once per pixel. However, that optimization precluded other
|
|
59 |
* useful optimizations (such as merging color conversion with upsampling)
|
|
60 |
* and it also interfered with desired capabilities such as quantizing to an
|
|
61 |
* externally-supplied colormap. We have therefore abandoned that approach.
|
|
62 |
* The present code works in the post-conversion color space, typically RGB.
|
|
63 |
*
|
|
64 |
* To improve the visual quality of the results, we actually work in scaled
|
|
65 |
* RGB space, giving G distances more weight than R, and R in turn more than
|
|
66 |
* B. To do everything in integer math, we must use integer scale factors.
|
|
67 |
* The 2/3/1 scale factors used here correspond loosely to the relative
|
|
68 |
* weights of the colors in the NTSC grayscale equation.
|
|
69 |
* If you want to use this code to quantize a non-RGB color space, you'll
|
|
70 |
* probably need to change these scale factors.
|
|
71 |
*/
|
|
72 |
|
|
73 |
#define R_SCALE 2 /* scale R distances by this much */
|
|
74 |
#define G_SCALE 3 /* scale G distances by this much */
|
|
75 |
#define B_SCALE 1 /* and B by this much */
|
|
76 |
|
|
77 |
/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
|
|
78 |
* in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
|
|
79 |
* and B,G,R orders. If you define some other weird order in jmorecfg.h,
|
|
80 |
* you'll get compile errors until you extend this logic. In that case
|
|
81 |
* you'll probably want to tweak the histogram sizes too.
|
|
82 |
*/
|
|
83 |
|
|
84 |
#if RGB_RED == 0
|
|
85 |
#define C0_SCALE R_SCALE
|
|
86 |
#endif
|
|
87 |
#if RGB_BLUE == 0
|
|
88 |
#define C0_SCALE B_SCALE
|
|
89 |
#endif
|
|
90 |
#if RGB_GREEN == 1
|
|
91 |
#define C1_SCALE G_SCALE
|
|
92 |
#endif
|
|
93 |
#if RGB_RED == 2
|
|
94 |
#define C2_SCALE R_SCALE
|
|
95 |
#endif
|
|
96 |
#if RGB_BLUE == 2
|
|
97 |
#define C2_SCALE B_SCALE
|
|
98 |
#endif
|
|
99 |
|
|
100 |
|
|
101 |
/*
|
|
102 |
* First we have the histogram data structure and routines for creating it.
|
|
103 |
*
|
|
104 |
* The number of bits of precision can be adjusted by changing these symbols.
|
|
105 |
* We recommend keeping 6 bits for G and 5 each for R and B.
|
|
106 |
* If you have plenty of memory and cycles, 6 bits all around gives marginally
|
|
107 |
* better results; if you are short of memory, 5 bits all around will save
|
|
108 |
* some space but degrade the results.
|
|
109 |
* To maintain a fully accurate histogram, we'd need to allocate a "long"
|
|
110 |
* (preferably unsigned long) for each cell. In practice this is overkill;
|
|
111 |
* we can get by with 16 bits per cell. Few of the cell counts will overflow,
|
|
112 |
* and clamping those that do overflow to the maximum value will give close-
|
|
113 |
* enough results. This reduces the recommended histogram size from 256Kb
|
|
114 |
* to 128Kb, which is a useful savings on PC-class machines.
|
|
115 |
* (In the second pass the histogram space is re-used for pixel mapping data;
|
|
116 |
* in that capacity, each cell must be able to store zero to the number of
|
|
117 |
* desired colors. 16 bits/cell is plenty for that too.)
|
|
118 |
* Since the JPEG code is intended to run in small memory model on 80x86
|
|
119 |
* machines, we can't just allocate the histogram in one chunk. Instead
|
|
120 |
* of a true 3-D array, we use a row of pointers to 2-D arrays. Each
|
|
121 |
* pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
|
|
122 |
* each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
|
|
123 |
* on 80x86 machines, the pointer row is in near memory but the actual
|
|
124 |
* arrays are in far memory (same arrangement as we use for image arrays).
|
|
125 |
*/
|
|
126 |
|
|
127 |
#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
|
|
128 |
|
|
129 |
/* These will do the right thing for either R,G,B or B,G,R color order,
|
|
130 |
* but you may not like the results for other color orders.
|
|
131 |
*/
|
|
132 |
#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
|
|
133 |
#define HIST_C1_BITS 6 /* bits of precision in G histogram */
|
|
134 |
#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
|
|
135 |
|
|
136 |
/* Number of elements along histogram axes. */
|
|
137 |
#define HIST_C0_ELEMS (1<<HIST_C0_BITS)
|
|
138 |
#define HIST_C1_ELEMS (1<<HIST_C1_BITS)
|
|
139 |
#define HIST_C2_ELEMS (1<<HIST_C2_BITS)
|
|
140 |
|
|
141 |
/* These are the amounts to shift an input value to get a histogram index. */
|
|
142 |
#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
|
|
143 |
#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
|
|
144 |
#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
|
|
145 |
|
|
146 |
|
|
147 |
typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
|
|
148 |
|
|
149 |
typedef histcell FAR * histptr; /* for pointers to histogram cells */
|
|
150 |
|
|
151 |
typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
|
|
152 |
typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
|
|
153 |
typedef hist2d * hist3d; /* type for top-level pointer */
|
|
154 |
|
|
155 |
|
|
156 |
/* Declarations for Floyd-Steinberg dithering.
|
|
157 |
*
|
|
158 |
* Errors are accumulated into the array fserrors[], at a resolution of
|
|
159 |
* 1/16th of a pixel count. The error at a given pixel is propagated
|
|
160 |
* to its not-yet-processed neighbors using the standard F-S fractions,
|
|
161 |
* ... (here) 7/16
|
|
162 |
* 3/16 5/16 1/16
|
|
163 |
* We work left-to-right on even rows, right-to-left on odd rows.
|
|
164 |
*
|
|
165 |
* We can get away with a single array (holding one row's worth of errors)
|
|
166 |
* by using it to store the current row's errors at pixel columns not yet
|
|
167 |
* processed, but the next row's errors at columns already processed. We
|
|
168 |
* need only a few extra variables to hold the errors immediately around the
|
|
169 |
* current column. (If we are lucky, those variables are in registers, but
|
|
170 |
* even if not, they're probably cheaper to access than array elements are.)
|
|
171 |
*
|
|
172 |
* The fserrors[] array has (#columns + 2) entries; the extra entry at
|
|
173 |
* each end saves us from special-casing the first and last pixels.
|
|
174 |
* Each entry is three values long, one value for each color component.
|
|
175 |
*
|
|
176 |
* Note: on a wide image, we might not have enough room in a PC's near data
|
|
177 |
* segment to hold the error array; so it is allocated with alloc_large.
|
|
178 |
*/
|
|
179 |
|
|
180 |
#if BITS_IN_JSAMPLE == 8
|
|
181 |
typedef INT16 FSERROR; /* 16 bits should be enough */
|
|
182 |
typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
|
183 |
#else
|
|
184 |
typedef INT32 FSERROR; /* may need more than 16 bits */
|
|
185 |
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
|
|
186 |
#endif
|
|
187 |
|
|
188 |
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
|
|
189 |
|
|
190 |
|
|
191 |
/* Private subobject */
|
|
192 |
|
|
193 |
typedef struct {
|
|
194 |
struct jpeg_color_quantizer pub; /* public fields */
|
|
195 |
|
|
196 |
/* Space for the eventually created colormap is stashed here */
|
|
197 |
JSAMPARRAY sv_colormap; /* colormap allocated at init time */
|
|
198 |
int desired; /* desired # of colors = size of colormap */
|
|
199 |
|
|
200 |
/* Variables for accumulating image statistics */
|
|
201 |
hist3d histogram; /* pointer to the histogram */
|
|
202 |
|
|
203 |
boolean needs_zeroed; /* TRUE if next pass must zero histogram */
|
|
204 |
|
|
205 |
/* Variables for Floyd-Steinberg dithering */
|
|
206 |
FSERRPTR fserrors; /* accumulated errors */
|
|
207 |
boolean on_odd_row; /* flag to remember which row we are on */
|
|
208 |
int * error_limiter; /* table for clamping the applied error */
|
|
209 |
} my_cquantizer;
|
|
210 |
|
|
211 |
typedef my_cquantizer * my_cquantize_ptr;
|
|
212 |
|
|
213 |
|
|
214 |
/*
|
|
215 |
* Prescan some rows of pixels.
