0
|
1 |
/****************************************************************************
|
|
2 |
**
|
|
3 |
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
4 |
** All rights reserved.
|
|
5 |
** Contact: Nokia Corporation (qt-info@nokia.com)
|
|
6 |
**
|
|
7 |
** This file is part of the QtGui module of the Qt Toolkit.
|
|
8 |
**
|
|
9 |
** $QT_BEGIN_LICENSE:LGPL$
|
|
10 |
** No Commercial Usage
|
|
11 |
** This file contains pre-release code and may not be distributed.
|
|
12 |
** You may use this file in accordance with the terms and conditions
|
|
13 |
** contained in the Technology Preview License Agreement accompanying
|
|
14 |
** this package.
|
|
15 |
**
|
|
16 |
** GNU Lesser General Public License Usage
|
|
17 |
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
18 |
** General Public License version 2.1 as published by the Free Software
|
|
19 |
** Foundation and appearing in the file LICENSE.LGPL included in the
|
|
20 |
** packaging of this file. Please review the following information to
|
|
21 |
** ensure the GNU Lesser General Public License version 2.1 requirements
|
|
22 |
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
23 |
**
|
|
24 |
** In addition, as a special exception, Nokia gives you certain additional
|
|
25 |
** rights. These rights are described in the Nokia Qt LGPL Exception
|
|
26 |
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
27 |
**
|
|
28 |
** If you have questions regarding the use of this file, please contact
|
|
29 |
** Nokia at qt-info@nokia.com.
|
|
30 |
**
|
|
31 |
**
|
|
32 |
**
|
|
33 |
**
|
|
34 |
**
|
|
35 |
**
|
|
36 |
**
|
|
37 |
**
|
|
38 |
** $QT_END_LICENSE$
|
|
39 |
**
|
|
40 |
****************************************************************************/
|
|
41 |
|
|
42 |
#include "qdatastream.h"
|
|
43 |
#include "qdebug.h"
|
|
44 |
#include "qmatrix.h"
|
|
45 |
#include "qregion.h"
|
|
46 |
#include "qpainterpath.h"
|
|
47 |
#include "qvariant.h"
|
|
48 |
#include <qmath.h>
|
|
49 |
|
|
50 |
#include <limits.h>
|
|
51 |
|
|
52 |
QT_BEGIN_NAMESPACE
|
|
53 |
|
|
54 |
/*!
|
|
55 |
\class QMatrix
|
|
56 |
\brief The QMatrix class specifies 2D transformations of a
|
|
57 |
coordinate system.
|
|
58 |
\obsolete
|
|
59 |
|
|
60 |
\ingroup painting
|
|
61 |
|
|
62 |
A matrix specifies how to translate, scale, shear or rotate the
|
|
63 |
coordinate system, and is typically used when rendering graphics.
|
|
64 |
QMatrix, in contrast to QTransform, does not allow perspective
|
|
65 |
transformations. QTransform is the recommended transformation
|
|
66 |
class in Qt.
|
|
67 |
|
|
68 |
A QMatrix object can be built using the setMatrix(), scale(),
|
|
69 |
rotate(), translate() and shear() functions. Alternatively, it
|
|
70 |
can be built by applying \l {QMatrix#Basic Matrix
|
|
71 |
Operations}{basic matrix operations}. The matrix can also be
|
|
72 |
defined when constructed, and it can be reset to the identity
|
|
73 |
matrix (the default) using the reset() function.
|
|
74 |
|
|
75 |
The QMatrix class supports mapping of graphic primitives: A given
|
|
76 |
point, line, polygon, region, or painter path can be mapped to the
|
|
77 |
coordinate system defined by \e this matrix using the map()
|
|
78 |
function. In case of a rectangle, its coordinates can be
|
|
79 |
transformed using the mapRect() function. A rectangle can also be
|
|
80 |
transformed into a \e polygon (mapped to the coordinate system
|
|
81 |
defined by \e this matrix), using the mapToPolygon() function.
|
|
82 |
|
|
83 |
QMatrix provides the isIdentity() function which returns true if
|
|
84 |
the matrix is the identity matrix, and the isInvertible() function
|
|
85 |
which returns true if the matrix is non-singular (i.e. AB = BA =
|
|
86 |
I). The inverted() function returns an inverted copy of \e this
|
|
87 |
matrix if it is invertible (otherwise it returns the identity
|
|
88 |
matrix). In addition, QMatrix provides the det() function
|
|
89 |
returning the matrix's determinant.
|
|
90 |
|
|
91 |
Finally, the QMatrix class supports matrix multiplication, and
|
|
92 |
objects of the class can be streamed as well as compared.
|
|
93 |
|
|
94 |
\tableofcontents
|
|
95 |
|
|
96 |
\section1 Rendering Graphics
|
|
97 |
|
|
98 |
When rendering graphics, the matrix defines the transformations
|
|
99 |
but the actual transformation is performed by the drawing routines
|
|
100 |
in QPainter.
|
|
101 |
|
|
102 |
By default, QPainter operates on the associated device's own
|
|
103 |
coordinate system. The standard coordinate system of a
|
|
104 |
QPaintDevice has its origin located at the top-left position. The
|
|
105 |
\e x values increase to the right; \e y values increase
|
|
106 |
downward. For a complete description, see the \l {The Coordinate
|
|
107 |
System}{coordinate system} documentation.
|
|
108 |
|
|
109 |
QPainter has functions to translate, scale, shear and rotate the
|
|
110 |
coordinate system without using a QMatrix. For example:
|
|
111 |
|
|
112 |
\table 100%
|
|
113 |
\row
|
|
114 |
\o \inlineimage qmatrix-simpletransformation.png
|
|
115 |
\o
|
|
116 |
\snippet doc/src/snippets/matrix/matrix.cpp 0
|
|
117 |
\endtable
|
|
118 |
|
|
119 |
Although these functions are very convenient, it can be more
|
|
120 |
efficient to build a QMatrix and call QPainter::setMatrix() if you
|
|
121 |
want to perform more than a single transform operation. For
|
|
122 |
example:
|
|
123 |
|
|
124 |
\table 100%
|
|
125 |
\row
|
|
126 |
\o \inlineimage qmatrix-combinedtransformation.png
|
|
127 |
\o
|
|
128 |
\snippet doc/src/snippets/matrix/matrix.cpp 1
|
|
129 |
\endtable
|
|
130 |
|
|
131 |
\section1 Basic Matrix Operations
|
|
132 |
|
|
133 |
\image qmatrix-representation.png
|
|
134 |
|
|
135 |
A QMatrix object contains a 3 x 3 matrix. The \c dx and \c dy
|
|
136 |
elements specify horizontal and vertical translation. The \c m11
|
|
137 |
and \c m22 elements specify horizontal and vertical scaling. And
|
|
138 |
finally, the \c m21 and \c m12 elements specify horizontal and
|
|
139 |
vertical \e shearing.
|
|
140 |
|
|
141 |
QMatrix transforms a point in the plane to another point using the
|
|
142 |
following formulas:
|
|
143 |
|
|
144 |
\snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 0
|
|
145 |
|
|
146 |
The point \e (x, y) is the original point, and \e (x', y') is the
|
|
147 |
transformed point. \e (x', y') can be transformed back to \e (x,
|
|
148 |
y) by performing the same operation on the inverted() matrix.
