author | Eckhart Koeppen <eckhart.koppen@nokia.com> |
Wed, 21 Apr 2010 11:15:19 +0300 | |
branch | RCL_3 |
changeset 11 | 25a739ee40f4 |
parent 4 | 3b1da2848fc7 |
permissions | -rw-r--r-- |
0 | 1 |
/**************************************************************************** |
2 |
** |
|
4
3b1da2848fc7
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
3
diff
changeset
|
3 |
** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). |
0 | 4 |
** All rights reserved. |
5 |
** Contact: Nokia Corporation (qt-info@nokia.com) |
|
6 |
** |
|
7 |
** This file is part of the QtGui module of the Qt Toolkit. |
|
8 |
** |
|
9 |
** $QT_BEGIN_LICENSE:LGPL$ |
|
10 |
** No Commercial Usage |
|
11 |
** This file contains pre-release code and may not be distributed. |
|
12 |
** You may use this file in accordance with the terms and conditions |
|
13 |
** contained in the Technology Preview License Agreement accompanying |
|
14 |
** this package. |
|
15 |
** |
|
16 |
** GNU Lesser General Public License Usage |
|
17 |
** Alternatively, this file may be used under the terms of the GNU Lesser |
|
18 |
** General Public License version 2.1 as published by the Free Software |
|
19 |
** Foundation and appearing in the file LICENSE.LGPL included in the |
|
20 |
** packaging of this file. Please review the following information to |
|
21 |
** ensure the GNU Lesser General Public License version 2.1 requirements |
|
22 |
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. |
|
23 |
** |
|
24 |
** In addition, as a special exception, Nokia gives you certain additional |
|
25 |
** rights. These rights are described in the Nokia Qt LGPL Exception |
|
26 |
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. |
|
27 |
** |
|
28 |
** If you have questions regarding the use of this file, please contact |
|
29 |
** Nokia at qt-info@nokia.com. |
|
30 |
** |
|
31 |
** |
|
32 |
** |
|
33 |
** |
|
34 |
** |
|
35 |
** |
|
36 |
** |
|
37 |
** |
|
38 |
** $QT_END_LICENSE$ |
|
39 |
** |
|
40 |
****************************************************************************/ |
|
41 |
||
42 |
#include "qquaternion.h" |
|
43 |
#include <QtCore/qmath.h> |
|
44 |
#include <QtCore/qvariant.h> |
|
45 |
#include <QtCore/qdebug.h> |
|
46 |
||
47 |
QT_BEGIN_NAMESPACE |
|
48 |
||
49 |
#ifndef QT_NO_QUATERNION |
|
50 |
||
51 |
/*! |
|
52 |
\class QQuaternion |
|
53 |
\brief The QQuaternion class represents a quaternion consisting of a vector and scalar. |
|
54 |
\since 4.6 |
|
55 |
\ingroup painting-3D |
|
56 |
||
57 |
Quaternions are used to represent rotations in 3D space, and |
|
58 |
consist of a 3D rotation axis specified by the x, y, and z |
|
59 |
coordinates, and a scalar representing the rotation angle. |
|
60 |
*/ |
|
61 |
||
62 |
/*! |
|
63 |
\fn QQuaternion::QQuaternion() |
|
64 |
||
65 |
Constructs an identity quaternion, i.e. with coordinates (1, 0, 0, 0). |
|
66 |
*/ |
|
67 |
||
68 |
/*! |
|
69 |
\fn QQuaternion::QQuaternion(qreal scalar, qreal xpos, qreal ypos, qreal zpos) |
|
70 |
||
71 |
Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos) |
|
72 |
and \a scalar. |
|
73 |
*/ |
|
74 |
||
75 |
#ifndef QT_NO_VECTOR3D |
|
76 |
||
77 |
/*! |
|
78 |
\fn QQuaternion::QQuaternion(qreal scalar, const QVector3D& vector) |
|
79 |
||
80 |
Constructs a quaternion vector from the specified \a vector and |
|
81 |
\a scalar. |
|
82 |
||
83 |
\sa vector(), scalar() |
|
84 |
*/ |
|
85 |
||
86 |
/*! |
|
87 |
\fn QVector3D QQuaternion::vector() const |
|
88 |
||
89 |
Returns the vector component of this quaternion. |
|
90 |
||
91 |
\sa setVector(), scalar() |
|
92 |
*/ |
|
93 |
||
94 |
/*! |
|
95 |
\fn void QQuaternion::setVector(const QVector3D& vector) |
|
96 |
||
97 |
Sets the vector component of this quaternion to \a vector. |
|
98 |
||
99 |
\sa vector(), setScalar() |
|
100 |
*/ |
|
101 |
||
102 |
#endif |
|
103 |
||
104 |
/*! |
|
105 |
\fn void QQuaternion::setVector(qreal x, qreal y, qreal z) |
|
106 |
||
107 |
Sets the vector component of this quaternion to (\a x, \a y, \a z). |
|
108 |
||
109 |
\sa vector(), setScalar() |
|
110 |
*/ |
|
111 |
||
112 |
#ifndef QT_NO_VECTOR4D |
|
113 |
||
114 |
/*! |
|
115 |
\fn QQuaternion::QQuaternion(const QVector4D& vector) |
|
116 |
||
117 |
Constructs a quaternion from the components of \a vector. |
|
118 |
*/ |
|
119 |
||
120 |
/*! |
|
121 |
\fn QVector4D QQuaternion::toVector4D() const |
|
122 |
||
123 |
Returns this quaternion as a 4D vector. |
|
124 |
*/ |
|
125 |
||
126 |
#endif |
|
127 |
||
128 |
/*! |
|
129 |
\fn bool QQuaternion::isNull() const |
|
130 |
||
131 |
Returns true if the x, y, z, and scalar components of this |
|
132 |
quaternion are set to 0.0; otherwise returns false. |
|
133 |
*/ |
|
134 |
||
135 |
/*! |
|
136 |
\fn bool QQuaternion::isIdentity() const |
|
137 |
||
138 |
Returns true if the x, y, and z components of this |
|
139 |
quaternion are set to 0.0, and the scalar component is set |
|
140 |
to 1.0; otherwise returns false. |
|
141 |
*/ |
|
142 |
||
143 |
/*! |
|
144 |
\fn qreal QQuaternion::x() const |
|
145 |
||
146 |
Returns the x coordinate of this quaternion's vector. |
|
147 |
||
148 |
\sa setX(), y(), z(), scalar() |
|
149 |
*/ |
|
150 |
||
151 |
/*! |
|
152 |
\fn qreal QQuaternion::y() const |
|
153 |
||
154 |
Returns the y coordinate of this quaternion's vector. |
|
155 |
||
156 |
\sa setY(), x(), z(), scalar() |
|
157 |
*/ |
|
158 |
||
159 |
/*! |
|
160 |
\fn qreal QQuaternion::z() const |
|
161 |
||
162 |
Returns the z coordinate of this quaternion's vector. |
|
163 |
||
164 |
\sa setZ(), x(), y(), scalar() |
|
165 |
*/ |
|
166 |
||
167 |
/*! |
|
168 |
\fn qreal QQuaternion::scalar() const |
|
169 |
||
170 |
Returns the scalar component of this quaternion. |
|
171 |
||
172 |
\sa setScalar(), x(), y(), z() |
|
173 |
*/ |
|
174 |
||
175 |
/*! |
|
176 |
\fn void QQuaternion::setX(qreal x) |
|
177 |
||
178 |
Sets the x coordinate of this quaternion's vector to the given |
|
179 |
\a x coordinate. |
|
180 |
||
181 |
\sa x(), setY(), setZ(), setScalar() |
|
182 |
*/ |
|
183 |
||
184 |
/*! |
|
185 |
