author | Eckhart Koeppen <eckhart.koppen@nokia.com> |
Wed, 21 Apr 2010 11:15:19 +0300 | |
branch | RCL_3 |
changeset 11 | 25a739ee40f4 |
parent 4 | 3b1da2848fc7 |
permissions | -rw-r--r-- |
0 | 1 |
/**************************************************************************** |
2 |
** |
|
4
3b1da2848fc7
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
3
diff
changeset
|
3 |
** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). |
0 | 4 |
** All rights reserved. |
5 |
** Contact: Nokia Corporation (qt-info@nokia.com) |
|
6 |
** |
|
7 |
** This file is part of the QtGui module of the Qt Toolkit. |
|
8 |
** |
|
9 |
** $QT_BEGIN_LICENSE:LGPL$ |
|
10 |
** No Commercial Usage |
|
11 |
** This file contains pre-release code and may not be distributed. |
|
12 |
** You may use this file in accordance with the terms and conditions |
|
13 |
** contained in the Technology Preview License Agreement accompanying |
|
14 |
** this package. |
|
15 |
** |
|
16 |
** GNU Lesser General Public License Usage |
|
17 |
** Alternatively, this file may be used under the terms of the GNU Lesser |
|
18 |
** General Public License version 2.1 as published by the Free Software |
|
19 |
** Foundation and appearing in the file LICENSE.LGPL included in the |
|
20 |
** packaging of this file. Please review the following information to |
|
21 |
** ensure the GNU Lesser General Public License version 2.1 requirements |
|
22 |
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. |
|
23 |
** |
|
24 |
** In addition, as a special exception, Nokia gives you certain additional |
|
25 |
** rights. These rights are described in the Nokia Qt LGPL Exception |
|
26 |
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. |
|
27 |
** |
|
28 |
** If you have questions regarding the use of this file, please contact |
|
29 |
** Nokia at qt-info@nokia.com. |
|
30 |
** |
|
31 |
** |
|
32 |
** |
|
33 |
** |
|
34 |
** |
|
35 |
** |
|
36 |
** |
|
37 |
** |
|
38 |
** $QT_END_LICENSE$ |
|
39 |
** |
|
40 |
****************************************************************************/ |
|
41 |
||
42 |
#include "qdatastream.h" |
|
43 |
#include "qdebug.h" |
|
44 |
#include "qmatrix.h" |
|
45 |
#include "qregion.h" |
|
46 |
#include "qpainterpath.h" |
|
47 |
#include "qvariant.h" |
|
48 |
#include <qmath.h> |
|
49 |
||
50 |
#include <limits.h> |
|
51 |
||
52 |
QT_BEGIN_NAMESPACE |
|
53 |
||
54 |
/*! |
|
55 |
\class QMatrix |
|
56 |
\brief The QMatrix class specifies 2D transformations of a |
|
57 |
coordinate system. |
|
58 |
\obsolete |
|
59 |
||
60 |
\ingroup painting |
|
61 |
||
62 |
A matrix specifies how to translate, scale, shear or rotate the |
|
63 |
coordinate system, and is typically used when rendering graphics. |
|
64 |
QMatrix, in contrast to QTransform, does not allow perspective |
|
65 |
transformations. QTransform is the recommended transformation |
|
66 |
class in Qt. |
|
67 |
||
68 |
A QMatrix object can be built using the setMatrix(), scale(), |
|
69 |
rotate(), translate() and shear() functions. Alternatively, it |
|
70 |
can be built by applying \l {QMatrix#Basic Matrix |
|
71 |
Operations}{basic matrix operations}. The matrix can also be |
|
72 |
defined when constructed, and it can be reset to the identity |
|
73 |
matrix (the default) using the reset() function. |
|
74 |
||
75 |
The QMatrix class supports mapping of graphic primitives: A given |
|
76 |
point, line, polygon, region, or painter path can be mapped to the |
|
77 |
coordinate system defined by \e this matrix using the map() |
|
78 |
function. In case of a rectangle, its coordinates can be |
|
79 |
transformed using the mapRect() function. A rectangle can also be |
|
80 |
transformed into a \e polygon (mapped to the coordinate system |
|
81 |
defined by \e this matrix), using the mapToPolygon() function. |
|
82 |
||
83 |
QMatrix provides the isIdentity() function which returns true if |
|
84 |
the matrix is the identity matrix, and the isInvertible() function |
|
85 |
which returns true if the matrix is non-singular (i.e. AB = BA = |
|
86 |
I). The inverted() function returns an inverted copy of \e this |
|
87 |
matrix if it is invertible (otherwise it returns the identity |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
88 |
matrix). In addition, QMatrix provides the determinant() function |
0 | 89 |
returning the matrix's determinant. |
90 |
||
91 |
Finally, the QMatrix class supports matrix multiplication, and |
|
92 |
objects of the class can be streamed as well as compared. |
|
93 |
||
94 |
\tableofcontents |
|
95 |
||
96 |
\section1 Rendering Graphics |
|
97 |
||
98 |
When rendering graphics, the matrix defines the transformations |
|
99 |
but the actual transformation is performed by the drawing routines |
|
100 |
in QPainter. |
|
101 |
||
102 |
By default, QPainter operates on the associated device's own |
|
103 |
coordinate system. The standard coordinate system of a |
|
104 |
QPaintDevice has its origin located at the top-left position. The |
|
105 |
\e x values increase to the right; \e y values increase |
|
106 |
downward. For a complete description, see the \l {The Coordinate |
|
107 |
System}{coordinate system} documentation. |
|
108 |
||