|
|
149 |
|
|
150 |
The various matrix elements can be set when constructing the
|
|
151 |
matrix, or by using the setMatrix() function later on. They can also
|
|
152 |
be manipulated using the translate(), rotate(), scale() and
|
|
153 |
shear() convenience functions, The currently set values can be
|
|
154 |
retrieved using the m11(), m12(), m21(), m22(), dx() and dy()
|
|
155 |
functions.
|
|
156 |
|
|
157 |
Translation is the simplest transformation. Setting \c dx and \c
|
|
158 |
dy will move the coordinate system \c dx units along the X axis
|
|
159 |
and \c dy units along the Y axis. Scaling can be done by setting
|
|
160 |
\c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to
|
|
161 |
1.5 will double the height and increase the width by 50%. The
|
|
162 |
identity matrix has \c m11 and \c m22 set to 1 (all others are set
|
|
163 |
to 0) mapping a point to itself. Shearing is controlled by \c m12
|
|
164 |
and \c m21. Setting these elements to values different from zero
|
|
165 |
will twist the coordinate system. Rotation is achieved by
|
|
166 |
carefully setting both the shearing factors and the scaling
|
|
167 |
factors.
|
|
168 |
|
|
169 |
Here's the combined transformations example using basic matrix
|
|
170 |
operations:
|
|
171 |
|
|
172 |
\table 100%
|
|
173 |
\row
|
|
174 |
\o \inlineimage qmatrix-combinedtransformation.png
|
|
175 |
\o
|
|
176 |
\snippet doc/src/snippets/matrix/matrix.cpp 2
|
|
177 |
\endtable
|
|
178 |
|
|
179 |
\sa QPainter, QTransform, {The Coordinate System},
|
|
180 |
{demos/affine}{Affine Transformations Demo}, {Transformations Example}
|
|
181 |
*/
|
|
182 |
|
|
183 |
|
|
184 |
// some defines to inline some code
|
|
185 |
#define MAPDOUBLE(x, y, nx, ny) \
|
|
186 |
{ \
|
|
187 |
qreal fx = x; \
|
|
188 |
qreal fy = y; \
|
|
189 |
nx = _m11*fx + _m21*fy + _dx; \
|
|
190 |
ny = _m12*fx + _m22*fy + _dy; \
|
|
191 |
}
|
|
192 |
|
|
193 |
#define MAPINT(x, y, nx, ny) \
|
|
194 |
{ \
|
|
195 |
qreal fx = x; \
|
|
196 |
qreal fy = y; \
|
|
197 |
nx = qRound(_m11*fx + _m21*fy + _dx); \
|
|
198 |
ny = qRound(_m12*fx + _m22*fy + _dy); \
|
|
199 |
}
|
|
200 |
|
|
201 |
/*****************************************************************************
|
|
202 |
QMatrix member functions
|
|
203 |
*****************************************************************************/
|
|
204 |
/*!
|
|
205 |
\fn QMatrix::QMatrix(Qt::Initialization)
|
|
206 |
\internal
|
|
207 |
*/
|
|
208 |
|
|
209 |
/*!
|
|
210 |
Constructs an identity matrix.
|
|
211 |
|
|
212 |
All elements are set to zero except \c m11 and \c m22 (specifying
|
|
213 |
the scale), which are set to 1.
|
|
214 |
|
|
215 |
\sa reset()
|
|
216 |
*/
|
|
217 |
|
|
218 |
QMatrix::QMatrix()
|
|
219 |
: _m11(1.)
|
|
220 |
, _m12(0.)
|
|
221 |
, _m21(0.)
|
|
222 |
, _m22(1.)
|
|
223 |
, _dx(0.)
|
|
224 |
, _dy(0.)
|
|
225 |
{
|
|
226 |
}
|
|
227 |
|
|
228 |
/*!
|
|
229 |
Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a
|
|
230 |
m22, \a dx and \a dy.
|
|
231 |
|
|
232 |
\sa setMatrix()
|
|
233 |
*/
|
|
234 |
|
|
235 |
QMatrix::QMatrix(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy)
|
|
236 |
: _m11(m11)
|
|
237 |
, _m12(m12)
|
|
238 |
, _m21(m21)
|
|
239 |
, _m22(m22)
|
|
240 |
, _dx(dx)
|
|
241 |
, _dy(dy)
|
|
242 |
{
|
|
243 |
}
|
|
244 |
|
|
245 |
|
|
246 |
/*!
|
|
247 |
Constructs a matrix that is a copy of the given \a matrix.
|
|
248 |
*/
|
|
249 |
QMatrix::QMatrix(const QMatrix &matrix)
|
|
250 |
: _m11(matrix._m11)
|
|
251 |
, _m12(matrix._m12)
|
|
252 |
, _m21(matrix._m21)
|
|
253 |
, _m22(matrix._m22)
|
|
254 |
, _dx(matrix._dx)
|
|
255 |
, _dy(matrix._dy)
|
|
256 |
{
|
|
257 |
}
|
|
258 |
|
|
259 |
/*!
|
|
260 |
Sets the matrix elements to the specified values, \a m11, \a m12,
|
|
261 |
\a m21, \a m22, \a dx and \a dy.
|
|
262 |
|
|
263 |
Note that this function replaces the previous values. QMatrix
|
|
264 |
provide the translate(), rotate(), scale() and shear() convenience
|
|
265 |
functions to manipulate the various matrix elements based on the
|
|
266 |
currently defined coordinate system.
|
|
267 |
|
|
268 |
\sa QMatrix()
|
|
269 |
*/
|
|
270 |
|
|
271 |
void QMatrix::setMatrix(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy)
|
|
272 |
{
|
|
273 |
_m11 = m11;
|
|
274 |
_m12 = m12;
|
|
275 |
_m21 = m21;
|
|
276 |
_m22 = m22;
|
|
277 |
_dx = dx;
|
|
278 |
_dy = dy;
|
|
279 |
}
|
|
280 |
|
|
281 |
|
|
282 |
/*!
|
|
283 |
\fn qreal QMatrix::m11() const
|
|
284 |
|
|
285 |
Returns the horizontal scaling factor.
|
|
286 |
|
|
287 |
\sa scale(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
|
288 |
Operations}
|
|
289 |
*/
|
|
290 |
|
|
291 |
/*!
|
|
292 |
\fn qreal QMatrix::m12() const
|
|
293 |
|
|
294 |
Returns the vertical shearing factor.
|
|
295 |
|
|
296 |
\sa shear(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
|
297 |
Operations}
|
|
298 |
*/
|
|
299 |
|
|
300 |
/*!
|
|
301 |
\fn qreal QMatrix::m21() const
|
|
302 |
|
|
303 |
Returns the horizontal shearing factor.
|
|
304 |
|
|
305 |
\sa shear(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
|
306 |
Operations}
|
|
307 |
*/
|
|
308 |
|
|
309 |
/*!
|
|
310 |
\fn qreal QMatrix::m22() const
|
|
311 |
|
|
312 |
Returns the vertical scaling factor.
