0
|
1 |
/*
|
|
2 |
* jidctred.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1994-1998, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains inverse-DCT routines that produce reduced-size output:
|
|
9 |
* either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
|
|
10 |
*
|
|
11 |
* The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
|
|
12 |
* algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
|
|
13 |
* with an 8-to-4 step that produces the four averages of two adjacent outputs
|
|
14 |
* (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
|
|
15 |
* These steps were derived by computing the corresponding values at the end
|
|
16 |
* of the normal LL&M code, then simplifying as much as possible.
|
|
17 |
*
|
|
18 |
* 1x1 is trivial: just take the DC coefficient divided by 8.
|
|
19 |
*
|
|
20 |
* See jidctint.c for additional comments.
|
|
21 |
*/
|
|
22 |
|
|
23 |
#define JPEG_INTERNALS
|
|
24 |
#include "jinclude.h"
|
|
25 |
#include "jpeglib.h"
|
|
26 |
#include "jdct.h" /* Private declarations for DCT subsystem */
|
|
27 |
|
|
28 |
#ifdef IDCT_SCALING_SUPPORTED
|
|
29 |
|
|
30 |
|
|
31 |
/*
|
|
32 |
* This module is specialized to the case DCTSIZE = 8.
|
|
33 |
*/
|
|
34 |
|
|
35 |
#if DCTSIZE != 8
|
|
36 |
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
|
37 |
#endif
|
|
38 |
|
|
39 |
|
|
40 |
/* Scaling is the same as in jidctint.c. */
|
|
41 |
|
|
42 |
#if BITS_IN_JSAMPLE == 8
|
|
43 |
#define CONST_BITS 13
|
|
44 |
#define PASS1_BITS 2
|
|
45 |
#else
|
|
46 |
#define CONST_BITS 13
|
|
47 |
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
|
48 |
#endif
|
|
49 |
|
|
50 |
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
|
51 |
* causing a lot of useless floating-point operations at run time.
|
|
52 |
* To get around this we use the following pre-calculated constants.
|
|
53 |
* If you change CONST_BITS you may want to add appropriate values.
|
|
54 |
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
|
55 |
*/
|
|
56 |
|
|
57 |
#if CONST_BITS == 13
|
|
58 |
#define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */
|
|
59 |
#define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */
|
|
60 |
#define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */
|
|
61 |
#define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */
|
|
62 |
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
|
|
63 |
#define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */
|
|
64 |
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
|
|
65 |
#define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */
|
|
66 |
#define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */
|
|
67 |
#define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */
|
|
68 |
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
|
|
69 |
#define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */
|
|
70 |
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
|
|
71 |
#define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */
|
|
72 |
#else
|
|
73 |
#define FIX_0_211164243 FIX(0.211164243)
|
|
74 |
#define FIX_0_509795579 FIX(0.509795579)
|
|
75 |
#define FIX_0_601344887 FIX(0.601344887)
|
|
76 |
#define FIX_0_720959822 FIX(0.720959822)
|
|
77 |
#define FIX_0_765366865 FIX(0.765366865)
|
|
78 |
#define FIX_0_850430095 FIX(0.850430095)
|
|
79 |
#define FIX_0_899976223 FIX(0.899976223)
|
|
80 |
#define FIX_1_061594337 FIX(1.061594337)
|
|
81 |
#define FIX_1_272758580 FIX(1.272758580)
|
|
82 |
#define FIX_1_451774981 FIX(1.451774981)
|
|
83 |
#define FIX_1_847759065 FIX(1.847759065)
|
|
84 |
#define FIX_2_172734803 FIX(2.172734803)
|
|
85 |
#define FIX_2_562915447 FIX(2.562915447)
|
|
86 |
#define FIX_3_624509785 FIX(3.624509785)
|
|
87 |
#endif
|
|
88 |
|
|
89 |
|
|
90 |
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
|
91 |
* For 8-bit samples with the recommended scaling, all the variable
|
|
92 |
* and constant values involved are no more than 16 bits wide, so a
|
|
93 |
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
|
94 |
* For 12-bit samples, a full 32-bit multiplication will be needed.
|
|
95 |
*/
|
|
96 |
|
|
97 |
#if BITS_IN_JSAMPLE == 8
|
|
98 |
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
|
99 |
#else
|
|
100 |
#define MULTIPLY(var,const) ((var) * (const))
|
|
101 |
#endif
|
|
102 |
|
|
103 |
|
|
104 |
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
|
105 |
* entry; produce an int result. In this module, both inputs and result
|
|
106 |
* are 16 bits or less, so either int or short multiply will work.
|
|
107 |
*/
|
|
108 |
|
|
109 |
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
|
|
110 |
|
|
111 |
|
|
112 |
/*
|
|
113 |
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
114 |
* producing a reduced-size 4x4 output block.
