0
|
1 |
/* crc32.c -- compute the CRC-32 of a data stream
|
|
2 |
* Copyright (C) 1995-2005 Mark Adler
|
|
3 |
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
4 |
*
|
|
5 |
* Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
|
|
6 |
* CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
|
|
7 |
* tables for updating the shift register in one step with three exclusive-ors
|
|
8 |
* instead of four steps with four exclusive-ors. This results in about a
|
|
9 |
* factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
|
|
10 |
*/
|
|
11 |
|
|
12 |
/* @(#) $Id$ */
|
|
13 |
|
|
14 |
/*
|
|
15 |
Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
|
|
16 |
protection on the static variables used to control the first-use generation
|
|
17 |
of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
|
|
18 |
first call get_crc_table() to initialize the tables before allowing more than
|
|
19 |
one thread to use crc32().
|
|
20 |
*/
|
|
21 |
|
|
22 |
#ifdef MAKECRCH
|
|
23 |
# include <stdio.h>
|
|
24 |
# ifndef DYNAMIC_CRC_TABLE
|
|
25 |
# define DYNAMIC_CRC_TABLE
|
|
26 |
# endif /* !DYNAMIC_CRC_TABLE */
|
|
27 |
#endif /* MAKECRCH */
|
|
28 |
|
|
29 |
#include "zutil.h" /* for STDC and FAR definitions */
|
|
30 |
|
|
31 |
#define local static
|
|
32 |
|
|
33 |
/* Find a four-byte integer type for crc32_little() and crc32_big(). */
|
|
34 |
#ifndef NOBYFOUR
|
|
35 |
# ifdef STDC /* need ANSI C limits.h to determine sizes */
|
|
36 |
# include <limits.h>
|
|
37 |
# define BYFOUR
|
|
38 |
# if (UINT_MAX == 0xffffffffUL)
|
|
39 |
typedef unsigned int u4;
|
|
40 |
# else
|
|
41 |
# if (ULONG_MAX == 0xffffffffUL)
|
|
42 |
typedef unsigned long u4;
|
|
43 |
# else
|
|
44 |
# if (USHRT_MAX == 0xffffffffUL)
|
|
45 |
typedef unsigned short u4;
|
|
46 |
# else
|
|
47 |
# undef BYFOUR /* can't find a four-byte integer type! */
|
|
48 |
# endif
|
|
49 |
# endif
|
|
50 |
# endif
|
|
51 |
# endif /* STDC */
|
|
52 |
#endif /* !NOBYFOUR */
|
|
53 |
|
|
54 |
/* Definitions for doing the crc four data bytes at a time. */
|
|
55 |
#ifdef BYFOUR
|
|
56 |
# define REV(w) (((w)>>24)+(((w)>>8)&0xff00)+ \
|
|
57 |
(((w)&0xff00)<<8)+(((w)&0xff)<<24))
|
|
58 |
local unsigned long crc32_little OF((unsigned long,
|
|
59 |
const unsigned char FAR *, unsigned));
|
|
60 |
local unsigned long crc32_big OF((unsigned long,
|
|
61 |
const unsigned char FAR *, unsigned));
|
|
62 |
# define TBLS 8
|
|
63 |
#else
|
|
64 |
# define TBLS 1
|
|
65 |
#endif /* BYFOUR */
|
|
66 |
|
|
67 |
/* Local functions for crc concatenation */
|
|
68 |
local unsigned long gf2_matrix_times OF((unsigned long *mat,
|
|
69 |
unsigned long vec));
|
|
70 |
local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
|
|
71 |
|
|
72 |
#ifdef DYNAMIC_CRC_TABLE
|
|
73 |
|
|
74 |
local volatile int crc_table_empty = 1;
|
|
75 |
local unsigned long FAR crc_table[TBLS][256];
|
|
76 |
local void make_crc_table OF((void));
|
|
77 |
#ifdef MAKECRCH
|
|
78 |
local void write_table OF((FILE *, const unsigned long FAR *));
|
|
79 |
#endif /* MAKECRCH */
|
|
80 |
/*
|
|
81 |
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
|
|
82 |
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
|
|
83 |
|
|
84 |
Polynomials over GF(2) are represented in binary, one bit per coefficient,
|
|
85 |
with the lowest powers in the most significant bit. Then adding polynomials
|
|
86 |
is just exclusive-or, and multiplying a polynomial by x is a right shift by
|
|
87 |
one. If we call the above polynomial p, and represent a byte as the
|
|
88 |
polynomial q, also with the lowest power in the most significant bit (so the
|
|
89 |
byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
|
|
90 |
where a mod b means the remainder after dividing a by b.
