0
|
1 |
/****************************************************************************
|
|
2 |
**
|
|
3 |
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
4 |
** All rights reserved.
|
|
5 |
** Contact: Nokia Corporation (qt-info@nokia.com)
|
|
6 |
**
|
|
7 |
** This file is part of the QtGui module of the Qt Toolkit.
|
|
8 |
**
|
|
9 |
** $QT_BEGIN_LICENSE:LGPL$
|
|
10 |
** No Commercial Usage
|
|
11 |
** This file contains pre-release code and may not be distributed.
|
|
12 |
** You may use this file in accordance with the terms and conditions
|
|
13 |
** contained in the Technology Preview License Agreement accompanying
|
|
14 |
** this package.
|
|
15 |
**
|
|
16 |
** GNU Lesser General Public License Usage
|
|
17 |
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
18 |
** General Public License version 2.1 as published by the Free Software
|
|
19 |
** Foundation and appearing in the file LICENSE.LGPL included in the
|
|
20 |
** packaging of this file. Please review the following information to
|
|
21 |
** ensure the GNU Lesser General Public License version 2.1 requirements
|
|
22 |
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
23 |
**
|
|
24 |
** In addition, as a special exception, Nokia gives you certain additional
|
|
25 |
** rights. These rights are described in the Nokia Qt LGPL Exception
|
|
26 |
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
27 |
**
|
|
28 |
** If you have questions regarding the use of this file, please contact
|
|
29 |
** Nokia at qt-info@nokia.com.
|
|
30 |
**
|
|
31 |
**
|
|
32 |
**
|
|
33 |
**
|
|
34 |
**
|
|
35 |
**
|
|
36 |
**
|
|
37 |
**
|
|
38 |
** $QT_END_LICENSE$
|
|
39 |
**
|
|
40 |
****************************************************************************/
|
|
41 |
|
|
42 |
#include "qvector3d.h"
|
|
43 |
#include "qvector2d.h"
|
|
44 |
#include "qvector4d.h"
|
|
45 |
#include <QtCore/qmath.h>
|
|
46 |
#include <QtCore/qvariant.h>
|
|
47 |
#include <QtCore/qdebug.h>
|
|
48 |
|
|
49 |
QT_BEGIN_NAMESPACE
|
|
50 |
|
|
51 |
#ifndef QT_NO_VECTOR3D
|
|
52 |
|
|
53 |
/*!
|
|
54 |
\class QVector3D
|
|
55 |
\brief The QVector3D class represents a vector or vertex in 3D space.
|
|
56 |
\since 4.6
|
|
57 |
\ingroup painting-3D
|
|
58 |
|
|
59 |
Vectors are one of the main building blocks of 3D representation and
|
|
60 |
drawing. They consist of three coordinates, traditionally called
|
|
61 |
x, y, and z.
|
|
62 |
|
|
63 |
The QVector3D class can also be used to represent vertices in 3D space.
|
|
64 |
We therefore do not need to provide a separate vertex class.
|
|
65 |
|
|
66 |
\sa QVector2D, QVector4D, QQuaternion
|
|
67 |
*/
|
|
68 |
|
|
69 |
/*!
|
|
70 |
\fn QVector3D::QVector3D()
|
|
71 |
|
|
72 |
Constructs a null vector, i.e. with coordinates (0, 0, 0).
|
|
73 |
*/
|
|
74 |
|
|
75 |
/*!
|
|
76 |
\fn QVector3D::QVector3D(qreal xpos, qreal ypos, qreal zpos)
|
|
77 |
|
|
78 |
Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos).
|
|
79 |
*/
|
|
80 |
|
|
81 |
/*!
|
|
82 |
\fn QVector3D::QVector3D(const QPoint& point)
|
|
83 |
|
|
84 |
Constructs a vector with x and y coordinates from a 2D \a point, and a
|
|
85 |
z coordinate of 0.
|
|
86 |
*/
|
|
87 |
|
|
88 |
/*!
