0
|
1 |
/* deflate.c -- compress data using the deflation algorithm
|
|
2 |
* Copyright (C) 1995-2005 Jean-loup Gailly.
|
|
3 |
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
4 |
*/
|
|
5 |
|
|
6 |
/*
|
|
7 |
* ALGORITHM
|
|
8 |
*
|
|
9 |
* The "deflation" process depends on being able to identify portions
|
|
10 |
* of the input text which are identical to earlier input (within a
|
|
11 |
* sliding window trailing behind the input currently being processed).
|
|
12 |
*
|
|
13 |
* The most straightforward technique turns out to be the fastest for
|
|
14 |
* most input files: try all possible matches and select the longest.
|
|
15 |
* The key feature of this algorithm is that insertions into the string
|
|
16 |
* dictionary are very simple and thus fast, and deletions are avoided
|
|
17 |
* completely. Insertions are performed at each input character, whereas
|
|
18 |
* string matches are performed only when the previous match ends. So it
|
|
19 |
* is preferable to spend more time in matches to allow very fast string
|
|
20 |
* insertions and avoid deletions. The matching algorithm for small
|
|
21 |
* strings is inspired from that of Rabin & Karp. A brute force approach
|
|
22 |
* is used to find longer strings when a small match has been found.
|
|
23 |
* A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
|
|
24 |
* (by Leonid Broukhis).
|
|
25 |
* A previous version of this file used a more sophisticated algorithm
|
|
26 |
* (by Fiala and Greene) which is guaranteed to run in linear amortized
|
|
27 |
* time, but has a larger average cost, uses more memory and is patented.
|
|
28 |
* However the F&G algorithm may be faster for some highly redundant
|
|
29 |
* files if the parameter max_chain_length (described below) is too large.
|
|
30 |
*
|
|
31 |
* ACKNOWLEDGEMENTS
|
|
32 |
*
|
|
33 |
* The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
|
|
34 |
* I found it in 'freeze' written by Leonid Broukhis.
|
|
35 |
* Thanks to many people for bug reports and testing.
|
|
36 |
*
|
|
37 |
* REFERENCES
|
|
38 |
*
|
|
39 |
* Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
|
|
40 |
* Available in http://www.ietf.org/rfc/rfc1951.txt
|
|
41 |
*
|
|
42 |
* A description of the Rabin and Karp algorithm is given in the book
|
|
43 |
* "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
|
|
44 |
*
|
|
45 |
* Fiala,E.R., and Greene,D.H.
|
|
46 |
* Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
|
|
47 |
*
|
|
48 |
*/
|
|
49 |
|
|
50 |
/* @(#) $Id$ */
|
|
51 |
|
|
52 |
#include "deflate.h"
|
|
53 |
|
|
54 |
const char deflate_copyright[] =
|
|
55 |
" deflate 1.2.3 Copyright 1995-2005 Jean-loup Gailly ";
|
|
56 |
/*
|
|
57 |
If you use the zlib library in a product, an acknowledgment is welcome
|
|
58 |
in the documentation of your product. If for some reason you cannot
|
|
59 |
include such an acknowledgment, I would appreciate that you keep this
|
|
60 |
copyright string in the executable of your product.
|
|
61 |
*/
|
|
62 |
|
|
63 |
/* ===========================================================================
|
|
64 |
* Function prototypes.
|
|
65 |
*/
|
|
66 |
typedef enum {
|
|
67 |
need_more, /* block not completed, need more input or more output */
|
|
68 |
block_done, /* block flush performed */
|
|
69 |
finish_started, /* finish started, need only more output at next deflate */
|
|
70 |
finish_done /* finish done, accept no more input or output */
|
|
71 |
} block_state;
|
|
72 |
|
|
73 |
typedef block_state (*compress_func) OF((deflate_state *s, int flush));
|
|
74 |
/* Compression function. Returns the block state after the call. */
|
|
75 |
|
|
76 |
local void fill_window OF((deflate_state *s));
|
|
77 |
local block_state deflate_stored OF((deflate_state *s, int flush));
|
|
78 |
local block_state deflate_fast OF((deflate_state *s, int flush));
|
|
79 |
#ifndef FASTEST
|
|
80 |
local block_state deflate_slow OF((deflate_state *s, int flush));
|
|
81 |
#endif
|
|
82 |
local void lm_init OF((deflate_state *s));
|
|
83 |
local void putShortMSB OF((deflate_state *s, uInt b));
|
|
84 |
local void flush_pending OF((z_streamp strm));
|
|
85 |
local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
|
|
86 |
#ifndef FASTEST
|
|
87 |
#ifdef ASMV
|
|
88 |
void match_init OF((void)); /* asm code initialization */
|
|
89 |
uInt longest_match OF((deflate_state *s, IPos cur_match));
|
|
90 |
#else
|
|
91 |
local uInt longest_match OF((deflate_state *s, IPos cur_match));
|
|
92 |
#endif
|
|
93 |
#endif
|
|
94 |
local uInt longest_match_fast OF((deflate_state *s, IPos cur_match));
|
|
95 |
|
|
96 |
#ifdef DEBUG
|
|
97 |
local void check_match OF((deflate_state *s, IPos start, IPos match,
|
|
98 |
int length));
|
|
99 |
#endif
|
|
100 |
|
|
101 |
/* ===========================================================================
|
|
102 |
* Local data
|
|
103 |
*/
|
|
104 |
|
|
105 |
#define NIL 0
|
|
106 |
/* Tail of hash chains */
|
|
107 |
|
|
108 |
#ifndef TOO_FAR
|
|
109 |
# define TOO_FAR 4096
|
|
110 |
#endif
|
|
111 |
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
|
|
112 |
|
|
113 |
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
|
|
114 |
/* Minimum amount of lookahead, except at the end of the input file.
|
|
115 |
* See deflate.c for comments about the MIN_MATCH+1.
|
|
116 |
*/
|
|
117 |
|
|
118 |
/* Values for max_lazy_match, good_match and max_chain_length, depending on
|
|
119 |
* the desired pack level (0..9). The values given below have been tuned to
|
|
120 |
* exclude worst case performance for pathological files. Better values may be
|
|
121 |
* found for specific files.
|
|
122 |
*/
|
|
123 |
typedef struct config_s {
|
|
124 |
ush good_length; /* reduce lazy search above this match length */
|
|
125 |
ush max_lazy; /* do not perform lazy search above this match length */
|
|
126 |
ush nice_length; /* quit search above this match length */
|
|
127 |
ush max_chain;
|
|
128 |
compress_func func;
|
|
129 |
} config;
|
|
130 |
|
|
131 |
#ifdef FASTEST
|
|
132 |
local const config configuration_table[2] = {
|
|
133 |
/* good lazy nice chain */
|
|
134 |
/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
|
|
135 |
/* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
|
|
136 |
#else
|
|
137 |
local const config configuration_table[10] = {
|
|
138 |
/* good lazy nice chain */
|
|
139 |
/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
|
|
140 |
/* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
|
|
141 |
/* 2 */ {4, 5, 16, 8, deflate_fast},
|
|
142 |
/* 3 */ {4, 6, 32, 32, deflate_fast},
|
|
143 |
|
|
144 |
/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
|
|
145 |
/* 5 */ {8, 16, 32, 32, deflate_slow},
|
|
146 |
/* 6 */ {8, 16, 128, 128, deflate_slow},
|
|
147 |
/* 7 */ {8, 32, 128, 256, deflate_slow},
|
|
148 |
/* 8 */ {32, 128, 258, 1024, deflate_slow},
|
|
149 |
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
|
|
150 |
#endif
|
|
151 |
|
|
152 |
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
|
|
153 |
* For deflate_fast() (levels <= 3) good is ignored and lazy has a different
|
|
154 |
* meaning.
|
|
155 |
*/
|
|
156 |
|
|
157 |
#define EQUAL 0
|
|
158 |
/* result of memcmp for equal strings */
|
|
159 |
|
|
160 |
#ifndef NO_DUMMY_DECL
|
|
161 |
struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
|
|
162 |
#endif
|
|
163 |
|
|
164 |
/* ===========================================================================
|
|
165 |
* Update a hash value with the given input byte
|
|
166 |
* IN assertion: all calls to to UPDATE_HASH are made with consecutive
|
|
167 |
* input characters, so that a running hash key can be computed from the
|
|
168 |
* previous key instead of complete recalculation each time.
|
|
169 |
*/
|
|
170 |
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
|
|
171 |
|
|
172 |
|
|
173 |
/* ===========================================================================
|
|
174 |
* Insert string str in the dictionary and set match_head to the previous head
|
|
175 |
* of the hash chain (the most recent string with same hash key). Return
|
|
176 |
* the previous length of the hash chain.
|
|
177 |
* If this file is compiled with -DFASTEST, the compression level is forced
|
|
178 |
* to 1, and no hash chains are maintained.
|
|
179 |
* IN assertion: all calls to to INSERT_STRING are made with consecutive
|
|
180 |
* input characters and the first MIN_MATCH bytes of str are valid
|
|
181 |
* (except for the last MIN_MATCH-1 bytes of the input file).
|
|
182 |
*/
|
|
183 |
#ifdef FASTEST
|
|
184 |
#define INSERT_STRING(s, str, match_head) \
|
|
185 |
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
|
|
186 |
match_head = s->head[s->ins_h], \
|
|
187 |
s->head[s->ins_h] = (Pos)(str))
|
|
188 |
#else
|
|
189 |
#define INSERT_STRING(s, str, match_head) \
|
|
190 |
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
|
|
191 |
match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
|
|
192 |
s->head[s->ins_h] = (Pos)(str))
|
|
193 |
#endif
|
|
194 |
|
|
195 |
/* ===========================================================================
|
|
196 |
* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
|
|
197 |
* prev[] will be initialized on the fly.
|
|
198 |
*/
|
|
199 |
#define CLEAR_HASH(s) \
|
|
200 |
s->head[s->hash_size-1] = NIL; \
|
|
201 |
zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
|
|
202 |
|
|
203 |
/* ========================================================================= */
|
|
204 |
int ZEXPORT deflateInit_(strm, level, version, stream_size)
|
|
205 |
z_streamp strm;
|
|
206 |
int level;
|
|
207 |
const char *version;
|
|
208 |
int stream_size;
|
|
209 |
{
|
|
210 |
return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
|
|
211 |
Z_DEFAULT_STRATEGY, version, stream_size);
|
|
212 |
/* To do: ignore strm->next_in if we use it as window */
|
|
213 |
}
|
|
214 |
|
|
215 |
/* ========================================================================= */
|
|
216 |
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
|
|
217 |
version, stream_size)
|
|
218 |
z_streamp strm;
|
|
219 |
int level;
|
|
220 |
int method;
|
|
221 |
int windowBits;
|
|
222 |
int memLevel;
|
|
223 |
int strategy;
|
|
224 |
const char *version;
|
|
225 |
int stream_size;
|
|
226 |
{
|
|
227 |
deflate_state *s;
|
|
228 |
int wrap = 1;
|
|
229 |
static const char my_version[] = ZLIB_VERSION;
|
|
230 |
|
|
231 |
ushf *overlay;
|
|
232 |
/* We overlay pending_buf and d_buf+l_buf. This works since the average
|
|
233 |
* output size for (length,distance) codes is <= 24 bits.
