0
|
1 |
/*
|
|
2 |
* jccoefct.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1994-1997, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains the coefficient buffer controller for compression.
|
|
9 |
* This controller is the top level of the JPEG compressor proper.
|
|
10 |
* The coefficient buffer lies between forward-DCT and entropy encoding steps.
|
|
11 |
*/
|
|
12 |
|
|
13 |
#define JPEG_INTERNALS
|
|
14 |
#include "jinclude.h"
|
|
15 |
#include "jpeglib.h"
|
|
16 |
|
|
17 |
|
|
18 |
/* We use a full-image coefficient buffer when doing Huffman optimization,
|
|
19 |
* and also for writing multiple-scan JPEG files. In all cases, the DCT
|
|
20 |
* step is run during the first pass, and subsequent passes need only read
|
|
21 |
* the buffered coefficients.
|
|
22 |
*/
|
|
23 |
#ifdef ENTROPY_OPT_SUPPORTED
|
|
24 |
#define FULL_COEF_BUFFER_SUPPORTED
|
|
25 |
#else
|
|
26 |
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
|
27 |
#define FULL_COEF_BUFFER_SUPPORTED
|
|
28 |
#endif
|
|
29 |
#endif
|
|
30 |
|
|
31 |
|
|
32 |
/* Private buffer controller object */
|
|
33 |
|
|
34 |
typedef struct {
|
|
35 |
struct jpeg_c_coef_controller pub; /* public fields */
|
|
36 |
|
|
37 |
JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
|
38 |
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
|
|
39 |
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
|
40 |
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
|
41 |
|
|
42 |
/* For single-pass compression, it's sufficient to buffer just one MCU
|
|
43 |
* (although this may prove a bit slow in practice). We allocate a
|
|
44 |
* workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
|
|
45 |
* MCU constructed and sent. (On 80x86, the workspace is FAR even though
|
|
46 |
* it's not really very big; this is to keep the module interfaces unchanged
|
|
47 |
* when a large coefficient buffer is necessary.)
|
|
48 |
* In multi-pass modes, this array points to the current MCU's blocks
|
|
49 |
* within the virtual arrays.
|
|
50 |
*/
|
|
51 |
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
|
52 |
|
|
53 |
/* In multi-pass modes, we need a virtual block array for each component. */
|
|
54 |
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
|
55 |
} my_coef_controller;
|
|
56 |
|
|
57 |
typedef my_coef_controller * my_coef_ptr;
|
|
58 |
|
|
59 |
|
|
60 |
/* Forward declarations */
|
|
61 |
METHODDEF(boolean) compress_data
|
|
62 |
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
|
63 |
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
|
64 |
METHODDEF(boolean) compress_first_pass
|
|
65 |
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
|
66 |
METHODDEF(boolean) compress_output
|
|
67 |
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
|
68 |
#endif
|
|
69 |
|
|
70 |
|
|
71 |
LOCAL(void)
|
|
72 |
start_iMCU_row (j_compress_ptr cinfo)
|
|
73 |
/* Reset within-iMCU-row counters for a new row */
|
|
74 |
{
|
|
75 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
76 |
|
|
77 |
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
|
78 |
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
|
79 |
* But at the bottom of the image, process only what's left.
|
|
80 |
*/
|
|
81 |
if (cinfo->comps_in_scan > 1) {
|
|
82 |
coef->MCU_rows_per_iMCU_row = 1;
|
|
83 |
} else {
|
|
84 |
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
|
|
85 |
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
|
86 |
else
|
|
87 |
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
|
88 |
}
|
|
89 |
|
|
90 |
coef->mcu_ctr = 0;
|
|
91 |
coef->MCU_vert_offset = 0;
|
|
92 |
}
|
|
93 |
|
|
94 |
|
|
95 |
/*
|
|
96 |
* Initialize for a processing pass.