|
|
216 |
* In this module the prescan simply updates the histogram, which has been
|
|
217 |
* initialized to zeroes by start_pass.
|
|
218 |
* An output_buf parameter is required by the method signature, but no data
|
|
219 |
* is actually output (in fact the buffer controller is probably passing a
|
|
220 |
* NULL pointer).
|
|
221 |
*/
|
|
222 |
|
|
223 |
METHODDEF(void)
|
|
224 |
prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
|
225 |
JSAMPARRAY output_buf, int num_rows)
|
|
226 |
{
|
|
227 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
228 |
register JSAMPROW ptr;
|
|
229 |
register histptr histp;
|
|
230 |
register hist3d histogram = cquantize->histogram;
|
|
231 |
int row;
|
|
232 |
JDIMENSION col;
|
|
233 |
JDIMENSION width = cinfo->output_width;
|
|
234 |
|
|
235 |
for (row = 0; row < num_rows; row++) {
|
|
236 |
ptr = input_buf[row];
|
|
237 |
for (col = width; col > 0; col--) {
|
|
238 |
/* get pixel value and index into the histogram */
|
|
239 |
histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
|
|
240 |
[GETJSAMPLE(ptr[1]) >> C1_SHIFT]
|
|
241 |
[GETJSAMPLE(ptr[2]) >> C2_SHIFT];
|
|
242 |
/* increment, check for overflow and undo increment if so. */
|
|
243 |
if (++(*histp) <= 0)
|
|
244 |
(*histp)--;
|
|
245 |
ptr += 3;
|
|
246 |
}
|
|
247 |
}
|
|
248 |
}
|
|
249 |
|
|
250 |
|
|
251 |
/*
|
|
252 |
* Next we have the really interesting routines: selection of a colormap
|
|
253 |
* given the completed histogram.
|
|
254 |
* These routines work with a list of "boxes", each representing a rectangular
|
|
255 |
* subset of the input color space (to histogram precision).
|
|
256 |
*/
|
|
257 |
|
|
258 |
typedef struct {
|
|
259 |
/* The bounds of the box (inclusive); expressed as histogram indexes */
|
|
260 |
int c0min, c0max;
|
|
261 |
int c1min, c1max;
|
|
262 |
int c2min, c2max;
|
|
263 |
/* The volume (actually 2-norm) of the box */
|
|
264 |
INT32 volume;
|
|
265 |
/* The number of nonzero histogram cells within this box */
|
|
266 |
long colorcount;
|
|
267 |
} box;
|
|
268 |
|
|
269 |
typedef box * boxptr;
|
|
270 |
|
|
271 |
|
|
272 |
LOCAL(boxptr)
|
|
273 |
find_biggest_color_pop (boxptr boxlist, int numboxes)
|
|
274 |
/* Find the splittable box with the largest color population */
|
|
275 |
/* Returns NULL if no splittable boxes remain */
|
|
276 |
{
|
|
277 |
register boxptr boxp;
|
|
278 |
register int i;
|
|
279 |
register long maxc = 0;
|
|
280 |
boxptr which = NULL;
|
|
281 |
|
|
282 |
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
|
|
283 |
if (boxp->colorcount > maxc && boxp->volume > 0) {
|
|
284 |
which = boxp;
|
|
285 |
maxc = boxp->colorcount;
|
|
286 |
}
|
|
287 |
}
|
|
288 |
return which;
|
|
289 |
}
|
|
290 |
|
|
291 |
|
|
292 |
LOCAL(boxptr)
|
|
293 |
find_biggest_volume (boxptr boxlist, int numboxes)
|
|
294 |
/* Find the splittable box with the largest (scaled) volume */
|
|
295 |
/* Returns NULL if no splittable boxes remain */
|
|
296 |
{
|
|
297 |
register boxptr boxp;
|
|
298 |
register int i;
|
|
299 |
register INT32 maxv = 0;
|
|
300 |
boxptr which = NULL;
|
|
301 |
|
|
302 |
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
|
|
303 |
if (boxp->volume > maxv) {
|
|
304 |
which = boxp;
|
|
305 |
maxv = boxp->volume;
|
|
306 |
}
|
|
307 |
}
|
|
308 |
return which;
|
|
309 |
}
|
|
310 |
|
|
311 |
|
|
312 |
LOCAL(void)
|
|
313 |
update_box (j_decompress_ptr cinfo, boxptr boxp)
|
|
314 |
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
|
|
315 |
/* and recompute its volume and population */
|
|
316 |
{
|
|
317 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
318 |
hist3d histogram = cquantize->histogram;
|
|
319 |
histptr histp;
|
|
320 |
int c0,c1,c2;
|
|
321 |
int c0min,c0max,c1min,c1max,c2min,c2max;
|
|
322 |
INT32 dist0,dist1,dist2;
|
|
323 |
long ccount;
|
|
324 |
|
|
325 |
c0min = boxp->c0min; c0max = boxp->c0max;
|
|
326 |
c1min = boxp->c1min; c1max = boxp->c1max;
|
|
327 |
c2min = boxp->c2min; c2max = boxp->c2max;
|
|
328 |
|
|
329 |
if (c0max > c0min)
|
|
330 |
for (c0 = c0min; c0 <= c0max; c0++)
|
|
331 |
for (c1 = c1min; c1 <= c1max; c1++) {
|
|
332 |
histp = & histogram[c0][c1][c2min];
|
|
333 |
for (c2 = c2min; c2 <= c2max; c2++)
|
|
334 |
if (*histp++ != 0) {
|
|
335 |
boxp->c0min = c0min = c0;
|
|
336 |
goto have_c0min;
|
|
337 |
}
|
|
338 |
}
|
|
339 |
have_c0min:
|
|
340 |
if (c0max > c0min)
|
|
341 |
for (c0 = c0max; c0 >= c0min; c0--)
|
|
342 |
for (c1 = c1min; c1 <= c1max; c1++) {
|
|
343 |
histp = & histogram[c0][c1][c2min];
|
|
344 |
for (c2 = c2min; c2 <= c2max; c2++)
|
|
345 |
if (*histp++ != 0) {
|
|
346 |
boxp->c0max = c0max = c0;
|
|
347 |
goto have_c0max;
|
|
348 |
}
|
|
349 |
}
|
|
350 |
have_c0max:
|
|
351 |
if (c1max > c1min)
|
|
352 |
for (c1 = c1min; c1 <= c1max; c1++)
|
|
353 |
for (c0 = c0min; c0 <= c0max; c0++) {
|
|
354 |
histp = & histogram[c0][c1][c2min];
|
|
355 |
for (c2 = c2min; c2 <= c2max; c2++)
|
|
356 |
if (*histp++ != 0) {
|
|
357 |
boxp->c1min = c1min = c1;
|
|
358 |
goto have_c1min;
|
|
359 |
}
|
|
360 |
}
|
|
361 |
have_c1min:
|
|
362 |
if (c1max > c1min)
|
|
363 |
for (c1 = c1max; c1 >= c1min; c1--)
|
|
364 |
for (c0 = c0min; c0 <= c0max; c0++) {
|
|
365 |
histp = & histogram[c0][c1][c2min];
|
|
366 |
for (c2 = c2min; c2 <= c2max; c2++)
|
|
367 |
if (*histp++ != 0) {
|
|
368 |
boxp->c1max = c1max = c1;
|
|
369 |
goto have_c1max;
|
|
370 |
}
|
|
371 |
}
|
|
372 |
have_c1max:
|
|
373 |
if (c2max > c2min)
|
|
374 |
for (c2 = c2min; c2 <= c2max; c2++)
|
|
375 |
for (c0 = c0min; c0 <= c0max; c0++) {
|
|
376 |
histp = & histogram[c0][c1min][c2];
|
|
377 |
for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
|
|
378 |
if (*histp != 0) {
|
|
379 |
boxp->c2min = c2min = c2;
|
|
380 |
goto have_c2min;
|
|
381 |
}
|
|
382 |
}
|
|
383 |
have_c2min:
|
|
384 |
if (c2max > c2min)
|
|
385 |
for (c2 = c2max; c2 >= c2min; c2--)
|
|
386 |
for (c0 = c0min; c0 <= c0max; c0++) {
|
|
387 |
histp = & histogram[c0][c1min][c2];
|
|
388 |
for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
|
|
389 |
if (*histp != 0) {
|
|
390 |
boxp->c2max = c2max = c2;
|
|
391 |
goto have_c2max;
|
|
392 |
}
|
|
393 |
}
|
|
394 |
have_c2max:
|
|
395 |
|
|
396 |
/* Update box volume.
