0
|
1 |
/*
|
|
2 |
* jcsample.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1991-1996, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains downsampling routines.
|
|
9 |
*
|
|
10 |
* Downsampling input data is counted in "row groups". A row group
|
|
11 |
* is defined to be max_v_samp_factor pixel rows of each component,
|
|
12 |
* from which the downsampler produces v_samp_factor sample rows.
|
|
13 |
* A single row group is processed in each call to the downsampler module.
|
|
14 |
*
|
|
15 |
* The downsampler is responsible for edge-expansion of its output data
|
|
16 |
* to fill an integral number of DCT blocks horizontally. The source buffer
|
|
17 |
* may be modified if it is helpful for this purpose (the source buffer is
|
|
18 |
* allocated wide enough to correspond to the desired output width).
|
|
19 |
* The caller (the prep controller) is responsible for vertical padding.
|
|
20 |
*
|
|
21 |
* The downsampler may request "context rows" by setting need_context_rows
|
|
22 |
* during startup. In this case, the input arrays will contain at least
|
|
23 |
* one row group's worth of pixels above and below the passed-in data;
|
|
24 |
* the caller will create dummy rows at image top and bottom by replicating
|
|
25 |
* the first or last real pixel row.
|
|
26 |
*
|
|
27 |
* An excellent reference for image resampling is
|
|
28 |
* Digital Image Warping, George Wolberg, 1990.
|
|
29 |
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
|
30 |
*
|
|
31 |
* The downsampling algorithm used here is a simple average of the source
|
|
32 |
* pixels covered by the output pixel. The hi-falutin sampling literature
|
|
33 |
* refers to this as a "box filter". In general the characteristics of a box
|
|
34 |
* filter are not very good, but for the specific cases we normally use (1:1
|
|
35 |
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
|
|
36 |
* nearly so bad. If you intend to use other sampling ratios, you'd be well
|
|
37 |
* advised to improve this code.
|
|
38 |
*
|
|
39 |
* A simple input-smoothing capability is provided. This is mainly intended
|
|
40 |
* for cleaning up color-dithered GIF input files (if you find it inadequate,
|
|
41 |
* we suggest using an external filtering program such as pnmconvol). When
|
|
42 |
* enabled, each input pixel P is replaced by a weighted sum of itself and its
|
|
43 |
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
|
|
44 |
* where SF = (smoothing_factor / 1024).
|
|
45 |
* Currently, smoothing is only supported for 2h2v sampling factors.
|
|
46 |
*/
|
|
47 |
|
|
48 |
#define JPEG_INTERNALS
|
|
49 |
#include "jinclude.h"
|
|
50 |
#include "jpeglib.h"
|
|
51 |
|
|
52 |
|
|
53 |
/* Pointer to routine to downsample a single component */
|
|
54 |
typedef JMETHOD(void, downsample1_ptr,
|
|
55 |
(j_compress_ptr cinfo, jpeg_component_info * compptr,
|
|
56 |
JSAMPARRAY input_data, JSAMPARRAY output_data));
|
|
57 |
|
|
58 |
/* Private subobject */
|
|
59 |
|
|
60 |
typedef struct {
|
|
61 |
struct jpeg_downsampler pub; /* public fields */
|
|
62 |
|
|
63 |
/* Downsampling method pointers, one per component */
|
|
64 |
downsample1_ptr methods[MAX_COMPONENTS];
|
|
65 |
} my_downsampler;
|
|
66 |
|
|
67 |
typedef my_downsampler * my_downsample_ptr;
|
|
68 |
|
|
69 |
|
|
70 |
/*
|
|
71 |
* Initialize for a downsampling pass.
|
|
72 |
*/
|
|
73 |
|
|
74 |
METHODDEF(void)
|
|
75 |
start_pass_downsample (j_compress_ptr cinfo)
|
|
76 |
{
|
|
77 |
/* no work for now */
|
|
78 |
}
|
|
79 |
|
|
80 |
|
|
81 |
/*
|
|
82 |
* Expand a component horizontally from width input_cols to width output_cols,
|
|
83 |
* by duplicating the rightmost samples.