|
|
234 |
*/
|
|
235 |
|
|
236 |
if (version == Z_NULL || version[0] != my_version[0] ||
|
|
237 |
stream_size != sizeof(z_stream)) {
|
|
238 |
return Z_VERSION_ERROR;
|
|
239 |
}
|
|
240 |
if (strm == Z_NULL) return Z_STREAM_ERROR;
|
|
241 |
|
|
242 |
strm->msg = Z_NULL;
|
|
243 |
if (strm->zalloc == (alloc_func)0) {
|
|
244 |
strm->zalloc = zcalloc;
|
|
245 |
strm->opaque = (voidpf)0;
|
|
246 |
}
|
|
247 |
if (strm->zfree == (free_func)0) strm->zfree = zcfree;
|
|
248 |
|
|
249 |
#ifdef FASTEST
|
|
250 |
if (level != 0) level = 1;
|
|
251 |
#else
|
|
252 |
if (level == Z_DEFAULT_COMPRESSION) level = 6;
|
|
253 |
#endif
|
|
254 |
|
|
255 |
if (windowBits < 0) { /* suppress zlib wrapper */
|
|
256 |
wrap = 0;
|
|
257 |
windowBits = -windowBits;
|
|
258 |
}
|
|
259 |
#ifdef GZIP
|
|
260 |
else if (windowBits > 15) {
|
|
261 |
wrap = 2; /* write gzip wrapper instead */
|
|
262 |
windowBits -= 16;
|
|
263 |
}
|
|
264 |
#endif
|
|
265 |
if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
|
|
266 |
windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
|
|
267 |
strategy < 0 || strategy > Z_FIXED) {
|
|
268 |
return Z_STREAM_ERROR;
|
|
269 |
}
|
|
270 |
if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
|
|
271 |
s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
|
|
272 |
if (s == Z_NULL) return Z_MEM_ERROR;
|
|
273 |
strm->state = (struct internal_state FAR *)s;
|
|
274 |
s->strm = strm;
|
|
275 |
|
|
276 |
s->wrap = wrap;
|
|
277 |
s->gzhead = Z_NULL;
|
|
278 |
s->w_bits = windowBits;
|
|
279 |
s->w_size = 1 << s->w_bits;
|
|
280 |
s->w_mask = s->w_size - 1;
|
|
281 |
|
|
282 |
s->hash_bits = memLevel + 7;
|
|
283 |
s->hash_size = 1 << s->hash_bits;
|
|
284 |
s->hash_mask = s->hash_size - 1;
|
|
285 |
s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
|
|
286 |
|
|
287 |
s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
|
|
288 |
s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
|
|
289 |
s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
|
|
290 |
|
|
291 |
s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
|
|
292 |
|
|
293 |
overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
|
|
294 |
s->pending_buf = (uchf *) overlay;
|
|
295 |
s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
|
|
296 |
|
|
297 |
if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
|
|
298 |
s->pending_buf == Z_NULL) {
|
|
299 |
s->status = FINISH_STATE;
|
|
300 |
strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
|
|
301 |
deflateEnd (strm);
|
|
302 |
return Z_MEM_ERROR;
|
|
303 |
}
|
|
304 |
s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
|
|
305 |
s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
|
|
306 |
|
|
307 |
s->level = level;
|
|
308 |
s->strategy = strategy;
|
|
309 |
s->method = (Byte)method;
|
|
310 |
|
|
311 |
return deflateReset(strm);
|
|
312 |
}
|
|
313 |
|
|
314 |
/* ========================================================================= */
|
|
315 |
int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
|
|
316 |
z_streamp strm;
|
|
317 |
const Bytef *dictionary;
|
|
318 |
uInt dictLength;
|
|
319 |
{
|
|
320 |
deflate_state *s;
|
|
321 |
uInt length = dictLength;
|
|
322 |
uInt n;
|
|
323 |
IPos hash_head = 0;
|
|
324 |
|
|
325 |
if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL ||
|
|
326 |
strm->state->wrap == 2 ||
|
|
327 |
(strm->state->wrap == 1 && strm->state->status != INIT_STATE))
|
|
328 |
return Z_STREAM_ERROR;
|
|
329 |
|
|
330 |
s = strm->state;
|
|
331 |
if (s->wrap)
|
|
332 |
strm->adler = adler32(strm->adler, dictionary, dictLength);
|
|
333 |
|
|
334 |
if (length < MIN_MATCH) return Z_OK;
|
|
335 |
if (length > MAX_DIST(s)) {
|
|
336 |
length = MAX_DIST(s);
|
|
337 |
dictionary += dictLength - length; /* use the tail of the dictionary */
|
|
338 |
}
|
|
339 |
zmemcpy(s->window, dictionary, length);
|
|
340 |
s->strstart = length;
|
|
341 |
s->block_start = (long)length;
|
|
342 |
|
|
343 |
/* Insert all strings in the hash table (except for the last two bytes).
|
|
344 |
* s->lookahead stays null, so s->ins_h will be recomputed at the next
|
|
345 |
* call of fill_window.
|
|
346 |
*/
|
|
347 |
s->ins_h = s->window[0];
|
|
348 |
UPDATE_HASH(s, s->ins_h, s->window[1]);
|
|
349 |
for (n = 0; n <= length - MIN_MATCH; n++) {
|
|
350 |
INSERT_STRING(s, n, hash_head);
|
|
351 |
}
|
|
352 |
if (hash_head) hash_head = 0; /* to make compiler happy */
|
|
353 |
return Z_OK;
|
|
354 |
}
|
|
355 |
|
|
356 |
/* ========================================================================= */
|
|
357 |
int ZEXPORT deflateReset (strm)
|
|
358 |
z_streamp strm;
|
|
359 |
{
|
|
360 |
deflate_state *s;
|
|
361 |
|
|
362 |
if (strm == Z_NULL || strm->state == Z_NULL ||
|
|
363 |
strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
|
|
364 |
return Z_STREAM_ERROR;
|
|
365 |
}
|
|
366 |
|
|
367 |
strm->total_in = strm->total_out = 0;
|
|
368 |
strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
|
|
369 |
strm->data_type = Z_UNKNOWN;
|
|
370 |
|
|
371 |
s = (deflate_state *)strm->state;
|
|
372 |
s->pending = 0;
|
|
373 |
s->pending_out = s->pending_buf;
|
|
374 |
|
|
375 |
if (s->wrap < 0) {
|
|
376 |
s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
|
|
377 |
}
|
|
378 |
s->status = s->wrap ? INIT_STATE : BUSY_STATE;
|
|
379 |
strm->adler =
|
|
380 |
#ifdef GZIP
|
|
381 |
s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
|
|
382 |
#endif
|
|
383 |
adler32(0L, Z_NULL, 0);
|
|
384 |
s->last_flush = Z_NO_FLUSH;
|
|
385 |
|
|
386 |
_tr_init(s);
|
|
387 |
lm_init(s);
|
|
388 |
|
|
389 |
return Z_OK;
|
|
390 |
}
|
|
391 |
|
|
392 |
/* ========================================================================= */
|
|
393 |
int ZEXPORT deflateSetHeader (strm, head)
|
|
394 |
z_streamp strm;
|
|
395 |
gz_headerp head;
|
|
396 |
{
|
|
397 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
|
|
398 |
if (strm->state->wrap != 2) return Z_STREAM_ERROR;
|
|
399 |
strm->state->gzhead = head;
|
|
400 |
return Z_OK;
|
|
401 |
}
|
|
402 |
|
|
403 |
/* ========================================================================= */
|
|
404 |
int ZEXPORT deflatePrime (strm, bits, value)
|
|
405 |
z_streamp strm;
|
|
406 |
int bits;
|
|
407 |
int value;
|
|
408 |
{
|
|
409 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
|
|
410 |
strm->state->bi_valid = bits;
|
|
411 |
strm->state->bi_buf = (ush)(value & ((1 << bits) - 1));
|
|
412 |
return Z_OK;
|
|
413 |
}
|
|
414 |
|
|
415 |
/* ========================================================================= */
|
|
416 |
int ZEXPORT deflateParams(strm, level, strategy)
|
|
417 |
z_streamp strm;
|
|
418 |
int level;
|
|
419 |
int strategy;
|
|
420 |
{
|
|
421 |
deflate_state *s;
|
|
422 |
compress_func func;
|
|
423 |
int err = Z_OK;
|
|
424 |
|
|
425 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
|
|
426 |
s = strm->state;
|
|
427 |
|
|
428 |
#ifdef FASTEST
|
|
429 |
if (level != 0) level = 1;
|
|
430 |
#else
|
|
431 |
if (level == Z_DEFAULT_COMPRESSION) level = 6;
|
|
432 |
#endif
|
|
433 |
if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
|
|
434 |
return Z_STREAM_ERROR;
|
|
435 |
}
|
|
436 |
func = configuration_table[s->level].func;
|
|
437 |
|
|
438 |
if (func != configuration_table[level].func && strm->total_in != 0) {
|
|
439 |
/* Flush the last buffer: */
|
|
440 |
err = deflate(strm, Z_PARTIAL_FLUSH);
|
|
441 |
}
|
|
442 |
if (s->level != level) {
|
|
443 |
s->level = level;
|
|
444 |
s->max_lazy_match = configuration_table[level].max_lazy;
|
|
445 |
s->good_match = configuration_table[level].good_length;
|
|
446 |
s->nice_match = configuration_table[level].nice_length;
|
|
447 |
s->max_chain_length = configuration_table[level].max_chain;
|
|
448 |
}
|
|
449 |
s->strategy = strategy;
|
|
450 |
return err;
|
|
451 |
}
|
|
452 |
|
|
453 |
/* ========================================================================= */
|
|
454 |
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
|
|
455 |
z_streamp strm;
|
|
456 |
int good_length;
|
|
457 |
int max_lazy;
|
|
458 |
int nice_length;
|
|
459 |
int max_chain;
|
|
460 |
{
|
|
461 |
deflate_state *s;
|
|
462 |
|
|
463 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
|
|
464 |
s = strm->state;
|
|
465 |
s->good_match = good_length;
|
|
466 |
s->max_lazy_match = max_lazy;
|
|
467 |
s->nice_match = nice_length;
|
|
468 |
s->max_chain_length = max_chain;
|
|
469 |
return Z_OK;
|
|
470 |
}
|
|
471 |
|
|
472 |
/* =========================================================================
|
|
473 |
* For the default windowBits of 15 and memLevel of 8, this function returns
|
|
474 |
* a close to exact, as well as small, upper bound on the compressed size.