|
|
89 |
\fn QVector3D::QVector3D(const QPointF& point)
|
|
90 |
|
|
91 |
Constructs a vector with x and y coordinates from a 2D \a point, and a
|
|
92 |
z coordinate of 0.
|
|
93 |
*/
|
|
94 |
|
|
95 |
#ifndef QT_NO_VECTOR2D
|
|
96 |
|
|
97 |
/*!
|
|
98 |
Constructs a 3D vector from the specified 2D \a vector. The z
|
|
99 |
coordinate is set to zero.
|
|
100 |
|
|
101 |
\sa toVector2D()
|
|
102 |
*/
|
|
103 |
QVector3D::QVector3D(const QVector2D& vector)
|
|
104 |
{
|
|
105 |
xp = vector.xp;
|
|
106 |
yp = vector.yp;
|
|
107 |
zp = 0.0f;
|
|
108 |
}
|
|
109 |
|
|
110 |
/*!
|
|
111 |
Constructs a 3D vector from the specified 2D \a vector. The z
|
|
112 |
coordinate is set to \a zpos.
|
|
113 |
|
|
114 |
\sa toVector2D()
|
|
115 |
*/
|
|
116 |
QVector3D::QVector3D(const QVector2D& vector, qreal zpos)
|
|
117 |
{
|
|
118 |
xp = vector.xp;
|
|
119 |
yp = vector.yp;
|
|
120 |
zp = zpos;
|
|
121 |
}
|
|
122 |
|
|
123 |
#endif
|
|
124 |
|
|
125 |
#ifndef QT_NO_VECTOR4D
|
|
126 |
|
|
127 |
/*!
|
|
128 |
Constructs a 3D vector from the specified 4D \a vector. The w
|
|
129 |
coordinate is dropped.
|
|
130 |
|
|
131 |
\sa toVector4D()
|
|
132 |
*/
|
|
133 |
QVector3D::QVector3D(const QVector4D& vector)
|
|
134 |
{
|
|
135 |
xp = vector.xp;
|
|
136 |
yp = vector.yp;
|
|
137 |
zp = vector.zp;
|
|
138 |
}
|
|
139 |
|
|
140 |
#endif
|
|
141 |
|
|
142 |
/*!
|
|
143 |
\fn bool QVector3D::isNull() const
|
|
144 |
|
|
145 |
Returns true if the x, y, and z coordinates are set to 0.0,
|
|
146 |
otherwise returns false.
|
|
147 |
*/
|
|
148 |
|
|
149 |
/*!
|
|
150 |
\fn qreal QVector3D::x() const
|
|
151 |
|
|
152 |
Returns the x coordinate of this point.
|
|
153 |
|
|
154 |
\sa setX(), y(), z()
|
|
155 |
*/
|
|
156 |
|
|
157 |
/*!
|
|
158 |
\fn qreal QVector3D::y() const
|
|
159 |
|
|
160 |
Returns the y coordinate of this point.
|
|
161 |
|
|
162 |
\sa setY(), x(), z()
|
|
163 |
*/
|
|
164 |
|
|
165 |
/*!
|
|
166 |
\fn qreal QVector3D::z() const
|
|
167 |
|
|
168 |
Returns the z coordinate of this point.
|
|
169 |
|
|
170 |
\sa setZ(), x(), y()
|
|
171 |
*/
|
|
172 |
|
|
173 |
/*!
|
|
174 |
\fn void QVector3D::setX(qreal x)
|
|
175 |
|
|
176 |
Sets the x coordinate of this point to the given \a x coordinate.
|
|
177 |
|
|
178 |
\sa x(), setY(), setZ()
|
|
179 |
*/
|
|
180 |
|
|
181 |
/*!
|
|
182 |
\fn void QVector3D::setY(qreal y)
|
|
183 |
|
|
184 |
Sets the y coordinate of this point to the given \a y coordinate.
|
|
185 |
|
|
186 |
\sa y(), setX(), setZ()
|
|
187 |
*/
|
|
188 |
|
|
189 |
/*!
