src/3rdparty/libjpeg/jcphuff.c
changeset 0 1918ee327afb
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /*
       
     2  * jcphuff.c
       
     3  *
       
     4  * Copyright (C) 1995-1997, Thomas G. Lane.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This file contains Huffman entropy encoding routines for progressive JPEG.
       
     9  *
       
    10  * We do not support output suspension in this module, since the library
       
    11  * currently does not allow multiple-scan files to be written with output
       
    12  * suspension.
       
    13  */
       
    14 
       
    15 #define JPEG_INTERNALS
       
    16 #include "jinclude.h"
       
    17 #include "jpeglib.h"
       
    18 #include "jchuff.h"		/* Declarations shared with jchuff.c */
       
    19 
       
    20 #ifdef C_PROGRESSIVE_SUPPORTED
       
    21 
       
    22 /* Expanded entropy encoder object for progressive Huffman encoding. */
       
    23 
       
    24 typedef struct {
       
    25   struct jpeg_entropy_encoder pub; /* public fields */
       
    26 
       
    27   /* Mode flag: TRUE for optimization, FALSE for actual data output */
       
    28   boolean gather_statistics;
       
    29 
       
    30   /* Bit-level coding status.
       
    31    * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
       
    32    */
       
    33   JOCTET * next_output_byte;	/* => next byte to write in buffer */
       
    34   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
       
    35   INT32 put_buffer;		/* current bit-accumulation buffer */
       
    36   int put_bits;			/* # of bits now in it */
       
    37   j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */
       
    38 
       
    39   /* Coding status for DC components */
       
    40   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
       
    41 
       
    42   /* Coding status for AC components */
       
    43   int ac_tbl_no;		/* the table number of the single component */
       
    44   unsigned int EOBRUN;		/* run length of EOBs */
       
    45   unsigned int BE;		/* # of buffered correction bits before MCU */
       
    46   char * bit_buffer;		/* buffer for correction bits (1 per char) */
       
    47   /* packing correction bits tightly would save some space but cost time... */
       
    48 
       
    49   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
       
    50   int next_restart_num;		/* next restart number to write (0-7) */
       
    51 
       
    52   /* Pointers to derived tables (these workspaces have image lifespan).
       
    53    * Since any one scan codes only DC or only AC, we only need one set
       
    54    * of tables, not one for DC and one for AC.
       
    55    */
       
    56   c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
       
    57 
       
    58   /* Statistics tables for optimization; again, one set is enough */
       
    59   long * count_ptrs[NUM_HUFF_TBLS];
       
    60 } phuff_entropy_encoder;
       
    61 
       
    62 typedef phuff_entropy_encoder * phuff_entropy_ptr;
       
    63 
       
    64 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
       
    65  * buffer can hold.  Larger sizes may slightly improve compression, but
       
    66  * 1000 is already well into the realm of overkill.
       
    67  * The minimum safe size is 64 bits.
       
    68  */
       
    69 
       
    70 #define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */
       
    71 
       
    72 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
       
    73  * We assume that int right shift is unsigned if INT32 right shift is,
       
    74  * which should be safe.
       
    75  */
       
    76 
       
    77 #ifdef RIGHT_SHIFT_IS_UNSIGNED
       
    78 #define ISHIFT_TEMPS	int ishift_temp;
       
    79 #define IRIGHT_SHIFT(x,shft)  \
       
    80 	((ishift_temp = (x)) < 0 ? \
       
    81 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
       
    82 	 (ishift_temp >> (shft)))
       
    83 #else
       
    84 #define ISHIFT_TEMPS
       
    85 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
       
    86 #endif
       
    87 
       
    88 /* Forward declarations */
       
    89 METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
       
    90 					    JBLOCKROW *MCU_data));
       
    91 METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
       
    92 					    JBLOCKROW *MCU_data));
       
    93 METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
       
    94 					     JBLOCKROW *MCU_data));
       
    95 METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
       
    96 					     JBLOCKROW *MCU_data));
       
    97 METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
       
    98 METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
       
    99 
       
   100 
       
   101 /*
       
   102  * Initialize for a Huffman-compressed scan using progressive JPEG.
       