\fn void QQuaternion::setY(qreal y) |
|
186 |
||
187 |
Sets the y coordinate of this quaternion's vector to the given |
|
188 |
\a y coordinate. |
|
189 |
||
190 |
\sa y(), setX(), setZ(), setScalar() |
|
191 |
*/ |
|
192 |
||
193 |
/*! |
|
194 |
\fn void QQuaternion::setZ(qreal z) |
|
195 |
||
196 |
Sets the z coordinate of this quaternion's vector to the given |
|
197 |
\a z coordinate. |
|
198 |
||
199 |
\sa z(), setX(), setY(), setScalar() |
|
200 |
*/ |
|
201 |
||
202 |
/*! |
|
203 |
\fn void QQuaternion::setScalar(qreal scalar) |
|
204 |
||
205 |
Sets the scalar component of this quaternion to \a scalar. |
|
206 |
||
207 |
\sa scalar(), setX(), setY(), setZ() |
|
208 |
*/ |
|
209 |
||
210 |
/*! |
|
211 |
Returns the length of the quaternion. This is also called the "norm". |
|
212 |
||
213 |
\sa lengthSquared(), normalized() |
|
214 |
*/ |
|
215 |
qreal QQuaternion::length() const |
|
216 |
{ |
|
217 |
return qSqrt(xp * xp + yp * yp + zp * zp + wp * wp); |
|
218 |
} |
|
219 |
||
220 |
/*! |
|
221 |
Returns the squared length of the quaternion. |
|
222 |
||
223 |
\sa length() |
|
224 |
*/ |
|
225 |
qreal QQuaternion::lengthSquared() const |
|
226 |
{ |
|
227 |
return xp * xp + yp * yp + zp * zp + wp * wp; |
|
228 |
} |
|
229 |
||
230 |
/*! |
|
231 |
Returns the normalized unit form of this quaternion. |
|
232 |
||
233 |
If this quaternion is null, then a null quaternion is returned. |
|
234 |
If the length of the quaternion is very close to 1, then the quaternion |
|
235 |
will be returned as-is. Otherwise the normalized form of the |
|
236 |
quaternion of length 1 will be returned. |
|
237 |
||
238 |
\sa length(), normalize() |
|
239 |
*/ |
|
240 |
QQuaternion QQuaternion::normalized() const |
|
241 |
{ |
|
242 |
// Need some extra precision if the length is very small. |
|
243 |
double len = double(xp) * double(xp) + |
|
244 |
double(yp) * double(yp) + |
|
245 |
double(zp) * double(zp) + |
|
246 |
double(wp) * double(wp); |
|
247 |
if (qFuzzyIsNull(len - 1.0f)) |
|
248 |
return *this; |
|
249 |
else if (!qFuzzyIsNull(len)) |
|
250 |
return *this / qSqrt(len); |
|
251 |
else |
|
252 |
return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f); |
|
253 |
} |
|
254 |
||
255 |
/*! |
|
256 |
Normalizes the currect quaternion in place. Nothing happens if this |
|
257 |
is a null quaternion or the length of the quaternion is very close to 1. |
|
258 |
||
259 |
\sa length(), normalized() |
|
260 |
*/ |
|
261 |
void QQuaternion::normalize() |
|
262 |
{ |
|
263 |
// Need some extra precision if the length is very small. |
|
264 |
double len = double(xp) * double(xp) + |
|
265 |
double(yp) * double(yp) + |
|
266 |
double(zp) * double(zp) + |
|
267 |
double(wp) * double(wp); |
|
268 |
if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len)) |
|
269 |
return; |
|
270 |
||
271 |
len = qSqrt(len); |
|
272 |
||
273 |
xp /= len; |
|
274 |
yp /= len; |
|
275 |
zp /= len; |
|
276 |
wp /= len; |
|
277 |
} |
|
278 |
||
279 |
/*! |
|
280 |
\fn QQuaternion QQuaternion::conjugate() const |