109 |
QPainter has functions to translate, scale, shear and rotate the |
|
110 |
coordinate system without using a QMatrix. For example: |
|
111 |
||
112 |
\table 100% |
|
113 |
\row |
|
114 |
\o \inlineimage qmatrix-simpletransformation.png |
|
115 |
\o |
|
116 |
\snippet doc/src/snippets/matrix/matrix.cpp 0 |
|
117 |
\endtable |
|
118 |
||
119 |
Although these functions are very convenient, it can be more |
|
120 |
efficient to build a QMatrix and call QPainter::setMatrix() if you |
|
121 |
want to perform more than a single transform operation. For |
|
122 |
example: |
|
123 |
||
124 |
\table 100% |
|
125 |
\row |
|
126 |
\o \inlineimage qmatrix-combinedtransformation.png |
|
127 |
\o |
|
128 |
\snippet doc/src/snippets/matrix/matrix.cpp 1 |
|
129 |
\endtable |
|
130 |
||
131 |
\section1 Basic Matrix Operations |
|
132 |
||
133 |
\image qmatrix-representation.png |
|
134 |
||
135 |
A QMatrix object contains a 3 x 3 matrix. The \c dx and \c dy |
|
136 |
elements specify horizontal and vertical translation. The \c m11 |
|
137 |
and \c m22 elements specify horizontal and vertical scaling. And |
|
138 |
finally, the \c m21 and \c m12 elements specify horizontal and |
|
139 |
vertical \e shearing. |
|
140 |
||
141 |
QMatrix transforms a point in the plane to another point using the |
|
142 |
following formulas: |
|
143 |
||
144 |
\snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 0 |
|
145 |
||
146 |
The point \e (x, y) is the original point, and \e (x', y') is the |
|
147 |
transformed point. \e (x', y') can be transformed back to \e (x, |
|
148 |
y) by performing the same operation on the inverted() matrix. |
|
149 |
||
150 |
The various matrix elements can be set when constructing the |
|
151 |
matrix, or by using the setMatrix() function later on. They can also |
|
152 |
be manipulated using the translate(), rotate(), scale() and |
|
153 |
shear() convenience functions, The currently set values can be |
|
154 |
retrieved using the m11(), m12(), m21(), m22(), dx() and dy() |
|
155 |
functions. |
|
156 |
||
157 |
Translation is the simplest transformation. Setting \c dx and \c |
|
158 |
dy will move the coordinate system \c dx units along the X axis |
|
159 |
and \c dy units along the Y axis. Scaling can be done by setting |
|
160 |
\c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to |
|
161 |
1.5 will double the height and increase the width by 50%. The |
|
162 |
identity matrix has \c m11 and \c m22 set to 1 (all others are set |
|
163 |
to 0) mapping a point to itself. Shearing is controlled by \c m12 |
|
164 |
and \c m21. Setting these elements to values different from zero |
|
165 |
will twist the coordinate system. Rotation is achieved by |
|
166 |
carefully setting both the shearing factors and the scaling |
|
167 |
factors. |
|
168 |
||
169 |
Here's the combined transformations example using basic matrix |
|
170 |
operations: |
|
171 |
||
172 |
\table 100% |
|
173 |
\row |
|
174 |
\o \inlineimage qmatrix-combinedtransformation.png |
|
175 |
\o |
|
176 |
\snippet doc/src/snippets/matrix/matrix.cpp 2 |
|
177 |
\endtable |
|
178 |
||
179 |
\sa QPainter, QTransform, {The Coordinate System}, |
|
180 |
{demos/affine}{Affine Transformations Demo}, {Transformations Example} |
|
181 |
*/ |
|
182 |
||
183 |
||
184 |
// some defines to inline some code |
|
185 |
#define MAPDOUBLE(x, y, nx, ny) \ |
|
186 |
{ \ |
|
187 |
qreal fx = x; \ |
|
188 |
qreal fy = y; \ |
|
189 |
nx = _m11*fx + _m21*fy + _dx; \ |
|
190 |
ny = _m12*fx + _m22*fy + _dy; \ |
|
191 |
} |
|
192 |
||
193 |
#define MAPINT(x, y, nx, ny) \ |
|
194 |
{ \ |
|
195 |
qreal fx = x; \ |
|
196 |
qreal fy = y; \ |
|
197 |
nx = qRound(_m11*fx + _m21*fy + _dx); \ |
|
198 |
ny = qRound(_m12*fx + _m22*fy + _dy); \ |
|
199 |
} |
|
200 |
||
201 |
/***************************************************************************** |
|
202 |
QMatrix member functions |
|
203 |
*****************************************************************************/ |
|
204 |
/*! |
|
205 |
\fn QMatrix::QMatrix(Qt::Initialization) |
|
206 |
\internal |
|
207 |
*/ |
|
208 |
||
209 |
/*! |
|
210 |
Constructs an identity matrix. |
|
211 |
||
212 |
All elements are set to zero except \c m11 and \c m22 (specifying |
|
213 |
the scale), which are set to 1. |
|
214 |
||
215 |
\sa reset() |
|
216 |
*/ |
|
217 |
||
218 |
QMatrix::QMatrix() |
|
219 |
: _m11(1.) |
|
220 |
, _m12(0.) |
|
221 |
, _m21(0.) |
|
222 |
, _m22(1.) |
|
223 |
, _dx(0.) |
|
224 |
, _dy(0.) |
|
225 |
{ |
|
226 |
} |
|
227 |
||
228 |
/*! |
|
229 |
Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a |
|
230 |
m22, \a dx and \a dy. |
|
231 |
||
232 |
\sa setMatrix() |
|
233 |
*/ |
|
234 |
||
235 |
QMatrix::QMatrix(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy) |
|
236 |
: _m11(m11) |
|
237 |
, _m12(m12) |
|
238 |
, _m21(m21) |
|
239 |
, _m22(m22) |
|
240 |
, _dx(dx) |
|
241 |
, _dy(dy) |
|
242 |
{ |
|
243 |
} |
|
244 |
||
245 |
||
246 |
/*! |
|
247 |
Constructs a matrix that is a copy of the given \a matrix. |
|
248 |
*/ |
|
249 |
QMatrix::QMatrix(const QMatrix &matrix) |
|
250 |
: _m11(matrix._m11) |
|
251 |
, _m12(matrix._m12) |
|
252 |
, _m21(matrix._m21) |
|
253 |
, _m22(matrix._m22) |