   103  */
       
   104 
       
   105 METHODDEF(void)
       
   106 start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
       
   107 {  
       
   108   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
       
   109   boolean is_DC_band;
       
   110   int ci, tbl;
       
   111   jpeg_component_info * compptr;
       
   112 
       
   113   entropy->cinfo = cinfo;
       
   114   entropy->gather_statistics = gather_statistics;
       
   115 
       
   116   is_DC_band = (cinfo->Ss == 0);
       
   117 
       
   118   /* We assume jcmaster.c already validated the scan parameters. */
       
   119 
       
   120   /* Select execution routines */
       
   121   if (cinfo->Ah == 0) {
       
   122     if (is_DC_band)
       
   123       entropy->pub.encode_mcu = encode_mcu_DC_first;
       
   124     else
       
   125       entropy->pub.encode_mcu = encode_mcu_AC_first;
       
   126   } else {
       
   127     if (is_DC_band)
       
   128       entropy->pub.encode_mcu = encode_mcu_DC_refine;
       
   129     else {
       
   130       entropy->pub.encode_mcu = encode_mcu_AC_refine;
       
   131       /* AC refinement needs a correction bit buffer */
       
   132       if (entropy->bit_buffer == NULL)
       
   133 	entropy->bit_buffer = (char *)
       
   134 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   135 				      MAX_CORR_BITS * SIZEOF(char));
       
   136     }
       
   137   }
       
   138   if (gather_statistics)
       
   139     entropy->pub.finish_pass = finish_pass_gather_phuff;
       
   140   else
       
   141     entropy->pub.finish_pass = finish_pass_phuff;
       
   142 
       
   143   /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
       
   144    * for AC coefficients.
       
   145    */
       
   146   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
       
   147     compptr = cinfo->cur_comp_info[ci];
       
   148     /* Initialize DC predictions to 0 */
       
   149     entropy->last_dc_val[ci] = 0;
       
   150     /* Get table index */
       
   151     if (is_DC_band) {
       
   152       if (cinfo->Ah != 0)	/* DC refinement needs no table */
       
   153 	continue;
       
   154       tbl = compptr->dc_tbl_no;
       
   155     } else {
       
   156       entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
       
   157     }
       
   158     if (gather_statistics) {
       
   159       /* Check for invalid table index */
       
   160       /* (make_c_derived_tbl does this in the other path) */
       
   161       if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
       
   162         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
       
   163       /* Allocate and zero the statistics tables */
       
   164       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
       
   165       if (entropy->count_ptrs[tbl] == NULL)
       
   166 	entropy->count_ptrs[tbl] = (long *)
       
   167 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   168 				      257 * SIZEOF(long));
       
   169       MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
       
   170     } else {
       
   171       /* Compute derived values for Huffman table */
       
   172       /* We may do this more than once for a table, but it's not expensive */
       
   173       jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
       
   174 			      & entropy->derived_tbls[tbl]);
       
   175     }
       
   176   }
       
   177 
       
   178   /* Initialize AC stuff */
       
   179   entropy->EOBRUN = 0;
       
   180   entropy->BE = 0;
       
   181 
       
   182   /* Initialize bit buffer to empty */
       
   183   entropy->put_buffer = 0;
       
   184   entropy->put_bits = 0;
       
   185 
       
   186   /* Initialize restart stuff */
       
   187   entropy->restarts_to_go = cinfo->restart_interval;
       
   188   entropy->next_restart_num = 0;
       
   189 }
       
   190 
       
   191 
       
   192 /* Outputting bytes to the file.
       
   193  * NB: these must be called only when actually outputting,
       
   194  * that is, entropy->gather_statistics == FALSE.
       