|
|
84 |
*/
|
|
85 |
|
|
86 |
LOCAL(void)
|
|
87 |
expand_right_edge (JSAMPARRAY image_data, int num_rows,
|
|
88 |
JDIMENSION input_cols, JDIMENSION output_cols)
|
|
89 |
{
|
|
90 |
register JSAMPROW ptr;
|
|
91 |
register JSAMPLE pixval;
|
|
92 |
register int count;
|
|
93 |
int row;
|
|
94 |
int numcols = (int) (output_cols - input_cols);
|
|
95 |
|
|
96 |
if (numcols > 0) {
|
|
97 |
for (row = 0; row < num_rows; row++) {
|
|
98 |
ptr = image_data[row] + input_cols;
|
|
99 |
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
|
|
100 |
for (count = numcols; count > 0; count--)
|
|
101 |
*ptr++ = pixval;
|
|
102 |
}
|
|
103 |
}
|
|
104 |
}
|
|
105 |
|
|
106 |
|
|
107 |
/*
|
|
108 |
* Do downsampling for a whole row group (all components).
|
|
109 |
*
|
|
110 |
* In this version we simply downsample each component independently.
|
|
111 |
*/
|
|
112 |
|
|
113 |
METHODDEF(void)
|
|
114 |
sep_downsample (j_compress_ptr cinfo,
|
|
115 |
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
|
|
116 |
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
|
|
117 |
{
|
|
118 |
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
|
|
119 |
int ci;
|
|
120 |
jpeg_component_info * compptr;
|
|
121 |
JSAMPARRAY in_ptr, out_ptr;
|
|
122 |
|
|
123 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
124 |
ci++, compptr++) {
|
|
125 |
in_ptr = input_buf[ci] + in_row_index;
|
|
126 |
out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
|
|
127 |
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
|
|
128 |
}
|
|
129 |
}
|
|
130 |
|
|
131 |
|
|
132 |
/*
|
|
133 |
* Downsample pixel values of a single component.
|
|
134 |
* One row group is processed per call.
|
|
135 |
* This version handles arbitrary integral sampling ratios, without smoothing.
|
|
136 |
* Note that this version is not actually used for customary sampling ratios.
|
|
137 |
*/
|
|
138 |
|
|
139 |
METHODDEF(void)
|
|
140 |
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
|
141 |
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
|
142 |
{
|
|
143 |
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
|
|
144 |
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
|
|
145 |
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
|
146 |
JSAMPROW inptr, outptr;
|
|
147 |
INT32 outvalue;
|
|
148 |
|
|
149 |
h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
|
|
150 |
v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
|
|
151 |
numpix = h_expand * v_expand;
|
|
152 |
numpix2 = numpix/2;
|
|
153 |
|
|
154 |
/* Expand input data enough to let all the output samples be generated
|
|
155 |
* by the standard loop. Special-casing padded output would be more
|
|
156 |
* efficient.
|
|
157 |
*/
|
|
158 |
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
|
159 |
cinfo->image_width, output_cols * h_expand);
|
|
160 |
|
|
161 |
inrow = 0;
|
|
162 |
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
|
163 |
outptr = output_data[outrow];
|
|
164 |
for (outcol = 0, outcol_h = 0; outcol < output_cols;
|
|
165 |
outcol++, outcol_h += h_expand) {
|
|
166 |
outvalue = 0;
|
|
167 |
for (v = 0; v < v_expand; v++) {
|
|
168 |
inptr = input_data[inrow+v] + outcol_h;
|
|
169 |
for (h = 0; h < h_expand; h++) {
|
|
170 |
outvalue += (INT32) GETJSAMPLE(*inptr++);
|
|
171 |
}
|
|
172 |
}
|
|
173 |
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
|
|
174 |
}
|
|
175 |
inrow += v_expand;
|
|
176 |
}
|
|
177 |
}
|
|
178 |
|
|
179 |
|
|
180 |
/*
|
|
181 |
* Downsample pixel values of a single component.
|
|
182 |
* This version handles the special case of a full-size component,
|
|
183 |
* without smoothing.
|
|
184 |
*/
|
|
185 |
|
|
186 |
METHODDEF(void)
|
|
187 |
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
|
188 |
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
|
189 |
{
|
|
190 |
/* Copy the data */
|
|
191 |
jcopy_sample_rows(input_data, 0, output_data, 0,
|
|
192 |
cinfo->max_v_samp_factor, cinfo->image_width);
|
|
193 |
/* Edge-expand */
|
|
194 |
expand_right_edge(output_data, cinfo->max_v_samp_factor,
|
|
195 |
cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
|
|
196 |
}
|
|
197 |
|
|
198 |
|
|
199 |
/*
|
|
200 |
* Downsample pixel values of a single component.
|
|
201 |
* This version handles the common case of 2:1 horizontal and 1:1 vertical,
|
|
202 |
* without smoothing.