|
281 |
||
282 |
Returns the conjugate of this quaternion, which is |
|
283 |
(-x, -y, -z, scalar). |
|
284 |
*/ |
|
285 |
||
286 |
/*! |
|
287 |
Rotates \a vector with this quaternion to produce a new vector |
|
288 |
in 3D space. The following code: |
|
289 |
||
290 |
\code |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
291 |
QVector3D result = q.rotatedVector(vector); |
0 | 292 |
\endcode |
293 |
||
294 |
is equivalent to the following: |
|
295 |
||
296 |
\code |
|
297 |
QVector3D result = (q * QQuaternion(0, vector) * q.conjugate()).vector(); |
|
298 |
\endcode |
|
299 |
*/ |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
300 |
QVector3D QQuaternion::rotatedVector(const QVector3D& vector) const |
0 | 301 |
{ |
302 |
return (*this * QQuaternion(0, vector) * conjugate()).vector(); |
|
303 |
} |
|
304 |
||
305 |
/*! |
|
306 |
\fn QQuaternion &QQuaternion::operator+=(const QQuaternion &quaternion) |
|
307 |
||
308 |
Adds the given \a quaternion to this quaternion and returns a reference to |
|
309 |
this quaternion. |
|
310 |
||
311 |
\sa operator-=() |
|
312 |
*/ |
|
313 |
||
314 |
/*! |
|
315 |
\fn QQuaternion &QQuaternion::operator-=(const QQuaternion &quaternion) |
|
316 |
||
317 |
Subtracts the given \a quaternion from this quaternion and returns a |
|
318 |
reference to this quaternion. |
|
319 |
||
320 |
\sa operator+=() |
|
321 |
*/ |
|
322 |
||
323 |
/*! |
|
324 |
\fn QQuaternion &QQuaternion::operator*=(qreal factor) |
|
325 |
||
326 |
Multiplies this quaternion's components by the given \a factor, and |
|
327 |
returns a reference to this quaternion. |
|
328 |
||
329 |
\sa operator/=() |
|
330 |
*/ |
|
331 |
||
332 |
/*! |
|
333 |
\fn QQuaternion &QQuaternion::operator*=(const QQuaternion &quaternion) |
|
334 |
||
335 |
Multiplies this quaternion by \a quaternion and returns a reference |
|
336 |
to this quaternion. |
|
337 |
*/ |
|
338 |
||
339 |
/*! |
|
340 |
\fn QQuaternion &QQuaternion::operator/=(qreal divisor) |
|
341 |
||
342 |
Divides this quaternion's components by the given \a divisor, and |
|
343 |
returns a reference to this quaternion. |
|
344 |
||
345 |
\sa operator*=() |
|
346 |
*/ |
|
347 |
||
348 |
#ifndef QT_NO_VECTOR3D |
|
349 |
||
350 |
/*! |
|
351 |
Creates a normalized quaternion that corresponds to rotating through |
|
352 |
\a angle degrees about the specified 3D \a axis. |
|
353 |
*/ |
|
354 |
QQuaternion QQuaternion::fromAxisAndAngle(const QVector3D& axis, qreal angle) |
|
355 |
{ |
|
356 |
// Algorithm from: |
|
357 |
// http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56 |
|
358 |
// We normalize the result just in case the values are close |
|
359 |
// to zero, as suggested in the above FAQ. |
|
360 |
qreal a = (angle / 2.0f) * M_PI / 180.0f; |
|
361 |
qreal s = qSin(a); |
|
362 |
qreal c = qCos(a); |
|
363 |
QVector3D ax = axis.normalized(); |
|
364 |
return QQuaternion(c, ax.x() * s, ax.y() * s, ax.z() * s).normalized(); |
|
365 |
} |
|
366 |
||
367 |
#endif |
|
368 |
||
369 |
/*! |
|
370 |