|
|
475 |
* They are coded as constants here for a reason--if the #define's are
|
|
476 |
* changed, then this function needs to be changed as well. The return
|
|
477 |
* value for 15 and 8 only works for those exact settings.
|
|
478 |
*
|
|
479 |
* For any setting other than those defaults for windowBits and memLevel,
|
|
480 |
* the value returned is a conservative worst case for the maximum expansion
|
|
481 |
* resulting from using fixed blocks instead of stored blocks, which deflate
|
|
482 |
* can emit on compressed data for some combinations of the parameters.
|
|
483 |
*
|
|
484 |
* This function could be more sophisticated to provide closer upper bounds
|
|
485 |
* for every combination of windowBits and memLevel, as well as wrap.
|
|
486 |
* But even the conservative upper bound of about 14% expansion does not
|
|
487 |
* seem onerous for output buffer allocation.
|
|
488 |
*/
|
|
489 |
uLong ZEXPORT deflateBound(strm, sourceLen)
|
|
490 |
z_streamp strm;
|
|
491 |
uLong sourceLen;
|
|
492 |
{
|
|
493 |
deflate_state *s;
|
|
494 |
uLong destLen;
|
|
495 |
|
|
496 |
/* conservative upper bound */
|
|
497 |
destLen = sourceLen +
|
|
498 |
((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 11;
|
|
499 |
|
|
500 |
/* if can't get parameters, return conservative bound */
|
|
501 |
if (strm == Z_NULL || strm->state == Z_NULL)
|
|
502 |
return destLen;
|
|
503 |
|
|
504 |
/* if not default parameters, return conservative bound */
|
|
505 |
s = strm->state;
|
|
506 |
if (s->w_bits != 15 || s->hash_bits != 8 + 7)
|
|
507 |
return destLen;
|
|
508 |
|
|
509 |
/* default settings: return tight bound for that case */
|
|
510 |
return compressBound(sourceLen);
|
|
511 |
}
|
|
512 |
|
|
513 |
/* =========================================================================
|
|
514 |
* Put a short in the pending buffer. The 16-bit value is put in MSB order.
|
|
515 |
* IN assertion: the stream state is correct and there is enough room in
|
|
516 |
* pending_buf.
|
|
517 |
*/
|
|
518 |
local void putShortMSB (s, b)
|
|
519 |
deflate_state *s;
|
|
520 |
uInt b;
|
|
521 |
{
|
|
522 |
put_byte(s, (Byte)(b >> 8));
|
|
523 |
put_byte(s, (Byte)(b & 0xff));
|
|
524 |
}
|
|
525 |
|
|
526 |
/* =========================================================================
|
|
527 |
* Flush as much pending output as possible. All deflate() output goes
|
|
528 |
* through this function so some applications may wish to modify it
|
|
529 |
* to avoid allocating a large strm->next_out buffer and copying into it.
|
|
530 |
* (See also read_buf()).
|
|
531 |
*/
|
|
532 |
local void flush_pending(strm)
|
|
533 |
z_streamp strm;
|
|
534 |
{
|
|
535 |
unsigned len = strm->state->pending;
|
|
536 |
|
|
537 |
if (len > strm->avail_out) len = strm->avail_out;
|
|
538 |
if (len == 0) return;
|
|
539 |
|
|
540 |
zmemcpy(strm->next_out, strm->state->pending_out, len);
|
|
541 |
strm->next_out += len;
|
|
542 |
strm->state->pending_out += len;
|
|
543 |
strm->total_out += len;
|
|
544 |
strm->avail_out -= len;
|
|
545 |
strm->state->pending -= len;
|
|
546 |
if (strm->state->pending == 0) {
|
|
547 |
strm->state->pending_out = strm->state->pending_buf;
|
|
548 |
}
|
|
549 |
}
|
|
550 |
|
|
551 |
/* ========================================================================= */
|
|
552 |
int ZEXPORT deflate (strm, flush)
|
|
553 |
z_streamp strm;
|
|
554 |
int flush;
|
|
555 |
{
|
|
556 |
int old_flush; /* value of flush param for previous deflate call */
|
|
557 |
deflate_state *s;
|
|
558 |
|
|
559 |
if (strm == Z_NULL || strm->state == Z_NULL ||
|
|
560 |
flush > Z_FINISH || flush < 0) {
|
|
561 |
return Z_STREAM_ERROR;
|
|
562 |
}
|
|
563 |
s = strm->state;
|
|
564 |
|
|
565 |
if (strm->next_out == Z_NULL ||
|
|
566 |
(strm->next_in == Z_NULL && strm->avail_in != 0) ||
|
|
567 |
(s->status == FINISH_STATE && flush != Z_FINISH)) {
|
|
568 |
ERR_RETURN(strm, Z_STREAM_ERROR);
|
|
569 |
}
|
|
570 |
if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
|
|
571 |
|
|
572 |
s->strm = strm; /* just in case */
|
|
573 |
old_flush = s->last_flush;
|
|
574 |
s->last_flush = flush;
|
|
575 |
|
|
576 |
/* Write the header */
|
|
577 |
if (s->status == INIT_STATE) {
|
|
578 |
#ifdef GZIP
|
|
579 |
if (s->wrap == 2) {
|
|
580 |
strm->adler = crc32(0L, Z_NULL, 0);
|
|
581 |
put_byte(s, 31);
|
|
582 |
put_byte(s, 139);
|
|
583 |
put_byte(s, 8);
|
|
584 |
if (s->gzhead == NULL) {
|
|
585 |
put_byte(s, 0);
|
|
586 |
put_byte(s, 0);
|
|
587 |
put_byte(s, 0);
|
|
588 |
put_byte(s, 0);
|
|
589 |
put_byte(s, 0);
|
|
590 |
put_byte(s, s->level == 9 ? 2 :
|
|
591 |
(s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
|
|
592 |
4 : 0));
|
|
593 |
put_byte(s, OS_CODE);
|
|
594 |
s->status = BUSY_STATE;
|
|
595 |
}
|
|
596 |
else {
|
|
597 |
put_byte(s, (s->gzhead->text ? 1 : 0) +
|
|
598 |
(s->gzhead->hcrc ? 2 : 0) +
|
|
599 |
(s->gzhead->extra == Z_NULL ? 0 : 4) +
|
|
600 |
(s->gzhead->name == Z_NULL ? 0 : 8) +
|
|
601 |
(s->gzhead->comment == Z_NULL ? 0 : 16)
|
|
602 |
);
|
|
603 |
put_byte(s, (Byte)(s->gzhead->time & 0xff));
|
|
604 |
put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
|
|
605 |
put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
|
|
606 |
put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
|
|
607 |
put_byte(s, s->level == 9 ? 2 :
|
|
608 |
(s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
|
|
609 |
4 : 0));
|
|
610 |
put_byte(s, s->gzhead->os & 0xff);
|
|
611 |
if (s->gzhead->extra != NULL) {
|
|
612 |
put_byte(s, s->gzhead->extra_len & 0xff);
|
|
613 |
put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
|
|
614 |
}
|
|
615 |
if (s->gzhead->hcrc)
|
|
616 |
strm->adler = crc32(strm->adler, s->pending_buf,
|
|
617 |
s->pending);
|
|
618 |
s->gzindex = 0;
|
|
619 |
s->status = EXTRA_STATE;
|
|
620 |
}
|
|
621 |
}
|
|
622 |
else
|
|
623 |
#endif
|
|
624 |
{
|
|
625 |
uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
|
|
626 |
uInt level_flags;
|
|
627 |
|
|
628 |
if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
|
|
629 |
level_flags = 0;
|
|
630 |
else if (s->level < 6)
|
|
631 |
level_flags = 1;
|
|
632 |
else if (s->level == 6)
|
|
633 |
level_flags = 2;
|
|
634 |
else
|
|
635 |
level_flags = 3;
|
|
636 |
header |= (level_flags << 6);
|
|
637 |
if (s->strstart != 0) header |= PRESET_DICT;
|
|
638 |
header += 31 - (header % 31);
|
|
639 |
|
|
640 |
s->status = BUSY_STATE;
|
|
641 |
putShortMSB(s, header);
|
|
642 |
|
|
643 |
/* Save the adler32 of the preset dictionary: */
|
|
644 |
if (s->strstart != 0) {
|
|
645 |
putShortMSB(s, (uInt)(strm->adler >> 16));
|
|
646 |
putShortMSB(s, (uInt)(strm->adler & 0xffff));
|
|
647 |
}
|
|
648 |
strm->adler = adler32(0L, Z_NULL, 0);
|
|
649 |
}
|
|
650 |
}
|
|
651 |
#ifdef GZIP
|
|
652 |
if (s->status == EXTRA_STATE) {
|
|
653 |
if (s->gzhead->extra != NULL) {
|
|
654 |
uInt beg = s->pending; /* start of bytes to update crc */
|
|
655 |
|
|
656 |
while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
|
|
657 |
if (s->pending == s->pending_buf_size) {
|
|
658 |
if (s->gzhead->hcrc && s->pending > beg)
|
|
659 |
strm->adler = crc32(strm->adler, s->pending_buf + beg,
|
|
660 |
s->pending - beg);
|
|
661 |
flush_pending(strm);
|
|
662 |
beg = s->pending;
|
|
663 |
if (s->pending == s->pending_buf_size)
|
|
664 |
break;
|
|
665 |
}
|
|
666 |
put_byte(s, s->gzhead->extra[s->gzindex]);
|
|
667 |
s->gzindex++;
|
|
668 |
}
|
|
669 |
if (s->gzhead->hcrc && s->pending > beg)
|
|
670 |
strm->adler = crc32(strm->adler, s->pending_buf + beg,
|
|
671 |
s->pending - beg);
|
|
672 |
if (s->gzindex == s->gzhead->extra_len) {
|
|
673 |
s->gzindex = 0;
|
|
674 |
s->status = NAME_STATE;
|
|
675 |
}
|
|
676 |
}
|
|
677 |
else
|
|
678 |
s->status = NAME_STATE;
|
|
679 |
}
|
|
680 |
if (s->status == NAME_STATE) {
|
|
681 |
if (s->gzhead->name != NULL) {