|
|
313 |
|
|
314 |
\sa scale(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
|
315 |
Operations}
|
|
316 |
*/
|
|
317 |
|
|
318 |
/*!
|
|
319 |
\fn qreal QMatrix::dx() const
|
|
320 |
|
|
321 |
Returns the horizontal translation factor.
|
|
322 |
|
|
323 |
\sa translate(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
|
324 |
Operations}
|
|
325 |
*/
|
|
326 |
|
|
327 |
/*!
|
|
328 |
\fn qreal QMatrix::dy() const
|
|
329 |
|
|
330 |
Returns the vertical translation factor.
|
|
331 |
|
|
332 |
\sa translate(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
|
333 |
Operations}
|
|
334 |
*/
|
|
335 |
|
|
336 |
|
|
337 |
/*!
|
|
338 |
Maps the given coordinates \a x and \a y into the coordinate
|
|
339 |
system defined by this matrix. The resulting values are put in *\a
|
|
340 |
tx and *\a ty, respectively.
|
|
341 |
|
|
342 |
The coordinates are transformed using the following formulas:
|
|
343 |
|
|
344 |
\snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 1
|
|
345 |
|
|
346 |
The point (x, y) is the original point, and (x', y') is the
|
|
347 |
transformed point.
|
|
348 |
|
|
349 |
\sa {QMatrix#Basic Matrix Operations}{Basic Matrix Operations}
|
|
350 |
*/
|
|
351 |
|
|
352 |
void QMatrix::map(qreal x, qreal y, qreal *tx, qreal *ty) const
|
|
353 |
{
|
|
354 |
MAPDOUBLE(x, y, *tx, *ty);
|
|
355 |
}
|
|
356 |
|
|
357 |
|
|
358 |
|
|
359 |
/*!
|
|
360 |
\overload
|
|
361 |
|
|
362 |
Maps the given coordinates \a x and \a y into the coordinate
|
|
363 |
system defined by this matrix. The resulting values are put in *\a
|
|
364 |
tx and *\a ty, respectively. Note that the transformed coordinates
|
|
365 |
are rounded to the nearest integer.
|
|
366 |
*/
|
|
367 |
|
|
368 |
void QMatrix::map(int x, int y, int *tx, int *ty) const
|
|
369 |
{
|
|
370 |
MAPINT(x, y, *tx, *ty);
|
|
371 |
}
|
|
372 |
|
|
373 |
QRect QMatrix::mapRect(const QRect &rect) const
|
|
374 |
{
|
|
375 |
QRect result;
|
|
376 |
if (_m12 == 0.0F && _m21 == 0.0F) {
|
|
377 |
int x = qRound(_m11*rect.x() + _dx);
|
|
378 |
int y = qRound(_m22*rect.y() + _dy);
|
|
379 |
int w = qRound(_m11*rect.width());
|
|
380 |
int h = qRound(_m22*rect.height());
|
|
381 |
if (w < 0) {
|
|
382 |
w = -w;
|
|
383 |
x -= w;
|
|
384 |
}
|
|
385 |
if (h < 0) {
|
|
386 |
h = -h;
|
|
387 |
y -= h;
|
|
388 |
}
|
|
389 |
result = QRect(x, y, w, h);
|
|
390 |
} else {
|
|
391 |
// see mapToPolygon for explanations of the algorithm.
|
|
392 |
qreal x0, y0;
|
|
393 |
qreal x, y;
|
|
394 |
MAPDOUBLE(rect.left(), rect.top(), x0, y0);
|
|
395 |
qreal xmin = x0;
|
|
396 |
qreal ymin = y0;
|
|
397 |
qreal xmax = x0;
|
|
398 |
qreal ymax = y0;
|
|
399 |
MAPDOUBLE(rect.right() + 1, rect.top(), x, y);
|
|
400 |
xmin = qMin(xmin, x);
|
|
401 |
ymin = qMin(ymin, y);
|
|
402 |
xmax = qMax(xmax, x);
|
|
403 |
ymax = qMax(ymax, y);
|
|
404 |
MAPDOUBLE(rect.right() + 1, rect.bottom() + 1, x, y);
|
|
405 |
xmin = qMin(xmin, x);
|
|
406 |
ymin = qMin(ymin, y);
|
|
407 |
xmax = qMax(xmax, x);
|
|
408 |
ymax = qMax(ymax, y);
|
|
409 |
MAPDOUBLE(rect.left(), rect.bottom() + 1, x, y);
|
|
410 |
xmin = qMin(xmin, x);
|
|
411 |
ymin = qMin(ymin, y);
|
|
412 |
xmax = qMax(xmax, x);
|
|
413 |
ymax = qMax(ymax, y);
|
|
414 |
result = QRect(qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin), qRound(ymax)-qRound(ymin));
|
|
415 |
}
|
|
416 |
return result;
|
|
417 |
}
|
|
418 |
|
|
419 |
/*!
|
|
420 |
\fn QRectF QMatrix::mapRect(const QRectF &rectangle) const
|
|
421 |
|
|
422 |
Creates and returns a QRectF object that is a copy of the given \a
|
|
423 |
rectangle, mapped into the coordinate system defined by this
|
|
424 |
matrix.
|
|
425 |
|
|
426 |
The rectangle's coordinates are transformed using the following
|
|
427 |
formulas:
|
|
428 |
|
|
429 |
\snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 2
|
|
430 |
|
|
431 |
If rotation or shearing has been specified, this function returns
|
|
432 |
the \e bounding rectangle. To retrieve the exact region the given
|
|
433 |
\a rectangle maps to, use the mapToPolygon() function instead.
|
|
434 |
|
|
435 |
\sa mapToPolygon(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
|
436 |
Operations}
|
|
437 |
*/
|
|
438 |
QRectF QMatrix::mapRect(const QRectF &rect) const
|
|
439 |
{
|
|
440 |
QRectF result;
|
|
441 |
if (_m12 == 0.0F && _m21 == 0.0F) {
|
|
442 |
qreal x = _m11*rect.x() + _dx;
|
|
443 |
qreal y = _m22*rect.y() + _dy;
|
|
444 |
qreal w = _m11*rect.width();
|
|
445 |
qreal h = _m22*rect.height();
|
|
446 |
if (w < 0) {
|
|
447 |
w = -w;
|
|
448 |
x -= w;
|
|
449 |
}
|
|
450 |
if (h < 0) {
|
|
451 |
h = -h;
|
|
452 |
y -= h;
|
|
453 |
}
|
|
454 |
result = QRectF(x, y, w, h);
|
|
455 |
} else {
|
|
456 |
qreal x0, y0;
|
|
457 |
qreal x, y;
|
|
458 |
MAPDOUBLE(rect.x(), rect.y(), x0, y0);
|
|
459 |
qreal xmin = x0;
|
|
460 |
qreal ymin = y0;
|
|
461 |
qreal xmax = x0;
|
|
462 |
qreal ymax = y0;
|
|
463 |
MAPDOUBLE(rect.x() + rect.width(), rect.y(), x, y);
|
|
464 |
xmin = qMin(xmin, x);
|
|
465 |
ymin = qMin(ymin, y);
|
|
466 |
xmax = qMax(xmax, x);
|
|
467 |
ymax = qMax(ymax, y);
|
|
468 |
MAPDOUBLE(rect.x() + rect.width(), rect.y() + rect.height(), x, y);
|
|
469 |
xmin = qMin(xmin, x);
|
|
470 |
ymin = qMin(ymin, y);
|
|
471 |
xmax = qMax(xmax, x);
|
|
472 |
ymax = qMax(ymax, y);
|
|
473 |
MAPDOUBLE(rect.x(), rect.y() + rect.height(), x, y);
|
|
474 |
xmin = qMin(xmin, x);
|
|
475 |
ymin = qMin(ymin, y);
|
|
476 |
xmax = qMax(xmax, x);
|
|
477 |
ymax = qMax(ymax, y);
|
|
478 |
result = QRectF(xmin, ymin, xmax-xmin, ymax - ymin);
|
|
479 |
}
|
|
480 |
return result;
|
|
481 |
}
|
|
482 |
|
|
483 |
/*!