|
|
91 |
|
|
92 |
This calculation is done using the shift-register method of multiplying and
|
|
93 |
taking the remainder. The register is initialized to zero, and for each
|
|
94 |
incoming bit, x^32 is added mod p to the register if the bit is a one (where
|
|
95 |
x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
|
|
96 |
x (which is shifting right by one and adding x^32 mod p if the bit shifted
|
|
97 |
out is a one). We start with the highest power (least significant bit) of
|
|
98 |
q and repeat for all eight bits of q.
|
|
99 |
|
|
100 |
The first table is simply the CRC of all possible eight bit values. This is
|
|
101 |
all the information needed to generate CRCs on data a byte at a time for all
|
|
102 |
combinations of CRC register values and incoming bytes. The remaining tables
|
|
103 |
allow for word-at-a-time CRC calculation for both big-endian and little-
|
|
104 |
endian machines, where a word is four bytes.
|
|
105 |
*/
|
|
106 |
local void make_crc_table()
|
|
107 |
{
|
|
108 |
unsigned long c;
|
|
109 |
int n, k;
|
|
110 |
unsigned long poly; /* polynomial exclusive-or pattern */
|
|
111 |
/* terms of polynomial defining this crc (except x^32): */
|
|
112 |
static volatile int first = 1; /* flag to limit concurrent making */
|
|
113 |
static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
|
|
114 |
|
|
115 |
/* See if another task is already doing this (not thread-safe, but better
|
|
116 |
than nothing -- significantly reduces duration of vulnerability in
|
|
117 |
case the advice about DYNAMIC_CRC_TABLE is ignored) */
|
|
118 |
if (first) {
|
|
119 |
first = 0;
|
|
120 |
|
|
121 |
/* make exclusive-or pattern from polynomial (0xedb88320UL) */
|
|
122 |
poly = 0UL;
|
|
123 |
for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++)
|
|
124 |
poly |= 1UL << (31 - p[n]);
|
|
125 |
|
|
126 |
/* generate a crc for every 8-bit value */
|
|
127 |
for (n = 0; n < 256; n++) {
|
|
128 |
c = (unsigned long)n;
|
|
129 |
for (k = 0; k < 8; k++)
|
|
130 |
c = c & 1 ? poly ^ (c >> 1) : c >> 1;
|
|
131 |
crc_table[0][n] = c;
|
|
132 |
}
|
|
133 |
|
|
134 |
#ifdef BYFOUR
|
|
135 |
/* generate crc for each value followed by one, two, and three zeros,
|
|
136 |
and then the byte reversal of those as well as the first table */
|
|
137 |
for (n = 0; n < 256; n++) {
|
|
138 |
c = crc_table[0][n];
|
|
139 |
crc_table[4][n] = REV(c);
|
|
140 |
for (k = 1; k < 4; k++) {
|
|
141 |
c = crc_table[0][c & 0xff] ^ (c >> 8);
|
|
142 |
crc_table[k][n] = c;
|
|
143 |
crc_table[k + 4][n] = REV(c);
|
|
144 |
}
|
|
145 |
}
|
|
146 |
#endif /* BYFOUR */
|
|
147 |
|
|
148 |
crc_table_empty = 0;
|
|
149 |
}
|
|
150 |
else { /* not first */
|
|
151 |
/* wait for the other guy to finish (not efficient, but rare) */
|
|
152 |
while (crc_table_empty)
|
|
153 |
;
|
|
154 |
}
|
|
155 |
|
|
156 |
#ifdef MAKECRCH
|
|
157 |
/* write out CRC tables to crc32.h */