Creates a normalized quaternion that corresponds to rotating through |
|
371 |
\a angle degrees about the 3D axis (\a x, \a y, \a z). |
|
372 |
*/ |
|
373 |
QQuaternion QQuaternion::fromAxisAndAngle |
|
374 |
(qreal x, qreal y, qreal z, qreal angle) |
|
375 |
{ |
|
376 |
qreal length = qSqrt(x * x + y * y + z * z); |
|
377 |
if (!qFuzzyIsNull(length - 1.0f) && !qFuzzyIsNull(length)) { |
|
378 |
x /= length; |
|
379 |
y /= length; |
|
380 |
z /= length; |
|
381 |
} |
|
382 |
qreal a = (angle / 2.0f) * M_PI / 180.0f; |
|
383 |
qreal s = qSin(a); |
|
384 |
qreal c = qCos(a); |
|
385 |
return QQuaternion(c, x * s, y * s, z * s).normalized(); |
|
386 |
} |
|
387 |
||
388 |
/*! |
|
389 |
\fn bool operator==(const QQuaternion &q1, const QQuaternion &q2) |
|
390 |
\relates QQuaternion |
|
391 |
||
392 |
Returns true if \a q1 is equal to \a q2; otherwise returns false. |
|
393 |
This operator uses an exact floating-point comparison. |
|
394 |
*/ |
|
395 |
||
396 |
/*! |
|
397 |
\fn bool operator!=(const QQuaternion &q1, const QQuaternion &q2) |
|
398 |
\relates QQuaternion |
|
399 |
||
400 |
Returns true if \a q1 is not equal to \a q2; otherwise returns false. |
|
401 |
This operator uses an exact floating-point comparison. |
|
402 |
*/ |
|
403 |
||
404 |
/*! |
|
405 |
\fn const QQuaternion operator+(const QQuaternion &q1, const QQuaternion &q2) |
|
406 |
\relates QQuaternion |
|
407 |
||
408 |
Returns a QQuaternion object that is the sum of the given quaternions, |
|
409 |
\a q1 and \a q2; each component is added separately. |
|
410 |
||
411 |
\sa QQuaternion::operator+=() |
|
412 |
*/ |
|
413 |
||
414 |
/*! |
|
415 |
\fn const QQuaternion operator-(const QQuaternion &q1, const QQuaternion &q2) |
|
416 |
\relates QQuaternion |
|
417 |
||
418 |
Returns a QQuaternion object that is formed by subtracting |
|
419 |
\a q2 from \a q1; each component is subtracted separately. |
|
420 |
||
421 |
\sa QQuaternion::operator-=() |
|
422 |
*/ |
|
423 |
||
424 |
/*! |
|
425 |
\fn const QQuaternion operator*(qreal factor, const QQuaternion &quaternion) |
|
426 |
\relates QQuaternion |
|
427 |
||
428 |
Returns a copy of the given \a quaternion, multiplied by the |
|
429 |
given \a factor. |
|
430 |
||
431 |
\sa QQuaternion::operator*=() |
|
432 |
*/ |
|
433 |
||
434 |
/*! |
|
435 |
\fn const QQuaternion operator*(const QQuaternion &quaternion, qreal factor) |
|
436 |
\relates QQuaternion |
|
437 |
||
438 |
Returns a copy of the given \a quaternion, multiplied by the |
|
439 |
given \a factor. |
|
440 |
||
441 |
\sa QQuaternion::operator*=() |
|
442 |
*/ |
|
443 |
||
444 |
/*! |
|
445 |
\fn const QQuaternion operator*(const QQuaternion &q1, const QQuaternion& q2) |
|
446 |
\relates QQuaternion |
|
447 |
||
448 |
Multiplies \a q1 and \a q2 using quaternion multiplication. |
|
449 |
The result corresponds to applying both of the rotations specified |
|
450 |
by \a q1 and \a q2. |
|
451 |
||
452 |
\sa QQuaternion::operator*=() |
|
453 |
*/ |
|
454 |
||
455 |
/*! |
|
456 |