|
|
484 |
\fn QRect QMatrix::mapRect(const QRect &rectangle) const
|
|
485 |
\overload
|
|
486 |
|
|
487 |
Creates and returns a QRect object that is a copy of the given \a
|
|
488 |
rectangle, mapped into the coordinate system defined by this
|
|
489 |
matrix. Note that the transformed coordinates are rounded to the
|
|
490 |
nearest integer.
|
|
491 |
*/
|
|
492 |
|
|
493 |
|
|
494 |
/*!
|
|
495 |
\fn QPoint operator*(const QPoint &point, const QMatrix &matrix)
|
|
496 |
\relates QMatrix
|
|
497 |
|
|
498 |
This is the same as \a{matrix}.map(\a{point}).
|
|
499 |
|
|
500 |
\sa QMatrix::map()
|
|
501 |
*/
|
|
502 |
|
|
503 |
QPoint QMatrix::map(const QPoint &p) const
|
|
504 |
{
|
|
505 |
qreal fx = p.x();
|
|
506 |
qreal fy = p.y();
|
|
507 |
return QPoint(qRound(_m11*fx + _m21*fy + _dx),
|
|
508 |
qRound(_m12*fx + _m22*fy + _dy));
|
|
509 |
}
|
|
510 |
|
|
511 |
/*!
|
|
512 |
\fn QPointF operator*(const QPointF &point, const QMatrix &matrix)
|
|
513 |
\relates QMatrix
|
|
514 |
|
|
515 |
Same as \a{matrix}.map(\a{point}).
|
|
516 |
|
|
517 |
\sa QMatrix::map()
|
|
518 |
*/
|
|
519 |
|
|
520 |
/*!
|
|
521 |
\overload
|
|
522 |
|
|
523 |
Creates and returns a QPointF object that is a copy of the given
|
|
524 |
\a point, mapped into the coordinate system defined by this
|
|
525 |
matrix.
|
|
526 |
*/
|
|
527 |
QPointF QMatrix::map(const QPointF &point) const
|
|
528 |
{
|
|
529 |
qreal fx = point.x();
|
|
530 |
qreal fy = point.y();
|
|
531 |
return QPointF(_m11*fx + _m21*fy + _dx, _m12*fx + _m22*fy + _dy);
|
|
532 |
}
|
|
533 |
|
|
534 |
/*!
|
|
535 |
\fn QPoint QMatrix::map(const QPoint &point) const
|
|
536 |
\overload
|
|
537 |
|
|
538 |
Creates and returns a QPoint object that is a copy of the given \a
|
|
539 |
point, mapped into the coordinate system defined by this
|
|
540 |
matrix. Note that the transformed coordinates are rounded to the
|
|
541 |
nearest integer.
|
|
542 |
*/
|
|
543 |
|
|
544 |
/*!
|
|
545 |
\fn QLineF operator*(const QLineF &line, const QMatrix &matrix)
|
|
546 |
\relates QMatrix
|
|
547 |
|
|
548 |
This is the same as \a{matrix}.map(\a{line}).
|
|
549 |
|
|
550 |
\sa QMatrix::map()
|
|
551 |
*/
|
|
552 |
|
|
553 |
/*!
|
|
554 |
\fn QLine operator*(const QLine &line, const QMatrix &matrix)
|
|
555 |
\relates QMatrix
|
|
556 |
|
|
557 |
This is the same as \a{matrix}.map(\a{line}).
|
|
558 |
|
|
559 |
\sa QMatrix::map()
|
|
560 |
*/
|
|
561 |
|
|
562 |
/*!
|
|
563 |
\overload
|
|
564 |
|
|
565 |
Creates and returns a QLineF object that is a copy of the given \a
|
|
566 |
line, mapped into the coordinate system defined by this matrix.
|
|
567 |
*/
|
|
568 |
QLineF QMatrix::map(const QLineF &line) const
|
|
569 |
{
|
|
570 |
return QLineF(map(line.p1()), map(line.p2()));
|
|
571 |
}
|
|
572 |
|
|
573 |
/*!
|
|
574 |
\overload
|
|
575 |
|
|
576 |
Creates and returns a QLine object that is a copy of the given \a
|
|
577 |
line, mapped into the coordinate system defined by this matrix.
|
|
578 |
Note that the transformed coordinates are rounded to the nearest
|
|
579 |
integer.
|
|
580 |
*/
|
|
581 |
QLine QMatrix::map(const QLine &line) const
|
|
582 |
{
|
|
583 |
return QLine(map(line.p1()), map(line.p2()));
|
|
584 |
}
|
|
585 |
|
|
586 |
/*!
|
|
587 |
\fn QPolygonF operator *(const QPolygonF &polygon, const QMatrix &matrix)
|
|
588 |
\relates QMatrix
|
|
589 |
|
|
590 |
This is the same as \a{matrix}.map(\a{polygon}).
|
|
591 |
|
|
592 |
\sa QMatrix::map()
|
|
593 |
*/
|
|
594 |
|
|
595 |
/*!
|
|
596 |
\fn QPolygon operator*(const QPolygon &polygon, const QMatrix &matrix)
|
|
597 |
\relates QMatrix
|
|
598 |
|
|
599 |
This is the same as \a{matrix}.map(\a{polygon}).
|
|
600 |
|
|
601 |
\sa QMatrix::map()
|
|
602 |
*/
|
|
603 |
|
|
604 |
QPolygon QMatrix::map(const QPolygon &a) const
|
|
605 |
{
|
|
606 |
int size = a.size();
|
|
607 |
int i;
|
|
608 |
QPolygon p(size);
|
|
609 |
const QPoint *da = a.constData();
|
|
610 |
QPoint *dp = p.data();
|
|
611 |
for(i = 0; i < size; i++) {
|
|
612 |
MAPINT(da[i].x(), da[i].y(), dp[i].rx(), dp[i].ry());
|
|
613 |
}
|
|
614 |
return p;
|
|
615 |
}
|
|
616 |
|
|
617 |
/*!
|
|
618 |
\fn QPolygonF QMatrix::map(const QPolygonF &polygon) const
|
|
619 |
\overload
|
|
620 |
|
|
621 |
Creates and returns a QPolygonF object that is a copy of the given
|
|
622 |
\a polygon, mapped into the coordinate system defined by this
|
|
623 |
matrix.