|
|
97 |
*/
|
|
98 |
|
|
99 |
METHODDEF(void)
|
|
100 |
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
|
101 |
{
|
|
102 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
103 |
|
|
104 |
coef->iMCU_row_num = 0;
|
|
105 |
start_iMCU_row(cinfo);
|
|
106 |
|
|
107 |
switch (pass_mode) {
|
|
108 |
case JBUF_PASS_THRU:
|
|
109 |
if (coef->whole_image[0] != NULL)
|
|
110 |
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
|
111 |
coef->pub.compress_data = compress_data;
|
|
112 |
break;
|
|
113 |
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
|
114 |
case JBUF_SAVE_AND_PASS:
|
|
115 |
if (coef->whole_image[0] == NULL)
|
|
116 |
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
|
117 |
coef->pub.compress_data = compress_first_pass;
|
|
118 |
break;
|
|
119 |
case JBUF_CRANK_DEST:
|
|
120 |
if (coef->whole_image[0] == NULL)
|
|
121 |
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
|
122 |
coef->pub.compress_data = compress_output;
|
|
123 |
break;
|
|
124 |
#endif
|
|
125 |
default:
|
|
126 |
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
|
127 |
break;
|
|
128 |
}
|
|
129 |
}
|
|
130 |
|
|
131 |
|
|
132 |
/*
|
|
133 |
* Process some data in the single-pass case.
|
|
134 |
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
|
135 |
* per call, ie, v_samp_factor block rows for each component in the image.
|
|
136 |
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
|
137 |
*
|
|
138 |
* NB: input_buf contains a plane for each component in image,
|
|
139 |
* which we index according to the component's SOF position.
|
|
140 |
*/
|
|
141 |
|
|
142 |
METHODDEF(boolean)
|
|
143 |
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
|
144 |
{
|
|
145 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
146 |
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
|
147 |
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
|
148 |
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
|
149 |
int blkn, bi, ci, yindex, yoffset, blockcnt;
|
|
150 |
JDIMENSION ypos, xpos;
|
|
151 |
jpeg_component_info *compptr;
|
|
152 |
|
|
153 |
/* Loop to write as much as one whole iMCU row */
|
|
154 |
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
|
155 |
yoffset++) {
|
|
156 |
for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
|
|
157 |
MCU_col_num++) {
|
|
158 |
/* Determine where data comes from in input_buf and do the DCT thing.
|
|
159 |
* Each call on forward_DCT processes a horizontal row of DCT blocks
|
|
160 |
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
|
|
161 |
* sequentially. Dummy blocks at the right or bottom edge are filled in
|
|
162 |
* specially. The data in them does not matter for image reconstruction,
|
|
163 |
* so we fill them with values that will encode to the smallest amount of
|
|
164 |
* data, viz: all zeroes in the AC entries, DC entries equal to previous
|
|
165 |
* block's DC value. (Thanks to Thomas Kinsman for this idea.)
|
|
166 |
*/
|
|
167 |
blkn = 0;
|
|
168 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
169 |
compptr = cinfo->cur_comp_info[ci];
|
|
170 |
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
|
171 |
: compptr->last_col_width;
|
|
172 |
xpos = MCU_col_num * compptr->MCU_sample_width;
|
|
173 |
ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
|
|
174 |
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
|
175 |
if (coef->iMCU_row_num < last_iMCU_row ||
|
|
176 |
yoffset+yindex < compptr->last_row_height) {
|
|
177 |
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
|
|
178 |
input_buf[compptr->component_index],
|
|
179 |
coef->MCU_buffer[blkn],
|
|
180 |
ypos, xpos, (JDIMENSION) blockcnt);
|
|
181 |
if (blockcnt < compptr->MCU_width) {
|
|
182 |
/* Create some dummy blocks at the right edge of the image. */
|
|
183 |
jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
|
|
184 |
(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
|
|
185 |
for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
|
|
186 |
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
|
|
187 |
}
|
|
188 |
}
|
|
189 |
} else {
|
|
190 |
/* Create a row of dummy blocks at the bottom of the image. */
|
|
191 |
jzero_far((void FAR *) coef->MCU_buffer[blkn],
|
|
192 |
compptr->MCU_width * SIZEOF(JBLOCK));
|
|
193 |
for (bi = 0; bi < compptr->MCU_width; bi++) {
|
|
194 |
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
|
|
195 |
}
|
|
196 |
}
|
|
197 |
blkn += compptr->MCU_width;
|
|
198 |
ypos += DCTSIZE;
|
|
199 |
}
|
|
200 |
}
|
|
201 |
/* Try to write the MCU. In event of a suspension failure, we will
|
|
202 |
* re-DCT the MCU on restart (a bit inefficient, could be fixed...)
