src/3rdparty/libjpeg/jccoefct.c
changeset 0 1918ee327afb
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /*
       
     2  * jccoefct.c
       
     3  *
       
     4  * Copyright (C) 1994-1997, Thomas G. Lane.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This file contains the coefficient buffer controller for compression.
       
     9  * This controller is the top level of the JPEG compressor proper.
       
    10  * The coefficient buffer lies between forward-DCT and entropy encoding steps.
       
    11  */
       
    12 
       
    13 #define JPEG_INTERNALS
       
    14 #include "jinclude.h"
       
    15 #include "jpeglib.h"
       
    16 
       
    17 
       
    18 /* We use a full-image coefficient buffer when doing Huffman optimization,
       
    19  * and also for writing multiple-scan JPEG files.  In all cases, the DCT
       
    20  * step is run during the first pass, and subsequent passes need only read
       
    21  * the buffered coefficients.
       
    22  */
       
    23 #ifdef ENTROPY_OPT_SUPPORTED
       
    24 #define FULL_COEF_BUFFER_SUPPORTED
       
    25 #else
       
    26 #ifdef C_MULTISCAN_FILES_SUPPORTED
       
    27 #define FULL_COEF_BUFFER_SUPPORTED
       
    28 #endif
       
    29 #endif
       
    30 
       
    31 
       
    32 /* Private buffer controller object */
       
    33 
       
    34 typedef struct {
       
    35   struct jpeg_c_coef_controller pub; /* public fields */
       
    36 
       
    37   JDIMENSION iMCU_row_num;	/* iMCU row # within image */
       
    38   JDIMENSION mcu_ctr;		/* counts MCUs processed in current row */
       
    39   int MCU_vert_offset;		/* counts MCU rows within iMCU row */
       
    40   int MCU_rows_per_iMCU_row;	/* number of such rows needed */
       
    41 
       
    42   /* For single-pass compression, it's sufficient to buffer just one MCU
       
    43    * (although this may prove a bit slow in practice).  We allocate a
       
    44    * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
       
    45    * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
       
    46    * it's not really very big; this is to keep the module interfaces unchanged
       
    47    * when a large coefficient buffer is necessary.)
       
    48    * In multi-pass modes, this array points to the current MCU's blocks
       
    49    * within the virtual arrays.
       
    50    */
       
    51   JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
       
    52 
       
    53   /* In multi-pass modes, we need a virtual block array for each component. */
       
    54   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
       
    55 } my_coef_controller;
       
    56 
       
    57 typedef my_coef_controller * my_coef_ptr;
       
    58 
       
    59 
       
    60 /* Forward declarations */
       
    61 METHODDEF(boolean) compress_data
       
    62     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
       
    63 #ifdef FULL_COEF_BUFFER_SUPPORTED
       
    64 METHODDEF(boolean) compress_first_pass
       
    65     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
       
    66 METHODDEF(boolean) compress_output
       
    67     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
       
    68 #endif
       
    69 
       
    70 
       
    71 LOCAL(void)
       
    72 start_iMCU_row (j_compress_ptr cinfo)
       
    73 /* Reset within-iMCU-row counters for a new row */
       
    74 {
       
    75   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
       
    76 
       
    77   /* In an interleaved scan, an MCU row is the same as an iMCU row.
       
    78    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
       
    79    * But at the bottom of the image, process only what's left.
       
    80    */
       
    81   if (cinfo->comps_in_scan > 1) {
       
    82     coef->MCU_rows_per_iMCU_row = 1;
       
    83   } else {
       
    84     if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
       
    85       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
       
    86     else
       
    87       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
       
    88   }
       
    89 
       
    90   coef->mcu_ctr = 0;
       
    91   coef->MCU_vert_offset = 0;
       
    92 }
       
    93 
       
    94 
       
    95 /*
       
    96  * Initialize for a processing pass.
       
    97  */
       
    98 
       
    99 METHODDEF(void)
       
   100 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
       
   101 {
       
   102   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
       
   103 
       
   104   coef->iMCU_row_num = 0;
       
   105   start_iMCU_row(cinfo);
       
   106 
       
   107   switch (pass_mode) {
       
   108   case JBUF_PASS_THRU:
       
   109     if (coef->whole_image[0] != NULL)
       
   110       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
       
   111     coef->pub.compress_data = compress_data;
       
   112     break;
       
   113 #ifdef FULL_COEF_BUFFER_SUPPORTED
       
   114   case JBUF_SAVE_AND_PASS:
       
   115     if (coef->whole_image[0] == NULL)
       
   116       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
       
   117     coef->pub.compress_data = compress_first_pass;
       
   118     break;
       
   119   case JBUF_CRANK_DEST:
       
   120     if (coef->whole_image[0] == NULL)
       
   121       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
       
   122     coef->pub.compress_data = compress_output;
       
   123     break;
       
   124 #endif
       
   125   default:
       
   126     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
       
   127     break;
       
   128   }
       
   129 }
       
   130 
       
   131 
       
   132 /*
       
   133  * Process some data in the single-pass case.
       