\fn const QQuaternion operator-(const QQuaternion &quaternion) |
|
457 |
\relates QQuaternion |
|
458 |
\overload |
|
459 |
||
460 |
Returns a QQuaternion object that is formed by changing the sign of |
|
461 |
all three components of the given \a quaternion. |
|
462 |
||
463 |
Equivalent to \c {QQuaternion(0,0,0,0) - quaternion}. |
|
464 |
*/ |
|
465 |
||
466 |
/*! |
|
467 |
\fn const QQuaternion operator/(const QQuaternion &quaternion, qreal divisor) |
|
468 |
\relates QQuaternion |
|
469 |
||
470 |
Returns the QQuaternion object formed by dividing all components of |
|
471 |
the given \a quaternion by the given \a divisor. |
|
472 |
||
473 |
\sa QQuaternion::operator/=() |
|
474 |
*/ |
|
475 |
||
476 |
/*! |
|
477 |
\fn bool qFuzzyCompare(const QQuaternion& q1, const QQuaternion& q2) |
|
478 |
\relates QQuaternion |
|
479 |
||
480 |
Returns true if \a q1 and \a q2 are equal, allowing for a small |
|
481 |
fuzziness factor for floating-point comparisons; false otherwise. |
|
482 |
*/ |
|
483 |
||
484 |
/*! |
|
485 |
Interpolates along the shortest spherical path between the |
|
486 |
rotational positions \a q1 and \a q2. The value \a t should |
|
487 |
be between 0 and 1, indicating the spherical distance to travel |
|
488 |
between \a q1 and \a q2. |
|
489 |
||
490 |
If \a t is less than or equal to 0, then \a q1 will be returned. |
|
491 |
If \a t is greater than or equal to 1, then \a q2 will be returned. |
|
492 |
||
493 |
\sa nlerp() |
|
494 |
*/ |
|
495 |
QQuaternion QQuaternion::slerp |
|
496 |
(const QQuaternion& q1, const QQuaternion& q2, qreal t) |
|
497 |
{ |
|
498 |
// Handle the easy cases first. |
|
499 |
if (t <= 0.0f) |
|
500 |
return q1; |
|
501 |
else if (t >= 1.0f) |
|
502 |
return q2; |
|
503 |
||
504 |
// Determine the angle between the two quaternions. |
|
505 |
QQuaternion q2b; |
|
506 |
qreal dot; |
|
507 |
dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp; |
|
508 |
if (dot >= 0.0f) { |
|
509 |
q2b = q2; |
|
510 |
} else { |
|
511 |
q2b = -q2; |
|
512 |
dot = -dot; |
|
513 |
} |
|
514 |
||
515 |
// Get the scale factors. If they are too small, |
|
516 |
// then revert to simple linear interpolation. |
|
517 |
qreal factor1 = 1.0f - t; |
|
518 |
qreal factor2 = t; |
|
519 |
if ((1.0f - dot) > 0.0000001) { |
|
520 |
qreal angle = qreal(qAcos(dot)); |
|
521 |
qreal sinOfAngle = qreal(qSin(angle)); |
|
522 |
if (sinOfAngle > 0.0000001) { |
|
523 |
factor1 = qreal(qSin((1.0f - t) * angle)) / sinOfAngle; |
|
524 |
factor2 = qreal(qSin(t * angle)) / sinOfAngle; |
|
525 |
} |
|
526 |
} |
|
527 |
||
528 |
// Construct the result quaternion. |
|
529 |
return q1 * factor1 + q2b * factor2; |
|
530 |
} |
|
531 |
||
532 |
/*! |
|
533 |
Interpolates along the shortest linear path between the rotational |
|
534 |
positions \a q1 and \a q2. The value \a t should be between 0 and 1, |
|
535 |
indicating the distance to travel between \a q1 and \a q2. |
|
536 |
The result will be normalized(). |
|
537 |
||
538 |
If \a t is less than or equal to 0, then \a q1 will be returned. |
|
539 |