|
|
397 |
* We use 2-norm rather than real volume here; this biases the method
|
|
398 |
* against making long narrow boxes, and it has the side benefit that
|
|
399 |
* a box is splittable iff norm > 0.
|
|
400 |
* Since the differences are expressed in histogram-cell units,
|
|
401 |
* we have to shift back to JSAMPLE units to get consistent distances;
|
|
402 |
* after which, we scale according to the selected distance scale factors.
|
|
403 |
*/
|
|
404 |
dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
|
|
405 |
dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
|
|
406 |
dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
|
|
407 |
boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
|
|
408 |
|
|
409 |
/* Now scan remaining volume of box and compute population */
|
|
410 |
ccount = 0;
|
|
411 |
for (c0 = c0min; c0 <= c0max; c0++)
|
|
412 |
for (c1 = c1min; c1 <= c1max; c1++) {
|
|
413 |
histp = & histogram[c0][c1][c2min];
|
|
414 |
for (c2 = c2min; c2 <= c2max; c2++, histp++)
|
|
415 |
if (*histp != 0) {
|
|
416 |
ccount++;
|
|
417 |
}
|
|
418 |
}
|
|
419 |
boxp->colorcount = ccount;
|
|
420 |
}
|
|
421 |
|
|
422 |
|
|
423 |
LOCAL(int)
|
|
424 |
median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
|
|
425 |
int desired_colors)
|
|
426 |
/* Repeatedly select and split the largest box until we have enough boxes */
|
|
427 |
{
|
|
428 |
int n,lb;
|
|
429 |
int c0,c1,c2,cmax;
|
|
430 |
register boxptr b1,b2;
|
|
431 |
|
|
432 |
while (numboxes < desired_colors) {
|
|
433 |
/* Select box to split.
|
|
434 |
* Current algorithm: by population for first half, then by volume.
|
|
435 |
*/
|
|
436 |
if (numboxes*2 <= desired_colors) {
|
|
437 |
b1 = find_biggest_color_pop(boxlist, numboxes);
|
|
438 |
} else {
|
|
439 |
b1 = find_biggest_volume(boxlist, numboxes);
|
|
440 |
}
|
|
441 |
if (b1 == NULL) /* no splittable boxes left! */
|
|
442 |
break;
|
|
443 |
b2 = &boxlist[numboxes]; /* where new box will go */
|
|
444 |
/* Copy the color bounds to the new box. */
|
|
445 |
b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
|
|
446 |
b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
|
|
447 |
/* Choose which axis to split the box on.
|
|
448 |
* Current algorithm: longest scaled axis.
|
|
449 |
* See notes in update_box about scaling distances.
|
|
450 |
*/
|
|
451 |
c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
|
|
452 |
c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
|
|
453 |
c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
|
|
454 |
/* We want to break any ties in favor of green, then red, blue last.
|
|
455 |
* This code does the right thing for R,G,B or B,G,R color orders only.
|
|
456 |
*/
|
|
457 |
#if RGB_RED == 0
|
|
458 |
cmax = c1; n = 1;
|
|
459 |
if (c0 > cmax) { cmax = c0; n = 0; }
|
|
460 |
if (c2 > cmax) { n = 2; }
|
|
461 |
#else
|
|
462 |
cmax = c1; n = 1;
|
|
463 |
if (c2 > cmax) { cmax = c2; n = 2; }
|
|
464 |
if (c0 > cmax) { n = 0; }
|
|
465 |
#endif
|
|
466 |
/* Choose split point along selected axis, and update box bounds.
|
|
467 |
* Current algorithm: split at halfway point.
|
|
468 |
* (Since the box has been shrunk to minimum volume,
|
|
469 |
* any split will produce two nonempty subboxes.)
|
|
470 |
* Note that lb value is max for lower box, so must be < old max.
|
|
471 |
*/
|
|
472 |
switch (n) {
|
|
473 |
case 0:
|
|
474 |
lb = (b1->c0max + b1->c0min) / 2;
|
|
475 |
b1->c0max = lb;
|
|
476 |
b2->c0min = lb+1;
|
|
477 |
break;
|
|
478 |
case 1:
|
|
479 |
lb = (b1->c1max + b1->c1min) / 2;
|
|
480 |
b1->c1max = lb;
|
|
481 |
b2->c1min = lb+1;
|
|
482 |
break;
|
|
483 |
case 2:
|
|
484 |
lb = (b1->c2max + b1->c2min) / 2;
|
|
485 |
b1->c2max = lb;
|
|
486 |
b2->c2min = lb+1;
|
|
487 |
break;
|
|
488 |
}
|
|
489 |
/* Update stats for boxes */
|
|
490 |
update_box(cinfo, b1);
|
|
491 |
update_box(cinfo, b2);
|
|
492 |
numboxes++;
|
|
493 |
}
|
|
494 |
return numboxes;
|
|
495 |
}
|
|
496 |
|
|
497 |
|
|
498 |
LOCAL(void)
|
|
499 |
compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
|
|
500 |
/* Compute representative color for a box, put it in colormap[icolor] */
|
|
501 |
{
|
|
502 |
/* Current algorithm: mean weighted by pixels (not colors) */
|
|
503 |
/* Note it is important to get the rounding correct! */
|
|
504 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
505 |
hist3d histogram = cquantize->histogram;
|
|
506 |
histptr histp;
|
|
507 |
int c0,c1,c2;
|
|
508 |
int c0min,c0max,c1min,c1max,c2min,c2max;
|
|
509 |
long count;
|
|
510 |
long total = 0;
|
|
511 |
long c0total = 0;
|
|
512 |
long c1total = 0;
|
|
513 |
long c2total = 0;
|
|
514 |
|
|
515 |
c0min = boxp->c0min; c0max = boxp->c0max;
|
|
516 |
c1min = boxp->c1min; c1max = boxp->c1max;
|
|
517 |
c2min = boxp->c2min; c2max = boxp->c2max;
|
|
518 |
|
|
519 |
for (c0 = c0min; c0 <= c0max; c0++)
|
|
520 |
for (c1 = c1min; c1 <= c1max; c1++) {
|
|
521 |
histp = & histogram[c0][c1][c2min];
|
|
522 |
for (c2 = c2min; c2 <= c2max; c2++) {
|
|
523 |
if ((count = *histp++) != 0) {
|
|
524 |
total += count;
|
|
525 |
c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
|
|
526 |
c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
|
|
527 |
c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
|
|
528 |
}
|
|
529 |
}
|
|
530 |
}
|
|
531 |
|
|
532 |
cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
|
|
533 |
cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
|
|
534 |
cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
|
|
535 |
}
|
|
536 |
|
|
537 |
|
|
538 |
LOCAL(void)
|
|
539 |
select_colors (j_decompress_ptr cinfo, int desired_colors)
|
|
540 |
/* Master routine for color selection */
|
|
541 |
{
|
|
542 |
boxptr boxlist;
|
|
543 |
int numboxes;
|
|
544 |
int i;
|
|
545 |
|
|
546 |
/* Allocate workspace for box list */
|
|
547 |
boxlist = (boxptr) (*cinfo->mem->alloc_small)
|
|
548 |
((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
|
|
549 |
/* Initialize one box containing whole space */
|
|
550 |
numboxes = 1;
|
|
551 |
boxlist[0].c0min = 0;
|
|
552 |
boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
|
|
553 |
boxlist[0].c1min = 0;
|
|
554 |
boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
|
|
555 |
boxlist[0].c2min = 0;
|
|
556 |
boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
|
|
557 |
/* Shrink it to actually-used volume and set its statistics */
|
|
558 |
update_box(cinfo, & boxlist[0]);
|
|
559 |
/* Perform median-cut to produce final box list */
|
|
560 |
numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
|
|
561 |
/* Compute the representative color for each box, fill colormap */
|
|
562 |
for (i = 0; i < numboxes; i++)
|
|
563 |
compute_color(cinfo, & boxlist[i], i);
|
|
564 |
cinfo->actual_number_of_colors = numboxes;
|
|
565 |
TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
|
|
566 |
}
|
|
567 |
|
|
568 |
|
|
569 |
/*
|
|
570 |
* These routines are concerned with the time-critical task of mapping input
|
|
571 |
* colors to the nearest color in the selected colormap.
