src/3rdparty/libjpeg/jdcoefct.c
changeset 0 1918ee327afb
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /*
       
     2  * jdcoefct.c
       
     3  *
       
     4  * Copyright (C) 1994-1997, Thomas G. Lane.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This file contains the coefficient buffer controller for decompression.
       
     9  * This controller is the top level of the JPEG decompressor proper.
       
    10  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
       
    11  *
       
    12  * In buffered-image mode, this controller is the interface between
       
    13  * input-oriented processing and output-oriented processing.
       
    14  * Also, the input side (only) is used when reading a file for transcoding.
       
    15  */
       
    16 
       
    17 #define JPEG_INTERNALS
       
    18 #include "jinclude.h"
       
    19 #include "jpeglib.h"
       
    20 
       
    21 /* Block smoothing is only applicable for progressive JPEG, so: */
       
    22 #ifndef D_PROGRESSIVE_SUPPORTED
       
    23 #undef BLOCK_SMOOTHING_SUPPORTED
       
    24 #endif
       
    25 
       
    26 /* Private buffer controller object */
       
    27 
       
    28 typedef struct {
       
    29   struct jpeg_d_coef_controller pub; /* public fields */
       
    30 
       
    31   /* These variables keep track of the current location of the input side. */
       
    32   /* cinfo->input_iMCU_row is also used for this. */
       
    33   JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */
       
    34   int MCU_vert_offset;		/* counts MCU rows within iMCU row */
       
    35   int MCU_rows_per_iMCU_row;	/* number of such rows needed */
       
    36 
       
    37   /* The output side's location is represented by cinfo->output_iMCU_row. */
       
    38 
       
    39   /* In single-pass modes, it's sufficient to buffer just one MCU.
       
    40    * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
       
    41    * and let the entropy decoder write into that workspace each time.
       
    42    * (On 80x86, the workspace is FAR even though it's not really very big;
       
    43    * this is to keep the module interfaces unchanged when a large coefficient
       
    44    * buffer is necessary.)
       
    45    * In multi-pass modes, this array points to the current MCU's blocks
       
    46    * within the virtual arrays; it is used only by the input side.
       
    47    */
       
    48   JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
       
    49 
       
    50 #ifdef D_MULTISCAN_FILES_SUPPORTED
       
    51   /* In multi-pass modes, we need a virtual block array for each component. */
       
    52   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
       
    53 #endif
       
    54 
       
    55 #ifdef BLOCK_SMOOTHING_SUPPORTED
       
    56   /* When doing block smoothing, we latch coefficient Al values here */
       
    57   int * coef_bits_latch;
       
    58 #define SAVED_COEFS  6		/* we save coef_bits[0..5] */
       
    59 #endif
       
    60 } my_coef_controller;
       
    61 
       
    62 typedef my_coef_controller * my_coef_ptr;
       
    63 
       
    64 /* Forward declarations */
       
    65 METHODDEF(int) decompress_onepass
       
    66 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
       
    67 #ifdef D_MULTISCAN_FILES_SUPPORTED
       
    68 METHODDEF(int) decompress_data
       
    69 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
       
    70 #endif
       
    71 #ifdef BLOCK_SMOOTHING_SUPPORTED
       
    72 LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
       
    73 METHODDEF(int) decompress_smooth_data
       
    74 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
       
    75 #endif
       
    76 
       
    77 
       
    78 LOCAL(void)
       
    79 start_iMCU_row (j_decompress_ptr cinfo)
       
    80 /* Reset within-iMCU-row counters for a new row (input side) */
       
    81 {
       
    82   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
       
    83 
       
    84   /* In an interleaved scan, an MCU row is the same as an iMCU row.
       
    85    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
       
    86    * But at the bottom of the image, process only what's left.
       
