0
|
1 |
/*
|
|
2 |
* jquant1.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1991-1996, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains 1-pass color quantization (color mapping) routines.
|
|
9 |
* These routines provide mapping to a fixed color map using equally spaced
|
|
10 |
* color values. Optional Floyd-Steinberg or ordered dithering is available.
|
|
11 |
*/
|
|
12 |
|
|
13 |
#define JPEG_INTERNALS
|
|
14 |
#include "jinclude.h"
|
|
15 |
#include "jpeglib.h"
|
|
16 |
|
|
17 |
#ifdef QUANT_1PASS_SUPPORTED
|
|
18 |
|
|
19 |
|
|
20 |
/*
|
|
21 |
* The main purpose of 1-pass quantization is to provide a fast, if not very
|
|
22 |
* high quality, colormapped output capability. A 2-pass quantizer usually
|
|
23 |
* gives better visual quality; however, for quantized grayscale output this
|
|
24 |
* quantizer is perfectly adequate. Dithering is highly recommended with this
|
|
25 |
* quantizer, though you can turn it off if you really want to.
|
|
26 |
*
|
|
27 |
* In 1-pass quantization the colormap must be chosen in advance of seeing the
|
|
28 |
* image. We use a map consisting of all combinations of Ncolors[i] color
|
|
29 |
* values for the i'th component. The Ncolors[] values are chosen so that
|
|
30 |
* their product, the total number of colors, is no more than that requested.
|
|
31 |
* (In most cases, the product will be somewhat less.)
|
|
32 |
*
|
|
33 |
* Since the colormap is orthogonal, the representative value for each color
|
|
34 |
* component can be determined without considering the other components;
|
|
35 |
* then these indexes can be combined into a colormap index by a standard
|
|
36 |
* N-dimensional-array-subscript calculation. Most of the arithmetic involved
|
|
37 |
* can be precalculated and stored in the lookup table colorindex[].
|
|
38 |
* colorindex[i][j] maps pixel value j in component i to the nearest
|
|
39 |
* representative value (grid plane) for that component; this index is
|
|
40 |
* multiplied by the array stride for component i, so that the
|
|
41 |
* index of the colormap entry closest to a given pixel value is just
|
|
42 |
* sum( colorindex[component-number][pixel-component-value] )
|
|
43 |
* Aside from being fast, this scheme allows for variable spacing between
|
|
44 |
* representative values with no additional lookup cost.
|
|
45 |
*
|
|
46 |
* If gamma correction has been applied in color conversion, it might be wise
|
|
47 |
* to adjust the color grid spacing so that the representative colors are
|
|
48 |
* equidistant in linear space. At this writing, gamma correction is not
|
|
49 |
* implemented by jdcolor, so nothing is done here.
|
|
50 |
*/
|
|
51 |
|
|
52 |
|
|
53 |
/* Declarations for ordered dithering.
|
|
54 |
*
|
|
55 |
* We use a standard 16x16 ordered dither array. The basic concept of ordered
|
|
56 |
* dithering is described in many references, for instance Dale Schumacher's
|
|
57 |
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
|
|
58 |
* In place of Schumacher's comparisons against a "threshold" value, we add a
|
|
59 |
* "dither" value to the input pixel and then round the result to the nearest
|
|
60 |
* output value. The dither value is equivalent to (0.5 - threshold) times
|
|
61 |
* the distance between output values. For ordered dithering, we assume that
|
|
62 |
* the output colors are equally spaced; if not, results will probably be
|
|
63 |
* worse, since the dither may be too much or too little at a given point.
|
|
64 |
*
|
|
65 |
* The normal calculation would be to form pixel value + dither, range-limit
|
|
66 |
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
|
|
67 |
* We can skip the separate range-limiting step by extending the colorindex
|
|
68 |
* table in both directions.
|
|
69 |
*/
|
|
70 |
|
|
71 |
#define ODITHER_SIZE 16 /* dimension of dither matrix */
|
|
72 |
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
|
|
73 |
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
|
|
74 |
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
|
|
75 |
|
|
76 |
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
|
|
77 |
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
|
|
78 |
|
|
79 |
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
|
|
80 |
/* Bayer's order-4 dither array. Generated by the code given in
|
|
81 |
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
|
|
82 |
* The values in this array must range from 0 to ODITHER_CELLS-1.
|
|
83 |
*/
|
|
84 |
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
|
|
85 |
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
|
|
86 |
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
|
|
87 |
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
|
|
88 |
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
|
|
89 |
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
|
|
90 |
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
|
|
91 |
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
|
|
92 |
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
|
|
93 |
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
|
|
94 |
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
|
|
95 |
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
|
|
96 |
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
|
|
97 |
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
|
|
98 |
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
|
|
99 |
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
|
|
100 |
};
|
|
101 |
|
|
102 |
|
|
103 |
/* Declarations for Floyd-Steinberg dithering.
|
|
104 |
*
|
|
105 |
* Errors are accumulated into the array fserrors[], at a resolution of
|
|
106 |
* 1/16th of a pixel count. The error at a given pixel is propagated
|
|
107 |
* to its not-yet-processed neighbors using the standard F-S fractions,
|
|
108 |
* ... (here) 7/16
|
|
109 |
* 3/16 5/16 1/16
|
|
110 |
* We work left-to-right on even rows, right-to-left on odd rows.