|
254 |
, _dx(matrix._dx) |
|
255 |
, _dy(matrix._dy) |
|
256 |
{ |
|
257 |
} |
|
258 |
||
259 |
/*! |
|
260 |
Sets the matrix elements to the specified values, \a m11, \a m12, |
|
261 |
\a m21, \a m22, \a dx and \a dy. |
|
262 |
||
263 |
Note that this function replaces the previous values. QMatrix |
|
264 |
provide the translate(), rotate(), scale() and shear() convenience |
|
265 |
functions to manipulate the various matrix elements based on the |
|
266 |
currently defined coordinate system. |
|
267 |
||
268 |
\sa QMatrix() |
|
269 |
*/ |
|
270 |
||
271 |
void QMatrix::setMatrix(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy) |
|
272 |
{ |
|
273 |
_m11 = m11; |
|
274 |
_m12 = m12; |
|
275 |
_m21 = m21; |
|
276 |
_m22 = m22; |
|
277 |
_dx = dx; |
|
278 |
_dy = dy; |
|
279 |
} |
|
280 |
||
281 |
||
282 |
/*! |
|
283 |
\fn qreal QMatrix::m11() const |
|
284 |
||
285 |
Returns the horizontal scaling factor. |
|
286 |
||
287 |
\sa scale(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
|
288 |
Operations} |
|
289 |
*/ |
|
290 |
||
291 |
/*! |
|
292 |
\fn qreal QMatrix::m12() const |
|
293 |
||
294 |
Returns the vertical shearing factor. |
|
295 |
||
296 |
\sa shear(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
|
297 |
Operations} |
|
298 |
*/ |
|
299 |
||
300 |
/*! |
|
301 |
\fn qreal QMatrix::m21() const |
|
302 |
||
303 |
Returns the horizontal shearing factor. |
|
304 |
||
305 |
\sa shear(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
|
306 |
Operations} |
|
307 |
*/ |
|
308 |
||
309 |
/*! |
|
310 |
\fn qreal QMatrix::m22() const |
|
311 |
||
312 |
Returns the vertical scaling factor. |
|
313 |
||
314 |
\sa scale(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
|
315 |
Operations} |
|
316 |
*/ |
|
317 |
||
318 |
/*! |
|
319 |
\fn qreal QMatrix::dx() const |
|
320 |
||
321 |
Returns the horizontal translation factor. |
|
322 |
||
323 |
\sa translate(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
|
324 |
Operations} |
|
325 |
*/ |
|
326 |
||
327 |
/*! |
|
328 |
\fn qreal QMatrix::dy() const |
|
329 |
||
330 |
Returns the vertical translation factor. |
|
331 |
||
332 |
\sa translate(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
|
333 |
Operations} |
|
334 |
*/ |
|
335 |
||
336 |
||
337 |
/*! |
|
338 |
Maps the given coordinates \a x and \a y into the coordinate |
|
339 |
system defined by this matrix. The resulting values are put in *\a |
|
340 |
tx and *\a ty, respectively. |
|
341 |
||
342 |
The coordinates are transformed using the following formulas: |
|
343 |
||
344 |
\snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 1 |
|
345 |
||
346 |
The point (x, y) is the original point, and (x', y') is the |
|
347 |
transformed point. |
|
348 |
||
349 |
\sa {QMatrix#Basic Matrix Operations}{Basic Matrix Operations} |
|
350 |
*/ |
|
351 |
||
352 |
void QMatrix::map(qreal x, qreal y, qreal *tx, qreal *ty) const |
|
353 |
{ |
|
354 |
MAPDOUBLE(x, y, *tx, *ty); |
|
355 |
} |
|
356 |
||
357 |
||
358 |
||
359 |
/*! |
|
360 |
\overload |
|
361 |
||
362 |
Maps the given coordinates \a x and \a y into the coordinate |
|
363 |
system defined by this matrix. The resulting values are put in *\a |
|
364 |
tx and *\a ty, respectively. Note that the transformed coordinates |
|
365 |
are rounded to the nearest integer. |
|
366 |
*/ |
|
367 |
||
368 |
void QMatrix::map(int x, int y, int *tx, int *ty) const |
|
369 |
{ |
|
370 |
MAPINT(x, y, *tx, *ty); |
|
371 |
} |
|
372 |
||
373 |
QRect QMatrix::mapRect(const QRect &rect) const |
|
374 |
{ |
|
375 |
QRect result; |
|
376 |
if (_m12 == 0.0F && _m21 == 0.0F) { |
|
377 |
int x = qRound(_m11*rect.x() + _dx); |
|
378 |
int y = qRound(_m22*rect.y() + _dy); |
|
379 |
int w = qRound(_m11*rect.width()); |
|
380 |
int h = qRound(_m22*rect.height()); |
|
381 |
if (w < 0) { |
|
382 |
w = -w; |
|
383 |
x -= w; |
|
384 |
} |
|
385 |
if (h < 0) { |
|
386 |
h = -h; |
|
387 |
y -= h; |
|
388 |
} |
|
389 |
result = QRect(x, y, w, h); |
|
390 |
} else { |
|
391 |
// see mapToPolygon for explanations of the algorithm. |
|
392 |
qreal x0, y0; |
|
393 |
qreal x, y; |
|
394 |
MAPDOUBLE(rect.left(), rect.top(), x0, y0); |
|
395 |
qreal xmin = x0; |
|
396 |
qreal ymin = y0; |
|
397 |
qreal xmax = x0; |
|
398 |
qreal ymax = y0; |
|
399 |
MAPDOUBLE(rect.right() + 1, rect.top(), x, y); |
|
400 |
xmin = qMin(xmin, x); |
|
401 |
ymin = qMin(ymin, y); |
|
402 |
xmax = qMax(xmax, x); |
|
403 |
ymax = qMax(ymax, y); |
|
404 |
MAPDOUBLE(rect.right() + 1, rect.bottom() + 1, x, y); |
|
405 |
xmin = qMin(xmin, x); |
|
406 |
ymin = qMin(ymin, y); |
|
407 |
xmax = qMax(xmax, x); |
|
408 |
ymax = qMax(ymax, y); |
|
409 |
MAPDOUBLE(rect.left(), rect.bottom() + 1, x, y); |
|
410 |
xmin = qMin(xmin, x); |
|
411 |
ymin = qMin(ymin, y); |
|
412 |
xmax = qMax(xmax, x); |
|
413 |
ymax = qMax(ymax, y); |
|
414 |
result = QRect(qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin), qRound(ymax)-qRound(ymin)); |
|
415 |
} |
|
416 |
return result; |
|
417 |
} |
|
418 |
||
419 |
/*! |
|
420 |
\fn QRectF QMatrix::mapRect(const QRectF &rectangle) const |
|
421 |
||
422 |
Creates and returns a QRectF object that is a copy of the given \a |
|
423 |