    87    */
       
    88   if (cinfo->comps_in_scan > 1) {
       
    89     coef->MCU_rows_per_iMCU_row = 1;
       
    90   } else {
       
    91     if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
       
    92       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
       
    93     else
       
    94       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
       
    95   }
       
    96 
       
    97   coef->MCU_ctr = 0;
       
    98   coef->MCU_vert_offset = 0;
       
    99 }
       
   100 
       
   101 
       
   102 /*
       
   103  * Initialize for an input processing pass.
       
   104  */
       
   105 
       
   106 METHODDEF(void)
       
   107 start_input_pass (j_decompress_ptr cinfo)
       
   108 {
       
   109   cinfo->input_iMCU_row = 0;
       
   110   start_iMCU_row(cinfo);
       
   111 }
       
   112 
       
   113 
       
   114 /*
       
   115  * Initialize for an output processing pass.
       
   116  */
       
   117 
       
   118 METHODDEF(void)
       
   119 start_output_pass (j_decompress_ptr cinfo)
       
   120 {
       
   121 #ifdef BLOCK_SMOOTHING_SUPPORTED
       
   122   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
       
   123 
       
   124   /* If multipass, check to see whether to use block smoothing on this pass */
       
   125   if (coef->pub.coef_arrays != NULL) {
       
   126     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
       
   127       coef->pub.decompress_data = decompress_smooth_data;
       
   128     else
       
   129       coef->pub.decompress_data = decompress_data;
       
   130   }
       
   131 #endif
       
   132   cinfo->output_iMCU_row = 0;
       
   133 }
       
   134 
       
   135 
       
   136 /*
       
   137  * Decompress and return some data in the single-pass case.
       
   138  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
       
   139  * Input and output must run in lockstep since we have only a one-MCU buffer.
       
   140  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
       
   141  *
       
   142  * NB: output_buf contains a plane for each component in image,
       
   143  * which we index according to the component's SOF position.
       
   144  */
       
   145 
       
   146 METHODDEF(int)
       
   147 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
       
   148 {
       
   149   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
       
   150   JDIMENSION MCU_col_num;	/* index of current MCU within row */
       
   151   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
       
   152   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
       
   153   int blkn, ci, xindex, yindex, yoffset, useful_width;
       
   154   JSAMPARRAY output_ptr;
       
   155   JDIMENSION start_col, output_col;
       
   156   jpeg_component_info *compptr;
       
   157   inverse_DCT_method_ptr inverse_DCT;
       
   158 
       
   159   /* Loop to process as much as one whole iMCU row */
       
   160   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       
   161        yoffset++) {
       
   162     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
       
   163 	 MCU_col_num++) {
       
   164       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
       
   165       jzero_far((void FAR *) coef->MCU_buffer[0],
       
   166 		(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
       
   167       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
       
   168 	/* Suspension forced; update state counters and exit */
       
   169 	coef->MCU_vert_offset = yoffset;
       
   170 	coef->MCU_ctr = MCU_col_num;
       
   171 	return JPEG_SUSPENDED;
       
   172       }
       
   173       /* Determine where data should go in output_buf and do the IDCT thing.
       
   174        * We skip dummy blocks at the right and bottom edges (but blkn gets
       
   175        * incremented past them!).  Note the inner loop relies on having
       
   176        * allocated the MCU_buffer[] blocks sequentially.
       
   177        */
       
   178       blkn = 0;			/* index of current DCT block within MCU */
       
   179       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
       
   180 	compptr = cinfo->cur_comp_info[ci];
       
   181 	/* Don't bother to IDCT an uninteresting component. */
       
   182 	if (! compptr->component_needed) {
       
   183 	  blkn += compptr->MCU_blocks;
       
   184 	  continue;
       
   185 	}
       
   186 	inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
       
   187 	useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
       
   188 						    : compptr->last_col_width;
       
   189 	output_ptr = output_buf[compptr->component_index] +
       
   190 	  yoffset * compptr->DCT_scaled_size;
       
   191 	start_col = MCU_col_num * compptr->MCU_sample_width;
       
   192 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
       
   193 	  if (cinfo->input_iMCU_row < last_iMCU_row ||
       
   194 	      yoffset+yindex < compptr->last_row_height) {
       
   195 	    output_col = start_col;
       