|
|
111 |
*
|
|
112 |
* We can get away with a single array (holding one row's worth of errors)
|
|
113 |
* by using it to store the current row's errors at pixel columns not yet
|
|
114 |
* processed, but the next row's errors at columns already processed. We
|
|
115 |
* need only a few extra variables to hold the errors immediately around the
|
|
116 |
* current column. (If we are lucky, those variables are in registers, but
|
|
117 |
* even if not, they're probably cheaper to access than array elements are.)
|
|
118 |
*
|
|
119 |
* The fserrors[] array is indexed [component#][position].
|
|
120 |
* We provide (#columns + 2) entries per component; the extra entry at each
|
|
121 |
* end saves us from special-casing the first and last pixels.
|
|
122 |
*
|
|
123 |
* Note: on a wide image, we might not have enough room in a PC's near data
|
|
124 |
* segment to hold the error array; so it is allocated with alloc_large.
|
|
125 |
*/
|
|
126 |
|
|
127 |
#if BITS_IN_JSAMPLE == 8
|
|
128 |
typedef INT16 FSERROR; /* 16 bits should be enough */
|
|
129 |
typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
|
130 |
#else
|
|
131 |
typedef INT32 FSERROR; /* may need more than 16 bits */
|
|
132 |
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
|
|
133 |
#endif
|
|
134 |
|
|
135 |
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
|
|
136 |
|
|
137 |
|
|
138 |
/* Private subobject */
|
|
139 |
|
|
140 |
#define MAX_Q_COMPS 4 /* max components I can handle */
|
|
141 |
|
|
142 |
typedef struct {
|
|
143 |
struct jpeg_color_quantizer pub; /* public fields */
|
|
144 |
|
|
145 |
/* Initially allocated colormap is saved here */
|
|
146 |
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
|
|
147 |
int sv_actual; /* number of entries in use */
|
|
148 |
|
|
149 |
JSAMPARRAY colorindex; /* Precomputed mapping for speed */
|
|
150 |
/* colorindex[i][j] = index of color closest to pixel value j in component i,
|
|
151 |
* premultiplied as described above. Since colormap indexes must fit into
|
|
152 |
* JSAMPLEs, the entries of this array will too.
|
|
153 |
*/
|
|
154 |
boolean is_padded; /* is the colorindex padded for odither? */
|
|
155 |
|
|
156 |
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
|
|
157 |
|
|
158 |
/* Variables for ordered dithering */
|
|
159 |
int row_index; /* cur row's vertical index in dither matrix */
|
|
160 |
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
|
|
161 |
|
|
162 |
/* Variables for Floyd-Steinberg dithering */
|
|
163 |
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
|
|
164 |
boolean on_odd_row; /* flag to remember which row we are on */
|
|
165 |
} my_cquantizer;
|
|
166 |
|
|
167 |
typedef my_cquantizer * my_cquantize_ptr;
|
|
168 |
|
|
169 |
|
|
170 |
/*
|
|
171 |
* Policy-making subroutines for create_colormap and create_colorindex.
|
|
172 |
* These routines determine the colormap to be used. The rest of the module
|
|
173 |
* only assumes that the colormap is orthogonal.
|
|
174 |
*
|
|
175 |
* * select_ncolors decides how to divvy up the available colors
|
|
176 |
* among the components.
|
|
177 |
* * output_value defines the set of representative values for a component.
|
|
178 |
* * largest_input_value defines the mapping from input values to
|
|
179 |
* representative values for a component.
|
|
180 |
* Note that the latter two routines may impose different policies for
|
|
181 |
* different components, though this is not currently done.
|
|
182 |
*/
|
|
183 |
|
|
184 |
|
|
185 |
LOCAL(int)
|
|
186 |
select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
|
|
187 |
/* Determine allocation of desired colors to components, */
|
|
188 |
/* and fill in Ncolors[] array to indicate choice. */
|
|
189 |
/* Return value is total number of colors (product of Ncolors[] values). */
|
|
190 |
{
|
|
191 |
int nc = cinfo->out_color_components; /* number of color components */
|
|
192 |
int max_colors = cinfo->desired_number_of_colors;
|
|
193 |
int total_colors, iroot, i, j;
|
|
194 |
boolean changed;
|
|
195 |
long temp;
|
|
196 |
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
|
|
197 |
|
|
198 |
/* We can allocate at least the nc'th root of max_colors per component. */
|
|
199 |
/* Compute floor(nc'th root of max_colors). */
|
|
200 |
iroot = 1;
|
|
201 |
do {
|
|
202 |
iroot++;
|
|
203 |
temp = iroot; /* set temp = iroot ** nc */
|
|
204 |
for (i = 1; i < nc; i++)
|
|
205 |
temp *= iroot;
|
|
206 |
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
|
|
207 |
iroot--; /* now iroot = floor(root) */
|
|
208 |
|
|
209 |
/* Must have at least 2 color values per component */
|
|
210 |
if (iroot < 2)
|
|
211 |
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
|
|
212 |
|
|
213 |
/* Initialize to iroot color values for each component */
|
|
214 |
total_colors = 1;
|
|
215 |
for (i = 0; i < nc; i++) {
|
|
216 |
Ncolors[i] = iroot;
|
|
217 |
total_colors *= iroot;
|
|
218 |
}
|
|
219 |
/* We may be able to increment the count for one or more components without
|
|
220 |
* exceeding max_colors, though we know not all can be incremented.