|
|
190 |
\fn void QVector3D::setZ(qreal z)
|
|
191 |
|
|
192 |
Sets the z coordinate of this point to the given \a z coordinate.
|
|
193 |
|
|
194 |
\sa z(), setX(), setY()
|
|
195 |
*/
|
|
196 |
|
|
197 |
/*!
|
|
198 |
Returns the normalized unit vector form of this vector.
|
|
199 |
|
|
200 |
If this vector is null, then a null vector is returned. If the length
|
|
201 |
of the vector is very close to 1, then the vector will be returned as-is.
|
|
202 |
Otherwise the normalized form of the vector of length 1 will be returned.
|
|
203 |
|
|
204 |
\sa length(), normalize()
|
|
205 |
*/
|
|
206 |
QVector3D QVector3D::normalized() const
|
|
207 |
{
|
|
208 |
// Need some extra precision if the length is very small.
|
|
209 |
double len = double(xp) * double(xp) +
|
|
210 |
double(yp) * double(yp) +
|
|
211 |
double(zp) * double(zp);
|
|
212 |
if (qFuzzyIsNull(len - 1.0f))
|
|
213 |
return *this;
|
|
214 |
else if (!qFuzzyIsNull(len))
|
|
215 |
return *this / qSqrt(len);
|
|
216 |
else
|
|
217 |
return QVector3D();
|
|
218 |
}
|
|
219 |
|
|
220 |
/*!
|
|
221 |
Normalizes the currect vector in place. Nothing happens if this
|
|
222 |
vector is a null vector or the length of the vector is very close to 1.
|
|
223 |
|
|
224 |
\sa length(), normalized()
|
|
225 |
*/
|
|
226 |
void QVector3D::normalize()
|
|
227 |
{
|
|
228 |
// Need some extra precision if the length is very small.
|
|
229 |
double len = double(xp) * double(xp) +
|
|
230 |
double(yp) * double(yp) +
|
|
231 |
double(zp) * double(zp);
|
|
232 |
if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len))
|
|
233 |
return;
|
|
234 |
|
|
235 |
len = qSqrt(len);
|
|
236 |
|
|
237 |
xp /= len;
|
|
238 |
yp /= len;
|
|
239 |
zp /= len;
|
|
240 |
}
|
|
241 |
|
|
242 |
/*!
|
|
243 |
\fn QVector3D &QVector3D::operator+=(const QVector3D &vector)
|
|
244 |
|
|
245 |
Adds the given \a vector to this vector and returns a reference to
|
|
246 |
this vector.
|
|
247 |
|
|
248 |
\sa operator-=()
|
|
249 |
*/
|
|
250 |
|
|
251 |
/*!
|
|
252 |
\fn QVector3D &QVector3D::operator-=(const QVector3D &vector)
|
|
253 |
|
|
254 |
Subtracts the given \a vector from this vector and returns a reference to
|
|
255 |
this vector.
|
|
256 |
|
|
257 |
\sa operator+=()
|
|
258 |
*/
|
|
259 |
|
|
260 |
/*!
|
|
261 |
\fn QVector3D &QVector3D::operator*=(qreal factor)
|
|
262 |
|
|
263 |
Multiplies this vector's coordinates by the given \a factor, and
|
|
264 |
returns a reference to this vector.
|
|
265 |
|
|
266 |
\sa operator/=()
|
|
267 |
*/
|
|
268 |
|
|
269 |
/*!
|
|
270 |
\fn QVector3D &QVector3D::operator*=(const QVector3D& vector)
|
|
271 |
\overload
|
|
272 |
|
|
273 |
Multiplies the components of this vector by the corresponding
|
|
274 |
components in \a vector.
|
|
275 |
|
|
276 |
Note: this is not the same as the crossProduct() of this
|
|
277 |
vector and \a vector.
|
|
278 |
|
|
279 |
\sa crossProduct()
|
|
280 |
*/
|
|
281 |
|
|
282 |
/*!