|
|
115 |
*/
|
|
116 |
|
|
117 |
GLOBAL(void)
|
|
118 |
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
119 |
JCOEFPTR coef_block,
|
|
120 |
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
121 |
{
|
|
122 |
INT32 tmp0, tmp2, tmp10, tmp12;
|
|
123 |
INT32 z1, z2, z3, z4;
|
|
124 |
JCOEFPTR inptr;
|
|
125 |
ISLOW_MULT_TYPE * quantptr;
|
|
126 |
int * wsptr;
|
|
127 |
JSAMPROW outptr;
|
|
128 |
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
129 |
int ctr;
|
|
130 |
int workspace[DCTSIZE*4]; /* buffers data between passes */
|
|
131 |
SHIFT_TEMPS
|
|
132 |
|
|
133 |
/* Pass 1: process columns from input, store into work array. */
|
|
134 |
|
|
135 |
inptr = coef_block;
|
|
136 |
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
137 |
wsptr = workspace;
|
|
138 |
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
|
|
139 |
/* Don't bother to process column 4, because second pass won't use it */
|
|
140 |
if (ctr == DCTSIZE-4)
|
|
141 |
continue;
|
|
142 |
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
|
143 |
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
|
|
144 |
inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
|
|
145 |
/* AC terms all zero; we need not examine term 4 for 4x4 output */
|
|
146 |
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
|
147 |
|
|
148 |
wsptr[DCTSIZE*0] = dcval;
|
|
149 |
wsptr[DCTSIZE*1] = dcval;
|
|
150 |
wsptr[DCTSIZE*2] = dcval;
|
|
151 |
wsptr[DCTSIZE*3] = dcval;
|
|
152 |
|
|
153 |
continue;
|
|
154 |
}
|
|
155 |
|
|
156 |
/* Even part */
|
|
157 |
|
|
158 |
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
159 |
tmp0 <<= (CONST_BITS+1);
|
|
160 |
|
|
161 |
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
162 |
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
163 |
|
|
164 |
tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
|
|
165 |
|
|
166 |
tmp10 = tmp0 + tmp2;
|
|
167 |
tmp12 = tmp0 - tmp2;
|
|
168 |
|
|
169 |
/* Odd part */
|
|
170 |
|
|
171 |
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
172 |
z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
173 |
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
174 |
z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
175 |
|
|
176 |
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
|
|
177 |
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
|
|
178 |
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
|
|
179 |
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
|
|
180 |
|
|
181 |
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
|
|
182 |
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
|
|
183 |
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
|
|
184 |
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
|
|
185 |
|
|
186 |
/* Final output stage */
|
|
187 |
|
|
188 |
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
|
|
189 |
wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
|
|
190 |
wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
|
|
191 |
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
|
|
192 |
}
|
|
193 |
|
|
194 |
/* Pass 2: process 4 rows from work array, store into output array. */
|
|
195 |
|
|
196 |
wsptr = workspace;
|
|
197 |
for (ctr = 0; ctr < 4; ctr++) {
|
|
198 |
outptr = output_buf[ctr] + output_col;
|
|
199 |
/* It's not clear whether a zero row test is worthwhile here ... */
|
|
200 |
|
|
201 |
#ifndef NO_ZERO_ROW_TEST
|
|
202 |
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
|
|
203 |
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
|
|
204 |
/* AC terms all zero */
|
|
205 |
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
|
206 |
& RANGE_MASK];
|
|
207 |
|
|
208 |
outptr[0] = dcval;
|
|
209 |
outptr[1] = dcval;
|
|
210 |
outptr[2] = dcval;
|
|
211 |
outptr[3] = dcval;
|
|
212 |
|
|
213 |
wsptr += DCTSIZE; /* advance pointer to next row */
|
|
214 |
continue;
|
|
215 |
}
|
|
216 |
#endif
|
|
217 |
|
|
218 |
/* Even part */
|
|
219 |
|
|
220 |
tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
|
|
221 |
|
|
222 |
tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
|
|
223 |
+ MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
|
|
224 |
|
|
225 |
tmp10 = tmp0 + tmp2;
|
|
226 |
tmp12 = tmp0 - tmp2;
|
|
227 |
|
|
228 |
/* Odd part */
|
|
229 |
|
|
230 |
z1 = (INT32) wsptr[7];
|
|
231 |
z2 = (INT32) wsptr[5];
|
|
232 |
z3 = (INT32) wsptr[3];
|
|
233 |
z4 = (INT32) wsptr[1];
|
|
234 |
|
|
235 |
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
|
|
236 |
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
|
|
237 |
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
|
|
238 |
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
|
|
239 |
|
|
240 |
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
|
|
241 |
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
|
|
242 |
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
|
|
243 |
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
|
|
244 |
|
|
245 |
/* Final output stage */
|
|
246 |
|
|
247 |
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
|
|
248 |
CONST_BITS+PASS1_BITS+3+1)
|
|
249 |
& RANGE_MASK];
|
|
250 |
outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
|
|
251 |
CONST_BITS+PASS1_BITS+3+1)
|
|
252 |
& RANGE_MASK];
|
|
253 |
outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
|
|
254 |
CONST_BITS+PASS1_BITS+3+1)
|
|
255 |
& RANGE_MASK];
|
|
256 |
outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
|
|
257 |
CONST_BITS+PASS1_BITS+3+1)
|
|
258 |
& RANGE_MASK];
|
|
259 |
|
|
260 |
wsptr += DCTSIZE; /* advance pointer to next row */
|
|
261 |
}
|
|
262 |
}
|
|
263 |
|
|
264 |
|
|
265 |
/*
|
|
266 |
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
267 |
* producing a reduced-size 2x2 output block.