|
|
221 |
* Sometimes, the first component can be incremented more than once!
|
|
222 |
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
|
|
223 |
* In RGB colorspace, try to increment G first, then R, then B.
|
|
224 |
*/
|
|
225 |
do {
|
|
226 |
changed = FALSE;
|
|
227 |
for (i = 0; i < nc; i++) {
|
|
228 |
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
|
|
229 |
/* calculate new total_colors if Ncolors[j] is incremented */
|
|
230 |
temp = total_colors / Ncolors[j];
|
|
231 |
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
|
|
232 |
if (temp > (long) max_colors)
|
|
233 |
break; /* won't fit, done with this pass */
|
|
234 |
Ncolors[j]++; /* OK, apply the increment */
|
|
235 |
total_colors = (int) temp;
|
|
236 |
changed = TRUE;
|
|
237 |
}
|
|
238 |
} while (changed);
|
|
239 |
|
|
240 |
return total_colors;
|
|
241 |
}
|
|
242 |
|
|
243 |
|
|
244 |
LOCAL(int)
|
|
245 |
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
|
246 |
/* Return j'th output value, where j will range from 0 to maxj */
|
|
247 |
/* The output values must fall in 0..MAXJSAMPLE in increasing order */
|
|
248 |
{
|
|
249 |
/* We always provide values 0 and MAXJSAMPLE for each component;
|
|
250 |
* any additional values are equally spaced between these limits.
|
|
251 |
* (Forcing the upper and lower values to the limits ensures that
|
|
252 |
* dithering can't produce a color outside the selected gamut.)
|
|
253 |
*/
|
|
254 |
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
|
|
255 |
}
|
|
256 |
|
|
257 |
|
|
258 |
LOCAL(int)
|
|
259 |
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
|
260 |
/* Return largest input value that should map to j'th output value */
|
|
261 |
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
|
|
262 |
{
|
|
263 |
/* Breakpoints are halfway between values returned by output_value */
|
|
264 |
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
|
|
265 |
}
|
|
266 |
|
|
267 |
|
|
268 |
/*
|
|
269 |
* Create the colormap.
|
|
270 |
*/
|
|
271 |
|
|
272 |
LOCAL(void)
|
|
273 |
create_colormap (j_decompress_ptr cinfo)
|
|
274 |
{
|
|
275 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
276 |
JSAMPARRAY colormap; /* Created colormap */
|
|
277 |
int total_colors; /* Number of distinct output colors */
|
|
278 |
int i,j,k, nci, blksize, blkdist, ptr, val;
|
|
279 |
|
|
280 |
/* Select number of colors for each component */
|
|
281 |
total_colors = select_ncolors(cinfo, cquantize->Ncolors);
|
|
282 |
|
|
283 |
/* Report selected color counts */
|
|
284 |
if (cinfo->out_color_components == 3)
|
|
285 |
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
|
|
286 |
total_colors, cquantize->Ncolors[0],
|
|
287 |
cquantize->Ncolors[1], cquantize->Ncolors[2]);
|
|
288 |
else
|
|
289 |
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
|
|
290 |
|
|
291 |
/* Allocate and fill in the colormap. */
|
|
292 |
/* The colors are ordered in the map in standard row-major order, */
|
|
293 |
/* i.e. rightmost (highest-indexed) color changes most rapidly. */
|
|
294 |
|
|
295 |
colormap = (*cinfo->mem->alloc_sarray)
|
|
296 |
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
297 |
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
|
|
298 |
|
|
299 |
/* blksize is number of adjacent repeated entries for a component */
|
|
300 |
/* blkdist is distance between groups of identical entries for a component */
|
|
301 |
blkdist = total_colors;
|
|
302 |
|
|
303 |
for (i = 0; i < cinfo->out_color_components; i++) {
|
|
304 |
/* fill in colormap entries for i'th color component */
|
|
305 |
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
|
306 |
blksize = blkdist / nci;
|
|
307 |
for (j = 0; j < nci; j++) {
|
|
308 |
/* Compute j'th output value (out of nci) for component */
|
|
309 |
val = output_value(cinfo, i, j, nci-1);
|
|
310 |
/* Fill in all colormap entries that have this value of this component */
|
|
311 |
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
|
|
312 |
/* fill in blksize entries beginning at ptr */
|
|
313 |
for (k = 0; k < blksize; k++)
|
|
314 |
colormap[i][ptr+k] = (JSAMPLE) val;
|
|
315 |
}
|
|
316 |
}
|
|
317 |
blkdist = blksize; /* blksize of this color is blkdist of next */
|
|
318 |
}
|
|
319 |
|
|
320 |
/* Save the colormap in private storage,
|
|
321 |
* where it will survive color quantization mode changes.