   196 	    for (xindex = 0; xindex < useful_width; xindex++) {
       
   197 	      (*inverse_DCT) (cinfo, compptr,
       
   198 			      (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
       
   199 			      output_ptr, output_col);
       
   200 	      output_col += compptr->DCT_scaled_size;
       
   201 	    }
       
   202 	  }
       
   203 	  blkn += compptr->MCU_width;
       
   204 	  output_ptr += compptr->DCT_scaled_size;
       
   205 	}
       
   206       }
       
   207     }
       
   208     /* Completed an MCU row, but perhaps not an iMCU row */
       
   209     coef->MCU_ctr = 0;
       
   210   }
       
   211   /* Completed the iMCU row, advance counters for next one */
       
   212   cinfo->output_iMCU_row++;
       
   213   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
       
   214     start_iMCU_row(cinfo);
       
   215     return JPEG_ROW_COMPLETED;
       
   216   }
       
   217   /* Completed the scan */
       
   218   (*cinfo->inputctl->finish_input_pass) (cinfo);
       
   219   return JPEG_SCAN_COMPLETED;
       
   220 }
       
   221 
       
   222 
       
   223 /*
       
   224  * Dummy consume-input routine for single-pass operation.
       
   225  */
       
   226 
       
   227 METHODDEF(int)
       
   228 dummy_consume_data (j_decompress_ptr cinfo)
       
   229 {
       
   230   return JPEG_SUSPENDED;	/* Always indicate nothing was done */
       
   231 }
       
   232 
       
   233 
       
   234 #ifdef D_MULTISCAN_FILES_SUPPORTED
       
   235 
       
   236 /*
       
   237  * Consume input data and store it in the full-image coefficient buffer.
       
   238  * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
       
   239  * ie, v_samp_factor block rows for each component in the scan.
       
   240  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
       
   241  */
       
   242 
       
   243 METHODDEF(int)
       
   244 consume_data (j_decompress_ptr cinfo)
       
   245 {
       
   246   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
       
   247   JDIMENSION MCU_col_num;	/* index of current MCU within row */
       
   248   int blkn, ci, xindex, yindex, yoffset;
       
   249   JDIMENSION start_col;
       
   250   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
       
   251   JBLOCKROW buffer_ptr;
       
   252   jpeg_component_info *compptr;
       
   253 
       
   254   /* Align the virtual buffers for the components used in this scan. */
       
   255   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
       
   256     compptr = cinfo->cur_comp_info[ci];
       
   257     buffer[ci] = (*cinfo->mem->access_virt_barray)
       
   258       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
       
   259        cinfo->input_iMCU_row * compptr->v_samp_factor,
       
   260        (JDIMENSION) compptr->v_samp_factor, TRUE);
       
   261     /* Note: entropy decoder expects buffer to be zeroed,
       
   262      * but this is handled automatically by the memory manager
       
   263      * because we requested a pre-zeroed array.
       
   264      */
       
   265   }
       
   266 
       
   267   /* Loop to process one whole iMCU row */
       
   268   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       
   269        yoffset++) {
       
   270     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
       
   271 	 MCU_col_num++) {
       
   272       /* Construct list of pointers to DCT blocks belonging to this MCU */
       
   273       blkn = 0;			/* index of current DCT block within MCU */
       
   274       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
       
   275 	compptr = cinfo->cur_comp_info[ci];
       
   276 	start_col = MCU_col_num * compptr->MCU_width;
       
   277 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
       
   278 	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
       
   279 	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
       
   280 	    coef->MCU_buffer[blkn++] = buffer_ptr++;
       
   281 	  }
       
   282 	}
       
   283       }
       
   284       /* Try to fetch the MCU. */
       
   285       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
       
   286 	/* Suspension forced; update state counters and exit */
       
   287 	coef->MCU_vert_offset = yoffset;
       
   288 	coef->MCU_ctr = MCU_col_num;
       
   289 	return JPEG_SUSPENDED;
       