   195  */
       
   196 
       
   197 /* Emit a byte */
       
   198 #define emit_byte(entropy,val)  \
       
   199 	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \
       
   200 	  if (--(entropy)->free_in_buffer == 0)  \
       
   201 	    dump_buffer(entropy); }
       
   202 
       
   203 
       
   204 LOCAL(void)
       
   205 dump_buffer (phuff_entropy_ptr entropy)
       
   206 /* Empty the output buffer; we do not support suspension in this module. */
       
   207 {
       
   208   struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
       
   209 
       
   210   if (! (*dest->empty_output_buffer) (entropy->cinfo))
       
   211     ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
       
   212   /* After a successful buffer dump, must reset buffer pointers */
       
   213   entropy->next_output_byte = dest->next_output_byte;
       
   214   entropy->free_in_buffer = dest->free_in_buffer;
       
   215 }
       
   216 
       
   217 
       
   218 /* Outputting bits to the file */
       
   219 
       
   220 /* Only the right 24 bits of put_buffer are used; the valid bits are
       
   221  * left-justified in this part.  At most 16 bits can be passed to emit_bits
       
   222  * in one call, and we never retain more than 7 bits in put_buffer
       
   223  * between calls, so 24 bits are sufficient.
       
   224  */
       
   225 
       
   226 INLINE
       
   227 LOCAL(void)
       
   228 emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
       
   229 /* Emit some bits, unless we are in gather mode */
       
   230 {
       
   231   /* This routine is heavily used, so it's worth coding tightly. */
       
   232   register INT32 put_buffer = (INT32) code;
       
   233   register int put_bits = entropy->put_bits;
       
   234 
       
   235   /* if size is 0, caller used an invalid Huffman table entry */
       
   236   if (size == 0)
       
   237     ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
       
   238 
       
   239   if (entropy->gather_statistics)
       
   240     return;			/* do nothing if we're only getting stats */
       
   241 
       
   242   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
       
   243   
       
   244   put_bits += size;		/* new number of bits in buffer */
       
   245   
       
   246   put_buffer <<= 24 - put_bits; /* align incoming bits */
       
   247 
       
   248   put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
       
   249 
       
   250   while (put_bits >= 8) {
       
   251     int c = (int) ((put_buffer >> 16) & 0xFF);
       
   252     
       
   253     emit_byte(entropy, c);
       
   254     if (c == 0xFF) {		/* need to stuff a zero byte? */
       
   255       emit_byte(entropy, 0);
       
   256     }
       
   257     put_buffer <<= 8;
       
   258     put_bits -= 8;
       
   259   }
       
   260 
       
   261   entropy->put_buffer = put_buffer; /* update variables */
       
   262   entropy->put_bits = put_bits;
       
   263 }
       
   264 
       
   265 
       
   266 LOCAL(void)
       
   267 flush_bits (phuff_entropy_ptr entropy)
       
   268 {
       
   269   emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
       
   270   entropy->put_buffer = 0;     /* and reset bit-buffer to empty */
       
   271   entropy->put_bits = 0;
       
   272 }
       
   273 
       
   274 
       
   275 /*
       
   276  * Emit (or just count) a Huffman symbol.
       
   277  */
       
   278 
       
   279 INLINE
       
   280 LOCAL(void)
       
   281 emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
       
   282 {
       
   283   if (entropy->gather_statistics)
       
   284     entropy->count_ptrs[tbl_no][symbol]++;
       
   285   else {
       
   286     c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
       
   287     emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
       
   288   }
       
   289 }
       
   290 
       
   291 
       
   292 /*
       
   293  * Emit bits from a correction bit buffer.
       
   294  */
       
   295 
       
   296 LOCAL(void)
       
   297 emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
       
   298 		    unsigned int nbits)
       
   299 {
       
   300   if (entropy->gather_statistics)
       
   301     return;			/* no real work */
       
   302 
       
   303   while (nbits > 0) {
       
   304     emit_bits(entropy, (unsigned int) (*bufstart), 1);
       
   305     bufstart++;
       
   306     nbits--;
       
   307   }
       
   308 }
       
   309 
       
   310 
       
   311 /*
       
   312  * Emit any pending EOBRUN symbol.
       