|
|
572 |
*
|
|
573 |
* We re-use the histogram space as an "inverse color map", essentially a
|
|
574 |
* cache for the results of nearest-color searches. All colors within a
|
|
575 |
* histogram cell will be mapped to the same colormap entry, namely the one
|
|
576 |
* closest to the cell's center. This may not be quite the closest entry to
|
|
577 |
* the actual input color, but it's almost as good. A zero in the cache
|
|
578 |
* indicates we haven't found the nearest color for that cell yet; the array
|
|
579 |
* is cleared to zeroes before starting the mapping pass. When we find the
|
|
580 |
* nearest color for a cell, its colormap index plus one is recorded in the
|
|
581 |
* cache for future use. The pass2 scanning routines call fill_inverse_cmap
|
|
582 |
* when they need to use an unfilled entry in the cache.
|
|
583 |
*
|
|
584 |
* Our method of efficiently finding nearest colors is based on the "locally
|
|
585 |
* sorted search" idea described by Heckbert and on the incremental distance
|
|
586 |
* calculation described by Spencer W. Thomas in chapter III.1 of Graphics
|
|
587 |
* Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
|
|
588 |
* the distances from a given colormap entry to each cell of the histogram can
|
|
589 |
* be computed quickly using an incremental method: the differences between
|
|
590 |
* distances to adjacent cells themselves differ by a constant. This allows a
|
|
591 |
* fairly fast implementation of the "brute force" approach of computing the
|
|
592 |
* distance from every colormap entry to every histogram cell. Unfortunately,
|
|
593 |
* it needs a work array to hold the best-distance-so-far for each histogram
|
|
594 |
* cell (because the inner loop has to be over cells, not colormap entries).
|
|
595 |
* The work array elements have to be INT32s, so the work array would need
|
|
596 |
* 256Kb at our recommended precision. This is not feasible in DOS machines.
|
|
597 |
*
|
|
598 |
* To get around these problems, we apply Thomas' method to compute the
|
|
599 |
* nearest colors for only the cells within a small subbox of the histogram.
|
|
600 |
* The work array need be only as big as the subbox, so the memory usage
|
|
601 |
* problem is solved. Furthermore, we need not fill subboxes that are never
|
|
602 |
* referenced in pass2; many images use only part of the color gamut, so a
|
|
603 |
* fair amount of work is saved. An additional advantage of this
|
|
604 |
* approach is that we can apply Heckbert's locality criterion to quickly
|
|
605 |
* eliminate colormap entries that are far away from the subbox; typically
|
|
606 |
* three-fourths of the colormap entries are rejected by Heckbert's criterion,
|
|
607 |
* and we need not compute their distances to individual cells in the subbox.
|
|
608 |
* The speed of this approach is heavily influenced by the subbox size: too
|
|
609 |
* small means too much overhead, too big loses because Heckbert's criterion
|
|
610 |
* can't eliminate as many colormap entries. Empirically the best subbox
|
|
611 |
* size seems to be about 1/512th of the histogram (1/8th in each direction).
|
|
612 |
*
|
|
613 |
* Thomas' article also describes a refined method which is asymptotically
|
|
614 |
* faster than the brute-force method, but it is also far more complex and
|
|
615 |
* cannot efficiently be applied to small subboxes. It is therefore not
|
|
616 |
* useful for programs intended to be portable to DOS machines. On machines
|
|
617 |
* with plenty of memory, filling the whole histogram in one shot with Thomas'
|
|
618 |
* refined method might be faster than the present code --- but then again,
|
|
619 |
* it might not be any faster, and it's certainly more complicated.
|
|
620 |
*/
|
|
621 |
|
|
622 |
|
|
623 |
/* log2(histogram cells in update box) for each axis; this can be adjusted */
|
|
624 |
#define BOX_C0_LOG (HIST_C0_BITS-3)
|
|
625 |
#define BOX_C1_LOG (HIST_C1_BITS-3)
|
|
626 |
#define BOX_C2_LOG (HIST_C2_BITS-3)
|
|
627 |
|
|
628 |
#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
|
|
629 |
#define BOX_C1_ELEMS (1<<BOX_C1_LOG)
|
|
630 |
#define BOX_C2_ELEMS (1<<BOX_C2_LOG)
|
|
631 |
|
|
632 |
#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
|
|
633 |
#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
|
|
634 |
#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
|
|
635 |
|
|
636 |
|
|
637 |
/*
|
|
638 |
* The next three routines implement inverse colormap filling. They could
|
|
639 |
* all be folded into one big routine, but splitting them up this way saves
|
|
640 |
* some stack space (the mindist[] and bestdist[] arrays need not coexist)
|
|
641 |
* and may allow some compilers to produce better code by registerizing more
|
|
642 |
* inner-loop variables.
|
|
643 |
*/
|
|
644 |
|
|
645 |
LOCAL(int)
|
|
646 |
find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
|
|
647 |
JSAMPLE colorlist[])
|
|
648 |
/* Locate the colormap entries close enough to an update box to be candidates
|
|
649 |
* for the nearest entry to some cell(s) in the update box. The update box
|
|
650 |
* is specified by the center coordinates of its first cell. The number of
|
|
651 |
* candidate colormap entries is returned, and their colormap indexes are
|
|
652 |
* placed in colorlist[].
|
|
653 |
* This routine uses Heckbert's "locally sorted search" criterion to select
|
|
654 |
* the colors that need further consideration.
|
|
655 |
*/
|
|
656 |
{
|
|
657 |
int numcolors = cinfo->actual_number_of_colors;
|
|
658 |
int maxc0, maxc1, maxc2;
|
|
659 |
int centerc0, centerc1, centerc2;
|
|
660 |
int i, x, ncolors;
|
|
661 |
INT32 minmaxdist, min_dist, max_dist, tdist;
|
|
662 |
INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
|
|
663 |
|
|
664 |
/* Compute true coordinates of update box's upper corner and center.
|
|
665 |
* Actually we compute the coordinates of the center of the upper-corner
|
|
666 |
* histogram cell, which are the upper bounds of the volume we care about.
|
|
667 |
* Note that since ">>" rounds down, the "center" values may be closer to
|
|
668 |
* min than to max; hence comparisons to them must be "<=", not "<".
|
|
669 |
*/
|
|
670 |
maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
|
|
671 |
centerc0 = (minc0 + maxc0) >> 1;
|
|
672 |
maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
|
|
673 |
centerc1 = (minc1 + maxc1) >> 1;
|
|
674 |
maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
|
|
675 |
centerc2 = (minc2 + maxc2) >> 1;
|
|
676 |
|
|
677 |
/* For each color in colormap, find:
|
|
678 |
* 1. its minimum squared-distance to any point in the update box
|
|
679 |
* (zero if color is within update box);
|
|
680 |
* 2. its maximum squared-distance to any point in the update box.
|
|
681 |
* Both of these can be found by considering only the corners of the box.