|
|
203 |
*/
|
|
204 |
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
|
205 |
/* Suspension forced; update state counters and exit */
|
|
206 |
coef->MCU_vert_offset = yoffset;
|
|
207 |
coef->mcu_ctr = MCU_col_num;
|
|
208 |
return FALSE;
|
|
209 |
}
|
|
210 |
}
|
|
211 |
/* Completed an MCU row, but perhaps not an iMCU row */
|
|
212 |
coef->mcu_ctr = 0;
|
|
213 |
}
|
|
214 |
/* Completed the iMCU row, advance counters for next one */
|
|
215 |
coef->iMCU_row_num++;
|
|
216 |
start_iMCU_row(cinfo);
|
|
217 |
return TRUE;
|
|
218 |
}
|
|
219 |
|
|
220 |
|
|
221 |
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
|
222 |
|
|
223 |
/*
|
|
224 |
* Process some data in the first pass of a multi-pass case.
|
|
225 |
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
|
226 |
* per call, ie, v_samp_factor block rows for each component in the image.
|
|
227 |
* This amount of data is read from the source buffer, DCT'd and quantized,
|
|
228 |
* and saved into the virtual arrays. We also generate suitable dummy blocks
|
|
229 |
* as needed at the right and lower edges. (The dummy blocks are constructed
|
|
230 |
* in the virtual arrays, which have been padded appropriately.) This makes
|
|
231 |
* it possible for subsequent passes not to worry about real vs. dummy blocks.
|
|
232 |
*
|
|
233 |
* We must also emit the data to the entropy encoder. This is conveniently
|
|
234 |
* done by calling compress_output() after we've loaded the current strip
|
|
235 |
* of the virtual arrays.
|
|
236 |
*
|
|
237 |
* NB: input_buf contains a plane for each component in image. All
|
|
238 |
* components are DCT'd and loaded into the virtual arrays in this pass.
|
|
239 |
* However, it may be that only a subset of the components are emitted to
|
|
240 |
* the entropy encoder during this first pass; be careful about looking
|
|
241 |
* at the scan-dependent variables (MCU dimensions, etc).
|
|
242 |
*/
|
|
243 |
|
|
244 |
METHODDEF(boolean)
|
|
245 |
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
|
246 |
{
|
|
247 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
248 |
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
|
249 |
JDIMENSION blocks_across, MCUs_across, MCUindex;
|
|
250 |
int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
|
|
251 |
JCOEF lastDC;
|
|
252 |
jpeg_component_info *compptr;
|
|
253 |
JBLOCKARRAY buffer;
|
|
254 |
JBLOCKROW thisblockrow, lastblockrow;
|
|
255 |
|
|
256 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
257 |
ci++, compptr++) {
|
|
258 |
/* Align the virtual buffer for this component. */
|
|
259 |
buffer = (*cinfo->mem->access_virt_barray)
|
|
260 |
((j_common_ptr) cinfo, coef->whole_image[ci],
|
|
261 |
coef->iMCU_row_num * compptr->v_samp_factor,
|
|
262 |
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
263 |
/* Count non-dummy DCT block rows in this iMCU row. */
|
|
264 |
if (coef->iMCU_row_num < last_iMCU_row)
|
|
265 |
block_rows = compptr->v_samp_factor;
|
|
266 |
else {
|
|
267 |
/* NB: can't use last_row_height here, since may not be set! */
|
|
268 |
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
|
269 |
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
|
270 |
}
|
|
271 |
blocks_across = compptr->width_in_blocks;
|
|
272 |
h_samp_factor = compptr->h_samp_factor;
|
|
273 |
/* Count number of dummy blocks to be added at the right margin. */
|
|
274 |
ndummy = (int) (blocks_across % h_samp_factor);
|
|
275 |
if (ndummy > 0)
|
|
276 |
ndummy = h_samp_factor - ndummy;
|
|
277 |
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call
|
|
278 |
* on forward_DCT processes a complete horizontal row of DCT blocks.