|
|
682 |
uInt beg = s->pending; /* start of bytes to update crc */
|
|
683 |
int val;
|
|
684 |
|
|
685 |
do {
|
|
686 |
if (s->pending == s->pending_buf_size) {
|
|
687 |
if (s->gzhead->hcrc && s->pending > beg)
|
|
688 |
strm->adler = crc32(strm->adler, s->pending_buf + beg,
|
|
689 |
s->pending - beg);
|
|
690 |
flush_pending(strm);
|
|
691 |
beg = s->pending;
|
|
692 |
if (s->pending == s->pending_buf_size) {
|
|
693 |
val = 1;
|
|
694 |
break;
|
|
695 |
}
|
|
696 |
}
|
|
697 |
val = s->gzhead->name[s->gzindex++];
|
|
698 |
put_byte(s, val);
|
|
699 |
} while (val != 0);
|
|
700 |
if (s->gzhead->hcrc && s->pending > beg)
|
|
701 |
strm->adler = crc32(strm->adler, s->pending_buf + beg,
|
|
702 |
s->pending - beg);
|
|
703 |
if (val == 0) {
|
|
704 |
s->gzindex = 0;
|
|
705 |
s->status = COMMENT_STATE;
|
|
706 |
}
|
|
707 |
}
|
|
708 |
else
|
|
709 |
s->status = COMMENT_STATE;
|
|
710 |
}
|
|
711 |
if (s->status == COMMENT_STATE) {
|
|
712 |
if (s->gzhead->comment != NULL) {
|
|
713 |
uInt beg = s->pending; /* start of bytes to update crc */
|
|
714 |
int val;
|
|
715 |
|
|
716 |
do {
|
|
717 |
if (s->pending == s->pending_buf_size) {
|
|
718 |
if (s->gzhead->hcrc && s->pending > beg)
|
|
719 |
strm->adler = crc32(strm->adler, s->pending_buf + beg,
|
|
720 |
s->pending - beg);
|
|
721 |
flush_pending(strm);
|
|
722 |
beg = s->pending;
|
|
723 |
if (s->pending == s->pending_buf_size) {
|
|
724 |
val = 1;
|
|
725 |
break;
|
|
726 |
}
|
|
727 |
}
|
|
728 |
val = s->gzhead->comment[s->gzindex++];
|
|
729 |
put_byte(s, val);
|
|
730 |
} while (val != 0);
|
|
731 |
if (s->gzhead->hcrc && s->pending > beg)
|
|
732 |
strm->adler = crc32(strm->adler, s->pending_buf + beg,
|
|
733 |
s->pending - beg);
|
|
734 |
if (val == 0)
|
|
735 |
s->status = HCRC_STATE;
|
|
736 |
}
|
|
737 |
else
|
|
738 |
s->status = HCRC_STATE;
|
|
739 |
}
|
|
740 |
if (s->status == HCRC_STATE) {
|
|
741 |
if (s->gzhead->hcrc) {
|
|
742 |
if (s->pending + 2 > s->pending_buf_size)
|
|
743 |
flush_pending(strm);
|
|
744 |
if (s->pending + 2 <= s->pending_buf_size) {
|
|
745 |
put_byte(s, (Byte)(strm->adler & 0xff));
|
|
746 |
put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
|
|
747 |
strm->adler = crc32(0L, Z_NULL, 0);
|
|
748 |
s->status = BUSY_STATE;
|
|
749 |
}
|
|
750 |
}
|
|
751 |
else
|
|
752 |
s->status = BUSY_STATE;
|
|
753 |
}
|
|
754 |
#endif
|
|
755 |
|
|
756 |
/* Flush as much pending output as possible */
|
|
757 |
if (s->pending != 0) {
|
|
758 |
flush_pending(strm);
|
|
759 |
if (strm->avail_out == 0) {
|
|
760 |
/* Since avail_out is 0, deflate will be called again with
|
|
761 |
* more output space, but possibly with both pending and
|
|
762 |
* avail_in equal to zero. There won't be anything to do,
|
|
763 |
* but this is not an error situation so make sure we
|
|
764 |
* return OK instead of BUF_ERROR at next call of deflate:
|
|
765 |
*/
|
|
766 |
s->last_flush = -1;
|
|
767 |
return Z_OK;
|
|
768 |
}
|
|
769 |
|
|
770 |
/* Make sure there is something to do and avoid duplicate consecutive
|
|
771 |
* flushes. For repeated and useless calls with Z_FINISH, we keep
|
|
772 |
* returning Z_STREAM_END instead of Z_BUF_ERROR.
|
|
773 |
*/
|
|
774 |
} else if (strm->avail_in == 0 && flush <= old_flush &&
|
|
775 |
flush != Z_FINISH) {
|
|
776 |
ERR_RETURN(strm, Z_BUF_ERROR);
|
|
777 |
}
|
|
778 |
|
|
779 |
/* User must not provide more input after the first FINISH: */
|
|
780 |
if (s->status == FINISH_STATE && strm->avail_in != 0) {
|
|
781 |
ERR_RETURN(strm, Z_BUF_ERROR);
|
|
782 |
}
|
|
783 |
|
|
784 |
/* Start a new block or continue the current one.
|
|
785 |
*/
|
|
786 |
if (strm->avail_in != 0 || s->lookahead != 0 ||
|
|
787 |
(flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
|
|
788 |
block_state bstate;
|
|
789 |
|
|
790 |
bstate = (*(configuration_table[s->level].func))(s, flush);
|
|
791 |
|
|
792 |
if (bstate == finish_started || bstate == finish_done) {
|
|
793 |
s->status = FINISH_STATE;
|
|
794 |
}
|
|
795 |
if (bstate == need_more || bstate == finish_started) {
|
|
796 |
if (strm->avail_out == 0) {
|
|
797 |
s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
|
|
798 |
}
|
|
799 |
return Z_OK;
|
|
800 |
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call
|
|
801 |
* of deflate should use the same flush parameter to make sure
|
|
802 |
* that the flush is complete. So we don't have to output an
|
|
803 |
* empty block here, this will be done at next call. This also
|
|
804 |
* ensures that for a very small output buffer, we emit at most
|
|
805 |
* one empty block.
|
|
806 |
*/
|
|
807 |
}
|
|
808 |
if (bstate == block_done) {
|
|
809 |
if (flush == Z_PARTIAL_FLUSH) {
|
|
810 |
_tr_align(s);
|
|
811 |
} else { /* FULL_FLUSH or SYNC_FLUSH */
|
|
812 |
_tr_stored_block(s, (char*)0, 0L, 0);
|
|
813 |
/* For a full flush, this empty block will be recognized
|
|
814 |
* as a special marker by inflate_sync().
|
|
815 |
*/
|
|
816 |
if (flush == Z_FULL_FLUSH) {
|
|
817 |
CLEAR_HASH(s); /* forget history */
|
|
818 |
}
|
|
819 |
}
|
|
820 |
flush_pending(strm);
|
|
821 |
if (strm->avail_out == 0) {
|
|
822 |
s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
|
|
823 |
return Z_OK;
|
|
824 |
}
|
|
825 |
}
|
|
826 |
}
|
|
827 |
Assert(strm->avail_out > 0, "bug2");
|
|
828 |
|
|
829 |
if (flush != Z_FINISH) return Z_OK;
|
|
830 |
if (s->wrap <= 0) return Z_STREAM_END;
|
|
831 |
|
|
832 |
/* Write the trailer */
|
|
833 |
#ifdef GZIP
|
|
834 |
if (s->wrap == 2) {
|
|
835 |
put_byte(s, (Byte)(strm->adler & 0xff));
|
|
836 |
put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
|
|
837 |
put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
|
|
838 |
put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
|
|
839 |
put_byte(s, (Byte)(strm->total_in & 0xff));
|
|
840 |
put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
|
|
841 |
put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
|
|
842 |
put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
|
|
843 |
}
|
|
844 |
else
|
|
845 |
#endif
|
|
846 |
{
|
|
847 |
putShortMSB(s, (uInt)(strm->adler >> 16));
|
|
848 |
putShortMSB(s, (uInt)(strm->adler & 0xffff));
|
|
849 |
}
|
|
850 |
flush_pending(strm);
|
|
851 |
/* If avail_out is zero, the application will call deflate again
|
|
852 |
* to flush the rest.
|
|
853 |
*/
|
|
854 |
if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
|
|
855 |
return s->pending != 0 ? Z_OK : Z_STREAM_END;
|
|
856 |
}
|
|
857 |
|
|
858 |
/* ========================================================================= */
|
|
859 |
int ZEXPORT deflateEnd (strm)
|
|
860 |
z_streamp strm;
|
|
861 |
{
|
|
862 |
int status;
|
|
863 |
|
|
864 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
|
|
865 |
|
|
866 |
status = strm->state->status;
|
|
867 |
if (status != INIT_STATE &&
|
|
868 |
status != EXTRA_STATE &&
|
|
869 |
status != NAME_STATE &&
|
|
870 |
status != COMMENT_STATE &&
|
|
871 |
status != HCRC_STATE &&
|
|
872 |
status != BUSY_STATE &&
|
|
873 |
status != FINISH_STATE) {
|
|
874 |
return Z_STREAM_ERROR;
|
|
875 |
}
|
|
876 |
|
|
877 |
/* Deallocate in reverse order of allocations: */
|
|
878 |
TRY_FREE(strm, strm->state->pending_buf);
|
|
879 |
TRY_FREE(strm, strm->state->head);
|
|
880 |
TRY_FREE(strm, strm->state->prev);
|
|
881 |
TRY_FREE(strm, strm->state->window);
|
|
882 |
|
|
883 |
ZFREE(strm, strm->state);
|
|
884 |
strm->state = Z_NULL;
|
|
885 |
|
|
886 |
return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
|
|
887 |
}
|
|
888 |
|
|
889 |
/* =========================================================================
|
|
890 |
* Copy the source state to the destination state.
|
|
891 |
* To simplify the source, this is not supported for 16-bit MSDOS (which
|
|
892 |
* doesn't have enough memory anyway to duplicate compression states).