|
|
682 |
* We save the minimum distance for each color in mindist[];
|
|
683 |
* only the smallest maximum distance is of interest.
|
|
684 |
*/
|
|
685 |
minmaxdist = 0x7FFFFFFFL;
|
|
686 |
|
|
687 |
for (i = 0; i < numcolors; i++) {
|
|
688 |
/* We compute the squared-c0-distance term, then add in the other two. */
|
|
689 |
x = GETJSAMPLE(cinfo->colormap[0][i]);
|
|
690 |
if (x < minc0) {
|
|
691 |
tdist = (x - minc0) * C0_SCALE;
|
|
692 |
min_dist = tdist*tdist;
|
|
693 |
tdist = (x - maxc0) * C0_SCALE;
|
|
694 |
max_dist = tdist*tdist;
|
|
695 |
} else if (x > maxc0) {
|
|
696 |
tdist = (x - maxc0) * C0_SCALE;
|
|
697 |
min_dist = tdist*tdist;
|
|
698 |
tdist = (x - minc0) * C0_SCALE;
|
|
699 |
max_dist = tdist*tdist;
|
|
700 |
} else {
|
|
701 |
/* within cell range so no contribution to min_dist */
|
|
702 |
min_dist = 0;
|
|
703 |
if (x <= centerc0) {
|
|
704 |
tdist = (x - maxc0) * C0_SCALE;
|
|
705 |
max_dist = tdist*tdist;
|
|
706 |
} else {
|
|
707 |
tdist = (x - minc0) * C0_SCALE;
|
|
708 |
max_dist = tdist*tdist;
|
|
709 |
}
|
|
710 |
}
|
|
711 |
|
|
712 |
x = GETJSAMPLE(cinfo->colormap[1][i]);
|
|
713 |
if (x < minc1) {
|
|
714 |
tdist = (x - minc1) * C1_SCALE;
|
|
715 |
min_dist += tdist*tdist;
|
|
716 |
tdist = (x - maxc1) * C1_SCALE;
|
|
717 |
max_dist += tdist*tdist;
|
|
718 |
} else if (x > maxc1) {
|
|
719 |
tdist = (x - maxc1) * C1_SCALE;
|
|
720 |
min_dist += tdist*tdist;
|
|
721 |
tdist = (x - minc1) * C1_SCALE;
|
|
722 |
max_dist += tdist*tdist;
|
|
723 |
} else {
|
|
724 |
/* within cell range so no contribution to min_dist */
|
|
725 |
if (x <= centerc1) {
|
|
726 |
tdist = (x - maxc1) * C1_SCALE;
|
|
727 |
max_dist += tdist*tdist;
|
|
728 |
} else {
|
|
729 |
tdist = (x - minc1) * C1_SCALE;
|
|
730 |
max_dist += tdist*tdist;
|
|
731 |
}
|
|
732 |
}
|
|
733 |
|
|
734 |
x = GETJSAMPLE(cinfo->colormap[2][i]);
|
|
735 |
if (x < minc2) {
|
|
736 |
tdist = (x - minc2) * C2_SCALE;
|
|
737 |
min_dist += tdist*tdist;
|
|
738 |
tdist = (x - maxc2) * C2_SCALE;
|
|
739 |
max_dist += tdist*tdist;
|
|
740 |
} else if (x > maxc2) {
|
|
741 |
tdist = (x - maxc2) * C2_SCALE;
|
|
742 |
min_dist += tdist*tdist;
|
|
743 |
tdist = (x - minc2) * C2_SCALE;
|
|
744 |
max_dist += tdist*tdist;
|
|
745 |
} else {
|
|
746 |
/* within cell range so no contribution to min_dist */
|
|
747 |
if (x <= centerc2) {
|
|
748 |
tdist = (x - maxc2) * C2_SCALE;
|
|
749 |
max_dist += tdist*tdist;
|
|
750 |
} else {
|
|
751 |
tdist = (x - minc2) * C2_SCALE;
|
|
752 |
max_dist += tdist*tdist;
|
|
753 |
}
|
|
754 |
}
|
|
755 |
|
|
756 |
mindist[i] = min_dist; /* save away the results */
|
|
757 |
if (max_dist < minmaxdist)
|
|
758 |
minmaxdist = max_dist;
|
|
759 |
}
|
|
760 |
|
|
761 |
/* Now we know that no cell in the update box is more than minmaxdist
|
|
762 |
* away from some colormap entry. Therefore, only colors that are
|
|
763 |
* within minmaxdist of some part of the box need be considered.
|
|
764 |
*/
|
|
765 |
ncolors = 0;
|
|
766 |
for (i = 0; i < numcolors; i++) {
|
|
767 |
if (mindist[i] <= minmaxdist)
|
|
768 |
colorlist[ncolors++] = (JSAMPLE) i;
|
|
769 |
}
|
|
770 |
return ncolors;
|
|
771 |
}
|
|
772 |
|
|
773 |
|
|
774 |
LOCAL(void)
|
|
775 |
find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
|
|
776 |
int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
|
|
777 |
/* Find the closest colormap entry for each cell in the update box,
|
|
778 |
* given the list of candidate colors prepared by find_nearby_colors.
|
|
779 |
* Return the indexes of the closest entries in the bestcolor[] array.
|
|
780 |
* This routine uses Thomas' incremental distance calculation method to
|
|
781 |
* find the distance from a colormap entry to successive cells in the box.
|
|
782 |
*/
|
|
783 |
{
|
|
784 |
int ic0, ic1, ic2;
|
|
785 |
int i, icolor;
|
|
786 |
register INT32 * bptr; /* pointer into bestdist[] array */
|
|
787 |
JSAMPLE * cptr; /* pointer into bestcolor[] array */
|
|
788 |
INT32 dist0, dist1; /* initial distance values */
|
|
789 |
register INT32 dist2; /* current distance in inner loop */
|
|
790 |
INT32 xx0, xx1; /* distance increments */
|
|
791 |
register INT32 xx2;
|
|
792 |
INT32 inc0, inc1, inc2; /* initial values for increments */
|
|
793 |
/* This array holds the distance to the nearest-so-far color for each cell */
|
|
794 |
INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
|
|
795 |
|
|
796 |
/* Initialize best-distance for each cell of the update box */
|
|
797 |
bptr = bestdist;
|
|
798 |
for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
|
|
799 |
*bptr++ = 0x7FFFFFFFL;
|
|
800 |
|
|
801 |
/* For each color selected by find_nearby_colors,
|
|
802 |
* compute its distance to the center of each cell in the box.
|
|
803 |
* If that's less than best-so-far, update best distance and color number.