|
|
624 |
*/
|
|
625 |
QPolygonF QMatrix::map(const QPolygonF &a) const
|
|
626 |
{
|
|
627 |
int size = a.size();
|
|
628 |
int i;
|
|
629 |
QPolygonF p(size);
|
|
630 |
const QPointF *da = a.constData();
|
|
631 |
QPointF *dp = p.data();
|
|
632 |
for(i = 0; i < size; i++) {
|
|
633 |
MAPDOUBLE(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp);
|
|
634 |
}
|
|
635 |
return p;
|
|
636 |
}
|
|
637 |
|
|
638 |
/*!
|
|
639 |
\fn QPolygon QMatrix::map(const QPolygon &polygon) const
|
|
640 |
\overload
|
|
641 |
|
|
642 |
Creates and returns a QPolygon object that is a copy of the given
|
|
643 |
\a polygon, mapped into the coordinate system defined by this
|
|
644 |
matrix. Note that the transformed coordinates are rounded to the
|
|
645 |
nearest integer.
|
|
646 |
*/
|
|
647 |
|
|
648 |
/*!
|
|
649 |
\fn QRegion operator*(const QRegion ®ion, const QMatrix &matrix)
|
|
650 |
\relates QMatrix
|
|
651 |
|
|
652 |
This is the same as \a{matrix}.map(\a{region}).
|
|
653 |
|
|
654 |
\sa QMatrix::map()
|
|
655 |
*/
|
|
656 |
|
|
657 |
extern QPainterPath qt_regionToPath(const QRegion ®ion);
|
|
658 |
|
|
659 |
/*!
|
|
660 |
\fn QRegion QMatrix::map(const QRegion ®ion) const
|
|
661 |
\overload
|
|
662 |
|
|
663 |
Creates and returns a QRegion object that is a copy of the given
|
|
664 |
\a region, mapped into the coordinate system defined by this matrix.
|
|
665 |
|
|
666 |
Calling this method can be rather expensive if rotations or
|
|
667 |
shearing are used.
|
|
668 |
*/
|
|
669 |
QRegion QMatrix::map(const QRegion &r) const
|
|
670 |
{
|
|
671 |
if (_m11 == 1.0 && _m22 == 1.0 && _m12 == 0.0 && _m21 == 0.0) { // translate or identity
|
|
672 |
if (_dx == 0.0 && _dy == 0.0) // Identity
|
|
673 |
return r;
|
|
674 |
QRegion copy(r);
|
|
675 |
copy.translate(qRound(_dx), qRound(_dy));
|
|
676 |
return copy;
|
|
677 |
}
|
|
678 |
|
|
679 |
QPainterPath p = map(qt_regionToPath(r));
|
|
680 |
return p.toFillPolygon().toPolygon();
|
|
681 |
}
|
|
682 |
|
|
683 |
/*!
|
|
684 |
\fn QPainterPath operator *(const QPainterPath &path, const QMatrix &matrix)
|
|
685 |
\relates QMatrix
|
|
686 |
|
|
687 |
This is the same as \a{matrix}.map(\a{path}).
|
|
688 |
|
|
689 |
\sa QMatrix::map()
|
|
690 |
*/
|
|
691 |
|
|
692 |
/*!
|
|
693 |
\overload
|
|
694 |
|
|
695 |
Creates and returns a QPainterPath object that is a copy of the
|
|
696 |
given \a path, mapped into the coordinate system defined by this
|
|
697 |
matrix.
|
|
698 |
*/
|
|
699 |
QPainterPath QMatrix::map(const QPainterPath &path) const
|
|
700 |
{
|
|
701 |
if (path.isEmpty())
|
|
702 |
return QPainterPath();
|
|
703 |
|
|
704 |
QPainterPath copy = path;
|
|
705 |
|
|
706 |
// Translate or identity
|
|
707 |
if (_m11 == 1.0 && _m22 == 1.0 && _m12 == 0.0 && _m21 == 0.0) {
|
|
708 |
|
|
709 |
// Translate
|
|
710 |
if (_dx != 0.0 || _dy != 0.0) {
|
|
711 |
copy.detach();
|
|
712 |
for (int i=0; i<path.elementCount(); ++i) {
|
|
713 |
QPainterPath::Element &e = copy.d_ptr->elements[i];
|
|
714 |
e.x += _dx;
|
|
715 |
e.y += _dy;
|
|
716 |
}
|
|
717 |
}
|
|
718 |
|
|
719 |
// Full xform
|
|
720 |
} else {
|
|
721 |
copy.detach();
|
|
722 |
for (int i=0; i<path.elementCount(); ++i) {
|
|
723 |
QPainterPath::Element &e = copy.d_ptr->elements[i];
|
|
724 |
qreal fx = e.x, fy = e.y;
|
|
725 |
e.x = _m11*fx + _m21*fy + _dx;
|
|
726 |
e.y = _m12*fx + _m22*fy + _dy;
|
|
727 |
}
|
|
728 |
}
|
|
729 |
|
|
730 |
return copy;
|
|
731 |
}
|
|
732 |
|
|
733 |
/*!
|
|
734 |
\fn QRegion QMatrix::mapToRegion(const QRect &rectangle) const
|
|
735 |
|
|
736 |
Returns the transformed rectangle \a rectangle as a QRegion
|
|
737 |
object. A rectangle which has been rotated or sheared may result
|
|
738 |
in a non-rectangular region being returned.
|
|
739 |
|
|
740 |
Use the mapToPolygon() or map() function instead.
|
|
741 |
*/
|
|
742 |
#ifdef QT3_SUPPORT
|
|
743 |
QRegion QMatrix::mapToRegion(const QRect &rect) const
|
|
744 |
{
|
|
745 |
QRegion result;
|
|
746 |
if (isIdentity()) {
|
|
747 |
result = rect;
|
|
748 |
} else if (m12() == 0.0F && m21() == 0.0F) {
|
|
749 |
int x = qRound(m11()*rect.x() + dx());
|
|
750 |
int y = qRound(m22()*rect.y() + dy());
|
|
751 |
int w = qRound(m11()*rect.width());
|
|
752 |
int h = qRound(m22()*rect.height());
|
|
753 |
if (w < 0) {
|
|
754 |
w = -w;
|
|
755 |
x -= w - 1;
|
|
756 |
}
|
|
757 |
if (h < 0) {
|
|
758 |
h = -h;
|
|
759 |
y -= h - 1;
|
|
760 |
}
|
|
761 |
result = QRect(x, y, w, h);
|
|
762 |
} else {
|
|
763 |
result = QRegion(mapToPolygon(rect));
|
|
764 |
}
|
|
765 |
return result;
|
|
766 |
|
|
767 |
}
|
|
768 |
#endif
|
|
769 |
/*!
|
|
770 |
\fn QPolygon QMatrix::mapToPolygon(const QRect &rectangle) const
|
|
771 |
|
|
772 |
Creates and returns a QPolygon representation of the given \a
|
|
773 |
rectangle, mapped into the coordinate system defined by this
|
|
774 |
matrix.