|
|
322 |
*/
|
|
323 |
cquantize->sv_colormap = colormap;
|
|
324 |
cquantize->sv_actual = total_colors;
|
|
325 |
}
|
|
326 |
|
|
327 |
|
|
328 |
/*
|
|
329 |
* Create the color index table.
|
|
330 |
*/
|
|
331 |
|
|
332 |
LOCAL(void)
|
|
333 |
create_colorindex (j_decompress_ptr cinfo)
|
|
334 |
{
|
|
335 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
336 |
JSAMPROW indexptr;
|
|
337 |
int i,j,k, nci, blksize, val, pad;
|
|
338 |
|
|
339 |
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in
|
|
340 |
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
|
|
341 |
* This is not necessary in the other dithering modes. However, we
|
|
342 |
* flag whether it was done in case user changes dithering mode.
|
|
343 |
*/
|
|
344 |
if (cinfo->dither_mode == JDITHER_ORDERED) {
|
|
345 |
pad = MAXJSAMPLE*2;
|
|
346 |
cquantize->is_padded = TRUE;
|
|
347 |
} else {
|
|
348 |
pad = 0;
|
|
349 |
cquantize->is_padded = FALSE;
|
|
350 |
}
|
|
351 |
|
|
352 |
cquantize->colorindex = (*cinfo->mem->alloc_sarray)
|
|
353 |
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
354 |
(JDIMENSION) (MAXJSAMPLE+1 + pad),
|
|
355 |
(JDIMENSION) cinfo->out_color_components);
|
|
356 |
|
|
357 |
/* blksize is number of adjacent repeated entries for a component */
|
|
358 |
blksize = cquantize->sv_actual;
|
|
359 |
|
|
360 |
for (i = 0; i < cinfo->out_color_components; i++) {
|
|
361 |
/* fill in colorindex entries for i'th color component */
|
|
362 |
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
|
363 |
blksize = blksize / nci;
|
|
364 |
|
|
365 |
/* adjust colorindex pointers to provide padding at negative indexes. */
|
|
366 |
if (pad)
|
|
367 |
cquantize->colorindex[i] += MAXJSAMPLE;
|
|
368 |
|
|
369 |
/* in loop, val = index of current output value, */
|
|
370 |
/* and k = largest j that maps to current val */
|
|
371 |
indexptr = cquantize->colorindex[i];
|
|
372 |
val = 0;
|
|
373 |
k = largest_input_value(cinfo, i, 0, nci-1);
|
|
374 |
for (j = 0; j <= MAXJSAMPLE; j++) {
|
|
375 |
while (j > k) /* advance val if past boundary */
|
|
376 |
k = largest_input_value(cinfo, i, ++val, nci-1);
|
|
377 |
/* premultiply so that no multiplication needed in main processing */
|
|
378 |
indexptr[j] = (JSAMPLE) (val * blksize);
|
|
379 |
}
|
|
380 |
/* Pad at both ends if necessary */
|
|
381 |
if (pad)
|
|
382 |
for (j = 1; j <= MAXJSAMPLE; j++) {
|
|
383 |
indexptr[-j] = indexptr[0];
|
|
384 |
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
|
|
385 |
}
|
|
386 |
}
|
|
387 |
}
|
|
388 |
|
|
389 |
|
|
390 |
/*
|
|
391 |
* Create an ordered-dither array for a component having ncolors
|
|
392 |
* distinct output values.
|
|
393 |
*/
|
|
394 |
|
|
395 |
LOCAL(ODITHER_MATRIX_PTR)
|
|
396 |
make_odither_array (j_decompress_ptr cinfo, int ncolors)
|
|
397 |
{
|
|
398 |
ODITHER_MATRIX_PTR odither;
|
|
399 |
int j,k;
|
|
400 |
INT32 num,den;
|
|
401 |
|
|
402 |
odither = (ODITHER_MATRIX_PTR)
|
|
403 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
404 |
SIZEOF(ODITHER_MATRIX));
|
|
405 |
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
|
|
406 |
* Hence the dither value for the matrix cell with fill order f
|
|
407 |
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
|
|
408 |
* On 16-bit-int machine, be careful to avoid overflow.
|
|
409 |
*/
|
|
410 |
den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
|
|
411 |
for (j = 0; j < ODITHER_SIZE; j++) {
|
|
412 |
for (k = 0; k < ODITHER_SIZE; k++) {
|
|
413 |
num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
|
|
414 |
* MAXJSAMPLE;
|
|
415 |
/* Ensure round towards zero despite C's lack of consistency
|
|
416 |
* about rounding negative values in integer division...
|
|
417 |
*/
|
|
418 |
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
|
|
419 |
}
|
|
420 |
}
|
|
421 |
return odither;
|
|
422 |
}
|
|
423 |
|
|
424 |
|
|
425 |
/*
|
|
426 |
* Create the ordered-dither tables.
|
|
427 |
* Components having the same number of representative colors may
|
|
428 |
* share a dither table.