|
|
804 |
*/
|
|
805 |
|
|
806 |
/* Nominal steps between cell centers ("x" in Thomas article) */
|
|
807 |
#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
|
|
808 |
#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
|
|
809 |
#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
|
|
810 |
|
|
811 |
for (i = 0; i < numcolors; i++) {
|
|
812 |
icolor = GETJSAMPLE(colorlist[i]);
|
|
813 |
/* Compute (square of) distance from minc0/c1/c2 to this color */
|
|
814 |
inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
|
|
815 |
dist0 = inc0*inc0;
|
|
816 |
inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
|
|
817 |
dist0 += inc1*inc1;
|
|
818 |
inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
|
|
819 |
dist0 += inc2*inc2;
|
|
820 |
/* Form the initial difference increments */
|
|
821 |
inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
|
|
822 |
inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
|
|
823 |
inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
|
|
824 |
/* Now loop over all cells in box, updating distance per Thomas method */
|
|
825 |
bptr = bestdist;
|
|
826 |
cptr = bestcolor;
|
|
827 |
xx0 = inc0;
|
|
828 |
for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
|
|
829 |
dist1 = dist0;
|
|
830 |
xx1 = inc1;
|
|
831 |
for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
|
|
832 |
dist2 = dist1;
|
|
833 |
xx2 = inc2;
|
|
834 |
for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
|
|
835 |
if (dist2 < *bptr) {
|
|
836 |
*bptr = dist2;
|
|
837 |
*cptr = (JSAMPLE) icolor;
|
|
838 |
}
|
|
839 |
dist2 += xx2;
|
|
840 |
xx2 += 2 * STEP_C2 * STEP_C2;
|
|
841 |
bptr++;
|
|
842 |
cptr++;
|
|
843 |
}
|
|
844 |
dist1 += xx1;
|
|
845 |
xx1 += 2 * STEP_C1 * STEP_C1;
|
|
846 |
}
|
|
847 |
dist0 += xx0;
|
|
848 |
xx0 += 2 * STEP_C0 * STEP_C0;
|
|
849 |
}
|
|
850 |
}
|
|
851 |
}
|
|
852 |
|
|
853 |
|
|
854 |
LOCAL(void)
|
|
855 |
fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
|
|
856 |
/* Fill the inverse-colormap entries in the update box that contains */
|
|
857 |
/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
|
|
858 |
/* we can fill as many others as we wish.) */
|
|
859 |
{
|
|
860 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
861 |
hist3d histogram = cquantize->histogram;
|
|
862 |
int minc0, minc1, minc2; /* lower left corner of update box */
|
|
863 |
int ic0, ic1, ic2;
|
|
864 |
register JSAMPLE * cptr; /* pointer into bestcolor[] array */
|
|
865 |
register histptr cachep; /* pointer into main cache array */
|
|
866 |
/* This array lists the candidate colormap indexes. */
|
|
867 |
JSAMPLE colorlist[MAXNUMCOLORS];
|
|
868 |
int numcolors; /* number of candidate colors */
|
|
869 |
/* This array holds the actually closest colormap index for each cell. */
|
|
870 |
JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
|
|
871 |
|
|
872 |
/* Convert cell coordinates to update box ID */
|
|
873 |
c0 >>= BOX_C0_LOG;
|
|
874 |
c1 >>= BOX_C1_LOG;
|
|
875 |
c2 >>= BOX_C2_LOG;
|
|
876 |
|
|
877 |
/* Compute true coordinates of update box's origin corner.
|
|
878 |
* Actually we compute the coordinates of the center of the corner
|
|
879 |
* histogram cell, which are the lower bounds of the volume we care about.
|
|
880 |
*/
|
|
881 |
minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
|
|
882 |
minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
|
|
883 |
minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
|
|
884 |
|
|
885 |
/* Determine which colormap entries are close enough to be candidates
|
|
886 |
* for the nearest entry to some cell in the update box.
|
|
887 |
*/
|
|
888 |
numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
|
|
889 |
|
|
890 |
/* Determine the actually nearest colors. */
|
|
891 |
find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
|
|
892 |
bestcolor);
|
|
893 |
|
|
894 |
/* Save the best color numbers (plus 1) in the main cache array */
|
|
895 |
c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
|
|
896 |
c1 <<= BOX_C1_LOG;
|
|
897 |
c2 <<= BOX_C2_LOG;
|
|
898 |
cptr = bestcolor;
|
|
899 |
for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
|
|
900 |
for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
|
|
901 |
cachep = & histogram[c0+ic0][c1+ic1][c2];
|
|
902 |
for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
|
|
903 |
*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
|
|
904 |
}
|
|
905 |
}
|
|
906 |
}
|
|
907 |
}
|
|
908 |
|
|
909 |
|
|
910 |
/*
|
|
911 |
* Map some rows of pixels to the output colormapped representation.
|
|
912 |
*/
|
|
913 |
|
|
914 |
METHODDEF(void)
|
|
915 |
pass2_no_dither (j_decompress_ptr cinfo,
|
|
916 |
JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
|
|
917 |
/* This version performs no dithering */
|
|
918 |
{
|
|
919 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
920 |
hist3d histogram = cquantize->histogram;
|
|
921 |
register JSAMPROW inptr, outptr;
|
|
922 |
register histptr cachep;
|
|
923 |
register int c0, c1, c2;
|
|
924 |
int row;
|
|
925 |
JDIMENSION col;
|
|
926 |
JDIMENSION width = cinfo->output_width;
|
|
927 |
|
|
928 |
for (row = 0; row < num_rows; row++) {
|
|
929 |
inptr = input_buf[row];
|
|
930 |
outptr = output_buf[row];
|
|
931 |
for (col = width; col > 0; col--) {
|
|
932 |
/* get pixel value and index into the cache */
|
|
933 |
c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
|
|
934 |
c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
|
|
935 |
c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
|
|
936 |
cachep = & histogram[c0][c1][c2];
|
|
937 |
/* If we have not seen this color before, find nearest colormap entry */
|
|
938 |
/* and update the cache */
|
|
939 |
if (*cachep == 0)
|
|
940 |
fill_inverse_cmap(cinfo, c0,c1,c2);
|
|
941 |
/* Now emit the colormap index for this cell */
|
|
942 |
*outptr++ = (JSAMPLE) (*cachep - 1);
|
|
943 |
}
|
|
944 |
}
|
|
945 |
}
|
|
946 |
|
|
947 |
|
|
948 |
METHODDEF(void)
|
|
949 |
pass2_fs_dither (j_decompress_ptr cinfo,
|
|
950 |
JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
|
|
951 |
/* This version performs Floyd-Steinberg dithering */
|
|
952 |
{
|
|
953 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
954 |
hist3d histogram = cquantize->histogram;
|
|
955 |
register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
|
|
956 |
LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
|
|
957 |
LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
|
|
958 |
register FSERRPTR errorptr; /* => fserrors[] at column before current */
|
|
959 |
JSAMPROW inptr; /* => current input pixel */
|
|
960 |
JSAMPROW outptr; /* => current output pixel */
|
|
961 |
histptr cachep;
|
|
962 |
int dir; /* +1 or -1 depending on direction */
|
|
963 |
int dir3; /* 3*dir, for advancing inptr & errorptr */
|
|
964 |
int row;
|
|
965 |
JDIMENSION col;
|
|
966 |
JDIMENSION width = cinfo->output_width;
|
|
967 |
JSAMPLE *range_limit = cinfo->sample_range_limit;
|
|
968 |
int *error_limit = cquantize->error_limiter;
|
|
969 |
JSAMPROW colormap0 = cinfo->colormap[0];
|
|
970 |
JSAMPROW colormap1 = cinfo->colormap[1];
|
|
971 |
JSAMPROW colormap2 = cinfo->colormap[2];
|
|
972 |
SHIFT_TEMPS
|
|
973 |
|
|
974 |
for (row = 0; row < num_rows; row++) {
|
|
975 |
inptr = input_buf[row];
|
|
976 |
outptr = output_buf[row];
|
|
977 |
if (cquantize->on_odd_row) {
|
|
978 |
/* work right to left in this row */
|
|
979 |
inptr += (width-1) * 3; /* so point to rightmost pixel */
|
|
980 |
outptr += width-1;
|
|
981 |
dir = -1;
|
|
982 |
dir3 = -3;
|
|
983 |
errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
|
|
984 |
cquantize->on_odd_row = FALSE; /* flip for next time */
|
|
985 |
} else {
|
|
986 |
/* work left to right in this row */
|
|
987 |
dir = 1;
|
|
988 |
dir3 = 3;
|
|
989 |
errorptr = cquantize->fserrors; /* => entry before first real column */
|
|
990 |
cquantize->on_odd_row = TRUE; /* flip for next time */
|
|
991 |
}
|
|
992 |
/* Preset error values: no error propagated to first pixel from left */
|
|
993 |
cur0 = cur1 = cur2 = 0;
|
|
994 |
/* and no error propagated to row below yet */
|
|
995 |
belowerr0 = belowerr1 = belowerr2 = 0;
|
|
996 |
bpreverr0 = bpreverr1 = bpreverr2 = 0;
|
|
997 |
|
|
998 |
for (col = width; col > 0; col--) {
|
|
999 |
/* curN holds the error propagated from the previous pixel on the
|
|
1000 |
* current line. Add the error propagated from the previous line
|
|
1001 |
* to form the complete error correction term for this pixel, and
|
|
1002 |
* round the error term (which is expressed * 16) to an integer.
|
|
1003 |
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
|
|
1004 |
* for either sign of the error value.