   290       }
       
   291     }
       
   292     /* Completed an MCU row, but perhaps not an iMCU row */
       
   293     coef->MCU_ctr = 0;
       
   294   }
       
   295   /* Completed the iMCU row, advance counters for next one */
       
   296   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
       
   297     start_iMCU_row(cinfo);
       
   298     return JPEG_ROW_COMPLETED;
       
   299   }
       
   300   /* Completed the scan */
       
   301   (*cinfo->inputctl->finish_input_pass) (cinfo);
       
   302   return JPEG_SCAN_COMPLETED;
       
   303 }
       
   304 
       
   305 
       
   306 /*
       
   307  * Decompress and return some data in the multi-pass case.
       
   308  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
       
   309  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
       
   310  *
       
   311  * NB: output_buf contains a plane for each component in image.
       
   312  */
       
   313 
       
   314 METHODDEF(int)
       
   315 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
       
   316 {
       
   317   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
       
   318   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
       
   319   JDIMENSION block_num;
       
   320   int ci, block_row, block_rows;
       
   321   JBLOCKARRAY buffer;
       
   322   JBLOCKROW buffer_ptr;
       
   323   JSAMPARRAY output_ptr;
       
   324   JDIMENSION output_col;
       
   325   jpeg_component_info *compptr;
       
   326   inverse_DCT_method_ptr inverse_DCT;
       
   327 
       
   328   /* Force some input to be done if we are getting ahead of the input. */
       
   329   while (cinfo->input_scan_number < cinfo->output_scan_number ||
       
   330 	 (cinfo->input_scan_number == cinfo->output_scan_number &&
       
   331 	  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
       
   332     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
       
   333       return JPEG_SUSPENDED;
       
   334   }
       
   335 
       
   336   /* OK, output from the virtual arrays. */
       
   337   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       
   338        ci++, compptr++) {
       
   339     /* Don't bother to IDCT an uninteresting component. */
       
   340     if (! compptr->component_needed)
       
   341       continue;
       
   342     /* Align the virtual buffer for this component. */
       
   343     buffer = (*cinfo->mem->access_virt_barray)
       
   344       ((j_common_ptr) cinfo, coef->whole_image[ci],
       
   345        cinfo->output_iMCU_row * compptr->v_samp_factor,
       
   346        (JDIMENSION) compptr->v_samp_factor, FALSE);
       
   347     /* Count non-dummy DCT block rows in this iMCU row. */
       
   348     if (cinfo->output_iMCU_row < last_iMCU_row)
       
   349       block_rows = compptr->v_samp_factor;
       
   350     else {
       
   351       /* NB: can't use last_row_height here; it is input-side-dependent! */
       
   352       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
       
   353       if (block_rows == 0) block_rows = compptr->v_samp_factor;
       
   354     }
       
   355     inverse_DCT = cinfo->idct->inverse_DCT[ci];
       
   356     output_ptr = output_buf[ci];
       
   357     /* Loop over all DCT blocks to be processed. */
       
   358     for (block_row = 0; block_row < block_rows; block_row++) {
       
   359       buffer_ptr = buffer[block_row];
       
   360       output_col = 0;
       
   361       for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
       
   362 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
       
   363 			output_ptr, output_col);
       
   364 	buffer_ptr++;
       
   365 	output_col += compptr->DCT_scaled_size;
       
   366       }
       
   367       output_ptr += compptr->DCT_scaled_size;
       
   368     }
       
   369   }
       
   370 
       
   371   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
       
   372     return JPEG_ROW_COMPLETED;
       
   373   return JPEG_SCAN_COMPLETED;
       
   374 }
       
   375 
       
   376 #endif /* D_MULTISCAN_FILES_SUPPORTED */
       
   377 
       
   378 
       
   379 #ifdef BLOCK_SMOOTHING_SUPPORTED
       
   380 
       
   381 /*
       
   382  * This code applies interblock smoothing as described by section K.8
       
   383  * of the JPEG standard: the first 5 AC coefficients are estimated from
       
   384  * the DC values of a DCT block and its 8 neighboring blocks.
       