|
|
429 |
*/
|
|
430 |
|
|
431 |
LOCAL(void)
|
|
432 |
create_odither_tables (j_decompress_ptr cinfo)
|
|
433 |
{
|
|
434 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
435 |
ODITHER_MATRIX_PTR odither;
|
|
436 |
int i, j, nci;
|
|
437 |
|
|
438 |
for (i = 0; i < cinfo->out_color_components; i++) {
|
|
439 |
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
|
440 |
odither = NULL; /* search for matching prior component */
|
|
441 |
for (j = 0; j < i; j++) {
|
|
442 |
if (nci == cquantize->Ncolors[j]) {
|
|
443 |
odither = cquantize->odither[j];
|
|
444 |
break;
|
|
445 |
}
|
|
446 |
}
|
|
447 |
if (odither == NULL) /* need a new table? */
|
|
448 |
odither = make_odither_array(cinfo, nci);
|
|
449 |
cquantize->odither[i] = odither;
|
|
450 |
}
|
|
451 |
}
|
|
452 |
|
|
453 |
|
|
454 |
/*
|
|
455 |
* Map some rows of pixels to the output colormapped representation.
|
|
456 |
*/
|
|
457 |
|
|
458 |
METHODDEF(void)
|
|
459 |
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
|
460 |
JSAMPARRAY output_buf, int num_rows)
|
|
461 |
/* General case, no dithering */
|
|
462 |
{
|
|
463 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
464 |
JSAMPARRAY colorindex = cquantize->colorindex;
|
|
465 |
register int pixcode, ci;
|
|
466 |
register JSAMPROW ptrin, ptrout;
|
|
467 |
int row;
|
|
468 |
JDIMENSION col;
|
|
469 |
JDIMENSION width = cinfo->output_width;
|
|
470 |
register int nc = cinfo->out_color_components;
|
|
471 |
|
|
472 |
for (row = 0; row < num_rows; row++) {
|
|
473 |
ptrin = input_buf[row];
|
|
474 |
ptrout = output_buf[row];
|
|
475 |
for (col = width; col > 0; col--) {
|
|
476 |
pixcode = 0;
|
|
477 |
for (ci = 0; ci < nc; ci++) {
|
|
478 |
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
|
|
479 |
}
|
|
480 |
*ptrout++ = (JSAMPLE) pixcode;
|
|
481 |
}
|
|
482 |
}
|
|
483 |
}
|
|
484 |
|
|
485 |
|
|
486 |
METHODDEF(void)
|
|
487 |
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
|
488 |
JSAMPARRAY output_buf, int num_rows)
|
|
489 |
/* Fast path for out_color_components==3, no dithering */
|
|
490 |
{
|
|
491 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
492 |
register int pixcode;
|
|
493 |
register JSAMPROW ptrin, ptrout;
|
|
494 |
JSAMPROW colorindex0 = cquantize->colorindex[0];
|
|
495 |
JSAMPROW colorindex1 = cquantize->colorindex[1];
|
|
496 |
JSAMPROW colorindex2 = cquantize->colorindex[2];
|
|
497 |
int row;
|
|
498 |
JDIMENSION col;
|
|
499 |
JDIMENSION width = cinfo->output_width;
|
|
500 |
|
|
501 |
for (row = 0; row < num_rows; row++) {
|
|
502 |
ptrin = input_buf[row];
|
|
503 |
ptrout = output_buf[row];
|
|
504 |
for (col = width; col > 0; col--) {
|
|
505 |
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
|
|
506 |
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
|
|
507 |
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
|
|
508 |
*ptrout++ = (JSAMPLE) pixcode;
|
|
509 |
}
|
|
510 |
}
|
|
511 |
}
|
|
512 |
|
|
513 |
|
|
514 |
METHODDEF(void)
|
|
515 |
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
|
516 |
JSAMPARRAY output_buf, int num_rows)
|
|
517 |
/* General case, with ordered dithering */
|
|
518 |
{
|
|
519 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
520 |
register JSAMPROW input_ptr;
|
|
521 |
register JSAMPROW output_ptr;
|
|
522 |
JSAMPROW colorindex_ci;
|
|
523 |
int * dither; /* points to active row of dither matrix */
|
|
524 |
int row_index, col_index; /* current indexes into dither matrix */
|
|
525 |
int nc = cinfo->out_color_components;
|
|
526 |
int ci;
|
|
527 |
int row;
|
|
528 |
JDIMENSION col;
|
|
529 |
JDIMENSION width = cinfo->output_width;
|
|
530 |
|
|
531 |
for (row = 0; row < num_rows; row++) {
|
|
532 |
/* Initialize output values to 0 so can process components separately */
|
|
533 |
jzero_far((void FAR *) output_buf[row],
|
|
534 |
(size_t) (width * SIZEOF(JSAMPLE)));
|
|
535 |
row_index = cquantize->row_index;
|
|
536 |
for (ci = 0; ci < nc; ci++) {
|
|
537 |
input_ptr = input_buf[row] + ci;
|
|
538 |
output_ptr = output_buf[row];
|
|
539 |
colorindex_ci = cquantize->colorindex[ci];
|
|
540 |
dither = cquantize->odither[ci][row_index];
|
|
541 |
col_index = 0;
|
|
542 |
|
|
543 |
for (col = width; col > 0; col--) {
|
|
544 |
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
|
|
545 |
* select output value, accumulate into output code for this pixel.