rectangle, mapped into the coordinate system defined by this |
|
424 |
matrix. |
|
425 |
||
426 |
The rectangle's coordinates are transformed using the following |
|
427 |
formulas: |
|
428 |
||
429 |
\snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 2 |
|
430 |
||
431 |
If rotation or shearing has been specified, this function returns |
|
432 |
the \e bounding rectangle. To retrieve the exact region the given |
|
433 |
\a rectangle maps to, use the mapToPolygon() function instead. |
|
434 |
||
435 |
\sa mapToPolygon(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
|
436 |
Operations} |
|
437 |
*/ |
|
438 |
QRectF QMatrix::mapRect(const QRectF &rect) const |
|
439 |
{ |
|
440 |
QRectF result; |
|
441 |
if (_m12 == 0.0F && _m21 == 0.0F) { |
|
442 |
qreal x = _m11*rect.x() + _dx; |
|
443 |
qreal y = _m22*rect.y() + _dy; |
|
444 |
qreal w = _m11*rect.width(); |
|
445 |
qreal h = _m22*rect.height(); |
|
446 |
if (w < 0) { |
|
447 |
w = -w; |
|
448 |
x -= w; |
|
449 |
} |
|
450 |
if (h < 0) { |
|
451 |
h = -h; |
|
452 |
y -= h; |
|
453 |
} |
|
454 |
result = QRectF(x, y, w, h); |
|
455 |
} else { |
|
456 |
qreal x0, y0; |
|
457 |
qreal x, y; |
|
458 |
MAPDOUBLE(rect.x(), rect.y(), x0, y0); |
|
459 |
qreal xmin = x0; |
|
460 |
qreal ymin = y0; |
|
461 |
qreal xmax = x0; |
|
462 |
qreal ymax = y0; |
|
463 |
MAPDOUBLE(rect.x() + rect.width(), rect.y(), x, y); |
|
464 |
xmin = qMin(xmin, x); |
|
465 |
ymin = qMin(ymin, y); |
|
466 |
xmax = qMax(xmax, x); |
|
467 |
ymax = qMax(ymax, y); |
|
468 |
MAPDOUBLE(rect.x() + rect.width(), rect.y() + rect.height(), x, y); |
|
469 |
xmin = qMin(xmin, x); |
|
470 |
ymin = qMin(ymin, y); |
|
471 |
xmax = qMax(xmax, x); |
|
472 |
ymax = qMax(ymax, y); |
|
473 |
MAPDOUBLE(rect.x(), rect.y() + rect.height(), x, y); |
|
474 |
xmin = qMin(xmin, x); |
|
475 |
ymin = qMin(ymin, y); |
|
476 |
xmax = qMax(xmax, x); |
|
477 |
ymax = qMax(ymax, y); |
|
478 |
result = QRectF(xmin, ymin, xmax-xmin, ymax - ymin); |
|
479 |
} |
|
480 |
return result; |
|
481 |
} |
|
482 |
||
483 |
/*! |
|
484 |
\fn QRect QMatrix::mapRect(const QRect &rectangle) const |
|
485 |
\overload |
|
486 |
||
487 |
Creates and returns a QRect object that is a copy of the given \a |
|
488 |
rectangle, mapped into the coordinate system defined by this |
|
489 |
matrix. Note that the transformed coordinates are rounded to the |
|
490 |
nearest integer. |
|
491 |
*/ |
|
492 |
||
493 |
||
494 |
/*! |
|
495 |
\fn QPoint operator*(const QPoint &point, const QMatrix &matrix) |
|
496 |
\relates QMatrix |
|
497 |
||
498 |
This is the same as \a{matrix}.map(\a{point}). |
|
499 |
||
500 |
\sa QMatrix::map() |
|
501 |
*/ |
|
502 |
||
503 |
QPoint QMatrix::map(const QPoint &p) const |
|
504 |
{ |
|
505 |
qreal fx = p.x(); |
|
506 |
qreal fy = p.y(); |
|
507 |
return QPoint(qRound(_m11*fx + _m21*fy + _dx), |
|
508 |
qRound(_m12*fx + _m22*fy + _dy)); |
|
509 |
} |
|
510 |
||
511 |
/*! |
|
512 |
\fn QPointF operator*(const QPointF &point, const QMatrix &matrix) |
|
513 |
\relates QMatrix |
|
514 |
||
515 |
Same as \a{matrix}.map(\a{point}). |
|
516 |
||
517 |
\sa QMatrix::map() |
|
518 |
*/ |
|
519 |
||
520 |
/*! |
|
521 |
\overload |
|
522 |
||
523 |
Creates and returns a QPointF object that is a copy of the given |
|
524 |
\a point, mapped into the coordinate system defined by this |
|
525 |
matrix. |
|
526 |
*/ |
|
527 |
QPointF QMatrix::map(const QPointF &point) const |
|
528 |
{ |
|
529 |
qreal fx = point.x(); |
|
530 |
qreal fy = point.y(); |
|
531 |
return QPointF(_m11*fx + _m21*fy + _dx, _m12*fx + _m22*fy + _dy); |
|
532 |
} |
|
533 |
||
534 |
/*! |
|
535 |
\fn QPoint QMatrix::map(const QPoint &point) const |
|
536 |
\overload |
|
537 |
||
538 |
Creates and returns a QPoint object that is a copy of the given \a |
|
539 |
point, mapped into the coordinate system defined by this |
|
540 |
matrix. Note that the transformed coordinates are rounded to the |
|
541 |
nearest integer. |
|
542 |
*/ |
|
543 |
||
544 |
/*! |
|
545 |
\fn QLineF operator*(const QLineF &line, const QMatrix &matrix) |
|
546 |
\relates QMatrix |
|
547 |
||
548 |
This is the same as \a{matrix}.map(\a{line}). |
|
549 |
||
550 |
\sa QMatrix::map() |
|
551 |
*/ |
|
552 |
||
553 |
/*! |
|
554 |
\fn QLine operator*(const QLine &line, const QMatrix &matrix) |
|
555 |
\relates QMatrix |
|
556 |
||
557 |
This is the same as \a{matrix}.map(\a{line}). |
|
558 |
||
559 |
\sa QMatrix::map() |
|
560 |
*/ |
|
561 |
||
562 |
/*! |
|
563 |
\overload |
|
564 |
||
565 |
Creates and returns a QLineF object that is a copy of the given \a |
|
566 |
line, mapped into the coordinate system defined by this matrix. |
|
567 |
*/ |
|
568 |
QLineF QMatrix::map(const QLineF &line) const |
|
569 |
{ |
|
570 |
return QLineF(map(line.p1()), map(line.p2())); |
|
571 |
} |
|
572 |
||
573 |
/*! |
|
574 |
\overload |
|
575 |
||
576 |
Creates and returns a QLine object that is a copy of the given \a |
|
577 |
line, mapped into the coordinate system defined by this matrix. |
|
578 |
Note that the transformed coordinates are rounded to the nearest |
|
579 |
integer. |
|
580 |
*/ |
|
581 |
QLine QMatrix::map(const QLine &line) const |
|
582 |
{ |
|
583 |