   385  * We apply smoothing only for progressive JPEG decoding, and only if
       
   386  * the coefficients it can estimate are not yet known to full precision.
       
   387  */
       
   388 
       
   389 /* Natural-order array positions of the first 5 zigzag-order coefficients */
       
   390 #define Q01_POS  1
       
   391 #define Q10_POS  8
       
   392 #define Q20_POS  16
       
   393 #define Q11_POS  9
       
   394 #define Q02_POS  2
       
   395 
       
   396 /*
       
   397  * Determine whether block smoothing is applicable and safe.
       
   398  * We also latch the current states of the coef_bits[] entries for the
       
   399  * AC coefficients; otherwise, if the input side of the decompressor
       
   400  * advances into a new scan, we might think the coefficients are known
       
   401  * more accurately than they really are.
       
   402  */
       
   403 
       
   404 LOCAL(boolean)
       
   405 smoothing_ok (j_decompress_ptr cinfo)
       
   406 {
       
   407   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
       
   408   boolean smoothing_useful = FALSE;
       
   409   int ci, coefi;
       
   410   jpeg_component_info *compptr;
       
   411   JQUANT_TBL * qtable;
       
   412   int * coef_bits;
       
   413   int * coef_bits_latch;
       
   414 
       
   415   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
       
   416     return FALSE;
       
   417 
       
   418   /* Allocate latch area if not already done */
       
   419   if (coef->coef_bits_latch == NULL)
       
   420     coef->coef_bits_latch = (int *)
       
   421       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   422 				  cinfo->num_components *
       
   423 				  (SAVED_COEFS * SIZEOF(int)));
       
   424   coef_bits_latch = coef->coef_bits_latch;
       
   425 
       
   426   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       
   427        ci++, compptr++) {
       
   428     /* All components' quantization values must already be latched. */
       
   429     if ((qtable = compptr->quant_table) == NULL)
       
   430       return FALSE;
       
   431     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
       
   432     if (qtable->quantval[0] == 0 ||
       
   433 	qtable->quantval[Q01_POS] == 0 ||
       
   434 	qtable->quantval[Q10_POS] == 0 ||
       
   435 	qtable->quantval[Q20_POS] == 0 ||
       
   436 	qtable->quantval[Q11_POS] == 0 ||
       
   437 	qtable->quantval[Q02_POS] == 0)
       
   438       return FALSE;
       
   439     /* DC values must be at least partly known for all components. */
       
   440     coef_bits = cinfo->coef_bits[ci];
       
   441     if (coef_bits[0] < 0)
       
   442       return FALSE;
       
   443     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
       
   444     for (coefi = 1; coefi <= 5; coefi++) {
       
   445       coef_bits_latch[coefi] = coef_bits[coefi];
       
   446       if (coef_bits[coefi] != 0)
       
   447 	smoothing_useful = TRUE;
       
   448     }
       
   449     coef_bits_latch += SAVED_COEFS;
       
   450   }
       
   451 
       
   452   return smoothing_useful;
       
   453 }
       
   454 
       
   455 
       
   456 /*
       
   457  * Variant of decompress_data for use when doing block smoothing.
       
   458  */
       
   459 
       
   460 METHODDEF(int)
       
   461 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
       
   462 {
       
   463   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
       
   464   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
       
   465   JDIMENSION block_num, last_block_column;
       
   466   int ci, block_row, block_rows, access_rows;
       
   467   JBLOCKARRAY buffer;
       
   468   JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
       
   469   JSAMPARRAY output_ptr;
       
   470   JDIMENSION output_col;
       
   471   jpeg_component_info *compptr;
       
   472   inverse_DCT_method_ptr inverse_DCT;
       
   473   boolean first_row, last_row;
       
   474   JBLOCK workspace;
       
   475   int *coef_bits;
       
   476   JQUANT_TBL *quanttbl;
       
   477   INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
       
   478   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
       
   479   int Al, pred;
       
   480 
       
   481   /* Force some input to be done if we are getting ahead of the input. */
       
   482   while (cinfo->input_scan_number <= cinfo->output_scan_number &&
       
   483 	 ! cinfo->inputctl->eoi_reached) {
       
   484     if (cinfo->input_scan_number == cinfo->output_scan_number) {
       
   485       /* If input is working on current scan, we ordinarily want it to
       
   486        * have completed the current row.  But if input scan is DC,
       
   487        * we want it to keep one row ahead so that next block row's DC
       
   488        * values are up to date.
       