|
|
546 |
* Range-limiting need not be done explicitly, as we have extended
|
|
547 |
* the colorindex table to produce the right answers for out-of-range
|
|
548 |
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the
|
|
549 |
* required amount of padding.
|
|
550 |
*/
|
|
551 |
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
|
|
552 |
input_ptr += nc;
|
|
553 |
output_ptr++;
|
|
554 |
col_index = (col_index + 1) & ODITHER_MASK;
|
|
555 |
}
|
|
556 |
}
|
|
557 |
/* Advance row index for next row */
|
|
558 |
row_index = (row_index + 1) & ODITHER_MASK;
|
|
559 |
cquantize->row_index = row_index;
|
|
560 |
}
|
|
561 |
}
|
|
562 |
|
|
563 |
|
|
564 |
METHODDEF(void)
|
|
565 |
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
|
566 |
JSAMPARRAY output_buf, int num_rows)
|
|
567 |
/* Fast path for out_color_components==3, with ordered dithering */
|
|
568 |
{
|
|
569 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
570 |
register int pixcode;
|
|
571 |
register JSAMPROW input_ptr;
|
|
572 |
register JSAMPROW output_ptr;
|
|
573 |
JSAMPROW colorindex0 = cquantize->colorindex[0];
|
|
574 |
JSAMPROW colorindex1 = cquantize->colorindex[1];
|
|
575 |
JSAMPROW colorindex2 = cquantize->colorindex[2];
|
|
576 |
int * dither0; /* points to active row of dither matrix */
|
|
577 |
int * dither1;
|
|
578 |
int * dither2;
|
|
579 |
int row_index, col_index; /* current indexes into dither matrix */
|
|
580 |
int row;
|
|
581 |
JDIMENSION col;
|
|
582 |
JDIMENSION width = cinfo->output_width;
|
|
583 |
|
|
584 |
for (row = 0; row < num_rows; row++) {
|
|
585 |
row_index = cquantize->row_index;
|
|
586 |
input_ptr = input_buf[row];
|
|
587 |
output_ptr = output_buf[row];
|
|
588 |
dither0 = cquantize->odither[0][row_index];
|
|
589 |
dither1 = cquantize->odither[1][row_index];
|
|
590 |
dither2 = cquantize->odither[2][row_index];
|
|
591 |
col_index = 0;
|
|
592 |
|
|
593 |
for (col = width; col > 0; col--) {
|
|
594 |
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
|
|
595 |
dither0[col_index]]);
|
|
596 |
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
|
|
597 |
dither1[col_index]]);
|
|
598 |
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
|
|
599 |
dither2[col_index]]);
|
|
600 |
*output_ptr++ = (JSAMPLE) pixcode;
|
|
601 |
col_index = (col_index + 1) & ODITHER_MASK;
|
|
602 |
}
|
|
603 |
row_index = (row_index + 1) & ODITHER_MASK;
|
|
604 |
cquantize->row_index = row_index;
|
|
605 |
}
|
|
606 |
}
|
|
607 |
|
|
608 |
|
|
609 |
METHODDEF(void)
|
|
610 |
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
|
611 |
JSAMPARRAY output_buf, int num_rows)
|
|
612 |
/* General case, with Floyd-Steinberg dithering */
|
|
613 |
{
|
|
614 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
615 |
register LOCFSERROR cur; /* current error or pixel value */
|
|
616 |
LOCFSERROR belowerr; /* error for pixel below cur */
|
|
617 |
LOCFSERROR bpreverr; /* error for below/prev col */
|
|
618 |
LOCFSERROR bnexterr; /* error for below/next col */
|
|
619 |
LOCFSERROR delta;
|
|
620 |
register FSERRPTR errorptr; /* => fserrors[] at column before current */
|
|
621 |
register JSAMPROW input_ptr;
|
|
622 |
register JSAMPROW output_ptr;
|
|
623 |
JSAMPROW colorindex_ci;
|
|
624 |
JSAMPROW colormap_ci;
|
|
625 |
int pixcode;
|
|
626 |
int nc = cinfo->out_color_components;
|
|
627 |
int dir; /* 1 for left-to-right, -1 for right-to-left */
|
|
628 |
int dirnc; /* dir * nc */
|
|
629 |
int ci;
|
|
630 |
int row;
|
|
631 |
JDIMENSION col;
|
|
632 |
JDIMENSION width = cinfo->output_width;
|
|
633 |
JSAMPLE *range_limit = cinfo->sample_range_limit;
|
|
634 |
SHIFT_TEMPS
|
|
635 |
|
|
636 |
for (row = 0; row < num_rows; row++) {
|
|
637 |
/* Initialize output values to 0 so can process components separately */
|
|
638 |
jzero_far((void FAR *) output_buf[row],
|
|
639 |
(size_t) (width * SIZEOF(JSAMPLE)));
|
|
640 |
for (ci = 0; ci < nc; ci++) {
|
|
641 |
input_ptr = input_buf[row] + ci;
|
|
642 |
output_ptr = output_buf[row];
|
|
643 |
if (cquantize->on_odd_row) {
|
|
644 |
/* work right to left in this row */
|
|
645 |
input_ptr += (width-1) * nc; /* so point to rightmost pixel */
|
|
646 |
output_ptr += width-1;
|
|
647 |
dir = -1;
|
|
648 |
dirnc = -nc;
|
|
649 |
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
|
|
650 |
} else {
|
|
651 |
/* work left to right in this row */
|
|
652 |
dir = 1;
|
|
653 |
dirnc = nc;
|
|
654 |
errorptr = cquantize->fserrors[ci]; /* => entry before first column */
|
|
655 |
}
|
|
656 |
colorindex_ci = cquantize->colorindex[ci];
|
|
657 |
colormap_ci = cquantize->sv_colormap[ci];
|
|
658 |
/* Preset error values: no error propagated to first pixel from left */
|
|
659 |
cur = 0;
|
|
660 |
/* and no error propagated to row below yet */
|
|
661 |
belowerr = bpreverr = 0;
|
|
662 |
|
|
663 |
for (col = width; col > 0; col--) {
|
|
664 |
/* cur holds the error propagated from the previous pixel on the
|
|
665 |
* current line. Add the error propagated from the previous line
|
|
666 |
* to form the complete error correction term for this pixel, and
|
|
667 |
* round the error term (which is expressed * 16) to an integer.
