0
|
1 |
/*
|
|
2 |
* This code implements the MD5 message-digest algorithm.
|
|
3 |
* The algorithm is due to Ron Rivest. This code was
|
|
4 |
* written by Colin Plumb in 1993, no copyright is claimed.
|
|
5 |
* This code is in the public domain; do with it what you wish.
|
|
6 |
*
|
|
7 |
* Equivalent code is available from RSA Data Security, Inc.
|
|
8 |
* This code has been tested against that, and is equivalent,
|
|
9 |
* except that you don't need to include two pages of legalese
|
|
10 |
* with every copy.
|
|
11 |
*
|
|
12 |
* To compute the message digest of a chunk of bytes, declare an
|
|
13 |
* MD5Context structure, pass it to MD5Init, call MD5Update as
|
|
14 |
* needed on buffers full of bytes, and then call MD5Final, which
|
|
15 |
* will fill a supplied 16-byte array with the digest.
|
|
16 |
*
|
|
17 |
* Changed so as no longer to depend on Colin Plumb's `usual.h' header
|
|
18 |
* definitions; now uses stuff from dpkg's config.h.
|
|
19 |
* - Ian Jackson <ian@chiark.greenend.org.uk>.
|
|
20 |
* Still in the public domain.
|
|
21 |
*/
|
|
22 |
|
|
23 |
#include <string.h> /* for memcpy() */
|
|
24 |
#ifndef _WIN32_WCE
|
|
25 |
#include <sys/types.h> /* for stupid systems */
|
|
26 |
#else
|
|
27 |
#include <types.h>
|
|
28 |
#endif
|
|
29 |
|
|
30 |
#include "md5.h"
|
|
31 |
|
|
32 |
QT_BEGIN_NAMESPACE
|
|
33 |
|
|
34 |
static void
|
|
35 |
byteSwap(UWORD32 *buf, unsigned words)
|
|
36 |
{
|
|
37 |
const quint32 byteOrderTest = 0x1;
|
|
38 |
if (((char *)&byteOrderTest)[0] == 0) {
|
|
39 |
md5byte *p = (md5byte *)buf;
|
|
40 |
|
|
41 |
do {
|
|
42 |
*buf++ = (UWORD32)((unsigned)p[3] << 8 | p[2]) << 16 |
|
|
43 |
((unsigned)p[1] << 8 | p[0]);
|
|
44 |
p += 4;
|
|
45 |
} while (--words);
|
|
46 |
}
|
|
47 |
}
|
|
48 |
|
|
49 |
/*
|
|
50 |
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
|
|
51 |
* initialization constants.
|
|
52 |
*/
|
|
53 |
static void
|
|
54 |
MD5Init(struct MD5Context *ctx)
|
|
55 |
{
|
|
56 |
ctx->buf[0] = 0x67452301;
|
|
57 |
ctx->buf[1] = 0xefcdab89;
|
|
58 |
ctx->buf[2] = 0x98badcfe;
|
|
59 |
ctx->buf[3] = 0x10325476;
|
|
60 |
|
|
61 |
ctx->bytes[0] = 0;
|
|
62 |
ctx->bytes[1] = 0;
|
|
63 |
}
|
|
64 |
|
|
65 |
/*
|
|
66 |
* Update context to reflect the concatenation of another buffer full
|
|
67 |
* of bytes.
|
|
68 |
*/
|
|
69 |
static void
|
|
70 |
MD5Update(struct MD5Context *ctx, md5byte const *buf, unsigned len)
|
|
71 |
{
|
|
72 |
UWORD32 t;
|
|
73 |
|
|
74 |
/* Update byte count */
|
|
75 |
|
|
76 |
t = ctx->bytes[0];
|
|
77 |
if ((ctx->bytes[0] = t + len) < t)
|
|
78 |
ctx->bytes[1]++; /* Carry from low to high */
|
|
79 |
|
|
80 |
t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */
|
|
81 |
if (t > len) {
|
|
82 |
memcpy((md5byte *)ctx->in + 64 - t, buf, len);
|
|
83 |
return;
|
|
84 |
}
|
|
85 |
/* First chunk is an odd size */
|
|
86 |
memcpy((md5byte *)ctx->in + 64 - t, buf, t);
|
|
87 |
byteSwap(ctx->in, 16);
|
|
88 |
MD5Transform(ctx->buf, ctx->in);
|
|
89 |
buf += t;
|
|
90 |
len -= t;
|
|
91 |
|
|
92 |
/* Process data in 64-byte chunks */
|
|
93 |
while (len >= 64) {
|
|
94 |
memcpy(ctx->in, buf, 64);
|
|
95 |
byteSwap(ctx->in, 16);
|
|
96 |
MD5Transform(ctx->buf, ctx->in);
|
|
97 |
buf += 64;
|
|
98 |
len -= 64;
|
|
99 |
}
|
|
100 |
|
|
101 |
/* Handle any remaining bytes of data. */
|
|
102 |
memcpy(ctx->in, buf, len);
|
|
103 |
}
|
|
104 |
|
|
105 |
/*
|
|
106 |
* Final wrapup - pad to 64-byte boundary with the bit pattern
|
|
107 |
* 1 0* (64-bit count of bits processed, MSB-first)
|
|
108 |
*/
|
|
109 |
static void
|
|
110 |
MD5Final(struct MD5Context *ctx, md5byte digest[16])
|
|
111 |
{
|
|
112 |
int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */
|
|
113 |
md5byte *p = (md5byte *)ctx->in + count;
|
|
114 |
|
|
115 |
/* Set the first char of padding to 0x80. There is always room. */
|
|
116 |
*p++ = 0x80;
|
|
117 |
|
|
118 |
/* Bytes of padding needed to make 56 bytes (-8..55) */
|
|
119 |
count = 56 - 1 - count;
|
|
120 |
|
|
121 |
if (count < 0) { /* Padding forces an extra block */
|
|
122 |
memset(p, 0, count + 8);
|
|
123 |
byteSwap(ctx->in, 16);
|
|
124 |
MD5Transform(ctx->buf, ctx->in);
|
|
125 |
p = (md5byte *)ctx->in;
|
|
126 |
count = 56;
|
|
127 |
}
|
|
128 |
memset(p, 0, count);
|
|
129 |
byteSwap(ctx->in, 14);
|
|
130 |
|
|
131 |
/* Append length in bits and transform */
|
|
132 |
ctx->in[14] = ctx->bytes[0] << 3;
|
|
133 |
ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
|
|
134 |
MD5Transform(ctx->buf, ctx->in);
|
|
135 |
|
|
136 |
byteSwap(ctx->buf, 4);
|
|
137 |
memcpy(digest, ctx->buf, 16);
|
|
138 |
memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
|
|
139 |
}
|
|
140 |
|
|
141 |
#ifndef ASM_MD5
|
|
142 |
|
|
143 |
/* The four core functions - F1 is optimized somewhat */
|
|
144 |
|
|
145 |
/* #define F1(x, y, z) (x & y | ~x & z) */
|
|
146 |
#define F1(x, y, z) (z ^ (x & (y ^ z)))
|
|
147 |
#define F2(x, y, z) F1(z, x, y)
|
|
148 |
#define F3(x, y, z) (x ^ y ^ z)
|
|
149 |
#define F4(x, y, z) (y ^ (x | ~z))