   489        */
       
   490       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
       
   491       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
       
   492 	break;
       
   493     }
       
   494     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
       
   495       return JPEG_SUSPENDED;
       
   496   }
       
   497 
       
   498   /* OK, output from the virtual arrays. */
       
   499   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       
   500        ci++, compptr++) {
       
   501     /* Don't bother to IDCT an uninteresting component. */
       
   502     if (! compptr->component_needed)
       
   503       continue;
       
   504     /* Count non-dummy DCT block rows in this iMCU row. */
       
   505     if (cinfo->output_iMCU_row < last_iMCU_row) {
       
   506       block_rows = compptr->v_samp_factor;
       
   507       access_rows = block_rows * 2; /* this and next iMCU row */
       
   508       last_row = FALSE;
       
   509     } else {
       
   510       /* NB: can't use last_row_height here; it is input-side-dependent! */
       
   511       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
       
   512       if (block_rows == 0) block_rows = compptr->v_samp_factor;
       
   513       access_rows = block_rows; /* this iMCU row only */
       
   514       last_row = TRUE;
       
   515     }
       
   516     /* Align the virtual buffer for this component. */
       
   517     if (cinfo->output_iMCU_row > 0) {
       
   518       access_rows += compptr->v_samp_factor; /* prior iMCU row too */
       
   519       buffer = (*cinfo->mem->access_virt_barray)
       
   520 	((j_common_ptr) cinfo, coef->whole_image[ci],
       
   521 	 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
       
   522 	 (JDIMENSION) access_rows, FALSE);
       
   523       buffer += compptr->v_samp_factor;	/* point to current iMCU row */
       
   524       first_row = FALSE;
       
   525     } else {
       
   526       buffer = (*cinfo->mem->access_virt_barray)
       
   527 	((j_common_ptr) cinfo, coef->whole_image[ci],
       
   528 	 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
       
   529       first_row = TRUE;
       
   530     }
       
   531     /* Fetch component-dependent info */
       
   532     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
       
   533     quanttbl = compptr->quant_table;
       
   534     Q00 = quanttbl->quantval[0];
       
   535     Q01 = quanttbl->quantval[Q01_POS];
       
   536     Q10 = quanttbl->quantval[Q10_POS];
       
   537     Q20 = quanttbl->quantval[Q20_POS];
       
   538     Q11 = quanttbl->quantval[Q11_POS];
       
   539     Q02 = quanttbl->quantval[Q02_POS];
       
   540     inverse_DCT = cinfo->idct->inverse_DCT[ci];
       
   541     output_ptr = output_buf[ci];
       
   542     /* Loop over all DCT blocks to be processed. */
       
   543     for (block_row = 0; block_row < block_rows; block_row++) {
       
   544       buffer_ptr = buffer[block_row];
       
   545       if (first_row && block_row == 0)
       
   546 	prev_block_row = buffer_ptr;
       
   547       else
       
   548 	prev_block_row = buffer[block_row-1];
       
   549       if (last_row && block_row == block_rows-1)
       
   550 	next_block_row = buffer_ptr;
       
   551       else
       
   552 	next_block_row = buffer[block_row+1];
       
   553       /* We fetch the surrounding DC values using a sliding-register approach.
       
   554        * Initialize all nine here so as to do the right thing on narrow pics.
       