   313  */
       
   314 
       
   315 LOCAL(void)
       
   316 emit_eobrun (phuff_entropy_ptr entropy)
       
   317 {
       
   318   register int temp, nbits;
       
   319 
       
   320   if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */
       
   321     temp = entropy->EOBRUN;
       
   322     nbits = 0;
       
   323     while ((temp >>= 1))
       
   324       nbits++;
       
   325     /* safety check: shouldn't happen given limited correction-bit buffer */
       
   326     if (nbits > 14)
       
   327       ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
       
   328 
       
   329     emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
       
   330     if (nbits)
       
   331       emit_bits(entropy, entropy->EOBRUN, nbits);
       
   332 
       
   333     entropy->EOBRUN = 0;
       
   334 
       
   335     /* Emit any buffered correction bits */
       
   336     emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
       
   337     entropy->BE = 0;
       
   338   }
       
   339 }
       
   340 
       
   341 
       
   342 /*
       
   343  * Emit a restart marker & resynchronize predictions.
       
   344  */
       
   345 
       
   346 LOCAL(void)
       
   347 emit_restart (phuff_entropy_ptr entropy, int restart_num)
       
   348 {
       
   349   int ci;
       
   350 
       
   351   emit_eobrun(entropy);
       
   352 
       
   353   if (! entropy->gather_statistics) {
       
   354     flush_bits(entropy);
       
   355     emit_byte(entropy, 0xFF);
       
   356     emit_byte(entropy, JPEG_RST0 + restart_num);
       
   357   }
       
   358 
       
   359   if (entropy->cinfo->Ss == 0) {
       
   360     /* Re-initialize DC predictions to 0 */
       
   361     for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
       
   362       entropy->last_dc_val[ci] = 0;
       
   363   } else {
       
   364     /* Re-initialize all AC-related fields to 0 */
       
   365     entropy->EOBRUN = 0;
       
   366     entropy->BE = 0;
       
   367   }
       
   368 }
       
   369 
       
   370 
       
   371 /*
       
   372  * MCU encoding for DC initial scan (either spectral selection,
       
   373  * or first pass of successive approximation).
       
   374  */
       
   375 
       
   376 METHODDEF(boolean)
       
   377 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
       
   378 {
       
   379   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
       
   380   register int temp, temp2;
       
   381   register int nbits;
       
   382   int blkn, ci;
       
   383   int Al = cinfo->Al;
       
   384   JBLOCKROW block;
       
   385   jpeg_component_info * compptr;
       
   386   ISHIFT_TEMPS
       
   387 
       
   388   entropy->next_output_byte = cinfo->dest->next_output_byte;
       
   389   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
       
   390 
       
   391   /* Emit restart marker if needed */
       
   392   if (cinfo->restart_interval)
       
   393     if (entropy->restarts_to_go == 0)
       
   394       emit_restart(entropy, entropy->next_restart_num);
       
   395 
       
   396   /* Encode the MCU data blocks */
       
   397   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
       
   398     block = MCU_data[blkn];
       
   399     ci = cinfo->MCU_membership[blkn];
       
   400     compptr = cinfo->cur_comp_info[ci];
       
   401 
       
   402     /* Compute the DC value after the required point transform by Al.
       
   403      * This is simply an arithmetic right shift.
       
   404      */
       
   405     temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
       
   406 
       
   407     /* DC differences are figured on the point-transformed values. */
       
   408     temp = temp2 - entropy->last_dc_val[ci];
       
   409     entropy->last_dc_val[ci] = temp2;
       
   410 
       
   411     /* Encode the DC coefficient difference per section G.1.2.1 */
       
   412     temp2 = temp;
       
   413     if (temp < 0) {
       
   414       temp = -temp;		/* temp is abs value of input */
       
   415       /* For a negative input, want temp2 = bitwise complement of abs(input) */
       
   416       /* This code assumes we are on a two's complement machine */
       
   417       temp2--;
       
   418     }
       
   419     
       
   420     /* Find the number of bits needed for the magnitude of the coefficient */
       
   421     nbits = 0;
       
   422     while (temp) {
       
   423       nbits++;
       
   424       temp >>= 1;
       
   425     }
       
   426     /* Check for out-of-range coefficient values.
       