|
|
1005 |
* Note: errorptr points to *previous* column's array entry.
|
|
1006 |
*/
|
|
1007 |
cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
|
|
1008 |
cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
|
|
1009 |
cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
|
|
1010 |
/* Limit the error using transfer function set by init_error_limit.
|
|
1011 |
* See comments with init_error_limit for rationale.
|
|
1012 |
*/
|
|
1013 |
cur0 = error_limit[cur0];
|
|
1014 |
cur1 = error_limit[cur1];
|
|
1015 |
cur2 = error_limit[cur2];
|
|
1016 |
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
|
1017 |
* The maximum error is +- MAXJSAMPLE (or less with error limiting);
|
|
1018 |
* this sets the required size of the range_limit array.
|
|
1019 |
*/
|
|
1020 |
cur0 += GETJSAMPLE(inptr[0]);
|
|
1021 |
cur1 += GETJSAMPLE(inptr[1]);
|
|
1022 |
cur2 += GETJSAMPLE(inptr[2]);
|
|
1023 |
cur0 = GETJSAMPLE(range_limit[cur0]);
|
|
1024 |
cur1 = GETJSAMPLE(range_limit[cur1]);
|
|
1025 |
cur2 = GETJSAMPLE(range_limit[cur2]);
|
|
1026 |
/* Index into the cache with adjusted pixel value */
|
|
1027 |
cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
|
|
1028 |
/* If we have not seen this color before, find nearest colormap */
|
|
1029 |
/* entry and update the cache */
|
|
1030 |
if (*cachep == 0)
|
|
1031 |
fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
|
|
1032 |
/* Now emit the colormap index for this cell */
|
|
1033 |
{ register int pixcode = *cachep - 1;
|
|
1034 |
*outptr = (JSAMPLE) pixcode;
|
|
1035 |
/* Compute representation error for this pixel */
|
|
1036 |
cur0 -= GETJSAMPLE(colormap0[pixcode]);
|
|
1037 |
cur1 -= GETJSAMPLE(colormap1[pixcode]);
|
|
1038 |
cur2 -= GETJSAMPLE(colormap2[pixcode]);
|
|
1039 |
}
|
|
1040 |
/* Compute error fractions to be propagated to adjacent pixels.
|
|
1041 |
* Add these into the running sums, and simultaneously shift the
|
|
1042 |
* next-line error sums left by 1 column.
|
|
1043 |
*/
|
|
1044 |
{ register LOCFSERROR bnexterr, delta;
|
|
1045 |
|
|
1046 |
bnexterr = cur0; /* Process component 0 */
|
|
1047 |
delta = cur0 * 2;
|
|
1048 |
cur0 += delta; /* form error * 3 */
|
|
1049 |
errorptr[0] = (FSERROR) (bpreverr0 + cur0);
|
|
1050 |
cur0 += delta; /* form error * 5 */
|
|
1051 |
bpreverr0 = belowerr0 + cur0;
|
|
1052 |
belowerr0 = bnexterr;
|
|
1053 |
cur0 += delta; /* form error * 7 */
|
|
1054 |
bnexterr = cur1; /* Process component 1 */
|
|
1055 |
delta = cur1 * 2;
|
|
1056 |
cur1 += delta; /* form error * 3 */
|
|
1057 |
errorptr[1] = (FSERROR) (bpreverr1 + cur1);
|
|
1058 |
cur1 += delta; /* form error * 5 */
|
|
1059 |
bpreverr1 = belowerr1 + cur1;
|
|
1060 |
belowerr1 = bnexterr;
|
|
1061 |
cur1 += delta; /* form error * 7 */
|
|
1062 |
bnexterr = cur2; /* Process component 2 */
|
|
1063 |
delta = cur2 * 2;
|
|
1064 |
cur2 += delta; /* form error * 3 */
|
|
1065 |
errorptr[2] = (FSERROR) (bpreverr2 + cur2);
|
|
1066 |
cur2 += delta; /* form error * 5 */
|
|
1067 |
bpreverr2 = belowerr2 + cur2;
|
|
1068 |
belowerr2 = bnexterr;
|
|
1069 |
cur2 += delta; /* form error * 7 */
|
|
1070 |
}
|
|
1071 |
/* At this point curN contains the 7/16 error value to be propagated
|
|
1072 |
* to the next pixel on the current line, and all the errors for the
|
|
1073 |
* next line have been shifted over. We are therefore ready to move on.
|
|
1074 |
*/
|
|
1075 |
inptr += dir3; /* Advance pixel pointers to next column */
|
|
1076 |
outptr += dir;
|
|
1077 |
errorptr += dir3; /* advance errorptr to current column */
|
|
1078 |
}
|
|
1079 |
/* Post-loop cleanup: we must unload the final error values into the
|
|
1080 |
* final fserrors[] entry. Note we need not unload belowerrN because
|
|
1081 |
* it is for the dummy column before or after the actual array.
|
|
1082 |
*/
|
|
1083 |
errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
|
|
1084 |
errorptr[1] = (FSERROR) bpreverr1;
|
|
1085 |
errorptr[2] = (FSERROR) bpreverr2;
|
|
1086 |
}
|
|
1087 |
}
|
|
1088 |
|
|
1089 |
|
|
1090 |
/*
|
|
1091 |
* Initialize the error-limiting transfer function (lookup table).
|
|
1092 |
* The raw F-S error computation can potentially compute error values of up to
|
|
1093 |
* +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
|
|
1094 |
* much less, otherwise obviously wrong pixels will be created. (Typical
|
|
1095 |
* effects include weird fringes at color-area boundaries, isolated bright
|
|
1096 |
* pixels in a dark area, etc.) The standard advice for avoiding this problem
|
|
1097 |
* is to ensure that the "corners" of the color cube are allocated as output
|
|
1098 |
* colors; then repeated errors in the same direction cannot cause cascading
|
|
1099 |
* error buildup. However, that only prevents the error from getting
|
|
1100 |
* completely out of hand; Aaron Giles reports that error limiting improves
|
|
1101 |
* the results even with corner colors allocated.
|
|
1102 |
* A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
|
|
1103 |
* well, but the smoother transfer function used below is even better. Thanks
|
|
1104 |
* to Aaron Giles for this idea.
|
|
1105 |
*/
|
|
1106 |
|
|
1107 |
LOCAL(void)
|
|
1108 |
init_error_limit (j_decompress_ptr cinfo)
|
|
1109 |
/* Allocate and fill in the error_limiter table */
|
|
1110 |
{
|
|
1111 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
1112 |
int * table;
|
|
1113 |
int in, out;
|
|
1114 |
|
|
1115 |
table = (int *) (*cinfo->mem->alloc_small)
|
|
1116 |
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
|
|
1117 |
table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
|
|
1118 |
cquantize->error_limiter = table;
|
|
1119 |
|
|
1120 |
#define STEPSIZE ((MAXJSAMPLE+1)/16)
|
|
1121 |
/* Map errors 1:1 up to +- MAXJSAMPLE/16 */
|
|
1122 |
out = 0;
|
|
1123 |
for (in = 0; in < STEPSIZE; in++, out++) {
|
|
1124 |
table[in] = out; table[-in] = -out;
|
|
1125 |
}
|
|
1126 |
/* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
|
|
1127 |
for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
|
|
1128 |
table[in] = out; table[-in] = -out;
|
|
1129 |
}
|
|
1130 |
/* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
|
|
1131 |
for (; in <= MAXJSAMPLE; in++) {
|
|
1132 |
table[in] = out; table[-in] = -out;
|
|
1133 |
}
|
|
1134 |
#undef STEPSIZE
|
|
1135 |
}
|
|
1136 |
|
|
1137 |
|
|
1138 |
/*
|
|
1139 |
* Finish up at the end of each pass.