return QLine(map(line.p1()), map(line.p2())); |
|
584 |
} |
|
585 |
||
586 |
/*! |
|
587 |
\fn QPolygonF operator *(const QPolygonF &polygon, const QMatrix &matrix) |
|
588 |
\relates QMatrix |
|
589 |
||
590 |
This is the same as \a{matrix}.map(\a{polygon}). |
|
591 |
||
592 |
\sa QMatrix::map() |
|
593 |
*/ |
|
594 |
||
595 |
/*! |
|
596 |
\fn QPolygon operator*(const QPolygon &polygon, const QMatrix &matrix) |
|
597 |
\relates QMatrix |
|
598 |
||
599 |
This is the same as \a{matrix}.map(\a{polygon}). |
|
600 |
||
601 |
\sa QMatrix::map() |
|
602 |
*/ |
|
603 |
||
604 |
QPolygon QMatrix::map(const QPolygon &a) const |
|
605 |
{ |
|
606 |
int size = a.size(); |
|
607 |
int i; |
|
608 |
QPolygon p(size); |
|
609 |
const QPoint *da = a.constData(); |
|
610 |
QPoint *dp = p.data(); |
|
611 |
for(i = 0; i < size; i++) { |
|
612 |
MAPINT(da[i].x(), da[i].y(), dp[i].rx(), dp[i].ry()); |
|
613 |
} |
|
614 |
return p; |
|
615 |
} |
|
616 |
||
617 |
/*! |
|
618 |
\fn QPolygonF QMatrix::map(const QPolygonF &polygon) const |
|
619 |
\overload |
|
620 |
||
621 |
Creates and returns a QPolygonF object that is a copy of the given |
|
622 |
\a polygon, mapped into the coordinate system defined by this |
|
623 |
matrix. |
|
624 |
*/ |
|
625 |
QPolygonF QMatrix::map(const QPolygonF &a) const |
|
626 |
{ |
|
627 |
int size = a.size(); |
|
628 |
int i; |
|
629 |
QPolygonF p(size); |
|
630 |
const QPointF *da = a.constData(); |
|
631 |
QPointF *dp = p.data(); |
|
632 |
for(i = 0; i < size; i++) { |
|
633 |
MAPDOUBLE(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp); |
|
634 |
} |
|
635 |
return p; |
|
636 |
} |
|
637 |
||
638 |
/*! |
|
639 |
\fn QPolygon QMatrix::map(const QPolygon &polygon) const |
|
640 |
\overload |
|
641 |
||
642 |
Creates and returns a QPolygon object that is a copy of the given |
|
643 |
\a polygon, mapped into the coordinate system defined by this |
|
644 |
matrix. Note that the transformed coordinates are rounded to the |
|
645 |
nearest integer. |
|
646 |
*/ |
|
647 |
||
648 |
/*! |
|
649 |
\fn QRegion operator*(const QRegion ®ion, const QMatrix &matrix) |
|
650 |
\relates QMatrix |
|
651 |
||
652 |
This is the same as \a{matrix}.map(\a{region}). |
|
653 |
||
654 |
\sa QMatrix::map() |
|
655 |
*/ |
|
656 |
||
657 |
extern QPainterPath qt_regionToPath(const QRegion ®ion); |
|
658 |
||
659 |
/*! |
|
660 |
\fn QRegion QMatrix::map(const QRegion ®ion) const |
|
661 |
\overload |
|
662 |
||
663 |
Creates and returns a QRegion object that is a copy of the given |
|
664 |
\a region, mapped into the coordinate system defined by this matrix. |
|
665 |
||
666 |
Calling this method can be rather expensive if rotations or |
|
667 |
shearing are used. |
|
668 |
*/ |
|
669 |
QRegion QMatrix::map(const QRegion &r) const |
|
670 |
{ |
|
671 |
if (_m11 == 1.0 && _m22 == 1.0 && _m12 == 0.0 && _m21 == 0.0) { // translate or identity |
|
672 |
if (_dx == 0.0 && _dy == 0.0) // Identity |
|
673 |
return r; |
|
674 |
QRegion copy(r); |
|
675 |
copy.translate(qRound(_dx), qRound(_dy)); |
|
676 |
return copy; |
|
677 |
} |
|
678 |
||
679 |
QPainterPath p = map(qt_regionToPath(r)); |
|
680 |
return p.toFillPolygon().toPolygon(); |
|
681 |
} |
|
682 |
||
683 |
/*! |
|
684 |
\fn QPainterPath operator *(const QPainterPath &path, const QMatrix &matrix) |
|
685 |
\relates QMatrix |
|
686 |
||
687 |
This is the same as \a{matrix}.map(\a{path}). |
|
688 |
||
689 |
\sa QMatrix::map() |
|
690 |
*/ |
|
691 |
||
692 |
/*! |
|
693 |
\overload |
|
694 |
||
695 |
Creates and returns a QPainterPath object that is a copy of the |
|
696 |
given \a path, mapped into the coordinate system defined by this |
|
697 |
matrix. |
|
698 |
*/ |
|
699 |
QPainterPath QMatrix::map(const QPainterPath &path) const |
|
700 |
{ |
|
701 |
if (path.isEmpty()) |
|
702 |
return QPainterPath(); |
|
703 |
||
704 |
QPainterPath copy = path; |
|
705 |
||
706 |
// Translate or identity |
|
707 |
if (_m11 == 1.0 && _m22 == 1.0 && _m12 == 0.0 && _m21 == 0.0) { |
|
708 |
||
709 |
// Translate |
|
710 |
if (_dx != 0.0 || _dy != 0.0) { |
|
711 |
copy.detach(); |
|
712 |
for (int i=0; i<path.elementCount(); ++i) { |
|
713 |
QPainterPath::Element &e = copy.d_ptr->elements[i]; |
|
714 |
e.x += _dx; |
|
715 |
e.y += _dy; |
|
716 |
} |
|
717 |
} |
|
718 |
||
719 |
// Full xform |
|
720 |
} else { |
|
721 |
copy.detach(); |
|
722 |
for (int i=0; i<path.elementCount(); ++i) { |
|
723 |
QPainterPath::Element &e = copy.d_ptr->elements[i]; |
|
724 |
qreal fx = e.x, fy = e.y; |
|
725 |
e.x = _m11*fx + _m21*fy + _dx; |
|
726 |
e.y = _m12*fx + _m22*fy + _dy; |
|
727 |
} |
|
728 |
} |
|
729 |
||
730 |
return copy; |
|
731 |
} |
|
732 |
||
733 |
/*! |
|
734 |
\fn QRegion QMatrix::mapToRegion(const QRect &rectangle) const |
|
735 |
||
736 |
Returns the transformed rectangle \a rectangle as a QRegion |
|
737 |
object. A rectangle which has been rotated or sheared may result |
|
738 |
in a non-rectangular region being returned. |
|
739 |
||
740 |
Use the mapToPolygon() or map() function instead. |
|
741 |
*/ |
|
742 |
#ifdef QT3_SUPPORT |
|
743 |
QRegion QMatrix::mapToRegion(const QRect &rect) const |
|
744 |
{ |
|
745 |
QRegion result; |
|
746 |
if (isIdentity()) { |
|
747 |
result = rect; |