|
|
775 |
|
|
776 |
The rectangle's coordinates are transformed using the following
|
|
777 |
formulas:
|
|
778 |
|
|
779 |
\snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 3
|
|
780 |
|
|
781 |
Polygons and rectangles behave slightly differently when
|
|
782 |
transformed (due to integer rounding), so
|
|
783 |
\c{matrix.map(QPolygon(rectangle))} is not always the same as
|
|
784 |
\c{matrix.mapToPolygon(rectangle)}.
|
|
785 |
|
|
786 |
\sa mapRect(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
|
787 |
Operations}
|
|
788 |
*/
|
|
789 |
QPolygon QMatrix::mapToPolygon(const QRect &rect) const
|
|
790 |
{
|
|
791 |
QPolygon a(4);
|
|
792 |
qreal x[4], y[4];
|
|
793 |
if (_m12 == 0.0F && _m21 == 0.0F) {
|
|
794 |
x[0] = _m11*rect.x() + _dx;
|
|
795 |
y[0] = _m22*rect.y() + _dy;
|
|
796 |
qreal w = _m11*rect.width();
|
|
797 |
qreal h = _m22*rect.height();
|
|
798 |
if (w < 0) {
|
|
799 |
w = -w;
|
|
800 |
x[0] -= w;
|
|
801 |
}
|
|
802 |
if (h < 0) {
|
|
803 |
h = -h;
|
|
804 |
y[0] -= h;
|
|
805 |
}
|
|
806 |
x[1] = x[0]+w;
|
|
807 |
x[2] = x[1];
|
|
808 |
x[3] = x[0];
|
|
809 |
y[1] = y[0];
|
|
810 |
y[2] = y[0]+h;
|
|
811 |
y[3] = y[2];
|
|
812 |
} else {
|
|
813 |
qreal right = rect.x() + rect.width();
|
|
814 |
qreal bottom = rect.y() + rect.height();
|
|
815 |
MAPDOUBLE(rect.x(), rect.y(), x[0], y[0]);
|
|
816 |
MAPDOUBLE(right, rect.y(), x[1], y[1]);
|
|
817 |
MAPDOUBLE(right, bottom, x[2], y[2]);
|
|
818 |
MAPDOUBLE(rect.x(), bottom, x[3], y[3]);
|
|
819 |
}
|
|
820 |
#if 0
|
|
821 |
int i;
|
|
822 |
for(i = 0; i< 4; i++)
|
|
823 |
qDebug("coords(%d) = (%f/%f) (%d/%d)", i, x[i], y[i], qRound(x[i]), qRound(y[i]));
|
|
824 |
qDebug("width=%f, height=%f", qSqrt((x[1]-x[0])*(x[1]-x[0]) + (y[1]-y[0])*(y[1]-y[0])),
|
|
825 |
qSqrt((x[0]-x[3])*(x[0]-x[3]) + (y[0]-y[3])*(y[0]-y[3])));
|
|
826 |
#endif
|
|
827 |
// all coordinates are correctly, tranform to a pointarray
|
|
828 |
// (rounding to the next integer)
|
|
829 |
a.setPoints(4, qRound(x[0]), qRound(y[0]),
|
|
830 |
qRound(x[1]), qRound(y[1]),
|
|
831 |
qRound(x[2]), qRound(y[2]),
|
|
832 |
qRound(x[3]), qRound(y[3]));
|
|
833 |
return a;
|
|
834 |
}
|
|
835 |
|
|
836 |
/*!
|
|
837 |
Resets the matrix to an identity matrix, i.e. all elements are set
|
|
838 |
to zero, except \c m11 and \c m22 (specifying the scale) which are
|
|
839 |
set to 1.
|
|
840 |
|
|
841 |
\sa QMatrix(), isIdentity(), {QMatrix#Basic Matrix
|
|
842 |
Operations}{Basic Matrix Operations}
|
|
843 |
*/
|
|
844 |
|
|
845 |
void QMatrix::reset()
|
|
846 |
{
|
|
847 |
_m11 = _m22 = 1.0;
|
|
848 |
_m12 = _m21 = _dx = _dy = 0.0;
|
|
849 |
}
|
|
850 |
|
|
851 |
/*!
|
|
852 |
\fn bool QMatrix::isIdentity() const
|
|
853 |
|
|
854 |
Returns true if the matrix is the identity matrix, otherwise
|
|
855 |
returns false.
|
|
856 |
|
|
857 |
\sa reset()
|
|
858 |
*/
|
|
859 |
|
|
860 |
/*!
|
|
861 |
Moves the coordinate system \a dx along the x axis and \a dy along
|
|
862 |
the y axis, and returns a reference to the matrix.
|
|
863 |
|
|
864 |
\sa setMatrix()
|
|
865 |
*/
|
|
866 |
|
|
867 |
QMatrix &QMatrix::translate(qreal dx, qreal dy)
|
|
868 |
{
|
|
869 |
_dx += dx*_m11 + dy*_m21;
|
|
870 |
_dy += dy*_m22 + dx*_m12;
|
|
871 |
return *this;
|
|
872 |
}
|
|
873 |
|
|
874 |
/*!
|
|
875 |
\fn QMatrix &QMatrix::scale(qreal sx, qreal sy)
|
|
876 |
|
|
877 |
Scales the coordinate system by \a sx horizontally and \a sy
|
|
878 |
vertically, and returns a reference to the matrix.
|
|
879 |
|
|
880 |
\sa setMatrix()
|
|
881 |
*/
|
|
882 |
|
|
883 |
QMatrix &QMatrix::scale(qreal sx, qreal sy)
|
|
884 |
{
|
|
885 |
_m11 *= sx;
|
|
886 |
_m12 *= sx;
|
|
887 |
_m21 *= sy;
|
|
888 |
_m22 *= sy;
|
|
889 |
return *this;
|
|
890 |
}
|
|
891 |
|
|
892 |
/*!
|
|
893 |
Shears the coordinate system by \a sh horizontally and \a sv
|
|
894 |
vertically, and returns a reference to the matrix.
|
|
895 |
|
|
896 |
\sa setMatrix()
|
|
897 |
*/
|
|
898 |
|
|
899 |
QMatrix &QMatrix::shear(qreal sh, qreal sv)
|
|
900 |
{
|
|
901 |
qreal tm11 = sv*_m21;
|
|
902 |
qreal tm12 = sv*_m22;
|
|
903 |
qreal tm21 = sh*_m11;
|
|
904 |
qreal tm22 = sh*_m12;
|
|
905 |
_m11 += tm11;
|
|
906 |
_m12 += tm12;
|
|
907 |
_m21 += tm21;
|
|
908 |
_m22 += tm22;
|
|
909 |
return *this;
|
|
910 |
}
|
|
911 |
|
|
912 |
const qreal deg2rad = qreal(0.017453292519943295769); // pi/180
|
|
913 |
|
|
914 |
/*!
|
|
915 |
\fn QMatrix &QMatrix::rotate(qreal degrees)
|
|
916 |
|
|
917 |
Rotates the coordinate system the given \a degrees
|
|
918 |
counterclockwise.
|
|
919 |
|
|
920 |
Note that if you apply a QMatrix to a point defined in widget
|
|
921 |
coordinates, the direction of the rotation will be clockwise
|
|
922 |
because the y-axis points downwards.