|
|
893 |
*/
|
|
894 |
int ZEXPORT deflateCopy (dest, source)
|
|
895 |
z_streamp dest;
|
|
896 |
z_streamp source;
|
|
897 |
{
|
|
898 |
#ifdef MAXSEG_64K
|
|
899 |
return Z_STREAM_ERROR;
|
|
900 |
#else
|
|
901 |
deflate_state *ds;
|
|
902 |
deflate_state *ss;
|
|
903 |
ushf *overlay;
|
|
904 |
|
|
905 |
|
|
906 |
if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
|
|
907 |
return Z_STREAM_ERROR;
|
|
908 |
}
|
|
909 |
|
|
910 |
ss = source->state;
|
|
911 |
|
|
912 |
zmemcpy(dest, source, sizeof(z_stream));
|
|
913 |
|
|
914 |
ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
|
|
915 |
if (ds == Z_NULL) return Z_MEM_ERROR;
|
|
916 |
dest->state = (struct internal_state FAR *) ds;
|
|
917 |
zmemcpy(ds, ss, sizeof(deflate_state));
|
|
918 |
ds->strm = dest;
|
|
919 |
|
|
920 |
ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
|
|
921 |
ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
|
|
922 |
ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
|
|
923 |
overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
|
|
924 |
ds->pending_buf = (uchf *) overlay;
|
|
925 |
|
|
926 |
if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
|
|
927 |
ds->pending_buf == Z_NULL) {
|
|
928 |
deflateEnd (dest);
|
|
929 |
return Z_MEM_ERROR;
|
|
930 |
}
|
|
931 |
/* following zmemcpy do not work for 16-bit MSDOS */
|
|
932 |
zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
|
|
933 |
zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
|
|
934 |
zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
|
|
935 |
zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
|
|
936 |
|
|
937 |
ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
|
|
938 |
ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
|
|
939 |
ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
|
|
940 |
|
|
941 |
ds->l_desc.dyn_tree = ds->dyn_ltree;
|
|
942 |
ds->d_desc.dyn_tree = ds->dyn_dtree;
|
|
943 |
ds->bl_desc.dyn_tree = ds->bl_tree;
|
|
944 |
|
|
945 |
return Z_OK;
|
|
946 |
#endif /* MAXSEG_64K */
|
|
947 |
}
|
|
948 |
|
|
949 |
/* ===========================================================================
|
|
950 |
* Read a new buffer from the current input stream, update the adler32
|
|
951 |
* and total number of bytes read. All deflate() input goes through
|
|
952 |
* this function so some applications may wish to modify it to avoid
|
|
953 |
* allocating a large strm->next_in buffer and copying from it.
|
|
954 |
* (See also flush_pending()).
|
|
955 |
*/
|
|
956 |
local int read_buf(strm, buf, size)
|
|
957 |
z_streamp strm;
|
|
958 |
Bytef *buf;
|
|
959 |
unsigned size;
|
|
960 |
{
|
|
961 |
unsigned len = strm->avail_in;
|
|
962 |
|
|
963 |
if (len > size) len = size;
|
|
964 |
if (len == 0) return 0;
|
|
965 |
|
|
966 |
strm->avail_in -= len;
|
|
967 |
|
|
968 |
if (strm->state->wrap == 1) {
|
|
969 |
strm->adler = adler32(strm->adler, strm->next_in, len);
|
|
970 |
}
|
|
971 |
#ifdef GZIP
|
|
972 |
else if (strm->state->wrap == 2) {
|
|
973 |
strm->adler = crc32(strm->adler, strm->next_in, len);
|
|
974 |
}
|
|
975 |
#endif
|
|
976 |
zmemcpy(buf, strm->next_in, len);
|
|
977 |
strm->next_in += len;
|
|
978 |
strm->total_in += len;
|
|
979 |
|
|
980 |
return (int)len;
|
|
981 |
}
|
|
982 |
|
|
983 |
/* ===========================================================================
|
|
984 |
* Initialize the "longest match" routines for a new zlib stream
|
|
985 |
*/
|
|
986 |
local void lm_init (s)
|
|
987 |
deflate_state *s;
|
|
988 |
{
|
|
989 |
s->window_size = (ulg)2L*s->w_size;
|
|
990 |
|
|
991 |
CLEAR_HASH(s);
|
|
992 |
|
|
993 |
/* Set the default configuration parameters:
|
|
994 |
*/
|
|
995 |
s->max_lazy_match = configuration_table[s->level].max_lazy;
|
|
996 |
s->good_match = configuration_table[s->level].good_length;
|
|
997 |
s->nice_match = configuration_table[s->level].nice_length;
|
|
998 |
s->max_chain_length = configuration_table[s->level].max_chain;
|
|
999 |
|
|
1000 |
s->strstart = 0;
|
|
1001 |
s->block_start = 0L;
|
|
1002 |
s->lookahead = 0;
|
|
1003 |
s->match_length = s->prev_length = MIN_MATCH-1;
|
|
1004 |
s->match_available = 0;
|
|
1005 |
s->ins_h = 0;
|
|
1006 |
#ifndef FASTEST
|
|
1007 |
#ifdef ASMV
|
|
1008 |
match_init(); /* initialize the asm code */
|
|
1009 |
#endif
|
|
1010 |
#endif
|
|
1011 |
}
|
|
1012 |
|
|
1013 |
#ifndef FASTEST
|
|
1014 |
/* ===========================================================================
|
|
1015 |
* Set match_start to the longest match starting at the given string and
|
|
1016 |
* return its length. Matches shorter or equal to prev_length are discarded,
|
|
1017 |
* in which case the result is equal to prev_length and match_start is
|
|
1018 |
* garbage.
|
|
1019 |
* IN assertions: cur_match is the head of the hash chain for the current
|
|
1020 |
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
|
|
1021 |
* OUT assertion: the match length is not greater than s->lookahead.
|
|
1022 |
*/
|
|
1023 |
#ifndef ASMV
|
|
1024 |
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
|
|
1025 |
* match.S. The code will be functionally equivalent.
|
|
1026 |
*/
|
|
1027 |
local uInt longest_match(s, cur_match)
|
|
1028 |
deflate_state *s;
|
|
1029 |
IPos cur_match; /* current match */
|
|
1030 |
{
|
|
1031 |
unsigned chain_length = s->max_chain_length;/* max hash chain length */
|
|
1032 |
register Bytef *scan = s->window + s->strstart; /* current string */
|
|
1033 |
register Bytef *match; /* matched string */
|
|
1034 |
register int len; /* length of current match */
|
|
1035 |
int best_len = s->prev_length; /* best match length so far */
|
|
1036 |
int nice_match = s->nice_match; /* stop if match long enough */
|
|
1037 |
IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
|
|
1038 |
s->strstart - (IPos)MAX_DIST(s) : NIL;
|
|
1039 |
/* Stop when cur_match becomes <= limit. To simplify the code,
|
|
1040 |
* we prevent matches with the string of window index 0.
|
|
1041 |
*/
|
|
1042 |
Posf *prev = s->prev;
|
|
1043 |
uInt wmask = s->w_mask;
|
|
1044 |
|
|
1045 |
#ifdef UNALIGNED_OK
|
|
1046 |
/* Compare two bytes at a time. Note: this is not always beneficial.
|
|
1047 |
* Try with and without -DUNALIGNED_OK to check.
|
|
1048 |
*/
|
|
1049 |
register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
|
|
1050 |
register ush scan_start = *(ushf*)scan;
|
|
1051 |
register ush scan_end = *(ushf*)(scan+best_len-1);
|
|
1052 |
#else
|
|
1053 |
register Bytef *strend = s->window + s->strstart + MAX_MATCH;
|
|
1054 |
register Byte scan_end1 = scan[best_len-1];
|
|
1055 |
register Byte scan_end = scan[best_len];
|
|
1056 |
#endif
|
|
1057 |
|
|
1058 |
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
|
|
1059 |
* It is easy to get rid of this optimization if necessary.
|
|
1060 |
*/
|
|
1061 |
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
|
|
1062 |
|
|
1063 |
/* Do not waste too much time if we already have a good match: */
|
|
1064 |
if (s->prev_length >= s->good_match) {
|
|
1065 |
chain_length >>= 2;
|
|
1066 |
}
|
|
1067 |
/* Do not look for matches beyond the end of the input. This is necessary
|
|
1068 |
* to make deflate deterministic.
|
|
1069 |
*/
|
|
1070 |
if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
|
|
1071 |
|
|
1072 |
Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
|
|
1073 |
|
|
1074 |
do {
|
|
1075 |
Assert(cur_match < s->strstart, "no future");
|
|
1076 |
match = s->window + cur_match;
|
|
1077 |
|
|
1078 |
/* Skip to next match if the match length cannot increase
|
|
1079 |
* or if the match length is less than 2. Note that the checks below
|
|
1080 |
* for insufficient lookahead only occur occasionally for performance
|
|
1081 |
* reasons. Therefore uninitialized memory will be accessed, and
|
|
1082 |
* conditional jumps will be made that depend on those values.
|
|
1083 |
* However the length of the match is limited to the lookahead, so
|
|
1084 |
* the output of deflate is not affected by the uninitialized values.
|
|
1085 |
*/
|
|
1086 |
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
|
|
1087 |
/* This code assumes sizeof(unsigned short) == 2. Do not use
|
|
1088 |
* UNALIGNED_OK if your compiler uses a different size.
|
|
1089 |
*/
|
|
1090 |
if (*(ushf*)(match+best_len-1) != scan_end ||
|
|
1091 |
*(ushf*)match != scan_start) continue;
|
|
1092 |
|
|
1093 |
/* It is not necessary to compare scan[2] and match[2] since they are
|
|
1094 |
* always equal when the other bytes match, given that the hash keys
|
|
1095 |
* are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
|
|
1096 |
* strstart+3, +5, ... up to strstart+257. We check for insufficient
|
|
1097 |
* lookahead only every 4th comparison; the 128th check will be made
|
|
1098 |
* at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
|
|
1099 |
* necessary to put more guard bytes at the end of the window, or
|
|
1100 |
* to check more often for insufficient lookahead.