|
|
203 |
*
|
|
204 |
* A note about the "bias" calculations: when rounding fractional values to
|
|
205 |
* integer, we do not want to always round 0.5 up to the next integer.
|
|
206 |
* If we did that, we'd introduce a noticeable bias towards larger values.
|
|
207 |
* Instead, this code is arranged so that 0.5 will be rounded up or down at
|
|
208 |
* alternate pixel locations (a simple ordered dither pattern).
|
|
209 |
*/
|
|
210 |
|
|
211 |
METHODDEF(void)
|
|
212 |
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
|
213 |
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
|
214 |
{
|
|
215 |
int outrow;
|
|
216 |
JDIMENSION outcol;
|
|
217 |
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
|
218 |
register JSAMPROW inptr, outptr;
|
|
219 |
register int bias;
|
|
220 |
|
|
221 |
/* Expand input data enough to let all the output samples be generated
|
|
222 |
* by the standard loop. Special-casing padded output would be more
|
|
223 |
* efficient.
|
|
224 |
*/
|
|
225 |
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
|
226 |
cinfo->image_width, output_cols * 2);
|
|
227 |
|
|
228 |
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
|
229 |
outptr = output_data[outrow];
|
|
230 |
inptr = input_data[outrow];
|
|
231 |
bias = 0; /* bias = 0,1,0,1,... for successive samples */
|
|
232 |
for (outcol = 0; outcol < output_cols; outcol++) {
|
|
233 |
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
|
|
234 |
+ bias) >> 1);
|
|
235 |
bias ^= 1; /* 0=>1, 1=>0 */
|
|
236 |
inptr += 2;
|
|
237 |
}
|
|
238 |
}
|
|
239 |
}
|
|
240 |
|
|
241 |
|
|
242 |
/*
|
|
243 |
* Downsample pixel values of a single component.
|
|
244 |
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
|
245 |
* without smoothing.
|
|
246 |
*/
|
|
247 |
|
|
248 |
METHODDEF(void)
|
|
249 |
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
|
250 |
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
|
251 |
{
|
|
252 |
int inrow, outrow;
|
|
253 |
JDIMENSION outcol;
|
|
254 |
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
|
255 |
register JSAMPROW inptr0, inptr1, outptr;
|
|
256 |
register int bias;
|
|
257 |
|
|
258 |
/* Expand input data enough to let all the output samples be generated
|
|
259 |
* by the standard loop. Special-casing padded output would be more
|
|
260 |
* efficient.
|
|
261 |
*/
|
|
262 |
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
|
263 |
cinfo->image_width, output_cols * 2);
|
|
264 |
|
|
265 |
inrow = 0;
|
|
266 |
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
|
267 |
outptr = output_data[outrow];
|
|
268 |
inptr0 = input_data[inrow];
|
|
269 |
inptr1 = input_data[inrow+1];
|
|
270 |
bias = 1; /* bias = 1,2,1,2,... for successive samples */
|
|
271 |
for (outcol = 0; outcol < output_cols; outcol++) {
|
|
272 |
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
|
273 |
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
|
|
274 |
+ bias) >> 2);
|
|
275 |
bias ^= 3; /* 1=>2, 2=>1 */
|
|
276 |
inptr0 += 2; inptr1 += 2;
|
|
277 |
}
|
|
278 |
inrow += 2;
|
|
279 |
}
|
|
280 |
}
|
|
281 |
|
|
282 |
|
|
283 |
#ifdef INPUT_SMOOTHING_SUPPORTED
|
|
284 |
|
|
285 |
/*
|
|
286 |
* Downsample pixel values of a single component.
|
|
287 |
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
|
288 |
* with smoothing. One row of context is required.
|
|
289 |
*/
|
|
290 |
|
|
291 |
METHODDEF(void)
|
|
292 |
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
|
293 |
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
|
294 |
{
|
|
295 |
int inrow, outrow;
|
|
296 |
JDIMENSION colctr;
|
|
297 |
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
|
298 |
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
|
|
299 |
INT32 membersum, neighsum, memberscale, neighscale;
|
|
300 |
|
|
301 |
/* Expand input data enough to let all the output samples be generated
|
|
302 |
* by the standard loop. Special-casing padded output would be more
|
|
303 |
* efficient.