|
748 |
} else if (m12() == 0.0F && m21() == 0.0F) { |
|
749 |
int x = qRound(m11()*rect.x() + dx()); |
|
750 |
int y = qRound(m22()*rect.y() + dy()); |
|
751 |
int w = qRound(m11()*rect.width()); |
|
752 |
int h = qRound(m22()*rect.height()); |
|
753 |
if (w < 0) { |
|
754 |
w = -w; |
|
755 |
x -= w - 1; |
|
756 |
} |
|
757 |
if (h < 0) { |
|
758 |
h = -h; |
|
759 |
y -= h - 1; |
|
760 |
} |
|
761 |
result = QRect(x, y, w, h); |
|
762 |
} else { |
|
763 |
result = QRegion(mapToPolygon(rect)); |
|
764 |
} |
|
765 |
return result; |
|
766 |
||
767 |
} |
|
768 |
#endif |
|
769 |
/*! |
|
770 |
\fn QPolygon QMatrix::mapToPolygon(const QRect &rectangle) const |
|
771 |
||
772 |
Creates and returns a QPolygon representation of the given \a |
|
773 |
rectangle, mapped into the coordinate system defined by this |
|
774 |
matrix. |
|
775 |
||
776 |
The rectangle's coordinates are transformed using the following |
|
777 |
formulas: |
|
778 |
||
779 |
\snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 3 |
|
780 |
||
781 |
Polygons and rectangles behave slightly differently when |
|
782 |
transformed (due to integer rounding), so |
|
783 |
\c{matrix.map(QPolygon(rectangle))} is not always the same as |
|
784 |
\c{matrix.mapToPolygon(rectangle)}. |
|
785 |
||
786 |
\sa mapRect(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
|
787 |
Operations} |
|
788 |
*/ |
|
789 |
QPolygon QMatrix::mapToPolygon(const QRect &rect) const |
|
790 |
{ |
|
791 |
QPolygon a(4); |
|
792 |
qreal x[4], y[4]; |
|
793 |
if (_m12 == 0.0F && _m21 == 0.0F) { |
|
794 |
x[0] = _m11*rect.x() + _dx; |
|
795 |
y[0] = _m22*rect.y() + _dy; |
|
796 |
qreal w = _m11*rect.width(); |
|
797 |
qreal h = _m22*rect.height(); |
|
798 |
if (w < 0) { |
|
799 |
w = -w; |
|
800 |
x[0] -= w; |
|
801 |
} |
|
802 |
if (h < 0) { |
|
803 |
h = -h; |
|
804 |
y[0] -= h; |
|
805 |
} |
|
806 |
x[1] = x[0]+w; |
|
807 |
x[2] = x[1]; |
|
808 |
x[3] = x[0]; |
|
809 |
y[1] = y[0]; |
|
810 |
y[2] = y[0]+h; |
|
811 |
y[3] = y[2]; |
|
812 |
} else { |
|
813 |
qreal right = rect.x() + rect.width(); |
|
814 |
qreal bottom = rect.y() + rect.height(); |
|
815 |
MAPDOUBLE(rect.x(), rect.y(), x[0], y[0]); |
|
816 |
MAPDOUBLE(right, rect.y(), x[1], y[1]); |
|
817 |
MAPDOUBLE(right, bottom, x[2], y[2]); |
|
818 |
MAPDOUBLE(rect.x(), bottom, x[3], y[3]); |
|
819 |
} |
|
820 |
#if 0 |
|
821 |
int i; |
|
822 |
for(i = 0; i< 4; i++) |
|
823 |
qDebug("coords(%d) = (%f/%f) (%d/%d)", i, x[i], y[i], qRound(x[i]), qRound(y[i])); |
|
824 |
qDebug("width=%f, height=%f", qSqrt((x[1]-x[0])*(x[1]-x[0]) + (y[1]-y[0])*(y[1]-y[0])), |
|
825 |
qSqrt((x[0]-x[3])*(x[0]-x[3]) + (y[0]-y[3])*(y[0]-y[3]))); |
|
826 |
#endif |
|
827 |
// all coordinates are correctly, tranform to a pointarray |
|
828 |
// (rounding to the next integer) |
|
829 |
a.setPoints(4, qRound(x[0]), qRound(y[0]), |
|
830 |
qRound(x[1]), qRound(y[1]), |
|
831 |
qRound(x[2]), qRound(y[2]), |
|
832 |
qRound(x[3]), qRound(y[3])); |
|
833 |
return a; |
|
834 |
} |
|
835 |
||
836 |
/*! |
|
837 |
Resets the matrix to an identity matrix, i.e. all elements are set |
|
838 |
to zero, except \c m11 and \c m22 (specifying the scale) which are |
|
839 |
set to 1. |
|
840 |
||
841 |
\sa QMatrix(), isIdentity(), {QMatrix#Basic Matrix |
|
842 |
Operations}{Basic Matrix Operations} |
|
843 |
*/ |
|
844 |
||
845 |
void QMatrix::reset() |
|
846 |
{ |
|
847 |
_m11 = _m22 = 1.0; |
|
848 |
_m12 = _m21 = _dx = _dy = 0.0; |
|
849 |
} |
|
850 |
||
851 |
/*! |
|
852 |
\fn bool QMatrix::isIdentity() const |
|
853 |
||
854 |
Returns true if the matrix is the identity matrix, otherwise |
|
855 |
returns false. |
|
856 |
||
857 |
\sa reset() |
|
858 |
*/ |
|
859 |
||
860 |
/*! |
|
861 |
Moves the coordinate system \a dx along the x axis and \a dy along |
|
862 |
the y axis, and returns a reference to the matrix. |
|
863 |
||
864 |
\sa setMatrix() |
|
865 |
*/ |
|
866 |
||
867 |
QMatrix &QMatrix::translate(qreal dx, qreal dy) |
|
868 |
{ |
|
869 |
_dx += dx*_m11 + dy*_m21; |
|
870 |
_dy += dy*_m22 + dx*_m12; |
|
871 |
return *this; |
|
872 |
} |
|
873 |
||
874 |
/*! |
|
875 |
\fn QMatrix &QMatrix::scale(qreal sx, qreal sy) |
|
876 |
||
877 |
Scales the coordinate system by \a sx horizontally and \a sy |
|
878 |
vertically, and returns a reference to the matrix. |
|
879 |
||
880 |
\sa setMatrix() |
|
881 |
*/ |
|
882 |
||
883 |
QMatrix &QMatrix::scale(qreal sx, qreal sy) |
|
884 |
{ |
|
885 |
_m11 *= sx; |
|
886 |
_m12 *= sx; |
|
887 |
_m21 *= sy; |
|
888 |
_m22 *= sy; |
|
889 |
return *this; |
|
890 |
} |
|
891 |
||
892 |
/*! |
|
893 |
Shears the coordinate system by \a sh horizontally and \a sv |
|
894 |
vertically, and returns a reference to the matrix. |
|
895 |
||
896 |
\sa setMatrix() |
|
897 |
*/ |
|
898 |
||
899 |
QMatrix &QMatrix::shear(qreal sh, qreal sv) |
|
900 |
{ |
|
901 |
qreal tm11 = sv*_m21; |
|
902 |
qreal tm12 = sv*_m22; |
|
903 |
qreal tm21 = sh*_m11; |
|
904 |
qreal tm22 = sh*_m12; |
|
905 |
_m11 += tm11; |
|
906 |
_m12 += tm12; |
|
907 |
_m21 += tm21; |
|
908 |
_m22 += tm22; |
|
909 |
return *this; |
|
910 |
} |
|
911 |
||
912 |
const qreal deg2rad = qreal(0.017453292519943295769); // pi/180 |
|
913 |
||
914 |
/*! |
|