   427      * Since we're encoding a difference, the range limit is twice as much.
       
   428      */
       
   429     if (nbits > MAX_COEF_BITS+1)
       
   430       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
       
   431     
       
   432     /* Count/emit the Huffman-coded symbol for the number of bits */
       
   433     emit_symbol(entropy, compptr->dc_tbl_no, nbits);
       
   434     
       
   435     /* Emit that number of bits of the value, if positive, */
       
   436     /* or the complement of its magnitude, if negative. */
       
   437     if (nbits)			/* emit_bits rejects calls with size 0 */
       
   438       emit_bits(entropy, (unsigned int) temp2, nbits);
       
   439   }
       
   440 
       
   441   cinfo->dest->next_output_byte = entropy->next_output_byte;
       
   442   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
       
   443 
       
   444   /* Update restart-interval state too */
       
   445   if (cinfo->restart_interval) {
       
   446     if (entropy->restarts_to_go == 0) {
       
   447       entropy->restarts_to_go = cinfo->restart_interval;
       
   448       entropy->next_restart_num++;
       
   449       entropy->next_restart_num &= 7;
       
   450     }
       
   451     entropy->restarts_to_go--;
       
   452   }
       
   453 
       
   454   return TRUE;
       
   455 }
       
   456 
       
   457 
       
   458 /*
       
   459  * MCU encoding for AC initial scan (either spectral selection,
       
   460  * or first pass of successive approximation).
       
   461  */
       
   462 
       
   463 METHODDEF(boolean)
       
   464 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
       
   465 {
       
   466   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
       
   467   register int temp, temp2;
       
   468   register int nbits;
       
   469   register int r, k;
       
   470   int Se = cinfo->Se;
       
   471   int Al = cinfo->Al;
       
   472   JBLOCKROW block;
       
   473 
       
   474   entropy->next_output_byte = cinfo->dest->next_output_byte;
       
   475   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
       
   476 
       
   477   /* Emit restart marker if needed */
       
   478   if (cinfo->restart_interval)
       
   479     if (entropy->restarts_to_go == 0)
       
   480       emit_restart(entropy, entropy->next_restart_num);
       
   481 
       
   482   /* Encode the MCU data block */
       
   483   block = MCU_data[0];
       
   484 
       
   485   /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
       
   486   
       
   487   r = 0;			/* r = run length of zeros */
       
   488    
       
   489   for (k = cinfo->Ss; k <= Se; k++) {
       
   490     if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
       
   491       r++;
       
   492       continue;
       
   493     }
       
   494     /* We must apply the point transform by Al.  For AC coefficients this
       
   495      * is an integer division with rounding towards 0.  To do this portably
       
   496      * in C, we shift after obtaining the absolute value; so the code is
       
   497      * interwoven with finding the abs value (temp) and output bits (temp2).
       
   498      */
       
   499     if (temp < 0) {
       
   500       temp = -temp;		/* temp is abs value of input */
       
   501       temp >>= Al;		/* apply the point transform */
       
   502       /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
       
   503       temp2 = ~temp;
       
   504     } else {
       
   505       temp >>= Al;		/* apply the point transform */
       
   506       temp2 = temp;
       
   507     }
       
   508     /* Watch out for case that nonzero coef is zero after point transform */
       
   509     if (temp == 0) {
       
   510       r++;
       
   511       continue;
       
   512     }
       
   513 
       
   514     /* Emit any pending EOBRUN */
       
   515     if (entropy->EOBRUN > 0)
       
   516       emit_eobrun(entropy);
       
   517     /* if run length > 15, must emit special run-length-16 codes (0xF0) */
       
   518     while (r > 15) {
       
   519       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
       
   520       r -= 16;
       
   521     }
       
   522 
       
   523     /* Find the number of bits needed for the magnitude of the coefficient */
       