If \a t is greater than or equal to 1, then \a q2 will be returned. |
|
540 |
||
541 |
The nlerp() function is typically faster than slerp() and will |
|
542 |
give approximate results to spherical interpolation that are |
|
543 |
good enough for some applications. |
|
544 |
||
545 |
\sa slerp() |
|
546 |
*/ |
|
547 |
QQuaternion QQuaternion::nlerp |
|
548 |
(const QQuaternion& q1, const QQuaternion& q2, qreal t) |
|
549 |
{ |
|
550 |
// Handle the easy cases first. |
|
551 |
if (t <= 0.0f) |
|
552 |
return q1; |
|
553 |
else if (t >= 1.0f) |
|
554 |
return q2; |
|
555 |
||
556 |
// Determine the angle between the two quaternions. |
|
557 |
QQuaternion q2b; |
|
558 |
qreal dot; |
|
559 |
dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp; |
|
560 |
if (dot >= 0.0f) |
|
561 |
q2b = q2; |
|
562 |
else |
|
563 |
q2b = -q2; |
|
564 |
||
565 |
// Perform the linear interpolation. |
|
566 |
return (q1 * (1.0f - t) + q2b * t).normalized(); |
|
567 |
} |
|
568 |
||
569 |
/*! |
|
570 |
Returns the quaternion as a QVariant. |
|
571 |
*/ |
|
572 |
QQuaternion::operator QVariant() const |
|
573 |
{ |
|
574 |
return QVariant(QVariant::Quaternion, this); |
|
575 |
} |
|
576 |
||
577 |
#ifndef QT_NO_DEBUG_STREAM |
|
578 |
||
579 |
QDebug operator<<(QDebug dbg, const QQuaternion &q) |
|
580 |
{ |
|
581 |
dbg.nospace() << "QQuaternion(scalar:" << q.scalar() |
|
582 |
<< ", vector:(" << q.x() << ", " |
|
583 |
<< q.y() << ", " << q.z() << "))"; |
|
584 |
return dbg.space(); |
|
585 |
} |
|
586 |
||
587 |
#endif |
|
588 |
||
589 |
#ifndef QT_NO_DATASTREAM |
|
590 |
||
591 |
/*! |
|
592 |
\fn QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion) |
|
593 |
\relates QQuaternion |
|
594 |
||
595 |
Writes the given \a quaternion to the given \a stream and returns a |
|
596 |
reference to the stream. |
|
597 |
||
598 |
\sa {Format of the QDataStream Operators} |
|
599 |
*/ |
|
600 |
||
601 |
QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion) |
|
602 |
{ |
|
603 |
stream << double(quaternion.scalar()) << double(quaternion.x()) |
|
604 |
<< double(quaternion.y()) << double(quaternion.z()); |
|
605 |
return stream; |
|
606 |
} |
|
607 |
||
608 |
/*! |
|
609 |
\fn QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion) |
|
610 |
\relates QQuaternion |
|
611 |
||
612 |
Reads a quaternion from the given \a stream into the given \a quaternion |
|
613 |
and returns a reference to the stream. |
|
614 |
||
615 |
\sa {Format of the QDataStream Operators} |
|
616 |
*/ |
|
617 |
||
618 |
QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion) |
|
619 |
{ |
|
620 |
double scalar, x, y, z; |
|
621 |
stream >> scalar; |
|
622 |
stream >> x; |
|
623 |
stream >> y; |
|
624 |
stream >> z; |
|
625 |
quaternion.setScalar(qreal(scalar)); |
|
626 |
quaternion.setX(qreal(x)); |
|
627 |
quaternion.setY(qreal(y)); |
|
628 |
quaternion.setZ(qreal(z)); |
|
629 |
return stream; |
|
630 |
} |
|
631 |
||
632 |
#endif // QT_NO_DATASTREAM |
|
633 |
||
634 |
#endif |
|
635 |
||
636 |
QT_END_NAMESPACE |