|
|
923 |
|
|
924 |
Returns a reference to the matrix.
|
|
925 |
|
|
926 |
\sa setMatrix()
|
|
927 |
*/
|
|
928 |
|
|
929 |
QMatrix &QMatrix::rotate(qreal a)
|
|
930 |
{
|
|
931 |
qreal sina = 0;
|
|
932 |
qreal cosa = 0;
|
|
933 |
if (a == 90. || a == -270.)
|
|
934 |
sina = 1.;
|
|
935 |
else if (a == 270. || a == -90.)
|
|
936 |
sina = -1.;
|
|
937 |
else if (a == 180.)
|
|
938 |
cosa = -1.;
|
|
939 |
else{
|
|
940 |
qreal b = deg2rad*a; // convert to radians
|
|
941 |
sina = qSin(b); // fast and convenient
|
|
942 |
cosa = qCos(b);
|
|
943 |
}
|
|
944 |
qreal tm11 = cosa*_m11 + sina*_m21;
|
|
945 |
qreal tm12 = cosa*_m12 + sina*_m22;
|
|
946 |
qreal tm21 = -sina*_m11 + cosa*_m21;
|
|
947 |
qreal tm22 = -sina*_m12 + cosa*_m22;
|
|
948 |
_m11 = tm11; _m12 = tm12;
|
|
949 |
_m21 = tm21; _m22 = tm22;
|
|
950 |
return *this;
|
|
951 |
}
|
|
952 |
|
|
953 |
/*!
|
|
954 |
\fn bool QMatrix::isInvertible() const
|
|
955 |
|
|
956 |
Returns true if the matrix is invertible, otherwise returns false.
|
|
957 |
|
|
958 |
\sa inverted()
|
|
959 |
*/
|
|
960 |
|
|
961 |
/*!
|
|
962 |
\fn qreal QMatrix::det() const
|
|
963 |
|
|
964 |
Returns the matrix's determinant.
|
|
965 |
*/
|
|
966 |
|
|
967 |
/*!
|
|
968 |
\fn QMatrix QMatrix::invert(bool *invertible) const
|
|
969 |
|
|
970 |
Returns an inverted copy of this matrix.
|
|
971 |
|
|
972 |
Use the inverted() function instead.
|
|
973 |
*/
|
|
974 |
|
|
975 |
/*!
|
|
976 |
Returns an inverted copy of this matrix.
|
|
977 |
|
|
978 |
If the matrix is singular (not invertible), the returned matrix is
|
|
979 |
the identity matrix. If \a invertible is valid (i.e. not 0), its
|
|
980 |
value is set to true if the matrix is invertible, otherwise it is
|
|
981 |
set to false.
|
|
982 |
|
|
983 |
\sa isInvertible()
|
|
984 |
*/
|
|
985 |
|
|
986 |
QMatrix QMatrix::inverted(bool *invertible) const
|
|
987 |
{
|
|
988 |
qreal determinant = det();
|
|
989 |
if (determinant == 0.0) {
|
|
990 |
if (invertible)
|
|
991 |
*invertible = false; // singular matrix
|
|
992 |
return QMatrix(true);
|
|
993 |
}
|
|
994 |
else { // invertible matrix
|
|
995 |
if (invertible)
|
|
996 |
*invertible = true;
|
|
997 |
qreal dinv = 1.0/determinant;
|
|
998 |
return QMatrix((_m22*dinv), (-_m12*dinv),
|
|
999 |
(-_m21*dinv), (_m11*dinv),
|
|
1000 |
((_m21*_dy - _m22*_dx)*dinv),
|
|
1001 |
((_m12*_dx - _m11*_dy)*dinv),
|
|
1002 |
true);
|
|
1003 |
}
|
|
1004 |
}
|
|
1005 |
|
|
1006 |
|
|
1007 |
/*!
|
|
1008 |
\fn bool QMatrix::operator==(const QMatrix &matrix) const
|
|
1009 |
|
|
1010 |
Returns true if this matrix is equal to the given \a matrix,
|
|
1011 |
otherwise returns false.
|
|
1012 |
*/
|
|
1013 |
|
|
1014 |
bool QMatrix::operator==(const QMatrix &m) const
|
|
1015 |
{
|
|
1016 |
return _m11 == m._m11 &&
|
|
1017 |
_m12 == m._m12 &&
|
|
1018 |
_m21 == m._m21 &&
|
|
1019 |
_m22 == m._m22 &&
|
|
1020 |
_dx == m._dx &&
|
|
1021 |
_dy == m._dy;
|
|
1022 |
}
|
|
1023 |
|
|
1024 |
/*!
|
|
1025 |
\fn bool QMatrix::operator!=(const QMatrix &matrix) const
|
|
1026 |
|
|
1027 |
Returns true if this matrix is not equal to the given \a matrix,
|
|
1028 |
otherwise returns false.
|
|
1029 |
*/
|
|
1030 |
|
|
1031 |
bool QMatrix::operator!=(const QMatrix &m) const
|
|
1032 |
{
|
|
1033 |
return _m11 != m._m11 ||
|
|
1034 |
_m12 != m._m12 ||
|
|
1035 |
_m21 != m._m21 ||
|
|
1036 |
_m22 != m._m22 ||
|
|
1037 |
_dx != m._dx ||
|
|
1038 |
_dy != m._dy;
|
|
1039 |
}
|
|
1040 |
|
|
1041 |
/*!
|
|
1042 |
\fn QMatrix &QMatrix::operator *=(const QMatrix &matrix)
|
|
1043 |
\overload
|
|
1044 |
|
|
1045 |
Returns the result of multiplying this matrix by the given \a
|
|
1046 |
matrix.
|
|
1047 |
*/
|
|
1048 |
|
|
1049 |
QMatrix &QMatrix::operator *=(const QMatrix &m)
|
|
1050 |
{
|
|
1051 |
qreal tm11 = _m11*m._m11 + _m12*m._m21;
|
|
1052 |
qreal tm12 = _m11*m._m12 + _m12*m._m22;
|
|
1053 |
qreal tm21 = _m21*m._m11 + _m22*m._m21;
|
|
1054 |
qreal tm22 = _m21*m._m12 + _m22*m._m22;
|
|
1055 |
|
|
1056 |
qreal tdx = _dx*m._m11 + _dy*m._m21 + m._dx;
|
|
1057 |
qreal tdy = _dx*m._m12 + _dy*m._m22 + m._dy;
|
|
1058 |
|
|
1059 |
_m11 = tm11; _m12 = tm12;
|
|
1060 |
_m21 = tm21; _m22 = tm22;
|
|
1061 |
_dx = tdx; _dy = tdy;
|
|
1062 |
return *this;
|
|
1063 |
}
|
|
1064 |
|
|
1065 |
/*!
|
|
1066 |
\fn QMatrix QMatrix::operator *(const QMatrix &matrix) const
|
|
1067 |
|
|
1068 |
Returns the result of multiplying this matrix by the given \a
|
|
1069 |
matrix.
|
|
1070 |
|
|
1071 |
Note that matrix multiplication is not commutative, i.e. a*b !=
|
|
1072 |
b*a.
