0
|
1 |
/*****************************************************************
|
|
2 |
|
|
3 |
Implementation of the fractional Brownian motion algorithm. These
|
|
4 |
functions were originally the work of F. Kenton Musgrave.
|
|
5 |
For documentation of the different functions please refer to the
|
|
6 |
book:
|
|
7 |
"Texturing and modeling: a procedural approach"
|
|
8 |
by David S. Ebert et. al.
|
|
9 |
|
|
10 |
******************************************************************/
|
|
11 |
|
|
12 |
#if defined (_MSC_VER)
|
|
13 |
#include <qglobal.h>
|
|
14 |
#endif
|
|
15 |
|
|
16 |
#include <time.h>
|
|
17 |
#include <stdlib.h>
|
|
18 |
#include "fbm.h"
|
|
19 |
|
|
20 |
#if defined(Q_CC_MSVC)
|
|
21 |
#pragma warning(disable:4244)
|
|
22 |
#endif
|
|
23 |
|
|
24 |
/* Definitions used by the noise2() functions */
|
|
25 |
|
|
26 |
//#define B 0x100
|
|
27 |
//#define BM 0xff
|
|
28 |
#define B 0x20
|
|
29 |
#define BM 0x1f
|
|
30 |
|
|
31 |
#define N 0x1000
|
|
32 |
#define NP 12 /* 2^N */
|
|
33 |
#define NM 0xfff
|
|
34 |
|
|
35 |
static int p[B + B + 2];
|
|
36 |
static float g3[B + B + 2][3];
|
|
37 |
static float g2[B + B + 2][2];
|
|
38 |
static float g1[B + B + 2];
|
|
39 |
static int start = 1;
|
|
40 |
|
|
41 |
static void init(void);
|
|
42 |
|
|
43 |
#define s_curve(t) ( t * t * (3. - 2. * t) )
|
|
44 |
|
|
45 |
#define lerp(t, a, b) ( a + t * (b - a) )
|
|
46 |
|
|
47 |
#define setup(i,b0,b1,r0,r1)\
|
|
48 |
t = vec[i] + N;\
|
|
49 |
b0 = ((int)t) & BM;\
|
|
50 |
b1 = (b0+1) & BM;\
|
|
51 |
r0 = t - (int)t;\
|
|
52 |
r1 = r0 - 1.;
|
|
53 |
#define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] )
|
|
54 |
|
|
55 |
/* Fractional Brownian Motion function */
|
|
56 |
|
|
57 |
double fBm( Vector point, double H, double lacunarity, double octaves,
|
|
58 |
int init )
|
|
59 |
{
|
|
60 |
|
|
61 |
double value, frequency, remainder;
|
|
62 |
int i;
|
|
63 |
static double exponent_array[10];
|
|
64 |
float vec[3];
|
|
65 |
|
|
66 |
/* precompute and store spectral weights */
|
|
67 |
if ( init ) {
|
|
68 |
start = 1;
|
|
69 |
srand( time(0) );
|
|
70 |
/* seize required memory for exponent_array */
|
|
71 |
frequency = 1.0;
|
|
72 |
for (i=0; i<=octaves; i++) {
|
|
73 |
/* compute weight for each frequency */
|
|
74 |
exponent_array[i] = pow( frequency, -H );
|
|
75 |
frequency *= lacunarity;
|
|
76 |
}
|
|
77 |
}
|
|
78 |
|
|
79 |
value = 0.0; /* initialize vars to proper values */
|
|
80 |
frequency = 1.0;
|
|
81 |
vec[0]=point.x;
|
|
82 |
vec[1]=point.y;
|
|
83 |
vec[2]=point.z;
|
|
84 |
|
|
85 |
|
|
86 |
/* inner loop of spectral construction */
|
|
87 |
for (i=0; i<octaves; i++) {
|
|
88 |
/* value += noise3( vec ) * exponent_array[i];*/
|
|
89 |
value += noise3( vec ) * exponent_array[i];
|
|
90 |
vec[0] *= lacunarity;
|
|
91 |
vec[1] *= lacunarity;
|
|
92 |
vec[2] *= lacunarity;
|
|
93 |
} /* for */
|
|
94 |
|
|
95 |
remainder = octaves - (int)octaves;
|
|
96 |
if ( remainder ) /* add in ``octaves'' remainder */
|
|
97 |
/* ``i'' and spatial freq. are preset in loop above */
|
|