|
|
1140 |
*/
|
|
1141 |
|
|
1142 |
METHODDEF(void)
|
|
1143 |
finish_pass1 (j_decompress_ptr cinfo)
|
|
1144 |
{
|
|
1145 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
1146 |
|
|
1147 |
/* Select the representative colors and fill in cinfo->colormap */
|
|
1148 |
cinfo->colormap = cquantize->sv_colormap;
|
|
1149 |
select_colors(cinfo, cquantize->desired);
|
|
1150 |
/* Force next pass to zero the color index table */
|
|
1151 |
cquantize->needs_zeroed = TRUE;
|
|
1152 |
}
|
|
1153 |
|
|
1154 |
|
|
1155 |
METHODDEF(void)
|
|
1156 |
finish_pass2 (j_decompress_ptr cinfo)
|
|
1157 |
{
|
|
1158 |
/* no work */
|
|
1159 |
}
|
|
1160 |
|
|
1161 |
|
|
1162 |
/*
|
|
1163 |
* Initialize for each processing pass.
|
|
1164 |
*/
|
|
1165 |
|
|
1166 |
METHODDEF(void)
|
|
1167 |
start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
|
|
1168 |
{
|
|
1169 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
1170 |
hist3d histogram = cquantize->histogram;
|
|
1171 |
int i;
|
|
1172 |
|
|
1173 |
/* Only F-S dithering or no dithering is supported. */
|
|
1174 |
/* If user asks for ordered dither, give him F-S. */
|
|
1175 |
if (cinfo->dither_mode != JDITHER_NONE)
|
|
1176 |
cinfo->dither_mode = JDITHER_FS;
|
|
1177 |
|
|
1178 |
if (is_pre_scan) {
|
|
1179 |
/* Set up method pointers */
|
|
1180 |
cquantize->pub.color_quantize = prescan_quantize;
|
|
1181 |
cquantize->pub.finish_pass = finish_pass1;
|
|
1182 |
cquantize->needs_zeroed = TRUE; /* Always zero histogram */
|
|
1183 |
} else {
|
|
1184 |
/* Set up method pointers */
|
|
1185 |
if (cinfo->dither_mode == JDITHER_FS)
|
|
1186 |
cquantize->pub.color_quantize = pass2_fs_dither;
|
|
1187 |
else
|
|
1188 |
cquantize->pub.color_quantize = pass2_no_dither;
|
|
1189 |
cquantize->pub.finish_pass = finish_pass2;
|
|
1190 |
|
|
1191 |
/* Make sure color count is acceptable */
|
|
1192 |
i = cinfo->actual_number_of_colors;
|
|
1193 |
if (i < 1)
|
|
1194 |
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
|
|
1195 |
if (i > MAXNUMCOLORS)
|
|
1196 |
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
|
|
1197 |
|
|
1198 |
if (cinfo->dither_mode == JDITHER_FS) {
|
|
1199 |
size_t arraysize = (size_t) ((cinfo->output_width + 2) *
|
|
1200 |
(3 * SIZEOF(FSERROR)));
|
|
1201 |
/* Allocate Floyd-Steinberg workspace if we didn't already. */
|
|
1202 |
if (cquantize->fserrors == NULL)
|
|
1203 |
cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
|
|
1204 |
((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
|
|
1205 |
/* Initialize the propagated errors to zero. */
|
|
1206 |
jzero_far((void FAR *) cquantize->fserrors, arraysize);
|
|
1207 |
/* Make the error-limit table if we didn't already. */
|
|
1208 |
if (cquantize->error_limiter == NULL)
|
|
1209 |
init_error_limit(cinfo);
|
|
1210 |
cquantize->on_odd_row = FALSE;
|
|
1211 |
}
|
|
1212 |
|
|
1213 |
}
|
|
1214 |
/* Zero the histogram or inverse color map, if necessary */
|
|
1215 |
if (cquantize->needs_zeroed) {
|
|
1216 |
for (i = 0; i < HIST_C0_ELEMS; i++) {
|
|
1217 |
jzero_far((void FAR *) histogram[i],
|
|
1218 |
HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
|
|
1219 |
}
|
|
1220 |
cquantize->needs_zeroed = FALSE;
|
|
1221 |
}
|
|
1222 |
}
|
|
1223 |
|
|
1224 |
|
|
1225 |
/*
|
|
1226 |
* Switch to a new external colormap between output passes.
|
|
1227 |
*/
|
|
1228 |
|
|
1229 |
METHODDEF(void)
|
|
1230 |
new_color_map_2_quant (j_decompress_ptr cinfo)
|
|
1231 |
{
|
|
1232 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
1233 |
|
|
1234 |
/* Reset the inverse color map */
|
|
1235 |
cquantize->needs_zeroed = TRUE;
|
|
1236 |
}
|
|
1237 |
|
|
1238 |
|
|
1239 |
/*
|
|
1240 |
* Module initialization routine for 2-pass color quantization.
|
|
1241 |
*/
|
|
1242 |
|
|
1243 |
GLOBAL(void)
|
|
1244 |
jinit_2pass_quantizer (j_decompress_ptr cinfo)
|
|
1245 |
{
|
|
1246 |
my_cquantize_ptr cquantize;
|
|
1247 |
int i;
|
|
1248 |
|
|
1249 |
cquantize = (my_cquantize_ptr)
|
|
1250 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
1251 |
SIZEOF(my_cquantizer));
|
|
1252 |
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
|
|
1253 |
cquantize->pub.start_pass = start_pass_2_quant;
|
|
1254 |
cquantize->pub.new_color_map = new_color_map_2_quant;
|
|
1255 |
cquantize->fserrors = NULL; /* flag optional arrays not allocated */
|
|
1256 |
cquantize->error_limiter = NULL;
|
|
1257 |
|
|
1258 |
/* Make sure jdmaster didn't give me a case I can't handle */
|
|
1259 |
if (cinfo->out_color_components != 3)
|
|
1260 |
ERREXIT(cinfo, JERR_NOTIMPL);
|
|
1261 |
|
|
1262 |
/* Allocate the histogram/inverse colormap storage */
|
|
1263 |
cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
|
|
1264 |
((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
|
|
1265 |
for (i = 0; i < HIST_C0_ELEMS; i++) {
|
|
1266 |
cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
|
|
1267 |
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
1268 |
HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
|
|
1269 |
}
|
|
1270 |
cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
|
|
1271 |
|
|
1272 |
/* Allocate storage for the completed colormap, if required.
|
|
1273 |
* We do this now since it is FAR storage and may affect
|
|
1274 |
* the memory manager's space calculations.
|
|
1275 |
*/
|
|
1276 |
if (cinfo->enable_2pass_quant) {
|
|
1277 |
/* Make sure color count is acceptable */
|
|
1278 |
int desired = cinfo->desired_number_of_colors;
|
|
1279 |
/* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
|
|
1280 |
if (desired < 8)
|
|
1281 |
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
|
|
1282 |
/* Make sure colormap indexes can be represented by JSAMPLEs */
|
|
1283 |
if (desired > MAXNUMCOLORS)
|
|
1284 |
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
|
|
1285 |
cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
|
|
1286 |
((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
|
|
1287 |
cquantize->desired = desired;
|
|
1288 |
} else
|
|
1289 |
cquantize->sv_colormap = NULL;
|
|
1290 |
|
|
1291 |
/* Only F-S dithering or no dithering is supported. */
|
|
1292 |
/* If user asks for ordered dither, give him F-S. */
|
|
1293 |
if (cinfo->dither_mode != JDITHER_NONE)
|
|
1294 |
cinfo->dither_mode = JDITHER_FS;
|
|
1295 |
|
|
1296 |
/* Allocate Floyd-Steinberg workspace if necessary.
|
|
1297 |
* This isn't really needed until pass 2, but again it is FAR storage.
|
|
1298 |
* Although we will cope with a later change in dither_mode,
|
|
1299 |
* we do not promise to honor max_memory_to_use if dither_mode changes.
|
|
1300 |
*/
|
|
1301 |
if (cinfo->dither_mode == JDITHER_FS) {
|
|
1302 |
cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
|
|
1303 |
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
1304 |
(size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
|
|
1305 |
/* Might as well create the error-limiting table too. */
|
|
1306 |
init_error_limit(cinfo);
|
|
1307 |
}
|
|
1308 |
}
|
|
1309 |
|
|
1310 |
#endif /* QUANT_2PASS_SUPPORTED */
|