|
|
279 |
*/
|
|
280 |
for (block_row = 0; block_row < block_rows; block_row++) {
|
|
281 |
thisblockrow = buffer[block_row];
|
|
282 |
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
|
|
283 |
input_buf[ci], thisblockrow,
|
|
284 |
(JDIMENSION) (block_row * DCTSIZE),
|
|
285 |
(JDIMENSION) 0, blocks_across);
|
|
286 |
if (ndummy > 0) {
|
|
287 |
/* Create dummy blocks at the right edge of the image. */
|
|
288 |
thisblockrow += blocks_across; /* => first dummy block */
|
|
289 |
jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
|
|
290 |
lastDC = thisblockrow[-1][0];
|
|
291 |
for (bi = 0; bi < ndummy; bi++) {
|
|
292 |
thisblockrow[bi][0] = lastDC;
|
|
293 |
}
|
|
294 |
}
|
|
295 |
}
|
|
296 |
/* If at end of image, create dummy block rows as needed.
|
|
297 |
* The tricky part here is that within each MCU, we want the DC values
|
|
298 |
* of the dummy blocks to match the last real block's DC value.
|
|
299 |
* This squeezes a few more bytes out of the resulting file...
|
|
300 |
*/
|
|
301 |
if (coef->iMCU_row_num == last_iMCU_row) {
|
|
302 |
blocks_across += ndummy; /* include lower right corner */
|
|
303 |
MCUs_across = blocks_across / h_samp_factor;
|
|
304 |
for (block_row = block_rows; block_row < compptr->v_samp_factor;
|
|
305 |
block_row++) {
|
|
306 |
thisblockrow = buffer[block_row];
|
|
307 |
lastblockrow = buffer[block_row-1];
|
|
308 |
jzero_far((void FAR *) thisblockrow,
|
|
309 |
(size_t) (blocks_across * SIZEOF(JBLOCK)));
|
|
310 |
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
|
|
311 |
lastDC = lastblockrow[h_samp_factor-1][0];
|
|
312 |
for (bi = 0; bi < h_samp_factor; bi++) {
|
|
313 |
thisblockrow[bi][0] = lastDC;
|
|
314 |
}
|
|
315 |
thisblockrow += h_samp_factor; /* advance to next MCU in row */
|
|
316 |
lastblockrow += h_samp_factor;
|
|
317 |
}
|
|
318 |
}
|
|
319 |
}
|
|
320 |
}
|
|
321 |
/* NB: compress_output will increment iMCU_row_num if successful.
|
|
322 |
* A suspension return will result in redoing all the work above next time.
|
|
323 |
*/
|
|
324 |
|
|
325 |
/* Emit data to the entropy encoder, sharing code with subsequent passes */
|
|
326 |
return compress_output(cinfo, input_buf);
|
|
327 |
}
|
|
328 |
|
|
329 |
|
|
330 |
/*
|
|
331 |
* Process some data in subsequent passes of a multi-pass case.
|
|
332 |
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
|
333 |
* per call, ie, v_samp_factor block rows for each component in the scan.
|
|
334 |
* The data is obtained from the virtual arrays and fed to the entropy coder.
|
|
335 |
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
|
336 |
*
|
|
337 |
* NB: input_buf is ignored; it is likely to be a NULL pointer.
|
|
338 |
*/
|
|
339 |
|
|
340 |
METHODDEF(boolean)
|
|
341 |
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
|
342 |
{
|
|
343 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
344 |
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
|
345 |
int blkn, ci, xindex, yindex, yoffset;
|
|
346 |
JDIMENSION start_col;
|
|
347 |
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
|
348 |
JBLOCKROW buffer_ptr;
|
|
349 |
jpeg_component_info *compptr;
|
|
350 |
|
|
351 |
/* Align the virtual buffers for the components used in this scan.