|
|
304 |
*/
|
|
305 |
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
|
306 |
cinfo->image_width, output_cols * 2);
|
|
307 |
|
|
308 |
/* We don't bother to form the individual "smoothed" input pixel values;
|
|
309 |
* we can directly compute the output which is the average of the four
|
|
310 |
* smoothed values. Each of the four member pixels contributes a fraction
|
|
311 |
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three
|
|
312 |
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
|
|
313 |
* output. The four corner-adjacent neighbor pixels contribute a fraction
|
|
314 |
* SF to just one smoothed pixel, or SF/4 to the final output; while the
|
|
315 |
* eight edge-adjacent neighbors contribute SF to each of two smoothed
|
|
316 |
* pixels, or SF/2 overall. In order to use integer arithmetic, these
|
|
317 |
* factors are scaled by 2^16 = 65536.
|
|
318 |
* Also recall that SF = smoothing_factor / 1024.
|
|
319 |
*/
|
|
320 |
|
|
321 |
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
|
|
322 |
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
|
|
323 |
|
|
324 |
inrow = 0;
|
|
325 |
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
|
326 |
outptr = output_data[outrow];
|
|
327 |
inptr0 = input_data[inrow];
|
|
328 |
inptr1 = input_data[inrow+1];
|
|
329 |
above_ptr = input_data[inrow-1];
|
|
330 |
below_ptr = input_data[inrow+2];
|
|
331 |
|
|
332 |
/* Special case for first column: pretend column -1 is same as column 0 */
|
|
333 |
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
|
334 |
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
|
335 |
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
|
336 |
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
|
337 |
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
|
|
338 |
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
|
|
339 |
neighsum += neighsum;
|
|
340 |
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
|
|
341 |
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
|
|
342 |
membersum = membersum * memberscale + neighsum * neighscale;
|
|
343 |
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
|
344 |
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
|
345 |
|
|
346 |
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
|
347 |
/* sum of pixels directly mapped to this output element */
|
|
348 |
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
|
349 |
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
|
350 |
/* sum of edge-neighbor pixels */
|
|
351 |
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
|
352 |
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
|
353 |
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
|
|
354 |
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
|
|
355 |
/* The edge-neighbors count twice as much as corner-neighbors */
|
|
356 |
neighsum += neighsum;
|
|
357 |
/* Add in the corner-neighbors */
|
|
358 |
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
|
|
359 |
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
|
|
360 |
/* form final output scaled up by 2^16 */
|
|
361 |
membersum = membersum * memberscale + neighsum * neighscale;
|
|
362 |
/* round, descale and output it */
|
|
363 |
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
|
364 |
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
|
365 |
}
|
|
366 |
|
|
367 |
/* Special case for last column */
|
|
368 |
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
|
369 |
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
|
370 |
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
|
371 |
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
|
372 |
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
|
|
373 |
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
|
|
374 |
neighsum += neighsum;
|
|
375 |
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
|
|
376 |
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
|
|
377 |
membersum = membersum * memberscale + neighsum * neighscale;
|
|
378 |
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
|
379 |
|
|
380 |
inrow += 2;
|
|
381 |
}
|
|
382 |
}
|
|
383 |
|
|
384 |
|
|
385 |
/*
|
|
386 |
* Downsample pixel values of a single component.
|
|
387 |
* This version handles the special case of a full-size component,
|
|
388 |
* with smoothing. One row of context is required.
|
|
389 |
*/
|
|
390 |
|
|
391 |
METHODDEF(void)
|
|
392 |
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
|
|
393 |
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
|
394 |
{
|
|
395 |
int outrow;
|
|
396 |
JDIMENSION colctr;
|
|
397 |
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
|
398 |
register JSAMPROW inptr, above_ptr, below_ptr, outptr;
|
|
399 |
INT32 membersum, neighsum, memberscale, neighscale;
|
|
400 |
int colsum, lastcolsum, nextcolsum;
|
|
401 |
|
|
402 |
/* Expand input data enough to let all the output samples be generated
|
|
403 |
* by the standard loop. Special-casing padded output would be more
|
|
404 |
* efficient.
|
|
405 |
*/
|
|
406 |
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
|
407 |
cinfo->image_width, output_cols);
|
|
408 |
|
|
409 |
/* Each of the eight neighbor pixels contributes a fraction SF to the
|
|
410 |
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
|
|
411 |
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
|
|
412 |
* Also recall that SF = smoothing_factor / 1024.