|
|
1101 |
*/
|
|
1102 |
Assert(scan[2] == match[2], "scan[2]?");
|
|
1103 |
scan++, match++;
|
|
1104 |
do {
|
|
1105 |
} while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
|
|
1106 |
*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
|
|
1107 |
*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
|
|
1108 |
*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
|
|
1109 |
scan < strend);
|
|
1110 |
/* The funny "do {}" generates better code on most compilers */
|
|
1111 |
|
|
1112 |
/* Here, scan <= window+strstart+257 */
|
|
1113 |
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
|
|
1114 |
if (*scan == *match) scan++;
|
|
1115 |
|
|
1116 |
len = (MAX_MATCH - 1) - (int)(strend-scan);
|
|
1117 |
scan = strend - (MAX_MATCH-1);
|
|
1118 |
|
|
1119 |
#else /* UNALIGNED_OK */
|
|
1120 |
|
|
1121 |
if (match[best_len] != scan_end ||
|
|
1122 |
match[best_len-1] != scan_end1 ||
|
|
1123 |
*match != *scan ||
|
|
1124 |
*++match != scan[1]) continue;
|
|
1125 |
|
|
1126 |
/* The check at best_len-1 can be removed because it will be made
|
|
1127 |
* again later. (This heuristic is not always a win.)
|
|
1128 |
* It is not necessary to compare scan[2] and match[2] since they
|
|
1129 |
* are always equal when the other bytes match, given that
|
|
1130 |
* the hash keys are equal and that HASH_BITS >= 8.
|
|
1131 |
*/
|
|
1132 |
scan += 2, match++;
|
|
1133 |
Assert(*scan == *match, "match[2]?");
|
|
1134 |
|
|
1135 |
/* We check for insufficient lookahead only every 8th comparison;
|
|
1136 |
* the 256th check will be made at strstart+258.
|
|
1137 |
*/
|
|
1138 |
do {
|
|
1139 |
} while (*++scan == *++match && *++scan == *++match &&
|
|
1140 |
*++scan == *++match && *++scan == *++match &&
|
|
1141 |
*++scan == *++match && *++scan == *++match &&
|
|
1142 |
*++scan == *++match && *++scan == *++match &&
|
|
1143 |
scan < strend);
|
|
1144 |
|
|
1145 |
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
|
|
1146 |
|
|
1147 |
len = MAX_MATCH - (int)(strend - scan);
|
|
1148 |
scan = strend - MAX_MATCH;
|
|
1149 |
|
|
1150 |
#endif /* UNALIGNED_OK */
|
|
1151 |
|
|
1152 |
if (len > best_len) {
|
|
1153 |
s->match_start = cur_match;
|
|
1154 |
best_len = len;
|
|
1155 |
if (len >= nice_match) break;
|
|
1156 |
#ifdef UNALIGNED_OK
|
|
1157 |
scan_end = *(ushf*)(scan+best_len-1);
|
|
1158 |
#else
|
|
1159 |
scan_end1 = scan[best_len-1];
|
|
1160 |
scan_end = scan[best_len];
|
|
1161 |
#endif
|
|
1162 |
}
|
|
1163 |
} while ((cur_match = prev[cur_match & wmask]) > limit
|
|
1164 |
&& --chain_length != 0);
|
|
1165 |
|
|
1166 |
if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
|
|
1167 |
return s->lookahead;
|
|
1168 |
}
|
|
1169 |
#endif /* ASMV */
|
|
1170 |
#endif /* FASTEST */
|
|
1171 |
|
|
1172 |
/* ---------------------------------------------------------------------------
|
|
1173 |
* Optimized version for level == 1 or strategy == Z_RLE only
|
|
1174 |
*/
|
|
1175 |
local uInt longest_match_fast(s, cur_match)
|
|
1176 |
deflate_state *s;
|
|
1177 |
IPos cur_match; /* current match */
|
|
1178 |
{
|
|
1179 |
register Bytef *scan = s->window + s->strstart; /* current string */
|
|
1180 |
register Bytef *match; /* matched string */
|
|
1181 |
register int len; /* length of current match */
|
|
1182 |
register Bytef *strend = s->window + s->strstart + MAX_MATCH;
|
|
1183 |
|
|
1184 |
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
|
|
1185 |
* It is easy to get rid of this optimization if necessary.
|
|
1186 |
*/
|
|
1187 |
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
|
|
1188 |
|
|
1189 |
Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
|
|
1190 |
|
|
1191 |
Assert(cur_match < s->strstart, "no future");
|
|
1192 |
|
|
1193 |
match = s->window + cur_match;
|
|
1194 |
|
|
1195 |
/* Return failure if the match length is less than 2:
|
|
1196 |
*/
|
|
1197 |
if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
|
|
1198 |
|
|
1199 |
/* The check at best_len-1 can be removed because it will be made
|
|
1200 |
* again later. (This heuristic is not always a win.)
|
|
1201 |
* It is not necessary to compare scan[2] and match[2] since they
|
|
1202 |
* are always equal when the other bytes match, given that
|
|
1203 |
* the hash keys are equal and that HASH_BITS >= 8.
|
|
1204 |
*/
|
|
1205 |
scan += 2, match += 2;
|
|
1206 |
Assert(*scan == *match, "match[2]?");
|
|
1207 |
|
|
1208 |
/* We check for insufficient lookahead only every 8th comparison;
|
|
1209 |
* the 256th check will be made at strstart+258.
|
|
1210 |
*/
|
|
1211 |
do {
|
|
1212 |
} while (*++scan == *++match && *++scan == *++match &&
|
|
1213 |
*++scan == *++match && *++scan == *++match &&
|
|
1214 |
*++scan == *++match && *++scan == *++match &&
|
|
1215 |
*++scan == *++match && *++scan == *++match &&
|
|
1216 |
scan < strend);
|
|
1217 |
|
|
1218 |
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
|
|
1219 |
|
|
1220 |
len = MAX_MATCH - (int)(strend - scan);
|
|
1221 |
|
|
1222 |
if (len < MIN_MATCH) return MIN_MATCH - 1;
|
|
1223 |
|
|
1224 |
s->match_start = cur_match;
|
|
1225 |
return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
|
|
1226 |
}
|
|
1227 |
|
|
1228 |
#ifdef DEBUG
|
|
1229 |
/* ===========================================================================
|
|
1230 |
* Check that the match at match_start is indeed a match.
|
|
1231 |
*/
|
|
1232 |
local void check_match(s, start, match, length)
|
|
1233 |
deflate_state *s;
|
|
1234 |
IPos start, match;
|
|
1235 |
int length;
|
|
1236 |
{
|
|
1237 |
/* check that the match is indeed a match */
|
|
1238 |
if (zmemcmp(s->window + match,
|
|
1239 |
s->window + start, length) != EQUAL) {
|
|
1240 |
fprintf(stderr, " start %u, match %u, length %d\n",
|
|
1241 |
start, match, length);
|
|
1242 |
do {
|
|
1243 |
fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
|
|
1244 |
} while (--length != 0);
|
|
1245 |
z_error("invalid match");
|
|
1246 |
}
|
|
1247 |
if (z_verbose > 1) {
|
|
1248 |
fprintf(stderr,"\\[%d,%d]", start-match, length);
|
|
1249 |
do { putc(s->window[start++], stderr); } while (--length != 0);
|
|
1250 |
}
|
|
1251 |
}
|
|
1252 |
#else
|
|
1253 |
# define check_match(s, start, match, length)
|
|
1254 |
#endif /* DEBUG */
|
|
1255 |
|
|
1256 |
/* ===========================================================================
|
|
1257 |
* Fill the window when the lookahead becomes insufficient.
|
|
1258 |
* Updates strstart and lookahead.
|
|
1259 |
*
|
|
1260 |
* IN assertion: lookahead < MIN_LOOKAHEAD
|
|
1261 |
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
|
|
1262 |
* At least one byte has been read, or avail_in == 0; reads are
|
|
1263 |
* performed for at least two bytes (required for the zip translate_eol
|
|
1264 |
* option -- not supported here).
|
|
1265 |
*/
|
|
1266 |
local void fill_window(s)
|
|
1267 |
deflate_state *s;
|
|
1268 |
{
|
|
1269 |
register unsigned n, m;
|
|
1270 |
register Posf *p;
|
|
1271 |
unsigned more; /* Amount of free space at the end of the window. */
|
|
1272 |
uInt wsize = s->w_size;
|
|
1273 |
|
|
1274 |
do {
|
|
1275 |
more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
|
|
1276 |
|
|
1277 |
/* Deal with !@#$% 64K limit: */
|
|
1278 |
if (sizeof(int) <= 2) {
|
|
1279 |
if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
|
|
1280 |
more = wsize;
|
|
1281 |
|
|
1282 |
} else if (more == (unsigned)(-1)) {
|
|
1283 |
/* Very unlikely, but possible on 16 bit machine if
|
|
1284 |
* strstart == 0 && lookahead == 1 (input done a byte at time)
|
|
1285 |
*/
|
|
1286 |
more--;
|
|
1287 |
}
|
|
1288 |
}
|
|
1289 |
|
|
1290 |
/* If the window is almost full and there is insufficient lookahead,
|
|
1291 |
* move the upper half to the lower one to make room in the upper half.
|
|
1292 |
*/
|
|
1293 |
if (s->strstart >= wsize+MAX_DIST(s)) {
|
|
1294 |
|
|
1295 |
zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
|
|
1296 |
s->match_start -= wsize;
|
|
1297 |
s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
|
|
1298 |
s->block_start -= (long) wsize;
|
|
1299 |
|
|
1300 |
/* Slide the hash table (could be avoided with 32 bit values
|
|
1301 |
at the expense of memory usage). We slide even when level == 0
|
|
1302 |
to keep the hash table consistent if we switch back to level > 0
|
|
1303 |
later. (Using level 0 permanently is not an optimal usage of
|
|
1304 |
zlib, so we don't care about this pathological case.)
|
|
1305 |
*/
|
|
1306 |
/* %%% avoid this when Z_RLE */
|
|
1307 |
n = s->hash_size;
|
|
1308 |
p = &s->head[n];
|
|
1309 |
do {
|
|
1310 |
m = *--p;
|
|
1311 |
*p = (Pos)(m >= wsize ? m-wsize : NIL);
|
|
1312 |
} while (--n);
|
|
1313 |
|
|
1314 |
n = wsize;
|
|
1315 |
#ifndef FASTEST
|
|
1316 |
p = &s->prev[n];
|
|
1317 |
do {
|
|
1318 |
m = *--p;
|
|
1319 |
*p = (Pos)(m >= wsize ? m-wsize : NIL);
|
|
1320 |
/* If n is not on any hash chain, prev[n] is garbage but
|
|
1321 |
* its value will never be used.