|
|
668 |
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
|
|
669 |
* for either sign of the error value.
|
|
670 |
* Note: errorptr points to *previous* column's array entry.
|
|
671 |
*/
|
|
672 |
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
|
|
673 |
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
|
674 |
* The maximum error is +- MAXJSAMPLE; this sets the required size
|
|
675 |
* of the range_limit array.
|
|
676 |
*/
|
|
677 |
cur += GETJSAMPLE(*input_ptr);
|
|
678 |
cur = GETJSAMPLE(range_limit[cur]);
|
|
679 |
/* Select output value, accumulate into output code for this pixel */
|
|
680 |
pixcode = GETJSAMPLE(colorindex_ci[cur]);
|
|
681 |
*output_ptr += (JSAMPLE) pixcode;
|
|
682 |
/* Compute actual representation error at this pixel */
|
|
683 |
/* Note: we can do this even though we don't have the final */
|
|
684 |
/* pixel code, because the colormap is orthogonal. */
|
|
685 |
cur -= GETJSAMPLE(colormap_ci[pixcode]);
|
|
686 |
/* Compute error fractions to be propagated to adjacent pixels.
|
|
687 |
* Add these into the running sums, and simultaneously shift the
|
|
688 |
* next-line error sums left by 1 column.
|
|
689 |
*/
|
|
690 |
bnexterr = cur;
|
|
691 |
delta = cur * 2;
|
|
692 |
cur += delta; /* form error * 3 */
|
|
693 |
errorptr[0] = (FSERROR) (bpreverr + cur);
|
|
694 |
cur += delta; /* form error * 5 */
|
|
695 |
bpreverr = belowerr + cur;
|
|
696 |
belowerr = bnexterr;
|
|
697 |
cur += delta; /* form error * 7 */
|
|
698 |
/* At this point cur contains the 7/16 error value to be propagated
|
|
699 |
* to the next pixel on the current line, and all the errors for the
|
|
700 |
* next line have been shifted over. We are therefore ready to move on.
|
|
701 |
*/
|
|
702 |
input_ptr += dirnc; /* advance input ptr to next column */
|
|
703 |
output_ptr += dir; /* advance output ptr to next column */
|
|
704 |
errorptr += dir; /* advance errorptr to current column */
|
|
705 |
}
|
|
706 |
/* Post-loop cleanup: we must unload the final error value into the
|
|
707 |
* final fserrors[] entry. Note we need not unload belowerr because
|
|
708 |
* it is for the dummy column before or after the actual array.
|
|
709 |
*/
|
|
710 |
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
|
|
711 |
}
|
|
712 |
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
|
|
713 |
}
|
|
714 |
}
|
|
715 |
|
|
716 |
|
|
717 |
/*
|
|
718 |
* Allocate workspace for Floyd-Steinberg errors.
|
|
719 |
*/
|
|
720 |
|
|
721 |
LOCAL(void)
|
|
722 |
alloc_fs_workspace (j_decompress_ptr cinfo)
|
|
723 |
{
|
|
724 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
725 |
size_t arraysize;
|
|
726 |
int i;
|
|
727 |
|
|
728 |
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
|
|
729 |
for (i = 0; i < cinfo->out_color_components; i++) {
|
|
730 |
cquantize->fserrors[i] = (FSERRPTR)
|
|
731 |
(*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
|
|
732 |
}
|
|
733 |
}
|
|
734 |
|
|
735 |
|
|
736 |
/*
|
|
737 |
* Initialize for one-pass color quantization.