98 |
value += remainder * noise3( vec ) * exponent_array[i];
|
|
99 |
|
|
100 |
return( value );
|
|
101 |
|
|
102 |
} /* fBm() */
|
|
103 |
|
|
104 |
|
|
105 |
float noise3(float vec[3])
|
|
106 |
{
|
|
107 |
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
|
|
108 |
float rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v;
|
|
109 |
register int i, j;
|
|
110 |
|
|
111 |
if (start) {
|
|
112 |
start = 0;
|
|
113 |
init();
|
|
114 |
}
|
|
115 |
|
|
116 |
setup(0, bx0,bx1, rx0,rx1);
|
|
117 |
setup(1, by0,by1, ry0,ry1);
|
|
118 |
setup(2, bz0,bz1, rz0,rz1);
|
|
119 |
|
|
120 |
i = p[ bx0 ];
|
|
121 |
j = p[ bx1 ];
|
|
122 |
|
|
123 |
b00 = p[ i + by0 ];
|
|
124 |
b10 = p[ j + by0 ];
|
|
125 |
b01 = p[ i + by1 ];
|
|
126 |
b11 = p[ j + by1 ];
|
|
127 |
|
|
128 |
t = s_curve(rx0);
|
|
129 |
sy = s_curve(ry0);
|
|
130 |
sz = s_curve(rz0);
|
|
131 |
|
|
132 |
|
|
133 |
q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0);
|
|
134 |
q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0);
|
|
135 |
a = lerp(t, u, v);
|
|
136 |
|
|
137 |
q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0);
|
|
138 |
q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0);
|
|
139 |
b = lerp(t, u, v);
|
|
140 |
|
|
141 |
c = lerp(sy, a, b);
|
|
142 |
|
|
143 |
q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1);
|
|
144 |
q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1);
|
|
145 |
a = lerp(t, u, v);
|
|
146 |
|
|
147 |
q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1);
|
|
148 |
q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1);
|
|
149 |
b = lerp(t, u, v);
|
|
150 |
|
|
151 |
d = lerp(sy, a, b);
|
|
152 |
|
|
153 |
return lerp(sz, c, d);
|
|
154 |
}
|
|
155 |
|
|
156 |
static void normalize2(float v[2])
|
|
157 |
{
|
|
158 |
float s;
|
|
159 |
|
|
160 |
s = sqrt(v[0] * v[0] + v[1] * v[1]);
|
|
161 |
v[0] = v[0] / s;
|
|
162 |
v[1] = v[1] / s;
|
|
163 |
}
|
|
164 |
|
|
165 |
static void normalize3(float v[3])
|
|
166 |
{
|
|
167 |
float s;
|
|
168 |
|
|
169 |
s = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
|
170 |
v[0] = v[0] / s;
|
|
171 |
v[1] = v[1] / s;
|
|
172 |
v[2] = v[2] / s;
|
|
173 |
}
|
|
174 |
|
|
175 |
static void init(void)
|
|
176 |
{
|
|
177 |
int i, j, k;
|
|
178 |
|
|
179 |
for (i = 0 ; i < B ; i++) {
|
|
180 |
p[i] = i;
|
|
181 |
|
|
182 |
g1[i] = (float)((rand() % (B + B)) - B) / B;
|
|
183 |
|
|
184 |
for (j = 0 ; j < 2 ; j++)
|
|
185 |
g2[i][j] = (float)((rand() % (B + B)) - B) / B;
|
|
186 |
normalize2(g2[i]);
|
|
187 |
|
|
188 |
for (j = 0 ; j < 3 ; j++)
|
|
189 |
g3[i][j] = (float)((rand() % (B + B)) - B) / B;
|
|
190 |
normalize3(g3[i]);
|
|
191 |
}
|
|
192 |
|
|
193 |
while (--i) {
|
|
194 |
k = p[i];
|
|
195 |
p[i] = p[j = rand() % B];
|
|
196 |
p[j] = k;
|
|
197 |
}
|
|
198 |
|
|
199 |
for (i = 0 ; i < B + 2 ; i++) {
|
|
200 |
p[B + i] = p[i];
|
|
201 |
g1[B + i] = g1[i];
|
|
202 |
for (j = 0 ; j < 2 ; j++)
|
|
203 |
g2[B + i][j] = g2[i][j];
|
|
204 |
for (j = 0 ; j < 3 ; j++)
|
|
205 |
g3[B + i][j] = g3[i][j];
|
|
206 |
}
|
|
207 |
}
|