   555        */
       
   556       DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
       
   557       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
       
   558       DC7 = DC8 = DC9 = (int) next_block_row[0][0];
       
   559       output_col = 0;
       
   560       last_block_column = compptr->width_in_blocks - 1;
       
   561       for (block_num = 0; block_num <= last_block_column; block_num++) {
       
   562 	/* Fetch current DCT block into workspace so we can modify it. */
       
   563 	jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
       
   564 	/* Update DC values */
       
   565 	if (block_num < last_block_column) {
       
   566 	  DC3 = (int) prev_block_row[1][0];
       
   567 	  DC6 = (int) buffer_ptr[1][0];
       
   568 	  DC9 = (int) next_block_row[1][0];
       
   569 	}
       
   570 	/* Compute coefficient estimates per K.8.
       
   571 	 * An estimate is applied only if coefficient is still zero,
       
   572 	 * and is not known to be fully accurate.
       
   573 	 */
       
   574 	/* AC01 */
       
   575 	if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
       
   576 	  num = 36 * Q00 * (DC4 - DC6);
       
   577 	  if (num >= 0) {
       
   578 	    pred = (int) (((Q01<<7) + num) / (Q01<<8));
       
   579 	    if (Al > 0 && pred >= (1<<Al))
       
   580 	      pred = (1<<Al)-1;
       
   581 	  } else {
       
   582 	    pred = (int) (((Q01<<7) - num) / (Q01<<8));
       
   583 	    if (Al > 0 && pred >= (1<<Al))
       
   584 	      pred = (1<<Al)-1;
       
   585 	    pred = -pred;
       
   586 	  }
       
   587 	  workspace[1] = (JCOEF) pred;
       
   588 	}
       
   589 	/* AC10 */
       
   590 	if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
       
   591 	  num = 36 * Q00 * (DC2 - DC8);
       
   592 	  if (num >= 0) {
       
   593 	    pred = (int) (((Q10<<7) + num) / (Q10<<8));
       
   594 	    if (Al > 0 && pred >= (1<<Al))
       
   595 	      pred = (1<<Al)-1;
       
   596 	  } else {
       
   597 	    pred = (int) (((Q10<<7) - num) / (Q10<<8));
       
   598 	    if (Al > 0 && pred >= (1<<Al))
       
   599 	      pred = (1<<Al)-1;
       
   600 	    pred = -pred;
       
   601 	  }
       
   602 	  workspace[8] = (JCOEF) pred;
       
   603 	}
       
   604 	/* AC20 */
       
   605 	if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
       
   606 	  num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
       
   607 	  if (num >= 0) {
       
   608 	    pred = (int) (((Q20<<7) + num) / (Q20<<8));
       
   609 	    if (Al > 0 && pred >= (1<<Al))
       
   610 	      pred = (1<<Al)-1;
       
   611 	  } else {
       
   612 	    pred = (int) (((Q20<<7) - num) / (Q20<<8));
       
   613 	    if (Al > 0 && pred >= (1<<Al))
       
   614 	      pred = (1<<Al)-1;
       
   615 	    pred = -pred;
       
   616 	  }
       
   617 	  workspace[16] = (JCOEF) pred;
       
   618 	}
       
   619 	/* AC11 */
       
   620 	if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
       
   621 	  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
       
   622 	  if (num >= 0) {
       
   623 	    pred = (int) (((Q11<<7) + num) / (Q11<<8));
       
   624 	    if (Al > 0 && pred >= (1<<Al))
       
   625 	      pred = (1<<Al)-1;
       
   626 	  } else {
       
   627 	    pred = (int) (((Q11<<7) - num) / (Q11<<8));
       
   628 	    if (Al > 0 && pred >= (1<<Al))
       
   629 	      pred = (1<<Al)-1;
       
   630 	    pred = -pred;
       
   631 	  }
       
   632 	  workspace[9] = (JCOEF) pred;
       
   633 	}
       
   634 	/* AC02 */
       
   635 	if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
       
   636 	  num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
       
   637 	  if (num >= 0) {
       
   638 	    pred = (int) (((Q02<<7) + num) / (Q02<<8));
       
   639 	    if (Al > 0 && pred >= (1<<Al))
       