|
|
158 |
{
|
|
159 |
FILE *out;
|
|
160 |
|
|
161 |
out = fopen("crc32.h", "w");
|
|
162 |
if (out == NULL) return;
|
|
163 |
fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
|
|
164 |
fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
|
|
165 |
fprintf(out, "local const unsigned long FAR ");
|
|
166 |
fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
|
|
167 |
write_table(out, crc_table[0]);
|
|
168 |
# ifdef BYFOUR
|
|
169 |
fprintf(out, "#ifdef BYFOUR\n");
|
|
170 |
for (k = 1; k < 8; k++) {
|
|
171 |
fprintf(out, " },\n {\n");
|
|
172 |
write_table(out, crc_table[k]);
|
|
173 |
}
|
|
174 |
fprintf(out, "#endif\n");
|
|
175 |
# endif /* BYFOUR */
|
|
176 |
fprintf(out, " }\n};\n");
|
|
177 |
fclose(out);
|
|
178 |
}
|
|
179 |
#endif /* MAKECRCH */
|
|
180 |
}
|
|
181 |
|
|
182 |
#ifdef MAKECRCH
|
|
183 |
local void write_table(out, table)
|
|
184 |
FILE *out;
|
|
185 |
const unsigned long FAR *table;
|
|
186 |
{
|
|
187 |
int n;
|
|
188 |
|
|
189 |
for (n = 0; n < 256; n++)
|
|
190 |
fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", table[n],
|
|
191 |
n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
|
|
192 |
}
|
|
193 |
#endif /* MAKECRCH */
|
|
194 |
|
|
195 |
#else /* !DYNAMIC_CRC_TABLE */
|
|
196 |
/* ========================================================================
|
|
197 |
* Tables of CRC-32s of all single-byte values, made by make_crc_table().
|
|
198 |
*/
|
|
199 |
#include "crc32.h"
|
|
200 |
#endif /* DYNAMIC_CRC_TABLE */
|
|
201 |
|
|
202 |
/* =========================================================================
|
|
203 |
* This function can be used by asm versions of crc32()
|
|
204 |
*/
|
|
205 |
const unsigned long FAR * ZEXPORT get_crc_table()
|
|
206 |
{
|
|
207 |
#ifdef DYNAMIC_CRC_TABLE
|
|
208 |
if (crc_table_empty)
|
|
209 |
make_crc_table();
|
|
210 |
#endif /* DYNAMIC_CRC_TABLE */
|
|
211 |
return (const unsigned long FAR *)crc_table;
|
|
212 |
}
|
|
213 |
|
|
214 |
/* ========================================================================= */
|
|
215 |
#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
|
|
216 |
#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
|
|
217 |
|
|
218 |
/* ========================================================================= */
|
|
219 |
unsigned long ZEXPORT crc32(crc, buf, len)
|
|
220 |
unsigned long crc;
|
|
221 |
const unsigned char FAR *buf;
|
|
222 |
unsigned len;
|
|
223 |
{
|
|
224 |
if (buf == Z_NULL) return 0UL;
|
|
225 |
|
|
226 |
#ifdef DYNAMIC_CRC_TABLE
|
|
227 |
if (crc_table_empty)
|
|
228 |
make_crc_table();
|
|
229 |
#endif /* DYNAMIC_CRC_TABLE */
|
|
230 |
|
|
231 |
#ifdef BYFOUR
|
|
232 |
if (sizeof(void *) == sizeof(ptrdiff_t)) {
|
|
233 |
u4 endian;
|
|
234 |
|
|
235 |
endian = 1;
|
|
236 |
if (*((unsigned char *)(&endian)))
|
|
237 |
return crc32_little(crc, buf, len);
|
|
238 |
else