   134  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
       
   135  * per call, ie, v_samp_factor block rows for each component in the image.
       
   136  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
       
   137  *
       
   138  * NB: input_buf contains a plane for each component in image,
       
   139  * which we index according to the component's SOF position.
       
   140  */
       
   141 
       
   142 METHODDEF(boolean)
       
   143 compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
       
   144 {
       
   145   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
       
   146   JDIMENSION MCU_col_num;	/* index of current MCU within row */
       
   147   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
       
   148   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
       
   149   int blkn, bi, ci, yindex, yoffset, blockcnt;
       
   150   JDIMENSION ypos, xpos;
       
   151   jpeg_component_info *compptr;
       
   152 
       
   153   /* Loop to write as much as one whole iMCU row */
       
   154   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       
   155        yoffset++) {
       
   156     for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
       
   157 	 MCU_col_num++) {
       
   158       /* Determine where data comes from in input_buf and do the DCT thing.
       
   159        * Each call on forward_DCT processes a horizontal row of DCT blocks
       
   160        * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
       
   161        * sequentially.  Dummy blocks at the right or bottom edge are filled in
       
   162        * specially.  The data in them does not matter for image reconstruction,
       
   163        * so we fill them with values that will encode to the smallest amount of
       
   164        * data, viz: all zeroes in the AC entries, DC entries equal to previous
       
   165        * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
       
   166        */
       
   167       blkn = 0;
       
   168       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
       
   169 	compptr = cinfo->cur_comp_info[ci];
       
   170 	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
       
   171 						: compptr->last_col_width;
       
   172 	xpos = MCU_col_num * compptr->MCU_sample_width;
       
   173 	ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
       
   174 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
       
   175 	  if (coef->iMCU_row_num < last_iMCU_row ||
       
   176 	      yoffset+yindex < compptr->last_row_height) {
       
   177 	    (*cinfo->fdct->forward_DCT) (cinfo, compptr,
       
   178 					 input_buf[compptr->component_index],
       
   179 					 coef->MCU_buffer[blkn],
       
   180 					 ypos, xpos, (JDIMENSION) blockcnt);
       
   181 	    if (blockcnt < compptr->MCU_width) {
       
   182 	      /* Create some dummy blocks at the right edge of the image. */
       
   183 	      jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
       
   184 			(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
       
   185 	      for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
       
   186 		coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
       
   187 	      }
       
   188 	    }
       
   189 	  } else {
       
   190 	    /* Create a row of dummy blocks at the bottom of the image. */
       
   191 	    jzero_far((void FAR *) coef->MCU_buffer[blkn],
       
   192 		      compptr->MCU_width * SIZEOF(JBLOCK));
       
   193 	    for (bi = 0; bi < compptr->MCU_width; bi++) {
       
   194 	      coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
       
   195 	    }
       
   196 	  }
       
   197 	  blkn += compptr->MCU_width;
       
   198 	  ypos += DCTSIZE;
       
   199 	}
       
   200       }
       
   201       /* Try to write the MCU.  In event of a suspension failure, we will
       
   202        * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
       
   203        */
       
   204       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
       
   205 	/* Suspension forced; update state counters and exit */
       
   206 	coef->MCU_vert_offset = yoffset;
       
   207 	coef->mcu_ctr = MCU_col_num;
       
   208 	return FALSE;
       
   209       }
       
   210     }
       
   211     /* Completed an MCU row, but perhaps not an iMCU row */
       
   212     coef->mcu_ctr = 0;
       
   213   }
       
   214   /* Completed the iMCU row, advance counters for next one */
       
   215   coef->iMCU_row_num++;
       
   216   start_iMCU_row(cinfo);
       
   217   return TRUE;
       
   218 }
       
   219 
       
   220 
       
   221 #ifdef FULL_COEF_BUFFER_SUPPORTED
       
   222 
       
   223 /*
       
   224  * Process some data in the first pass of a multi-pass case.
       
   225  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
       
   226  * per call, ie, v_samp_factor block rows for each component in the image.
       
   227  * This amount of data is read from the source buffer, DCT'd and quantized,
       
   228  * and saved into the virtual arrays.  We also generate suitable dummy blocks
       
   229  * as needed at the right and lower edges.  (The dummy blocks are constructed
       
   230  * in the virtual arrays, which have been padded appropriately.)  This makes
       
   231  * it possible for subsequent passes not to worry about real vs. dummy blocks.
       