|
|
352 |
* NB: during first pass, this is safe only because the buffers will
|
|
353 |
* already be aligned properly, so jmemmgr.c won't need to do any I/O.
|
|
354 |
*/
|
|
355 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
356 |
compptr = cinfo->cur_comp_info[ci];
|
|
357 |
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
|
358 |
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
|
359 |
coef->iMCU_row_num * compptr->v_samp_factor,
|
|
360 |
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
|
361 |
}
|
|
362 |
|
|
363 |
/* Loop to process one whole iMCU row */
|
|
364 |
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
|
365 |
yoffset++) {
|
|
366 |
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
|
367 |
MCU_col_num++) {
|
|
368 |
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
|
369 |
blkn = 0; /* index of current DCT block within MCU */
|
|
370 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
371 |
compptr = cinfo->cur_comp_info[ci];
|
|
372 |
start_col = MCU_col_num * compptr->MCU_width;
|
|
373 |
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
|
374 |
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
|
375 |
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
|
376 |
coef->MCU_buffer[blkn++] = buffer_ptr++;
|
|
377 |
}
|
|
378 |
}
|
|
379 |
}
|
|
380 |
/* Try to write the MCU. */
|
|
381 |
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
|
382 |
/* Suspension forced; update state counters and exit */
|
|
383 |
coef->MCU_vert_offset = yoffset;
|
|
384 |
coef->mcu_ctr = MCU_col_num;
|
|
385 |
return FALSE;
|
|
386 |
}
|
|
387 |
}
|
|
388 |
/* Completed an MCU row, but perhaps not an iMCU row */
|
|
389 |
coef->mcu_ctr = 0;
|
|
390 |
}
|
|
391 |
/* Completed the iMCU row, advance counters for next one */
|
|
392 |
coef->iMCU_row_num++;
|
|
393 |
start_iMCU_row(cinfo);
|
|
394 |
return TRUE;
|
|
395 |
}
|
|
396 |
|
|
397 |
#endif /* FULL_COEF_BUFFER_SUPPORTED */
|
|
398 |
|
|
399 |
|
|
400 |
/*
|
|
401 |
* Initialize coefficient buffer controller.
|
|
402 |
*/
|
|
403 |
|
|
404 |
GLOBAL(void)
|
|
405 |
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
|
406 |
{
|
|
407 |
my_coef_ptr coef;
|
|
408 |
|
|
409 |
coef = (my_coef_ptr)
|
|
410 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
411 |
SIZEOF(my_coef_controller));
|
|
412 |
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
|
|
413 |
coef->pub.start_pass = start_pass_coef;
|
|
414 |
|
|
415 |
/* Create the coefficient buffer. */
|
|
416 |
if (need_full_buffer) {
|
|
417 |
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
|
418 |
/* Allocate a full-image virtual array for each component, */
|
|
419 |
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
|
420 |
int ci;
|
|
421 |
jpeg_component_info *compptr;
|
|
422 |
|
|
423 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
424 |
ci++, compptr++) {
|
|
425 |
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
|
426 |
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
|
427 |
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
|
428 |
(long) compptr->h_samp_factor),
|
|
429 |
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
|
430 |
(long) compptr->v_samp_factor),
|
|
431 |
(JDIMENSION) compptr->v_samp_factor);
|
|
432 |
}
|
|
433 |
#else
|
|
434 |
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
|
435 |
#endif
|
|
436 |
} else {
|
|
437 |
/* We only need a single-MCU buffer. */
|
|
438 |
JBLOCKROW buffer;
|
|
439 |
int i;
|
|
440 |
|
|
441 |
buffer = (JBLOCKROW)
|
|
442 |
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
443 |
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
|
444 |
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
|
|
445 |
coef->MCU_buffer[i] = buffer + i;
|
|
446 |
}
|
|
447 |
coef->whole_image[0] = NULL; /* flag for no virtual arrays */
|
|
448 |
}
|
|
449 |
}
|