   524     nbits = 1;			/* there must be at least one 1 bit */
       
   525     while ((temp >>= 1))
       
   526       nbits++;
       
   527     /* Check for out-of-range coefficient values */
       
   528     if (nbits > MAX_COEF_BITS)
       
   529       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
       
   530 
       
   531     /* Count/emit Huffman symbol for run length / number of bits */
       
   532     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
       
   533 
       
   534     /* Emit that number of bits of the value, if positive, */
       
   535     /* or the complement of its magnitude, if negative. */
       
   536     emit_bits(entropy, (unsigned int) temp2, nbits);
       
   537 
       
   538     r = 0;			/* reset zero run length */
       
   539   }
       
   540 
       
   541   if (r > 0) {			/* If there are trailing zeroes, */
       
   542     entropy->EOBRUN++;		/* count an EOB */
       
   543     if (entropy->EOBRUN == 0x7FFF)
       
   544       emit_eobrun(entropy);	/* force it out to avoid overflow */
       
   545   }
       
   546 
       
   547   cinfo->dest->next_output_byte = entropy->next_output_byte;
       
   548   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
       
   549 
       
   550   /* Update restart-interval state too */
       
   551   if (cinfo->restart_interval) {
       
   552     if (entropy->restarts_to_go == 0) {
       
   553       entropy->restarts_to_go = cinfo->restart_interval;
       
   554       entropy->next_restart_num++;
       
   555       entropy->next_restart_num &= 7;
       
   556     }
       
   557     entropy->restarts_to_go--;
       
   558   }
       
   559 
       
   560   return TRUE;
       
   561 }
       
   562 
       
   563 
       
   564 /*
       
   565  * MCU encoding for DC successive approximation refinement scan.
       
   566  * Note: we assume such scans can be multi-component, although the spec
       
   567  * is not very clear on the point.
       
   568  */
       
   569 
       
   570 METHODDEF(boolean)
       
   571 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
       
   572 {
       
   573   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
       
   574   register int temp;
       
   575   int blkn;
       
   576   int Al = cinfo->Al;
       
   577   JBLOCKROW block;
       
   578 
       
   579   entropy->next_output_byte = cinfo->dest->next_output_byte;
       
   580   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
       
   581 
       
   582   /* Emit restart marker if needed */
       
   583   if (cinfo->restart_interval)
       
   584     if (entropy->restarts_to_go == 0)
       
   585       emit_restart(entropy, entropy->next_restart_num);
       
   586 
       
   587   /* Encode the MCU data blocks */
       
   588   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
       
   589     block = MCU_data[blkn];
       
   590 
       
   591     /* We simply emit the Al'th bit of the DC coefficient value. */
       
   592     temp = (*block)[0];
       
   593     emit_bits(entropy, (unsigned int) (temp >> Al), 1);
       
   594   }
       
   595 
       
   596   cinfo->dest->next_output_byte = entropy->next_output_byte;
       
   597   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
       
   598 
       
   599   /* Update restart-interval state too */
       
   600   if (cinfo->restart_interval) {
       
   601     if (entropy->restarts_to_go == 0) {
       
   602       entropy->restarts_to_go = cinfo->restart_interval;
       
   603       entropy->next_restart_num++;
       
   604       entropy->next_restart_num &= 7;
       
   605     }
       
   606     entropy->restarts_to_go--;
       
   607   }
       
   608 
       
   609   return TRUE;
       
   610 }
       
   611 
       
   612 
       
   613 /*
       
   614  * MCU encoding for AC successive approximation refinement scan.
       
   615  */
       
   616 
       
   617 METHODDEF(boolean)
       
   618 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
       
   619 {
       
   620   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
       
   621   register int temp;
       
   622   register int r, k;
       
   623   int EOB;
       
   624   char *BR_buffer;
       
   625   unsigned int BR;
       
   626   int Se = cinfo->Se;
       
   627   int Al = cinfo->Al;
       
   628   JBLOCKROW block;
       
   629   int absvalues[DCTSIZE2];
       
   630 
       
   631   entropy->next_output_byte = cinfo->dest->next_output_byte;
       
   632   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
       
   633 
       
   634   /* Emit restart marker if needed */
       
   635   if (cinfo->restart_interval)
       
   636     if (entropy->restarts_to_go == 0)
       
   637       emit_restart(entropy, entropy->next_restart_num);
       
   638 
       
   639   /* Encode the MCU data block */
       
   640   block = MCU_data[0];
       
   641 
       
   642   /* It is convenient to make a pre-pass to determine the transformed
       
   643    * coefficients' absolute values and the EOB position.
       