|
|
738 |
*/
|
|
739 |
|
|
740 |
METHODDEF(void)
|
|
741 |
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
|
|
742 |
{
|
|
743 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|
744 |
size_t arraysize;
|
|
745 |
int i;
|
|
746 |
|
|
747 |
/* Install my colormap. */
|
|
748 |
cinfo->colormap = cquantize->sv_colormap;
|
|
749 |
cinfo->actual_number_of_colors = cquantize->sv_actual;
|
|
750 |
|
|
751 |
/* Initialize for desired dithering mode. */
|
|
752 |
switch (cinfo->dither_mode) {
|
|
753 |
case JDITHER_NONE:
|
|
754 |
if (cinfo->out_color_components == 3)
|
|
755 |
cquantize->pub.color_quantize = color_quantize3;
|
|
756 |
else
|
|
757 |
cquantize->pub.color_quantize = color_quantize;
|
|
758 |
break;
|
|
759 |
case JDITHER_ORDERED:
|
|
760 |
if (cinfo->out_color_components == 3)
|
|
761 |
cquantize->pub.color_quantize = quantize3_ord_dither;
|
|
762 |
else
|
|
763 |
cquantize->pub.color_quantize = quantize_ord_dither;
|
|
764 |
cquantize->row_index = 0; /* initialize state for ordered dither */
|
|
765 |
/* If user changed to ordered dither from another mode,
|
|
766 |
* we must recreate the color index table with padding.
|
|
767 |
* This will cost extra space, but probably isn't very likely.
|
|
768 |
*/
|
|
769 |
if (! cquantize->is_padded)
|
|
770 |
create_colorindex(cinfo);
|
|
771 |
/* Create ordered-dither tables if we didn't already. */
|
|
772 |
if (cquantize->odither[0] == NULL)
|
|
773 |
create_odither_tables(cinfo);
|
|
774 |
break;
|
|
775 |
case JDITHER_FS:
|
|
776 |
cquantize->pub.color_quantize = quantize_fs_dither;
|
|
777 |
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
|
|
778 |
/* Allocate Floyd-Steinberg workspace if didn't already. */
|
|
779 |
if (cquantize->fserrors[0] == NULL)
|
|
780 |
alloc_fs_workspace(cinfo);
|
|
781 |
/* Initialize the propagated errors to zero. */
|
|
782 |
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
|
|
783 |
for (i = 0; i < cinfo->out_color_components; i++)
|
|
784 |
jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
|
|
785 |
break;
|
|
786 |
default:
|
|
787 |
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
788 |
break;
|
|
789 |
}
|
|
790 |
}
|
|
791 |
|
|
792 |
|
|
793 |
/*
|
|
794 |
* Finish up at the end of the pass.
|
|
795 |
*/
|
|
796 |
|
|
797 |
METHODDEF(void)
|
|
798 |
finish_pass_1_quant (j_decompress_ptr cinfo)
|
|
799 |
{
|
|
800 |
/* no work in 1-pass case */
|
|
801 |
}
|
|
802 |
|
|
803 |
|
|
804 |
/*
|
|
805 |
* Switch to a new external colormap between output passes.
|
|
806 |
* Shouldn't get to this module!
|
|
807 |
*/
|
|
808 |
|
|
809 |
METHODDEF(void)
|
|
810 |
new_color_map_1_quant (j_decompress_ptr cinfo)
|
|
811 |
{
|
|
812 |
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
|
813 |
}
|
|
814 |
|
|
815 |
|
|
816 |
/*
|
|
817 |
* Module initialization routine for 1-pass color quantization.
|
|
818 |
*/
|
|
819 |
|
|
820 |
GLOBAL(void)
|
|
821 |
jinit_1pass_quantizer (j_decompress_ptr cinfo)
|
|
822 |
{
|
|
823 |
my_cquantize_ptr cquantize;
|
|
824 |
|
|
825 |
cquantize = (my_cquantize_ptr)
|
|
826 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
827 |
SIZEOF(my_cquantizer));
|
|
828 |
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
|
|
829 |
cquantize->pub.start_pass = start_pass_1_quant;
|
|
830 |
cquantize->pub.finish_pass = finish_pass_1_quant;
|
|
831 |
cquantize->pub.new_color_map = new_color_map_1_quant;
|
|
832 |
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
|
|
833 |
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
|
|
834 |
|
|
835 |
/* Make sure my internal arrays won't overflow */
|
|
836 |
if (cinfo->out_color_components > MAX_Q_COMPS)
|
|
837 |
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
|
|
838 |
/* Make sure colormap indexes can be represented by JSAMPLEs */
|
|
839 |
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
|
|
840 |
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
|
|
841 |
|
|
842 |
/* Create the colormap and color index table. */
|
|
843 |
create_colormap(cinfo);
|
|
844 |
create_colorindex(cinfo);
|
|
845 |
|
|
846 |
/* Allocate Floyd-Steinberg workspace now if requested.
|
|
847 |
* We do this now since it is FAR storage and may affect the memory
|
|
848 |
* manager's space calculations. If the user changes to FS dither
|
|
849 |
* mode in a later pass, we will allocate the space then, and will
|
|
850 |
* possibly overrun the max_memory_to_use setting.
|
|
851 |
*/
|
|
852 |
if (cinfo->dither_mode == JDITHER_FS)
|
|
853 |
alloc_fs_workspace(cinfo);
|
|
854 |
}
|
|
855 |
|
|
856 |
#endif /* QUANT_1PASS_SUPPORTED */
|