|
|
283 |
\fn QVector3D &QVector3D::operator/=(qreal divisor)
|
|
284 |
|
|
285 |
Divides this vector's coordinates by the given \a divisor, and
|
|
286 |
returns a reference to this vector.
|
|
287 |
|
|
288 |
\sa operator*=()
|
|
289 |
*/
|
|
290 |
|
|
291 |
/*!
|
|
292 |
Returns the dot product of \a v1 and \a v2.
|
|
293 |
*/
|
|
294 |
qreal QVector3D::dotProduct(const QVector3D& v1, const QVector3D& v2)
|
|
295 |
{
|
|
296 |
return v1.xp * v2.xp + v1.yp * v2.yp + v1.zp * v2.zp;
|
|
297 |
}
|
|
298 |
|
|
299 |
/*!
|
|
300 |
Returns the cross-product of vectors \a v1 and \a v2, which corresponds
|
|
301 |
to the normal vector of a plane defined by \a v1 and \a v2.
|
|
302 |
|
|
303 |
\sa normal()
|
|
304 |
*/
|
|
305 |
QVector3D QVector3D::crossProduct(const QVector3D& v1, const QVector3D& v2)
|
|
306 |
{
|
|
307 |
return QVector3D(v1.yp * v2.zp - v1.zp * v2.yp,
|
|
308 |
v1.zp * v2.xp - v1.xp * v2.zp,
|
|
309 |
v1.xp * v2.yp - v1.yp * v2.xp, 1);
|
|
310 |
}
|
|
311 |
|
|
312 |
/*!
|
|
313 |
Returns the normal vector of a plane defined by vectors \a v1 and \a v2,
|
|
314 |
normalized to be a unit vector.
|
|
315 |
|
|
316 |
Use crossProduct() to compute the cross-product of \a v1 and \a v2 if you
|
|
317 |
do not need the result to be normalized to a unit vector.
|
|
318 |
|
|
319 |
\sa crossProduct(), distanceToPlane()
|
|
320 |
*/
|
|
321 |
QVector3D QVector3D::normal(const QVector3D& v1, const QVector3D& v2)
|
|
322 |
{
|
|
323 |
return crossProduct(v1, v2).normalized();
|
|
324 |
}
|
|
325 |
|
|
326 |
/*!
|
|
327 |
\overload
|
|
328 |
|
|
329 |
Returns the normal vector of a plane defined by vectors
|
|
330 |
\a v2 - \a v1 and \a v3 - \a v1, normalized to be a unit vector.
|
|
331 |
|
|
332 |
Use crossProduct() to compute the cross-product of \a v2 - \a v1 and
|
|
333 |
\a v3 - \a v1 if you do not need the result to be normalized to a
|
|
334 |
unit vector.
|
|
335 |
|
|
336 |
\sa crossProduct(), distanceToPlane()
|
|
337 |
*/
|
|
338 |
QVector3D QVector3D::normal
|
|
339 |
(const QVector3D& v1, const QVector3D& v2, const QVector3D& v3)
|
|
340 |
{
|
|
341 |
return crossProduct((v2 - v1), (v3 - v1)).normalized();
|
|
342 |
}
|
|
343 |
|
|
344 |
/*!
|
|
345 |
Returns the distance from this vertex to a plane defined by
|
|
346 |
the vertex \a plane and a \a normal unit vector. The \a normal
|
|
347 |
parameter is assumed to have been normalized to a unit vector.
|
|
348 |
|
|
349 |
The return value will be negative if the vertex is below the plane,
|
|
350 |
or zero if it is on the plane.
|
|
351 |
|
|
352 |
\sa normal(), distanceToLine()
|
|
353 |
*/
|
|
354 |
qreal QVector3D::distanceToPlane
|
|
355 |
(const QVector3D& plane, const QVector3D& normal) const
|
|
356 |
{
|
|
357 |
return dotProduct(*this - plane, normal);
|
|
358 |
}
|
|
359 |
|
|
360 |
/*!