   232  *
       
   233  * We must also emit the data to the entropy encoder.  This is conveniently
       
   234  * done by calling compress_output() after we've loaded the current strip
       
   235  * of the virtual arrays.
       
   236  *
       
   237  * NB: input_buf contains a plane for each component in image.  All
       
   238  * components are DCT'd and loaded into the virtual arrays in this pass.
       
   239  * However, it may be that only a subset of the components are emitted to
       
   240  * the entropy encoder during this first pass; be careful about looking
       
   241  * at the scan-dependent variables (MCU dimensions, etc).
       
   242  */
       
   243 
       
   244 METHODDEF(boolean)
       
   245 compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
       
   246 {
       
   247   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
       
   248   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
       
   249   JDIMENSION blocks_across, MCUs_across, MCUindex;
       
   250   int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
       
   251   JCOEF lastDC;
       
   252   jpeg_component_info *compptr;
       
   253   JBLOCKARRAY buffer;
       
   254   JBLOCKROW thisblockrow, lastblockrow;
       
   255 
       
   256   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       
   257        ci++, compptr++) {
       
   258     /* Align the virtual buffer for this component. */
       
   259     buffer = (*cinfo->mem->access_virt_barray)
       
   260       ((j_common_ptr) cinfo, coef->whole_image[ci],
       
   261        coef->iMCU_row_num * compptr->v_samp_factor,
       
   262        (JDIMENSION) compptr->v_samp_factor, TRUE);
       
   263     /* Count non-dummy DCT block rows in this iMCU row. */
       
   264     if (coef->iMCU_row_num < last_iMCU_row)
       
   265       block_rows = compptr->v_samp_factor;
       
   266     else {
       
   267       /* NB: can't use last_row_height here, since may not be set! */
       
   268       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
       
   269       if (block_rows == 0) block_rows = compptr->v_samp_factor;
       
   270     }
       
   271     blocks_across = compptr->width_in_blocks;
       
   272     h_samp_factor = compptr->h_samp_factor;
       
   273     /* Count number of dummy blocks to be added at the right margin. */
       
   274     ndummy = (int) (blocks_across % h_samp_factor);
       
   275     if (ndummy > 0)
       
   276       ndummy = h_samp_factor - ndummy;
       
   277     /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
       
   278      * on forward_DCT processes a complete horizontal row of DCT blocks.
       
   279      */
       
   280     for (block_row = 0; block_row < block_rows; block_row++) {
       
   281       thisblockrow = buffer[block_row];
       
   282       (*cinfo->fdct->forward_DCT) (cinfo, compptr,
       
   283 				   input_buf[ci], thisblockrow,
       
   284 				   (JDIMENSION) (block_row * DCTSIZE),
       
   285 				   (JDIMENSION) 0, blocks_across);
       
   286       if (ndummy > 0) {
       
   287 	/* Create dummy blocks at the right edge of the image. */
       
   288 	thisblockrow += blocks_across; /* => first dummy block */
       
   289 	jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
       
   290 	lastDC = thisblockrow[-1][0];
       
   291 	for (bi = 0; bi < ndummy; bi++) {
       
   292 	  thisblockrow[bi][0] = lastDC;
       
   293 	}
       
   294       }
       
   295     }
       
   296     /* If at end of image, create dummy block rows as needed.
       
   297      * The tricky part here is that within each MCU, we want the DC values
       
   298      * of the dummy blocks to match the last real block's DC value.
       
   299      * This squeezes a few more bytes out of the resulting file...
       
   300      */
       
   301     if (coef->iMCU_row_num == last_iMCU_row) {
       
   302       blocks_across += ndummy;	/* include lower right corner */
       
   303       MCUs_across = blocks_across / h_samp_factor;
       
   304       for (block_row = block_rows; block_row < compptr->v_samp_factor;
       
   305 	   block_row++) {
       
   306 	thisblockrow = buffer[block_row];
       
   307 	lastblockrow = buffer[block_row-1];
       
   308 	jzero_far((void FAR *) thisblockrow,
       
   309 		  (size_t) (blocks_across * SIZEOF(JBLOCK)));
       
   310 	for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
       
   311 	  lastDC = lastblockrow[h_samp_factor-1][0];
       
   312 	  for (bi = 0; bi < h_samp_factor; bi++) {
       
   313 	    thisblockrow[bi][0] = lastDC;
       
   314 	  }
       
   315 	  thisblockrow += h_samp_factor; /* advance to next MCU in row */
       
   316 	  lastblockrow += h_samp_factor;
       
   317 	}
       
   318       }
       
   319     }
       
   320   }
       
   321   /* NB: compress_output will increment iMCU_row_num if successful.
       
   322    * A suspension return will result in redoing all the work above next time.
       