|
|
239 |
return crc32_big(crc, buf, len);
|
|
240 |
}
|
|
241 |
#endif /* BYFOUR */
|
|
242 |
crc = crc ^ 0xffffffffUL;
|
|
243 |
while (len >= 8) {
|
|
244 |
DO8;
|
|
245 |
len -= 8;
|
|
246 |
}
|
|
247 |
if (len) do {
|
|
248 |
DO1;
|
|
249 |
} while (--len);
|
|
250 |
return crc ^ 0xffffffffUL;
|
|
251 |
}
|
|
252 |
|
|
253 |
#ifdef BYFOUR
|
|
254 |
|
|
255 |
/* ========================================================================= */
|
|
256 |
#define DOLIT4 c ^= *buf4++; \
|
|
257 |
c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
|
|
258 |
crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
|
|
259 |
#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
|
|
260 |
|
|
261 |
/* ========================================================================= */
|
|
262 |
local unsigned long crc32_little(crc, buf, len)
|
|
263 |
unsigned long crc;
|
|
264 |
const unsigned char FAR *buf;
|
|
265 |
unsigned len;
|
|
266 |
{
|
|
267 |
register u4 c;
|
|
268 |
register const u4 FAR *buf4;
|
|
269 |
|
|
270 |
c = (u4)crc;
|
|
271 |
c = ~c;
|
|
272 |
while (len && ((ptrdiff_t)buf & 3)) {
|
|
273 |
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
|
|
274 |
len--;
|
|
275 |
}
|
|
276 |
|
|
277 |
buf4 = (const u4 FAR *)(const void FAR *)buf;
|
|
278 |
while (len >= 32) {
|
|
279 |
DOLIT32;
|
|
280 |
len -= 32;
|
|
281 |
}
|
|
282 |
while (len >= 4) {
|
|
283 |
DOLIT4;
|
|
284 |
len -= 4;
|
|
285 |
}
|
|
286 |
buf = (const unsigned char FAR *)buf4;
|
|
287 |
|
|
288 |
if (len) do {
|
|
289 |
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
|
|
290 |
} while (--len);
|
|
291 |
c = ~c;
|
|
292 |
return (unsigned long)c;
|
|
293 |
}
|
|
294 |
|
|
295 |
/* ========================================================================= */
|
|
296 |
#define DOBIG4 c ^= *++buf4; \
|
|
297 |
c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
|
|
298 |
crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
|
|
299 |
#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
|
|
300 |
|
|
301 |
/* ========================================================================= */
|
|
302 |
local unsigned long crc32_big(crc, buf, len)
|
|
303 |
unsigned long crc;
|
|
304 |
const unsigned char FAR *buf;
|
|
305 |
unsigned len;
|
|
306 |
{
|
|
307 |
register u4 c;
|
|
308 |
register const u4 FAR *buf4;
|
|
309 |
|
|
310 |
c = REV((u4)crc);
|
|
311 |
c = ~c;
|
|
312 |
while (len && ((ptrdiff_t)buf & 3)) {
|
|
313 |
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
|
|
314 |
len--;
|
|
315 |
}
|
|
316 |
|
|
317 |
buf4 = (const u4 FAR *)(const void FAR *)buf;
|
|
318 |
buf4--;
|
|
319 |
while (len >= 32) {
|
|
320 |
DOBIG32;
|
|
321 |
len -= 32;
|
|
322 |
}
|
|
323 |
while (len >= 4) {
|
|
324 |
DOBIG4;
|
|
325 |
len -= 4;
|
|
326 |
}
|
|
327 |
buf4++;
|
|
328 |
buf = (const unsigned char FAR *)buf4;
|
|
329 |
|
|
330 |
if (len) do {
|
|
331 |