|
|
361 |
\overload
|
|
362 |
|
|
363 |
Returns the distance from this vertex a plane defined by
|
|
364 |
the vertices \a plane1, \a plane2 and \a plane3.
|
|
365 |
|
|
366 |
The return value will be negative if the vertex is below the plane,
|
|
367 |
or zero if it is on the plane.
|
|
368 |
|
|
369 |
The two vectors that define the plane are \a plane2 - \a plane1
|
|
370 |
and \a plane3 - \a plane1.
|
|
371 |
|
|
372 |
\sa normal(), distanceToLine()
|
|
373 |
*/
|
|
374 |
qreal QVector3D::distanceToPlane
|
|
375 |
(const QVector3D& plane1, const QVector3D& plane2, const QVector3D& plane3) const
|
|
376 |
{
|
|
377 |
QVector3D n = normal(plane2 - plane1, plane3 - plane1);
|
|
378 |
return dotProduct(*this - plane1, n);
|
|
379 |
}
|
|
380 |
|
|
381 |
/*!
|
|
382 |
Returns the distance that this vertex is from a line defined
|
|
383 |
by \a point and the unit vector \a direction.
|
|
384 |
|
|
385 |
If \a direction is a null vector, then it does not define a line.
|
|
386 |
In that case, the distance from \a point to this vertex is returned.
|
|
387 |
|
|
388 |
\sa distanceToPlane()
|
|
389 |
*/
|
|
390 |
qreal QVector3D::distanceToLine
|
|
391 |
(const QVector3D& point, const QVector3D& direction) const
|
|
392 |
{
|
|
393 |
if (direction.isNull())
|
|
394 |
return (*this - point).length();
|
|
395 |
QVector3D p = point + dotProduct(*this - point, direction) * direction;
|
|
396 |
return (*this - p).length();
|
|
397 |
}
|
|
398 |
|
|
399 |
/*!
|
|
400 |
\fn bool operator==(const QVector3D &v1, const QVector3D &v2)
|
|
401 |
\relates QVector3D
|
|
402 |
|
|
403 |
Returns true if \a v1 is equal to \a v2; otherwise returns false.
|
|
404 |
This operator uses an exact floating-point comparison.
|
|
405 |
*/
|
|
406 |
|
|
407 |
/*!
|
|
408 |
\fn bool operator!=(const QVector3D &v1, const QVector3D &v2)
|
|
409 |
\relates QVector3D
|
|
410 |
|
|
411 |
Returns true if \a v1 is not equal to \a v2; otherwise returns false.
|
|
412 |
This operator uses an exact floating-point comparison.
|
|
413 |
*/
|
|
414 |
|
|
415 |
/*!
|
|
416 |
\fn const QVector3D operator+(const QVector3D &v1, const QVector3D &v2)
|
|
417 |
\relates QVector3D
|
|
418 |
|
|
419 |
Returns a QVector3D object that is the sum of the given vectors, \a v1
|
|
420 |
and \a v2; each component is added separately.
|
|
421 |
|
|
422 |
\sa QVector3D::operator+=()
|
|
423 |
*/
|
|
424 |
|
|
425 |
/*!
|
|
426 |
\fn const QVector3D operator-(const QVector3D &v1, const QVector3D &v2)
|
|
427 |
\relates QVector3D
|
|
428 |
|
|
429 |
Returns a QVector3D object that is formed by subtracting \a v2 from \a v1;
|
|
430 |
each component is subtracted separately.
|
|
431 |
|
|
432 |
\sa QVector3D::operator-=()
|
|
433 |
*/
|
|
434 |
|
|
435 |
/*!
|
|
436 |
\fn const QVector3D operator*(qreal factor, const QVector3D &vector)
|
|
437 |
\relates QVector3D
|
|
438 |
|
|
439 |
Returns a copy of the given \a vector, multiplied by the given \a factor.
|
|
440 |
|
|
441 |
\sa QVector3D::operator*=()
|
|
442 |
*/
|
|
443 |
|
|
444 |
/*!