   644    */
       
   645   EOB = 0;
       
   646   for (k = cinfo->Ss; k <= Se; k++) {
       
   647     temp = (*block)[jpeg_natural_order[k]];
       
   648     /* We must apply the point transform by Al.  For AC coefficients this
       
   649      * is an integer division with rounding towards 0.  To do this portably
       
   650      * in C, we shift after obtaining the absolute value.
       
   651      */
       
   652     if (temp < 0)
       
   653       temp = -temp;		/* temp is abs value of input */
       
   654     temp >>= Al;		/* apply the point transform */
       
   655     absvalues[k] = temp;	/* save abs value for main pass */
       
   656     if (temp == 1)
       
   657       EOB = k;			/* EOB = index of last newly-nonzero coef */
       
   658   }
       
   659 
       
   660   /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
       
   661   
       
   662   r = 0;			/* r = run length of zeros */
       
   663   BR = 0;			/* BR = count of buffered bits added now */
       
   664   BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
       
   665 
       
   666   for (k = cinfo->Ss; k <= Se; k++) {
       
   667     if ((temp = absvalues[k]) == 0) {
       
   668       r++;
       
   669       continue;
       
   670     }
       
   671 
       
   672     /* Emit any required ZRLs, but not if they can be folded into EOB */
       
   673     while (r > 15 && k <= EOB) {
       
   674       /* emit any pending EOBRUN and the BE correction bits */
       
   675       emit_eobrun(entropy);
       
   676       /* Emit ZRL */
       
   677       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
       
   678       r -= 16;
       
   679       /* Emit buffered correction bits that must be associated with ZRL */
       
   680       emit_buffered_bits(entropy, BR_buffer, BR);
       
   681       BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
       
   682       BR = 0;
       
   683     }
       
   684 
       
   685     /* If the coef was previously nonzero, it only needs a correction bit.
       
   686      * NOTE: a straight translation of the spec's figure G.7 would suggest
       
   687      * that we also need to test r > 15.  But if r > 15, we can only get here
       
   688      * if k > EOB, which implies that this coefficient is not 1.
       
   689      */
       
   690     if (temp > 1) {
       
   691       /* The correction bit is the next bit of the absolute value. */
       
   692       BR_buffer[BR++] = (char) (temp & 1);
       
   693       continue;
       
   694     }
       
   695 
       
   696     /* Emit any pending EOBRUN and the BE correction bits */
       
   697     emit_eobrun(entropy);
       
   698 
       
   699     /* Count/emit Huffman symbol for run length / number of bits */
       
   700     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
       
   701 
       
   702     /* Emit output bit for newly-nonzero coef */
       
   703     temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
       
   704     emit_bits(entropy, (unsigned int) temp, 1);
       
   705 
       
   706     /* Emit buffered correction bits that must be associated with this code */
       
   707     emit_buffered_bits(entropy, BR_buffer, BR);
       
   708     BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
       
   709     BR = 0;
       
   710     r = 0;			/* reset zero run length */
       
   711   }
       
   712 
       
   713   if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */
       
   714     entropy->EOBRUN++;		/* count an EOB */
       
   715     entropy->BE += BR;		/* concat my correction bits to older ones */
       
   716     /* We force out the EOB if we risk either:
       
   717      * 1. overflow of the EOB counter;
       
   718      * 2. overflow of the correction bit buffer during the next MCU.
       