|
|
413 |
*/
|
|
414 |
|
|
415 |
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
|
|
416 |
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
|
|
417 |
|
|
418 |
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
|
419 |
outptr = output_data[outrow];
|
|
420 |
inptr = input_data[outrow];
|
|
421 |
above_ptr = input_data[outrow-1];
|
|
422 |
below_ptr = input_data[outrow+1];
|
|
423 |
|
|
424 |
/* Special case for first column */
|
|
425 |
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
|
|
426 |
GETJSAMPLE(*inptr);
|
|
427 |
membersum = GETJSAMPLE(*inptr++);
|
|
428 |
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
|
429 |
GETJSAMPLE(*inptr);
|
|
430 |
neighsum = colsum + (colsum - membersum) + nextcolsum;
|
|
431 |
membersum = membersum * memberscale + neighsum * neighscale;
|
|
432 |
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
|
433 |
lastcolsum = colsum; colsum = nextcolsum;
|
|
434 |
|
|
435 |
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
|
436 |
membersum = GETJSAMPLE(*inptr++);
|
|
437 |
above_ptr++; below_ptr++;
|
|
438 |
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
|
439 |
GETJSAMPLE(*inptr);
|
|
440 |
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
|
|
441 |
membersum = membersum * memberscale + neighsum * neighscale;
|
|
442 |
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
|
443 |
lastcolsum = colsum; colsum = nextcolsum;
|
|
444 |
}
|
|
445 |
|
|
446 |
/* Special case for last column */
|
|
447 |
membersum = GETJSAMPLE(*inptr);
|
|
448 |
neighsum = lastcolsum + (colsum - membersum) + colsum;
|
|
449 |
membersum = membersum * memberscale + neighsum * neighscale;
|
|
450 |
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
|
451 |
|
|
452 |
}
|
|
453 |
}
|
|
454 |
|
|
455 |
#endif /* INPUT_SMOOTHING_SUPPORTED */
|
|
456 |
|
|
457 |
|
|
458 |
/*
|
|
459 |
* Module initialization routine for downsampling.
|
|
460 |
* Note that we must select a routine for each component.
|
|
461 |
*/
|
|
462 |
|
|
463 |
GLOBAL(void)
|
|
464 |
jinit_downsampler (j_compress_ptr cinfo)
|
|
465 |
{
|
|
466 |
my_downsample_ptr downsample;
|
|
467 |
int ci;
|
|
468 |
jpeg_component_info * compptr;
|
|
469 |
boolean smoothok = TRUE;
|
|
470 |
|
|
471 |
downsample = (my_downsample_ptr)
|
|
472 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
473 |
SIZEOF(my_downsampler));
|
|
474 |
cinfo->downsample = (struct jpeg_downsampler *) downsample;
|
|
475 |
downsample->pub.start_pass = start_pass_downsample;
|
|
476 |
downsample->pub.downsample = sep_downsample;
|
|
477 |
downsample->pub.need_context_rows = FALSE;
|
|
478 |
|
|
479 |
if (cinfo->CCIR601_sampling)
|
|
480 |
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
|
481 |
|
|
482 |
/* Verify we can handle the sampling factors, and set up method pointers */
|
|
483 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
484 |
ci++, compptr++) {
|
|
485 |
if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
|
|
486 |
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
|
|
487 |
#ifdef INPUT_SMOOTHING_SUPPORTED
|
|
488 |
if (cinfo->smoothing_factor) {
|
|
489 |
downsample->methods[ci] = fullsize_smooth_downsample;
|
|
490 |
downsample->pub.need_context_rows = TRUE;
|
|
491 |
} else
|
|
492 |
#endif
|
|
493 |
downsample->methods[ci] = fullsize_downsample;
|
|
494 |
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
|
|
495 |
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
|
|
496 |
smoothok = FALSE;
|
|
497 |
downsample->methods[ci] = h2v1_downsample;
|
|
498 |
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
|
|
499 |
compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
|
|
500 |
#ifdef INPUT_SMOOTHING_SUPPORTED
|
|
501 |
if (cinfo->smoothing_factor) {
|
|
502 |
downsample->methods[ci] = h2v2_smooth_downsample;
|
|
503 |
downsample->pub.need_context_rows = TRUE;
|
|
504 |
} else
|
|
505 |
#endif
|
|
506 |
downsample->methods[ci] = h2v2_downsample;
|
|
507 |
} else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
|
|
508 |
(cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
|
|
509 |
smoothok = FALSE;
|
|
510 |
downsample->methods[ci] = int_downsample;
|
|
511 |
} else
|
|
512 |
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
|
513 |
}
|
|
514 |
|
|
515 |
#ifdef INPUT_SMOOTHING_SUPPORTED
|
|
516 |
if (cinfo->smoothing_factor && !smoothok)
|
|
517 |
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
|
|
518 |
#endif
|
|
519 |
}
|