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
|
|
332 |
} while (--len);
|
|
333 |
c = ~c;
|
|
334 |
return (unsigned long)(REV(c));
|
|
335 |
}
|
|
336 |
|
|
337 |
#endif /* BYFOUR */
|
|
338 |
|
|
339 |
#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
|
|
340 |
|
|
341 |
/* ========================================================================= */
|
|
342 |
local unsigned long gf2_matrix_times(mat, vec)
|
|
343 |
unsigned long *mat;
|
|
344 |
unsigned long vec;
|
|
345 |
{
|
|
346 |
unsigned long sum;
|
|
347 |
|
|
348 |
sum = 0;
|
|
349 |
while (vec) {
|
|
350 |
if (vec & 1)
|
|
351 |
sum ^= *mat;
|
|
352 |
vec >>= 1;
|
|
353 |
mat++;
|
|
354 |
}
|
|
355 |
return sum;
|
|
356 |
}
|
|
357 |
|
|
358 |
/* ========================================================================= */
|
|
359 |
local void gf2_matrix_square(square, mat)
|
|
360 |
unsigned long *square;
|
|
361 |
unsigned long *mat;
|
|
362 |
{
|
|
363 |
int n;
|
|
364 |
|
|
365 |
for (n = 0; n < GF2_DIM; n++)
|
|
366 |
square[n] = gf2_matrix_times(mat, mat[n]);
|
|
367 |
}
|
|
368 |
|
|
369 |
/* ========================================================================= */
|
|
370 |
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
|
|
371 |
uLong crc1;
|
|
372 |
uLong crc2;
|
|
373 |
z_off_t len2;
|
|
374 |
{
|
|
375 |
int n;
|
|
376 |
unsigned long row;
|
|
377 |
unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
|
|
378 |
unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
|
|
379 |
|
|
380 |
/* degenerate case */
|
|
381 |
if (len2 == 0)
|
|
382 |
return crc1;
|
|
383 |
|
|
384 |
/* put operator for one zero bit in odd */
|
|
385 |
odd[0] = 0xedb88320L; /* CRC-32 polynomial */
|
|
386 |
row = 1;
|
|
387 |
for (n = 1; n < GF2_DIM; n++) {
|
|
388 |
odd[n] = row;
|
|
389 |
row <<= 1;
|
|
390 |
}
|
|
391 |
|
|
392 |
/* put operator for two zero bits in even */
|
|
393 |
gf2_matrix_square(even, odd);
|
|
394 |
|
|
395 |
/* put operator for four zero bits in odd */
|
|
396 |
gf2_matrix_square(odd, even);
|
|
397 |
|
|
398 |
/* apply len2 zeros to crc1 (first square will put the operator for one
|
|
399 |
zero byte, eight zero bits, in even) */
|
|
400 |
do {
|
|
401 |
/* apply zeros operator for this bit of len2 */
|
|
402 |
gf2_matrix_square(even, odd);
|
|
403 |
if (len2 & 1)
|
|
404 |
crc1 = gf2_matrix_times(even, crc1);
|
|
405 |
len2 >>= 1;
|
|
406 |
|
|
407 |
/* if no more bits set, then done */
|
|
408 |
if (len2 == 0)
|
|
409 |
break;
|
|
410 |
|
|
411 |
/* another iteration of the loop with odd and even swapped */
|
|
412 |
gf2_matrix_square(odd, even);
|
|
413 |
if (len2 & 1)
|
|
414 |
crc1 = gf2_matrix_times(odd, crc1);
|
|
415 |
len2 >>= 1;
|
|
416 |
|
|
417 |
/* if no more bits set, then done */
|
|
418 |
} while (len2 != 0);
|
|
419 |
|
|
420 |
/* return combined crc */
|
|
421 |
crc1 ^= crc2;
|
|
422 |
return crc1;
|
|
423 |
}
|