|
|
268 |
*/
|
|
269 |
|
|
270 |
GLOBAL(void)
|
|
271 |
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
272 |
JCOEFPTR coef_block,
|
|
273 |
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
274 |
{
|
|
275 |
INT32 tmp0, tmp10, z1;
|
|
276 |
JCOEFPTR inptr;
|
|
277 |
ISLOW_MULT_TYPE * quantptr;
|
|
278 |
int * wsptr;
|
|
279 |
JSAMPROW outptr;
|
|
280 |
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
281 |
int ctr;
|
|
282 |
int workspace[DCTSIZE*2]; /* buffers data between passes */
|
|
283 |
SHIFT_TEMPS
|
|
284 |
|
|
285 |
/* Pass 1: process columns from input, store into work array. */
|
|
286 |
|
|
287 |
inptr = coef_block;
|
|
288 |
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
289 |
wsptr = workspace;
|
|
290 |
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
|
|
291 |
/* Don't bother to process columns 2,4,6 */
|
|
292 |
if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
|
|
293 |
continue;
|
|
294 |
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
|
|
295 |
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
|
|
296 |
/* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
|
|
297 |
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
|
298 |
|
|
299 |
wsptr[DCTSIZE*0] = dcval;
|
|
300 |
wsptr[DCTSIZE*1] = dcval;
|
|
301 |
|
|
302 |
continue;
|
|
303 |
}
|
|
304 |
|
|
305 |
/* Even part */
|
|
306 |
|
|
307 |
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
308 |
tmp10 = z1 << (CONST_BITS+2);
|
|
309 |
|
|
310 |
/* Odd part */
|
|
311 |
|
|
312 |
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
313 |
tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
|
|
314 |
z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
315 |
tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
|
|
316 |
z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
317 |
tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
|
|
318 |
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
319 |
tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
|
|
320 |
|
|
321 |
/* Final output stage */
|
|
322 |
|
|
323 |
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
|
|
324 |
wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
|
|
325 |
}
|
|
326 |
|
|
327 |
/* Pass 2: process 2 rows from work array, store into output array. */
|
|
328 |
|
|
329 |
wsptr = workspace;
|
|
330 |
for (ctr = 0; ctr < 2; ctr++) {
|
|
331 |
outptr = output_buf[ctr] + output_col;
|
|
332 |
/* It's not clear whether a zero row test is worthwhile here ... */
|
|
333 |
|
|
334 |
#ifndef NO_ZERO_ROW_TEST
|
|
335 |
if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
|
|
336 |
/* AC terms all zero */
|
|
337 |
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
|
338 |
& RANGE_MASK];
|
|
339 |
|
|
340 |
outptr[0] = dcval;
|
|
341 |
outptr[1] = dcval;
|
|
342 |
|
|
343 |
wsptr += DCTSIZE; /* advance pointer to next row */
|
|
344 |
continue;
|
|
345 |
}
|
|
346 |
#endif
|
|
347 |
|
|
348 |
/* Even part */
|
|
349 |
|
|
350 |
tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
|
|
351 |
|
|
352 |
/* Odd part */
|
|
353 |
|
|
354 |
tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
|
|
355 |
+ MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
|
|
356 |
+ MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
|
|
357 |
+ MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
|
|
358 |
|
|
359 |
/* Final output stage */
|
|
360 |
|
|
361 |
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
|
|
362 |
CONST_BITS+PASS1_BITS+3+2)
|
|
363 |
& RANGE_MASK];
|
|
364 |
outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
|
|
365 |
CONST_BITS+PASS1_BITS+3+2)
|
|
366 |
& RANGE_MASK];
|
|
367 |
|
|
368 |
wsptr += DCTSIZE; /* advance pointer to next row */
|
|
369 |
}
|
|
370 |
}
|
|
371 |
|
|
372 |
|
|
373 |
/*
|
|
374 |
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
375 |
* producing a reduced-size 1x1 output block.
|
|
376 |
*/
|
|
377 |
|
|
378 |
GLOBAL(void)
|
|
379 |
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
380 |
JCOEFPTR coef_block,
|
|
381 |
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
382 |
{
|
|
383 |
int dcval;
|
|
384 |
ISLOW_MULT_TYPE * quantptr;
|
|
385 |
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
386 |
SHIFT_TEMPS
|
|
387 |
|
|
388 |
/* We hardly need an inverse DCT routine for this: just take the
|
|
389 |
* average pixel value, which is one-eighth of the DC coefficient.
|
|
390 |
*/
|
|
391 |
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
392 |
dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
|
|
393 |
dcval = (int) DESCALE((INT32) dcval, 3);
|
|
394 |
|
|
395 |
output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
|
|
396 |
}
|
|
397 |
|
|
398 |
#endif /* IDCT_SCALING_SUPPORTED */
|