|
|
1322 |
*/
|
|
1323 |
} while (--n);
|
|
1324 |
#endif
|
|
1325 |
more += wsize;
|
|
1326 |
}
|
|
1327 |
if (s->strm->avail_in == 0) return;
|
|
1328 |
|
|
1329 |
/* If there was no sliding:
|
|
1330 |
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
|
|
1331 |
* more == window_size - lookahead - strstart
|
|
1332 |
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
|
|
1333 |
* => more >= window_size - 2*WSIZE + 2
|
|
1334 |
* In the BIG_MEM or MMAP case (not yet supported),
|
|
1335 |
* window_size == input_size + MIN_LOOKAHEAD &&
|
|
1336 |
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
|
|
1337 |
* Otherwise, window_size == 2*WSIZE so more >= 2.
|
|
1338 |
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
|
|
1339 |
*/
|
|
1340 |
Assert(more >= 2, "more < 2");
|
|
1341 |
|
|
1342 |
n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
|
|
1343 |
s->lookahead += n;
|
|
1344 |
|
|
1345 |
/* Initialize the hash value now that we have some input: */
|
|
1346 |
if (s->lookahead >= MIN_MATCH) {
|
|
1347 |
s->ins_h = s->window[s->strstart];
|
|
1348 |
UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
|
|
1349 |
#if MIN_MATCH != 3
|
|
1350 |
Call UPDATE_HASH() MIN_MATCH-3 more times
|
|
1351 |
#endif
|
|
1352 |
}
|
|
1353 |
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
|
|
1354 |
* but this is not important since only literal bytes will be emitted.
|
|
1355 |
*/
|
|
1356 |
|
|
1357 |
} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
|
|
1358 |
}
|
|
1359 |
|
|
1360 |
/* ===========================================================================
|
|
1361 |
* Flush the current block, with given end-of-file flag.
|
|
1362 |
* IN assertion: strstart is set to the end of the current match.
|
|
1363 |
*/
|
|
1364 |
#define FLUSH_BLOCK_ONLY(s, eof) { \
|
|
1365 |
_tr_flush_block(s, (s->block_start >= 0L ? \
|
|
1366 |
(charf *)&s->window[(unsigned)s->block_start] : \
|
|
1367 |
(charf *)Z_NULL), \
|
|
1368 |
(ulg)((long)s->strstart - s->block_start), \
|
|
1369 |
(eof)); \
|
|
1370 |
s->block_start = s->strstart; \
|
|
1371 |
flush_pending(s->strm); \
|
|
1372 |
Tracev((stderr,"[FLUSH]")); \
|
|
1373 |
}
|
|
1374 |
|
|
1375 |
/* Same but force premature exit if necessary. */
|
|
1376 |
#define FLUSH_BLOCK(s, eof) { \
|
|
1377 |
FLUSH_BLOCK_ONLY(s, eof); \
|
|
1378 |
if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
|
|
1379 |
}
|
|
1380 |
|
|
1381 |
/* ===========================================================================
|
|
1382 |
* Copy without compression as much as possible from the input stream, return
|
|
1383 |
* the current block state.
|
|
1384 |
* This function does not insert new strings in the dictionary since
|
|
1385 |
* uncompressible data is probably not useful. This function is used
|
|
1386 |
* only for the level=0 compression option.
|
|
1387 |
* NOTE: this function should be optimized to avoid extra copying from
|
|
1388 |
* window to pending_buf.
|
|
1389 |
*/
|
|
1390 |
local block_state deflate_stored(s, flush)
|
|
1391 |
deflate_state *s;
|
|
1392 |
int flush;
|
|
1393 |
{
|
|
1394 |
/* Stored blocks are limited to 0xffff bytes, pending_buf is limited
|
|
1395 |
* to pending_buf_size, and each stored block has a 5 byte header:
|
|
1396 |
*/
|
|
1397 |
ulg max_block_size = 0xffff;
|
|
1398 |
ulg max_start;
|
|
1399 |
|
|
1400 |
if (max_block_size > s->pending_buf_size - 5) {
|
|
1401 |
max_block_size = s->pending_buf_size - 5;
|
|
1402 |
}
|
|
1403 |
|
|
1404 |
/* Copy as much as possible from input to output: */
|
|
1405 |
for (;;) {
|
|
1406 |
/* Fill the window as much as possible: */
|
|
1407 |
if (s->lookahead <= 1) {
|
|
1408 |
|
|
1409 |
Assert(s->strstart < s->w_size+MAX_DIST(s) ||
|
|
1410 |
s->block_start >= (long)s->w_size, "slide too late");
|
|
1411 |
|
|
1412 |
fill_window(s);
|
|
1413 |
if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
|
|
1414 |
|
|
1415 |
if (s->lookahead == 0) break; /* flush the current block */
|
|
1416 |
}
|
|
1417 |
Assert(s->block_start >= 0L, "block gone");
|
|
1418 |
|
|
1419 |
s->strstart += s->lookahead;
|
|
1420 |
s->lookahead = 0;
|
|
1421 |
|
|
1422 |
/* Emit a stored block if pending_buf will be full: */
|
|
1423 |
max_start = s->block_start + max_block_size;
|
|
1424 |
if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
|
|
1425 |
/* strstart == 0 is possible when wraparound on 16-bit machine */
|
|
1426 |
s->lookahead = (uInt)(s->strstart - max_start);
|
|
1427 |
s->strstart = (uInt)max_start;
|
|
1428 |
FLUSH_BLOCK(s, 0);
|
|
1429 |
}
|
|
1430 |
/* Flush if we may have to slide, otherwise block_start may become
|
|
1431 |
* negative and the data will be gone:
|
|
1432 |
*/
|
|
1433 |
if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
|
|
1434 |
FLUSH_BLOCK(s, 0);
|
|
1435 |
}
|
|
1436 |
}
|
|
1437 |
FLUSH_BLOCK(s, flush == Z_FINISH);
|
|
1438 |
return flush == Z_FINISH ? finish_done : block_done;
|
|
1439 |
}
|
|
1440 |
|
|
1441 |
/* ===========================================================================
|
|
1442 |
* Compress as much as possible from the input stream, return the current
|
|
1443 |
* block state.
|
|
1444 |
* This function does not perform lazy evaluation of matches and inserts
|
|
1445 |
* new strings in the dictionary only for unmatched strings or for short
|
|
1446 |
* matches. It is used only for the fast compression options.
|
|
1447 |
*/
|
|
1448 |
local block_state deflate_fast(s, flush)
|
|
1449 |
deflate_state *s;
|
|
1450 |
int flush;
|
|
1451 |
{
|
|
1452 |
IPos hash_head = NIL; /* head of the hash chain */
|
|
1453 |
int bflush; /* set if current block must be flushed */
|
|
1454 |
|
|
1455 |
for (;;) {
|
|
1456 |
/* Make sure that we always have enough lookahead, except
|
|
1457 |
* at the end of the input file. We need MAX_MATCH bytes
|
|
1458 |
* for the next match, plus MIN_MATCH bytes to insert the
|
|
1459 |
* string following the next match.
|
|
1460 |
*/
|
|
1461 |
if (s->lookahead < MIN_LOOKAHEAD) {
|
|
1462 |
fill_window(s);
|
|
1463 |
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
|
|
1464 |
return need_more;
|
|
1465 |
}
|
|
1466 |
if (s->lookahead == 0) break; /* flush the current block */
|
|
1467 |
}
|
|
1468 |
|
|
1469 |
/* Insert the string window[strstart .. strstart+2] in the
|
|
1470 |
* dictionary, and set hash_head to the head of the hash chain:
|
|
1471 |
*/
|
|
1472 |
if (s->lookahead >= MIN_MATCH) {
|
|
1473 |
INSERT_STRING(s, s->strstart, hash_head);
|
|
1474 |
}
|
|
1475 |
|
|
1476 |
/* Find the longest match, discarding those <= prev_length.
|
|
1477 |
* At this point we have always match_length < MIN_MATCH
|
|
1478 |
*/
|
|
1479 |
if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
|
|
1480 |
/* To simplify the code, we prevent matches with the string
|
|
1481 |
* of window index 0 (in particular we have to avoid a match
|
|
1482 |
* of the string with itself at the start of the input file).
|
|
1483 |
*/
|
|
1484 |
#ifdef FASTEST
|
|
1485 |
if ((s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) ||
|
|
1486 |
(s->strategy == Z_RLE && s->strstart - hash_head == 1)) {
|
|
1487 |
s->match_length = longest_match_fast (s, hash_head);
|
|
1488 |
}
|
|
1489 |
#else
|
|
1490 |
if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) {
|
|
1491 |
s->match_length = longest_match (s, hash_head);
|
|
1492 |
} else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) {
|
|
1493 |
s->match_length = longest_match_fast (s, hash_head);
|
|
1494 |
}
|
|
1495 |
#endif
|
|
1496 |
/* longest_match() or longest_match_fast() sets match_start */
|
|
1497 |
}
|
|
1498 |
if (s->match_length >= MIN_MATCH) {
|
|
1499 |
check_match(s, s->strstart, s->match_start, s->match_length);
|
|
1500 |
|
|
1501 |
_tr_tally_dist(s, s->strstart - s->match_start,
|
|
1502 |
s->match_length - MIN_MATCH, bflush);
|
|
1503 |
|
|
1504 |
s->lookahead -= s->match_length;
|
|
1505 |
|
|
1506 |
/* Insert new strings in the hash table only if the match length
|
|
1507 |
* is not too large. This saves time but degrades compression.
|
|
1508 |
*/
|
|
1509 |
#ifndef FASTEST
|
|
1510 |
if (s->match_length <= s->max_insert_length &&
|
|
1511 |
s->lookahead >= MIN_MATCH) {
|
|
1512 |
s->match_length--; /* string at strstart already in table */
|
|
1513 |
do {
|
|
1514 |
s->strstart++;
|
|
1515 |
INSERT_STRING(s, s->strstart, hash_head);
|
|
1516 |
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
|
|
1517 |
* always MIN_MATCH bytes ahead.
|
|
1518 |
*/
|
|
1519 |
} while (--s->match_length != 0);
|
|
1520 |
s->strstart++;
|
|
1521 |
} else
|
|
1522 |
#endif
|
|
1523 |
{
|
|
1524 |
s->strstart += s->match_length;
|
|
1525 |
s->match_length = 0;
|
|
1526 |
s->ins_h = s->window[s->strstart];
|
|
1527 |
UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
|
|
1528 |
#if MIN_MATCH != 3
|
|
1529 |
Call UPDATE_HASH() MIN_MATCH-3 more times
|
|
1530 |
#endif
|
|
1531 |
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
|
|
1532 |
* matter since it will be recomputed at next deflate call.