   719      */
       
   720     if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
       
   721       emit_eobrun(entropy);
       
   722   }
       
   723 
       
   724   cinfo->dest->next_output_byte = entropy->next_output_byte;
       
   725   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
       
   726 
       
   727   /* Update restart-interval state too */
       
   728   if (cinfo->restart_interval) {
       
   729     if (entropy->restarts_to_go == 0) {
       
   730       entropy->restarts_to_go = cinfo->restart_interval;
       
   731       entropy->next_restart_num++;
       
   732       entropy->next_restart_num &= 7;
       
   733     }
       
   734     entropy->restarts_to_go--;
       
   735   }
       
   736 
       
   737   return TRUE;
       
   738 }
       
   739 
       
   740 
       
   741 /*
       
   742  * Finish up at the end of a Huffman-compressed progressive scan.
       
   743  */
       
   744 
       
   745 METHODDEF(void)
       
   746 finish_pass_phuff (j_compress_ptr cinfo)
       
   747 {   
       
   748   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
       
   749 
       
   750   entropy->next_output_byte = cinfo->dest->next_output_byte;
       
   751   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
       
   752 
       
   753   /* Flush out any buffered data */
       
   754   emit_eobrun(entropy);
       
   755   flush_bits(entropy);
       
   756 
       
   757   cinfo->dest->next_output_byte = entropy->next_output_byte;
       
   758   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
       
   759 }
       
   760 
       
   761 
       
   762 /*
       
   763  * Finish up a statistics-gathering pass and create the new Huffman tables.
       
   764  */
       
   765 
       
   766 METHODDEF(void)
       
   767 finish_pass_gather_phuff (j_compress_ptr cinfo)
       
   768 {
       
   769   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
       
   770   boolean is_DC_band;
       
   771   int ci, tbl;
       
   772   jpeg_component_info * compptr;
       
   773   JHUFF_TBL **htblptr;
       
   774   boolean did[NUM_HUFF_TBLS];
       
   775 
       
   776   /* Flush out buffered data (all we care about is counting the EOB symbol) */
       
   777   emit_eobrun(entropy);
       
   778 
       
   779   is_DC_band = (cinfo->Ss == 0);
       
   780 
       
   781   /* It's important not to apply jpeg_gen_optimal_table more than once
       
   782    * per table, because it clobbers the input frequency counts!
       
   783    */
       
   784   MEMZERO(did, SIZEOF(did));
       
   785 
       
   786   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
       
   787     compptr = cinfo->cur_comp_info[ci];
       
   788     if (is_DC_band) {
       
   789       if (cinfo->Ah != 0)	/* DC refinement needs no table */
       
   790 	continue;
       
   791       tbl = compptr->dc_tbl_no;
       
   792     } else {
       
   793       tbl = compptr->ac_tbl_no;
       
   794     }
       
   795     if (! did[tbl]) {
       
   796       if (is_DC_band)
       
   797         htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
       
   798       else
       
   799         htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
       
   800       if (*htblptr == NULL)
       
   801         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
       
   802       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
       
   803       did[tbl] = TRUE;
       
   804     }
       
   805   }
       
   806 }
       
   807 
       
   808 
       
   809 /*
       
   810  * Module initialization routine for progressive Huffman entropy encoding.
       
   811  */
       
   812 
       
   813 GLOBAL(void)
       
   814 jinit_phuff_encoder (j_compress_ptr cinfo)
       
   815 {
       
   816   phuff_entropy_ptr entropy;
       
   817   int i;
       
   818 
       
   819   entropy = (phuff_entropy_ptr)
       
   820     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   821 				SIZEOF(phuff_entropy_encoder));
       
   822   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
       
   823   entropy->pub.start_pass = start_pass_phuff;
       
   824 
       
   825   /* Mark tables unallocated */
       
   826   for (i = 0; i < NUM_HUFF_TBLS; i++) {
       
   827     entropy->derived_tbls[i] = NULL;
       
   828     entropy->count_ptrs[i] = NULL;
       
   829   }
       
   830   entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */
       
   831 }
       
   832 
       
   833 #endif /* C_PROGRESSIVE_SUPPORTED */