|
|
445 |
\fn const QVector3D operator*(const QVector3D &vector, qreal factor)
|
|
446 |
\relates QVector3D
|
|
447 |
|
|
448 |
Returns a copy of the given \a vector, multiplied by the given \a factor.
|
|
449 |
|
|
450 |
\sa QVector3D::operator*=()
|
|
451 |
*/
|
|
452 |
|
|
453 |
/*!
|
|
454 |
\fn const QVector3D operator*(const QVector3D &v1, const QVector3D& v2)
|
|
455 |
\relates QVector3D
|
|
456 |
|
|
457 |
Multiplies the components of \a v1 by the corresponding components in \a v2.
|
|
458 |
|
|
459 |
Note: this is not the same as the crossProduct() of \a v1 and \a v2.
|
|
460 |
|
|
461 |
\sa QVector3D::crossProduct()
|
|
462 |
*/
|
|
463 |
|
|
464 |
/*!
|
|
465 |
\fn const QVector3D operator-(const QVector3D &vector)
|
|
466 |
\relates QVector3D
|
|
467 |
\overload
|
|
468 |
|
|
469 |
Returns a QVector3D object that is formed by changing the sign of
|
|
470 |
all three components of the given \a vector.
|
|
471 |
|
|
472 |
Equivalent to \c {QVector3D(0,0,0) - vector}.
|
|
473 |
*/
|
|
474 |
|
|
475 |
/*!
|
|
476 |
\fn const QVector3D operator/(const QVector3D &vector, qreal divisor)
|
|
477 |
\relates QVector3D
|
|
478 |
|
|
479 |
Returns the QVector3D object formed by dividing all three components of
|
|
480 |
the given \a vector by the given \a divisor.
|
|
481 |
|
|
482 |
\sa QVector3D::operator/=()
|
|
483 |
*/
|
|
484 |
|
|
485 |
/*!
|
|
486 |
\fn bool qFuzzyCompare(const QVector3D& v1, const QVector3D& v2)
|
|
487 |
\relates QVector3D
|
|
488 |
|
|
489 |
Returns true if \a v1 and \a v2 are equal, allowing for a small
|
|
490 |
fuzziness factor for floating-point comparisons; false otherwise.
|
|
491 |
*/
|
|
492 |
|
|
493 |
#ifndef QT_NO_VECTOR2D
|
|
494 |
|
|
495 |
/*!
|
|
496 |
Returns the 2D vector form of this 3D vector, dropping the z coordinate.
|
|
497 |
|
|
498 |
\sa toVector4D(), toPoint()
|
|
499 |
*/
|
|
500 |
QVector2D QVector3D::toVector2D() const
|
|
501 |
{
|
|
502 |
return QVector2D(xp, yp, 1);
|
|
503 |
}
|
|
504 |
|
|
505 |
#endif
|
|
506 |
|
|
507 |
#ifndef QT_NO_VECTOR4D
|
|
508 |
|
|
509 |
/*!
|
|
510 |
Returns the 4D form of this 3D vector, with the w coordinate set to zero.
|
|
511 |
|
|
512 |
\sa toVector2D(), toPoint()
|
|
513 |
*/
|
|
514 |
QVector4D QVector3D::toVector4D() const
|
|
515 |
{
|
|
516 |
return QVector4D(xp, yp, zp, 0.0f, 1);
|
|
517 |
}
|
|
518 |
|
|
519 |
#endif
|
|
520 |
|
|
521 |
/*!
|
|
522 |
\fn QPoint QVector3D::toPoint() const
|
|
523 |
|
|
524 |
Returns the QPoint form of this 3D vector. The z coordinate
|
|
525 |
is dropped.
|
|
526 |
|
|
527 |
\sa toPointF(), toVector2D()
|
|
528 |
*/
|
|
529 |
|
|
530 |
/*!
|
|
531 |
\fn QPointF QVector3D::toPointF() const
|
|
532 |
|
|
533 |
Returns the QPointF form of this 3D vector. The z coordinate
|
|
534 |
is dropped.