|
|
1073 |
*/
|
|
1074 |
|
|
1075 |
QMatrix QMatrix::operator *(const QMatrix &m) const
|
|
1076 |
{
|
|
1077 |
qreal tm11 = _m11*m._m11 + _m12*m._m21;
|
|
1078 |
qreal tm12 = _m11*m._m12 + _m12*m._m22;
|
|
1079 |
qreal tm21 = _m21*m._m11 + _m22*m._m21;
|
|
1080 |
qreal tm22 = _m21*m._m12 + _m22*m._m22;
|
|
1081 |
|
|
1082 |
qreal tdx = _dx*m._m11 + _dy*m._m21 + m._dx;
|
|
1083 |
qreal tdy = _dx*m._m12 + _dy*m._m22 + m._dy;
|
|
1084 |
return QMatrix(tm11, tm12, tm21, tm22, tdx, tdy, true);
|
|
1085 |
}
|
|
1086 |
|
|
1087 |
/*!
|
|
1088 |
Assigns the given \a matrix's values to this matrix.
|
|
1089 |
*/
|
|
1090 |
QMatrix &QMatrix::operator=(const QMatrix &matrix)
|
|
1091 |
{
|
|
1092 |
_m11 = matrix._m11;
|
|
1093 |
_m12 = matrix._m12;
|
|
1094 |
_m21 = matrix._m21;
|
|
1095 |
_m22 = matrix._m22;
|
|
1096 |
_dx = matrix._dx;
|
|
1097 |
_dy = matrix._dy;
|
|
1098 |
return *this;
|
|
1099 |
}
|
|
1100 |
|
|
1101 |
/*!
|
|
1102 |
\since 4.2
|
|
1103 |
|
|
1104 |
Returns the matrix as a QVariant.
|
|
1105 |
*/
|
|
1106 |
QMatrix::operator QVariant() const
|
|
1107 |
{
|
|
1108 |
return QVariant(QVariant::Matrix, this);
|
|
1109 |
}
|
|
1110 |
|
|
1111 |
Q_GUI_EXPORT QPainterPath operator *(const QPainterPath &p, const QMatrix &m)
|
|
1112 |
{
|
|
1113 |
return m.map(p);
|
|
1114 |
}
|
|
1115 |
|
|
1116 |
|
|
1117 |
/*****************************************************************************
|
|
1118 |
QMatrix stream functions
|
|
1119 |
*****************************************************************************/
|
|
1120 |
#ifndef QT_NO_DATASTREAM
|
|
1121 |
/*!
|
|
1122 |
\fn QDataStream &operator<<(QDataStream &stream, const QMatrix &matrix)
|
|
1123 |
\relates QMatrix
|
|
1124 |
|
|
1125 |
Writes the given \a matrix to the given \a stream and returns a
|
|
1126 |
reference to the stream.
|
|
1127 |
|
|
1128 |
\sa {Format of the QDataStream Operators}
|
|
1129 |
*/
|
|
1130 |
|
|
1131 |
QDataStream &operator<<(QDataStream &s, const QMatrix &m)
|
|
1132 |
{
|
|
1133 |
if (s.version() == 1) {
|
|
1134 |
s << (float)m.m11() << (float)m.m12() << (float)m.m21()
|
|
1135 |
<< (float)m.m22() << (float)m.dx() << (float)m.dy();
|
|
1136 |
} else {
|
|
1137 |
s << double(m.m11())
|
|
1138 |
<< double(m.m12())
|
|
1139 |
<< double(m.m21())
|
|
1140 |
<< double(m.m22())
|
|
1141 |
<< double(m.dx())
|
|
1142 |
<< double(m.dy());
|
|
1143 |
}
|
|
1144 |
return s;
|
|
1145 |
}
|
|
1146 |
|
|
1147 |
/*!
|
|
1148 |
\fn QDataStream &operator>>(QDataStream &stream, QMatrix &matrix)
|
|
1149 |
\relates QMatrix
|
|
1150 |
|
|
1151 |
Reads the given \a matrix from the given \a stream and returns a
|
|
1152 |
reference to the stream.
|
|
1153 |
|
|
1154 |
\sa {Format of the QDataStream Operators}
|
|
1155 |
*/
|
|
1156 |
|
|
1157 |
QDataStream &operator>>(QDataStream &s, QMatrix &m)
|
|
1158 |
{
|
|
1159 |
if (s.version() == 1) {
|
|
1160 |
float m11, m12, m21, m22, dx, dy;
|
|
1161 |
s >> m11; s >> m12; s >> m21; s >> m22;
|
|
1162 |
s >> dx; s >> dy;
|
|
1163 |
m.setMatrix(m11, m12, m21, m22, dx, dy);
|
|
1164 |
}
|
|
1165 |
else {
|
|
1166 |
double m11, m12, m21, m22, dx, dy;
|
|
1167 |
s >> m11;
|
|
1168 |
s >> m12;
|
|
1169 |
s >> m21;
|
|
1170 |
s >> m22;
|
|
1171 |
s >> dx;
|
|
1172 |
s >> dy;
|
|
1173 |
m.setMatrix(m11, m12, m21, m22, dx, dy);
|
|
1174 |
}
|
|
1175 |
return s;
|
|
1176 |
}
|
|
1177 |
#endif // QT_NO_DATASTREAM
|
|
1178 |
|
|
1179 |
#ifndef QT_NO_DEBUG_STREAM
|
|
1180 |
QDebug operator<<(QDebug dbg, const QMatrix &m)
|
|
1181 |
{
|
|
1182 |
dbg.nospace() << "QMatrix("
|
|
1183 |
<< "11=" << m.m11()
|
|
1184 |
<< " 12=" << m.m12()
|
|
1185 |
<< " 21=" << m.m21()
|
|
1186 |
<< " 22=" << m.m22()
|
|
1187 |
<< " dx=" << m.dx()
|
|
1188 |
<< " dy=" << m.dy()
|
|
1189 |
<< ')';
|
|
1190 |
return dbg.space();
|
|
1191 |
}
|
|
1192 |
#endif
|
|
1193 |
|
|
1194 |
/*!
|
|
1195 |
\fn QRect QMatrix::map(const QRect &rect) const
|
|
1196 |
\compat
|
|
1197 |
|
|
1198 |
Creates and returns a QRect object that is a copy of the given
|
|
1199 |
rectangle, mapped into the coordinate system defined by this
|
|
1200 |
matrix.
|
|
1201 |
|
|
1202 |
Use the mapRect() function instead.
|
|
1203 |
*/
|
|
1204 |
|
|
1205 |
|
|
1206 |
/*!
|
|
1207 |
\fn bool qFuzzyCompare(const QMatrix& m1, const QMatrix& m2)
|
|
1208 |
|
|
1209 |
\relates QMatrix
|
|
1210 |
\since 4.6
|
|
1211 |
|
|
1212 |
\brief The qFuzzyCompare function is for comparing two matrices
|
|
1213 |
using a fuzziness factor.
|
|
1214 |
|
|
1215 |
Returns true if \a m1 and \a m2 are equal, allowing for a small
|
|
1216 |
fuzziness factor for floating-point comparisons; false otherwise.
|
|
1217 |
*/
|
|
1218 |
|
|
1219 |
QT_END_NAMESPACE
|