   640 	      pred = (1<<Al)-1;
       
   641 	  } else {
       
   642 	    pred = (int) (((Q02<<7) - num) / (Q02<<8));
       
   643 	    if (Al > 0 && pred >= (1<<Al))
       
   644 	      pred = (1<<Al)-1;
       
   645 	    pred = -pred;
       
   646 	  }
       
   647 	  workspace[2] = (JCOEF) pred;
       
   648 	}
       
   649 	/* OK, do the IDCT */
       
   650 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
       
   651 			output_ptr, output_col);
       
   652 	/* Advance for next column */
       
   653 	DC1 = DC2; DC2 = DC3;
       
   654 	DC4 = DC5; DC5 = DC6;
       
   655 	DC7 = DC8; DC8 = DC9;
       
   656 	buffer_ptr++, prev_block_row++, next_block_row++;
       
   657 	output_col += compptr->DCT_scaled_size;
       
   658       }
       
   659       output_ptr += compptr->DCT_scaled_size;
       
   660     }
       
   661   }
       
   662 
       
   663   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
       
   664     return JPEG_ROW_COMPLETED;
       
   665   return JPEG_SCAN_COMPLETED;
       
   666 }
       
   667 
       
   668 #endif /* BLOCK_SMOOTHING_SUPPORTED */
       
   669 
       
   670 
       
   671 /*
       
   672  * Initialize coefficient buffer controller.
       
   673  */
       
   674 
       
   675 GLOBAL(void)
       
   676 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
       
   677 {
       
   678   my_coef_ptr coef;
       
   679 
       
   680   coef = (my_coef_ptr)
       
   681     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   682 				SIZEOF(my_coef_controller));
       
   683   cinfo->coef = (struct jpeg_d_coef_controller *) coef;
       
   684   coef->pub.start_input_pass = start_input_pass;
       
   685   coef->pub.start_output_pass = start_output_pass;
       
   686 #ifdef BLOCK_SMOOTHING_SUPPORTED
       
   687   coef->coef_bits_latch = NULL;
       
   688 #endif
       
   689 
       
   690   /* Create the coefficient buffer. */
       
   691   if (need_full_buffer) {
       
   692 #ifdef D_MULTISCAN_FILES_SUPPORTED
       
   693     /* Allocate a full-image virtual array for each component, */
       
   694     /* padded to a multiple of samp_factor DCT blocks in each direction. */
       
   695     /* Note we ask for a pre-zeroed array. */
       
   696     int ci, access_rows;
       
   697     jpeg_component_info *compptr;
       
   698 
       
   699     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       
   700 	 ci++, compptr++) {
       
   701       access_rows = compptr->v_samp_factor;
       
   702 #ifdef BLOCK_SMOOTHING_SUPPORTED
       
   703       /* If block smoothing could be used, need a bigger window */
       
   704       if (cinfo->progressive_mode)
       
   705 	access_rows *= 3;
       
   706 #endif
       
   707       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
       
   708 	((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
       
   709 	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
       
   710 				(long) compptr->h_samp_factor),
       
   711 	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
       
   712 				(long) compptr->v_samp_factor),
       
   713 	 (JDIMENSION) access_rows);
       
   714     }
       
   715     coef->pub.consume_data = consume_data;
       
   716     coef->pub.decompress_data = decompress_data;
       
   717     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
       
   718 #else
       
   719     ERREXIT(cinfo, JERR_NOT_COMPILED);
       
   720 #endif
       
   721   } else {
       
   722     /* We only need a single-MCU buffer. */
       
   723     JBLOCKROW buffer;
       
   724     int i;
       
   725 
       
   726     buffer = (JBLOCKROW)
       
   727       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   728 				  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
       
   729     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
       
   730       coef->MCU_buffer[i] = buffer + i;
       
   731     }
       
   732     coef->pub.consume_data = dummy_consume_data;
       
   733     coef->pub.decompress_data = decompress_onepass;
       
   734     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
       
   735   }
       
   736 }