|
|
535 |
|
|
536 |
\sa toPoint(), toVector2D()
|
|
537 |
*/
|
|
538 |
|
|
539 |
/*!
|
|
540 |
Returns the 3D vector as a QVariant.
|
|
541 |
*/
|
|
542 |
QVector3D::operator QVariant() const
|
|
543 |
{
|
|
544 |
return QVariant(QVariant::Vector3D, this);
|
|
545 |
}
|
|
546 |
|
|
547 |
/*!
|
|
548 |
Returns the length of the vector from the origin.
|
|
549 |
|
|
550 |
\sa lengthSquared(), normalized()
|
|
551 |
*/
|
|
552 |
qreal QVector3D::length() const
|
|
553 |
{
|
|
554 |
return qSqrt(xp * xp + yp * yp + zp * zp);
|
|
555 |
}
|
|
556 |
|
|
557 |
/*!
|
|
558 |
Returns the squared length of the vector from the origin.
|
|
559 |
This is equivalent to the dot product of the vector with itself.
|
|
560 |
|
|
561 |
\sa length(), dotProduct()
|
|
562 |
*/
|
|
563 |
qreal QVector3D::lengthSquared() const
|
|
564 |
{
|
|
565 |
return xp * xp + yp * yp + zp * zp;
|
|
566 |
}
|
|
567 |
|
|
568 |
#ifndef QT_NO_DEBUG_STREAM
|
|
569 |
|
|
570 |
QDebug operator<<(QDebug dbg, const QVector3D &vector)
|
|
571 |
{
|
|
572 |
dbg.nospace() << "QVector3D("
|
|
573 |
<< vector.x() << ", " << vector.y() << ", " << vector.z() << ')';
|
|
574 |
return dbg.space();
|
|
575 |
}
|
|
576 |
|
|
577 |
#endif
|
|
578 |
|
|
579 |
#ifndef QT_NO_DATASTREAM
|
|
580 |
|
|
581 |
/*!
|
|
582 |
\fn QDataStream &operator<<(QDataStream &stream, const QVector3D &vector)
|
|
583 |
\relates QVector3D
|
|
584 |
|
|
585 |
Writes the given \a vector to the given \a stream and returns a
|
|
586 |
reference to the stream.
|
|
587 |
|
|
588 |
\sa {Format of the QDataStream Operators}
|
|
589 |
*/
|
|
590 |
|
|
591 |
QDataStream &operator<<(QDataStream &stream, const QVector3D &vector)
|
|
592 |
{
|
|
593 |
stream << double(vector.x()) << double(vector.y())
|
|
594 |
<< double(vector.z());
|
|
595 |
return stream;
|
|
596 |
}
|
|
597 |
|
|
598 |
/*!
|
|
599 |
\fn QDataStream &operator>>(QDataStream &stream, QVector3D &vector)
|
|
600 |
\relates QVector3D
|
|
601 |
|
|
602 |
Reads a 3D vector from the given \a stream into the given \a vector
|
|
603 |
and returns a reference to the stream.
|
|
604 |
|
|
605 |
\sa {Format of the QDataStream Operators}
|
|
606 |
*/
|
|
607 |
|
|
608 |
QDataStream &operator>>(QDataStream &stream, QVector3D &vector)
|
|
609 |
{
|
|
610 |
double x, y, z;
|
|
611 |
stream >> x;
|
|
612 |
stream >> y;
|
|
613 |
stream >> z;
|
|
614 |
vector.setX(qreal(x));
|
|
615 |
vector.setY(qreal(y));
|
|
616 |
vector.setZ(qreal(z));
|
|
617 |
return stream;
|
|
618 |
}
|
|
619 |
|
|
620 |
#endif // QT_NO_DATASTREAM
|
|
621 |
|
|
622 |
#endif // QT_NO_VECTOR3D
|
|
623 |
|
|
624 |
QT_END_NAMESPACE
|