   323    */
       
   324 
       
   325   /* Emit data to the entropy encoder, sharing code with subsequent passes */
       
   326   return compress_output(cinfo, input_buf);
       
   327 }
       
   328 
       
   329 
       
   330 /*
       
   331  * Process some data in subsequent passes of a multi-pass case.
       
   332  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
       
   333  * per call, ie, v_samp_factor block rows for each component in the scan.
       
   334  * The data is obtained from the virtual arrays and fed to the entropy coder.
       
   335  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
       
   336  *
       
   337  * NB: input_buf is ignored; it is likely to be a NULL pointer.
       
   338  */
       
   339 
       
   340 METHODDEF(boolean)
       
   341 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
       
   342 {
       
   343   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
       
   344   JDIMENSION MCU_col_num;	/* index of current MCU within row */
       
   345   int blkn, ci, xindex, yindex, yoffset;
       
   346   JDIMENSION start_col;
       
   347   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
       
   348   JBLOCKROW buffer_ptr;
       
   349   jpeg_component_info *compptr;
       
   350 
       
   351   /* Align the virtual buffers for the components used in this scan.
       
   352    * NB: during first pass, this is safe only because the buffers will
       
   353    * already be aligned properly, so jmemmgr.c won't need to do any I/O.
       
   354    */
       
   355   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
       
   356     compptr = cinfo->cur_comp_info[ci];
       
   357     buffer[ci] = (*cinfo->mem->access_virt_barray)
       
   358       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
       
   359        coef->iMCU_row_num * compptr->v_samp_factor,
       
   360        (JDIMENSION) compptr->v_samp_factor, FALSE);
       
   361   }
       
   362 
       
   363   /* Loop to process one whole iMCU row */
       
   364   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       
   365        yoffset++) {
       
   366     for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
       
   367 	 MCU_col_num++) {
       
   368       /* Construct list of pointers to DCT blocks belonging to this MCU */
       
   369       blkn = 0;			/* index of current DCT block within MCU */
       
   370       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
       
   371 	compptr = cinfo->cur_comp_info[ci];
       
   372 	start_col = MCU_col_num * compptr->MCU_width;
       
   373 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
       
   374 	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
       
   375 	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
       
   376 	    coef->MCU_buffer[blkn++] = buffer_ptr++;
       
   377 	  }
       
   378 	}
       
   379       }
       
   380       /* Try to write the MCU. */
       
   381       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
       
   382 	/* Suspension forced; update state counters and exit */
       
   383 	coef->MCU_vert_offset = yoffset;
       
   384 	coef->mcu_ctr = MCU_col_num;
       
   385 	return FALSE;
       
   386       }
       
   387     }
       
   388     /* Completed an MCU row, but perhaps not an iMCU row */
       
   389     coef->mcu_ctr = 0;
       
   390   }
       
   391   /* Completed the iMCU row, advance counters for next one */
       
   392   coef->iMCU_row_num++;
       
   393   start_iMCU_row(cinfo);
       
   394   return TRUE;
       
   395 }
       
   396 
       
   397 #endif /* FULL_COEF_BUFFER_SUPPORTED */
       
   398 
       
   399 
       
   400 /*
       
   401  * Initialize coefficient buffer controller.
       
   402  */
       
   403 
       
   404 GLOBAL(void)
       
   405 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
       
   406 {
       
   407   my_coef_ptr coef;
       
   408 
       
   409   coef = (my_coef_ptr)
       
   410     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   411 				SIZEOF(my_coef_controller));
       
   412   cinfo->coef = (struct jpeg_c_coef_controller *) coef;
       
   413   coef->pub.start_pass = start_pass_coef;
       
   414 
       
   415   /* Create the coefficient buffer. */
       
   416   if (need_full_buffer) {
       
   417 #ifdef FULL_COEF_BUFFER_SUPPORTED
       
   418     /* Allocate a full-image virtual array for each component, */
       
   419     /* padded to a multiple of samp_factor DCT blocks in each direction. */
       
   420     int ci;
       
   421     jpeg_component_info *compptr;
       
   422 
       
   423     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       
   424 	 ci++, compptr++) {
       
   425       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
       
   426 	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
       
   427 	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
       
   428 				(long) compptr->h_samp_factor),
       
   429 	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
       
   430 				(long) compptr->v_samp_factor),
       
   431 	 (JDIMENSION) compptr->v_samp_factor);
       
   432     }
       
   433 #else
       
   434     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
       
   435 #endif
       
   436   } else {
       
   437     /* We only need a single-MCU buffer. */
       
   438     JBLOCKROW buffer;
       
   439     int i;
       
   440 
       
   441     buffer = (JBLOCKROW)
       
   442       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   443 				  C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
       
   444     for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
       
   445       coef->MCU_buffer[i] = buffer + i;
       
   446     }
       
   447     coef->whole_image[0] = NULL; /* flag for no virtual arrays */
       
   448   }
       
   449 }