|
|
1533 |
*/
|
|
1534 |
}
|
|
1535 |
} else {
|
|
1536 |
/* No match, output a literal byte */
|
|
1537 |
Tracevv((stderr,"%c", s->window[s->strstart]));
|
|
1538 |
_tr_tally_lit (s, s->window[s->strstart], bflush);
|
|
1539 |
s->lookahead--;
|
|
1540 |
s->strstart++;
|
|
1541 |
}
|
|
1542 |
if (bflush) FLUSH_BLOCK(s, 0);
|
|
1543 |
}
|
|
1544 |
FLUSH_BLOCK(s, flush == Z_FINISH);
|
|
1545 |
return flush == Z_FINISH ? finish_done : block_done;
|
|
1546 |
}
|
|
1547 |
|
|
1548 |
#ifndef FASTEST
|
|
1549 |
/* ===========================================================================
|
|
1550 |
* Same as above, but achieves better compression. We use a lazy
|
|
1551 |
* evaluation for matches: a match is finally adopted only if there is
|
|
1552 |
* no better match at the next window position.
|
|
1553 |
*/
|
|
1554 |
local block_state deflate_slow(s, flush)
|
|
1555 |
deflate_state *s;
|
|
1556 |
int flush;
|
|
1557 |
{
|
|
1558 |
IPos hash_head = NIL; /* head of hash chain */
|
|
1559 |
int bflush; /* set if current block must be flushed */
|
|
1560 |
|
|
1561 |
/* Process the input block. */
|
|
1562 |
for (;;) {
|
|
1563 |
/* Make sure that we always have enough lookahead, except
|
|
1564 |
* at the end of the input file. We need MAX_MATCH bytes
|
|
1565 |
* for the next match, plus MIN_MATCH bytes to insert the
|
|
1566 |
* string following the next match.
|
|
1567 |
*/
|
|
1568 |
if (s->lookahead < MIN_LOOKAHEAD) {
|
|
1569 |
fill_window(s);
|
|
1570 |
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
|
|
1571 |
return need_more;
|
|
1572 |
}
|
|
1573 |
if (s->lookahead == 0) break; /* flush the current block */
|
|
1574 |
}
|
|
1575 |
|
|
1576 |
/* Insert the string window[strstart .. strstart+2] in the
|
|
1577 |
* dictionary, and set hash_head to the head of the hash chain:
|
|
1578 |
*/
|
|
1579 |
if (s->lookahead >= MIN_MATCH) {
|
|
1580 |
INSERT_STRING(s, s->strstart, hash_head);
|
|
1581 |
}
|
|
1582 |
|
|
1583 |
/* Find the longest match, discarding those <= prev_length.
|
|
1584 |
*/
|
|
1585 |
s->prev_length = s->match_length, s->prev_match = s->match_start;
|
|
1586 |
s->match_length = MIN_MATCH-1;
|
|
1587 |
|
|
1588 |
if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
|
|
1589 |
s->strstart - hash_head <= MAX_DIST(s)) {
|
|
1590 |
/* To simplify the code, we prevent matches with the string
|
|
1591 |
* of window index 0 (in particular we have to avoid a match
|
|
1592 |
* of the string with itself at the start of the input file).
|
|
1593 |
*/
|
|
1594 |
if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) {
|
|
1595 |
s->match_length = longest_match (s, hash_head);
|
|
1596 |
} else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) {
|
|
1597 |
s->match_length = longest_match_fast (s, hash_head);
|
|
1598 |
}
|
|
1599 |
/* longest_match() or longest_match_fast() sets match_start */
|
|
1600 |
|
|
1601 |
if (s->match_length <= 5 && (s->strategy == Z_FILTERED
|
|
1602 |
#if TOO_FAR <= 32767
|
|
1603 |
|| (s->match_length == MIN_MATCH &&
|
|
1604 |
s->strstart - s->match_start > TOO_FAR)
|
|
1605 |
#endif
|
|
1606 |
)) {
|
|
1607 |
|
|
1608 |
/* If prev_match is also MIN_MATCH, match_start is garbage
|
|
1609 |
* but we will ignore the current match anyway.
|
|
1610 |
*/
|
|
1611 |
s->match_length = MIN_MATCH-1;
|
|
1612 |
}
|
|
1613 |
}
|
|
1614 |
/* If there was a match at the previous step and the current
|
|
1615 |
* match is not better, output the previous match:
|
|
1616 |
*/
|
|
1617 |
if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
|
|
1618 |
uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
|
|
1619 |
/* Do not insert strings in hash table beyond this. */
|
|
1620 |
|
|
1621 |
check_match(s, s->strstart-1, s->prev_match, s->prev_length);
|
|
1622 |
|
|
1623 |
_tr_tally_dist(s, s->strstart -1 - s->prev_match,
|
|
1624 |
s->prev_length - MIN_MATCH, bflush);
|
|
1625 |
|
|
1626 |
/* Insert in hash table all strings up to the end of the match.
|
|
1627 |
* strstart-1 and strstart are already inserted. If there is not
|
|
1628 |
* enough lookahead, the last two strings are not inserted in
|
|
1629 |
* the hash table.
|
|
1630 |
*/
|
|
1631 |
s->lookahead -= s->prev_length-1;
|
|
1632 |
s->prev_length -= 2;
|
|
1633 |
do {
|
|
1634 |
if (++s->strstart <= max_insert) {
|
|
1635 |
INSERT_STRING(s, s->strstart, hash_head);
|
|
1636 |
}
|
|
1637 |
} while (--s->prev_length != 0);
|
|
1638 |
s->match_available = 0;
|
|
1639 |
s->match_length = MIN_MATCH-1;
|
|
1640 |
s->strstart++;
|
|
1641 |
|
|
1642 |
if (bflush) FLUSH_BLOCK(s, 0);
|
|
1643 |
|
|
1644 |
} else if (s->match_available) {
|
|
1645 |
/* If there was no match at the previous position, output a
|
|
1646 |
* single literal. If there was a match but the current match
|
|
1647 |
* is longer, truncate the previous match to a single literal.
|
|
1648 |
*/
|
|
1649 |
Tracevv((stderr,"%c", s->window[s->strstart-1]));
|
|
1650 |
_tr_tally_lit(s, s->window[s->strstart-1], bflush);
|
|
1651 |
if (bflush) {
|
|
1652 |
FLUSH_BLOCK_ONLY(s, 0);
|
|
1653 |
}
|
|
1654 |
s->strstart++;
|
|
1655 |
s->lookahead--;
|
|
1656 |
if (s->strm->avail_out == 0) return need_more;
|
|
1657 |
} else {
|
|
1658 |
/* There is no previous match to compare with, wait for
|
|
1659 |
* the next step to decide.
|
|
1660 |
*/
|
|
1661 |
s->match_available = 1;
|
|
1662 |
s->strstart++;
|
|
1663 |
s->lookahead--;
|
|
1664 |
}
|
|
1665 |
}
|
|
1666 |
Assert (flush != Z_NO_FLUSH, "no flush?");
|
|
1667 |
if (s->match_available) {
|
|
1668 |
Tracevv((stderr,"%c", s->window[s->strstart-1]));
|
|
1669 |
_tr_tally_lit(s, s->window[s->strstart-1], bflush);
|
|
1670 |
s->match_available = 0;
|
|
1671 |
}
|
|
1672 |
FLUSH_BLOCK(s, flush == Z_FINISH);
|
|
1673 |
return flush == Z_FINISH ? finish_done : block_done;
|
|
1674 |
}
|
|
1675 |
#endif /* FASTEST */
|
|
1676 |
|
|
1677 |
#if 0
|
|
1678 |
/* ===========================================================================
|
|
1679 |
* For Z_RLE, simply look for runs of bytes, generate matches only of distance
|
|
1680 |
* one. Do not maintain a hash table. (It will be regenerated if this run of
|
|
1681 |
* deflate switches away from Z_RLE.)
|
|
1682 |
*/
|
|
1683 |
local block_state deflate_rle(s, flush)
|
|
1684 |
deflate_state *s;
|
|
1685 |
int flush;
|
|
1686 |
{
|
|
1687 |
int bflush; /* set if current block must be flushed */
|
|
1688 |
uInt run; /* length of run */
|
|
1689 |
uInt max; /* maximum length of run */
|
|
1690 |
uInt prev; /* byte at distance one to match */
|
|
1691 |
Bytef *scan; /* scan for end of run */
|
|
1692 |
|
|
1693 |
for (;;) {
|
|
1694 |
/* Make sure that we always have enough lookahead, except
|
|
1695 |
* at the end of the input file. We need MAX_MATCH bytes
|
|
1696 |
* for the longest encodable run.
|
|
1697 |
*/
|
|
1698 |
if (s->lookahead < MAX_MATCH) {
|
|
1699 |
fill_window(s);
|
|
1700 |
if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
|
|
1701 |
return need_more;
|
|
1702 |
}
|
|
1703 |
if (s->lookahead == 0) break; /* flush the current block */
|
|
1704 |
}
|
|
1705 |
|
|
1706 |
/* See how many times the previous byte repeats */
|
|
1707 |
run = 0;
|
|
1708 |
if (s->strstart > 0) { /* if there is a previous byte, that is */
|
|
1709 |
max = s->lookahead < MAX_MATCH ? s->lookahead : MAX_MATCH;
|
|
1710 |
scan = s->window + s->strstart - 1;
|
|
1711 |
prev = *scan++;
|
|
1712 |
do {
|
|
1713 |
if (*scan++ != prev)
|
|
1714 |
break;
|
|
1715 |
} while (++run < max);
|
|
1716 |
}
|
|
1717 |
|
|
1718 |
/* Emit match if have run of MIN_MATCH or longer, else emit literal */
|
|
1719 |
if (run >= MIN_MATCH) {
|
|
1720 |
check_match(s, s->strstart, s->strstart - 1, run);
|
|
1721 |
_tr_tally_dist(s, 1, run - MIN_MATCH, bflush);
|
|
1722 |
s->lookahead -= run;
|
|
1723 |
s->strstart += run;
|
|
1724 |
} else {
|
|
1725 |
/* No match, output a literal byte */
|
|
1726 |
Tracevv((stderr,"%c", s->window[s->strstart]));
|
|
1727 |
_tr_tally_lit (s, s->window[s->strstart], bflush);
|
|
1728 |
s->lookahead--;
|
|
1729 |
s->strstart++;
|
|
1730 |
}
|
|
1731 |
if (bflush) FLUSH_BLOCK(s, 0);
|
|
1732 |
}
|
|
1733 |
FLUSH_BLOCK(s, flush == Z_FINISH);
|
|
1734 |
return flush == Z_FINISH ? finish_done : block_done;
|
|
1735 |
}
|
|
1736 |
#endif
|