915 |
\fn QMatrix &QMatrix::rotate(qreal degrees) |
|
916 |
||
917 |
Rotates the coordinate system the given \a degrees |
|
918 |
counterclockwise. |
|
919 |
||
920 |
Note that if you apply a QMatrix to a point defined in widget |
|
921 |
coordinates, the direction of the rotation will be clockwise |
|
922 |
because the y-axis points downwards. |
|
923 |
||
924 |
Returns a reference to the matrix. |
|
925 |
||
926 |
\sa setMatrix() |
|
927 |
*/ |
|
928 |
||
929 |
QMatrix &QMatrix::rotate(qreal a) |
|
930 |
{ |
|
931 |
qreal sina = 0; |
|
932 |
qreal cosa = 0; |
|
933 |
if (a == 90. || a == -270.) |
|
934 |
sina = 1.; |
|
935 |
else if (a == 270. || a == -90.) |
|
936 |
sina = -1.; |
|
937 |
else if (a == 180.) |
|
938 |
cosa = -1.; |
|
939 |
else{ |
|
940 |
qreal b = deg2rad*a; // convert to radians |
|
941 |
sina = qSin(b); // fast and convenient |
|
942 |
cosa = qCos(b); |
|
943 |
} |
|
944 |
qreal tm11 = cosa*_m11 + sina*_m21; |
|
945 |
qreal tm12 = cosa*_m12 + sina*_m22; |
|
946 |
qreal tm21 = -sina*_m11 + cosa*_m21; |
|
947 |
qreal tm22 = -sina*_m12 + cosa*_m22; |
|
948 |
_m11 = tm11; _m12 = tm12; |
|
949 |
_m21 = tm21; _m22 = tm22; |
|
950 |
return *this; |
|
951 |
} |
|
952 |
||
953 |
/*! |
|
954 |
\fn bool QMatrix::isInvertible() const |
|
955 |
||
956 |
Returns true if the matrix is invertible, otherwise returns false. |
|
957 |
||
958 |
\sa inverted() |
|
959 |
*/ |
|
960 |
||
961 |
/*! |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
962 |
\obsolete |
0 | 963 |
\fn qreal QMatrix::det() const |
964 |
||
965 |
Returns the matrix's determinant. |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
966 |
|
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
967 |
\sa determinant() |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
968 |
*/ |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
969 |
|
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
970 |
/*! |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
971 |
\since 4.6 |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
972 |
\fn qreal QMatrix::determinant() const |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
973 |
|
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
974 |
Returns the matrix's determinant. |
0 | 975 |
*/ |
976 |
||
977 |
/*! |
|
978 |
\fn QMatrix QMatrix::invert(bool *invertible) const |
|
979 |
||
980 |
Returns an inverted copy of this matrix. |
|
981 |
||
982 |
Use the inverted() function instead. |
|
983 |
*/ |
|
984 |
||
985 |
/*! |
|
986 |
Returns an inverted copy of this matrix. |
|
987 |
||
988 |
If the matrix is singular (not invertible), the returned matrix is |
|
989 |
the identity matrix. If \a invertible is valid (i.e. not 0), its |
|
990 |
value is set to true if the matrix is invertible, otherwise it is |
|
991 |
set to false. |
|
992 |
||
993 |
\sa isInvertible() |
|
994 |
*/ |
|
995 |
||
996 |
QMatrix QMatrix::inverted(bool *invertible) const |
|
997 |
{ |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
998 |
qreal dtr = determinant(); |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
999 |
if (dtr == 0.0) { |
0 | 1000 |
if (invertible) |
1001 |
*invertible = false; // singular matrix |
|
1002 |
return QMatrix(true); |
|
1003 |
} |
|
1004 |
else { // invertible matrix |
|
1005 |
if (invertible) |
|
1006 |
*invertible = true; |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
1007 |
qreal dinv = 1.0/dtr; |
0 | 1008 |
return QMatrix((_m22*dinv), (-_m12*dinv), |
1009 |
(-_m21*dinv), (_m11*dinv), |
|
1010 |
((_m21*_dy - _m22*_dx)*dinv), |
|
1011 |
((_m12*_dx - _m11*_dy)*dinv), |
|
1012 |
true); |
|
1013 |
} |
|
1014 |
} |
|
1015 |
||
1016 |
||
1017 |
/*! |
|
1018 |
\fn bool QMatrix::operator==(const QMatrix &matrix) const |
|
1019 |
||
1020 |
Returns true if this matrix is equal to the given \a matrix, |
|
1021 |
otherwise returns false. |
|
1022 |
*/ |
|
1023 |
||
1024 |
bool QMatrix::operator==(const QMatrix &m) const |
|
1025 |
{ |
|
1026 |
return _m11 == m._m11 && |
|
1027 |
_m12 == m._m12 && |
|
1028 |
_m21 == m._m21 && |
|
1029 |
_m22 == m._m22 && |
|
1030 |
_dx == m._dx && |
|
1031 |
_dy == m._dy; |
|
1032 |
} |
|
1033 |
||
1034 |
/*! |
|
1035 |
\fn bool QMatrix::operator!=(const QMatrix &matrix) const |
|
1036 |
||
1037 |
Returns true if this matrix is not equal to the given \a matrix, |
|
1038 |
otherwise returns false. |
|
1039 |
*/ |
|
1040 |
||
1041 |
bool QMatrix::operator!=(const QMatrix &m) const |
|
1042 |
{ |
|
1043 |
return _m11 != m._m11 || |
|
1044 |
_m12 != m._m12 || |
|
1045 |
_m21 != m._m21 || |
|
1046 |
_m22 != m._m22 || |
|
1047 |
_dx != m._dx || |
|
1048 |
_dy != m._dy; |
|
1049 |
} |
|
1050 |
||
1051 |
/*! |
|
1052 |
\fn QMatrix &QMatrix::operator *=(const QMatrix &matrix) |
|
1053 |
\overload |
|
1054 |
||
1055 |
Returns the result of multiplying this matrix by the given \a |
|
1056 |
matrix. |
|
1057 |
*/ |
|
1058 |
||
1059 |
QMatrix &QMatrix::operator *=(const QMatrix &m) |
|
1060 |
{ |
|
1061 |
qreal tm11 = _m11*m._m11 + _m12*m._m21; |
|
1062 |
qreal tm12 = _m11*m._m12 + _m12*m._m22; |
|
1063 |
qreal tm21 = _m21*m._m11 + _m22*m._m21; |
|
1064 |
qreal tm22 = _m21*m._m12 + _m22*m._m22; |
|
1065 |
||
1066 |