|
|
150 |
|
|
151 |
/* This is the central step in the MD5 algorithm. */
|
|
152 |
#define MD5STEP(f,w,x,y,z,in,s) \
|
|
153 |
(w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
|
|
154 |
|
|
155 |
/*
|
|
156 |
* The core of the MD5 algorithm, this alters an existing MD5 hash to
|
|
157 |
* reflect the addition of 16 longwords of new data. MD5Update blocks
|
|
158 |
* the data and converts bytes into longwords for this routine.
|
|
159 |
*/
|
|
160 |
static void
|
|
161 |
MD5Transform(UWORD32 buf[4], UWORD32 const in[16])
|
|
162 |
{
|
|
163 |
register UWORD32 a, b, c, d;
|
|
164 |
|
|
165 |
a = buf[0];
|
|
166 |
b = buf[1];
|
|
167 |
c = buf[2];
|
|
168 |
d = buf[3];
|
|
169 |
|
|
170 |
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
|
|
171 |
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
|
|
172 |
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
|
|
173 |
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
|
|
174 |
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
|
|
175 |
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
|
|
176 |
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
|
|
177 |
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
|
|
178 |
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
|
|
179 |
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
|
|
180 |
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
|
|
181 |
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
|
|
182 |
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
|
|
183 |
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
|
|
184 |
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
|
|
185 |
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
|
|
186 |
|
|
187 |
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
|
|
188 |
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
|
|
189 |
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
|
|
190 |
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
|
|
191 |
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
|
|
192 |
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
|
|
193 |
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
|
|
194 |
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
|
|
195 |
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
|
|
196 |
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
|
|
197 |
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
|
|
198 |
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
|
|
199 |
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
|
|
200 |
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
|
|
201 |
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
|
|
202 |
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
|
|
203 |
|
|
204 |
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
|
|
205 |
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
|
|
206 |
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
|
|
207 |
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
|
|
208 |
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
|
|
209 |
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
|
|
210 |
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
|
|
211 |
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
|
|
212 |
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
|
|
213 |
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
|
|
214 |
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
|
|
215 |
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
|
|
216 |
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
|
|
217 |
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
|
|
218 |
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
|
|
219 |
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
|
|
220 |
|
|
221 |
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
|
|
222 |
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
|
|
223 |
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
|
|
224 |
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
|
|
225 |
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
|
|
226 |
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
|
|
227 |
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
|
|
228 |
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
|
|
229 |
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
|
|
230 |
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
|
|
231 |
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
|
|
232 |
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
|
|
233 |
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
|
|
234 |
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
|
|
235 |
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
|
|
236 |
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
|
|
237 |
|
|
238 |
buf[0] += a;
|
|
239 |
buf[1] += b;
|
|
240 |
buf[2] += c;
|
|
241 |
buf[3] += d;
|
|
242 |
}
|
|
243 |
|
|
244 |
#endif
|
|
245 |
|
|
246 |
QT_END_NAMESPACE
|