qreal tdx = _dx*m._m11 + _dy*m._m21 + m._dx; |
|
1067 |
qreal tdy = _dx*m._m12 + _dy*m._m22 + m._dy; |
|
1068 |
||
1069 |
_m11 = tm11; _m12 = tm12; |
|
1070 |
_m21 = tm21; _m22 = tm22; |
|
1071 |
_dx = tdx; _dy = tdy; |
|
1072 |
return *this; |
|
1073 |
} |
|
1074 |
||
1075 |
/*! |
|
1076 |
\fn QMatrix QMatrix::operator *(const QMatrix &matrix) const |
|
1077 |
||
1078 |
Returns the result of multiplying this matrix by the given \a |
|
1079 |
matrix. |
|
1080 |
||
1081 |
Note that matrix multiplication is not commutative, i.e. a*b != |
|
1082 |
b*a. |
|
1083 |
*/ |
|
1084 |
||
1085 |
QMatrix QMatrix::operator *(const QMatrix &m) const |
|
1086 |
{ |
|
1087 |
qreal tm11 = _m11*m._m11 + _m12*m._m21; |
|
1088 |
qreal tm12 = _m11*m._m12 + _m12*m._m22; |
|
1089 |
qreal tm21 = _m21*m._m11 + _m22*m._m21; |
|
1090 |
qreal tm22 = _m21*m._m12 + _m22*m._m22; |
|
1091 |
||
1092 |
qreal tdx = _dx*m._m11 + _dy*m._m21 + m._dx; |
|
1093 |
qreal tdy = _dx*m._m12 + _dy*m._m22 + m._dy; |
|
1094 |
return QMatrix(tm11, tm12, tm21, tm22, tdx, tdy, true); |
|
1095 |
} |
|
1096 |
||
1097 |
/*! |
|
1098 |
Assigns the given \a matrix's values to this matrix. |
|
1099 |
*/ |
|
1100 |
QMatrix &QMatrix::operator=(const QMatrix &matrix) |
|
1101 |
{ |
|
1102 |
_m11 = matrix._m11; |
|
1103 |
_m12 = matrix._m12; |
|
1104 |
_m21 = matrix._m21; |
|
1105 |
_m22 = matrix._m22; |
|
1106 |
_dx = matrix._dx; |
|
1107 |
_dy = matrix._dy; |
|
1108 |
return *this; |
|
1109 |
} |
|
1110 |
||
1111 |
/*! |
|
1112 |
\since 4.2 |
|
1113 |
||
1114 |
Returns the matrix as a QVariant. |
|
1115 |
*/ |
|
1116 |
QMatrix::operator QVariant() const |
|
1117 |
{ |
|
1118 |
return QVariant(QVariant::Matrix, this); |
|
1119 |
} |
|
1120 |
||
1121 |
Q_GUI_EXPORT QPainterPath operator *(const QPainterPath &p, const QMatrix &m) |
|
1122 |
{ |
|
1123 |
return m.map(p); |
|
1124 |
} |
|
1125 |
||
1126 |
||
1127 |
/***************************************************************************** |
|
1128 |
QMatrix stream functions |
|
1129 |
*****************************************************************************/ |
|
1130 |
#ifndef QT_NO_DATASTREAM |
|
1131 |
/*! |
|
1132 |
\fn QDataStream &operator<<(QDataStream &stream, const QMatrix &matrix) |
|
1133 |
\relates QMatrix |
|
1134 |
||
1135 |
Writes the given \a matrix to the given \a stream and returns a |
|
1136 |
reference to the stream. |
|
1137 |
||
1138 |
\sa {Format of the QDataStream Operators} |
|
1139 |
*/ |
|
1140 |
||
1141 |
QDataStream &operator<<(QDataStream &s, const QMatrix &m) |
|
1142 |
{ |
|
1143 |
if (s.version() == 1) { |
|
1144 |
s << (float)m.m11() << (float)m.m12() << (float)m.m21() |
|
1145 |
<< (float)m.m22() << (float)m.dx() << (float)m.dy(); |
|
1146 |
} else { |
|
1147 |
s << double(m.m11()) |
|
1148 |
<< double(m.m12()) |
|
1149 |
<< double(m.m21()) |
|
1150 |
<< double(m.m22()) |
|
1151 |
<< double(m.dx()) |
|
1152 |
<< double(m.dy()); |
|
1153 |
} |
|
1154 |
return s; |
|
1155 |
} |
|
1156 |
||
1157 |
/*! |
|
1158 |
\fn QDataStream &operator>>(QDataStream &stream, QMatrix &matrix) |
|
1159 |
\relates QMatrix |
|
1160 |
||
1161 |
Reads the given \a matrix from the given \a stream and returns a |
|
1162 |
reference to the stream. |
|
1163 |
||
1164 |
\sa {Format of the QDataStream Operators} |
|
1165 |
*/ |
|
1166 |
||
1167 |
QDataStream &operator>>(QDataStream &s, QMatrix &m) |
|
1168 |
{ |
|
1169 |
if (s.version() == 1) { |
|
1170 |
float m11, m12, m21, m22, dx, dy; |
|
1171 |
s >> m11; s >> m12; s >> m21; s >> m22; |
|
1172 |
s >> dx; s >> dy; |
|
1173 |
m.setMatrix(m11, m12, m21, m22, dx, dy); |
|
1174 |
} |
|
1175 |
else { |
|
1176 |
double m11, m12, m21, m22, dx, dy; |
|
1177 |
s >> m11; |
|
1178 |
s >> m12; |
|
1179 |
s >> m21; |
|
1180 |
s >> m22; |
|
1181 |
s >> dx; |
|
1182 |
s >> dy; |
|
1183 |
m.setMatrix(m11, m12, m21, m22, dx, dy); |
|
1184 |
} |
|
1185 |
return s; |
|
1186 |
} |
|
1187 |
#endif // QT_NO_DATASTREAM |
|
1188 |
||
1189 |
#ifndef QT_NO_DEBUG_STREAM |
|
1190 |
QDebug operator<<(QDebug dbg, const QMatrix &m) |
|
1191 |
{ |
|
1192 |
dbg.nospace() << "QMatrix(" |
|
1193 |
<< "11=" << m.m11() |
|
1194 |
<< " 12=" << m.m12() |
|
1195 |
<< " 21=" << m.m21() |
|
1196 |
<< " 22=" << m.m22() |
|
1197 |
<< " dx=" << m.dx() |
|
1198 |
<< " dy=" << m.dy() |
|
1199 |
<< ')'; |
|
1200 |
return dbg.space(); |
|
1201 |
} |
|
1202 |
#endif |
|
1203 |
||
1204 |
/*! |
|
1205 |
\fn QRect QMatrix::map(const QRect &rect) const |
|
1206 |
\compat |
|
1207 |
||
1208 |
Creates and returns a QRect object that is a copy of the given |
|
1209 |
rectangle, mapped into the coordinate system defined by this |
|
1210 |
matrix. |
|
1211 |
||
1212 |
Use the mapRect() function instead. |
|
1213 |
*/ |
|
1214 |
||
1215 |
||
1216 |
/*! |
|
1217 |
\fn bool qFuzzyCompare(const QMatrix& m1, const QMatrix& m2) |
|
1218 |
||
1219 |
\relates QMatrix |
|
1220 |
\since 4.6 |
|
1221 |
||
1222 |
\brief The qFuzzyCompare function is for comparing two matrices |
|
1223 |
using a fuzziness factor. |
|
1224 |
||
1225 |
Returns true if \a m1 and \a m2 are equal, allowing for a small |
|
1226 |
fuzziness factor for floating-point comparisons; false otherwise. |
|
1227 |
*/ |
|
1228 |
||
1229 |
QT_END_NAMESPACE |