src/3rdparty/libjpeg/jdct.h
changeset 0 1918ee327afb
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /*
       
     2  * jdct.h
       
     3  *
       
     4  * Copyright (C) 1994-1996, Thomas G. Lane.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This include file contains common declarations for the forward and
       
     9  * inverse DCT modules.  These declarations are private to the DCT managers
       
    10  * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
       
    11  * The individual DCT algorithms are kept in separate files to ease 
       
    12  * machine-dependent tuning (e.g., assembly coding).
       
    13  */
       
    14 
       
    15 
       
    16 /*
       
    17  * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
       
    18  * the DCT is to be performed in-place in that buffer.  Type DCTELEM is int
       
    19  * for 8-bit samples, INT32 for 12-bit samples.  (NOTE: Floating-point DCT
       
    20  * implementations use an array of type FAST_FLOAT, instead.)
       
    21  * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
       
    22  * The DCT outputs are returned scaled up by a factor of 8; they therefore
       
    23  * have a range of +-8K for 8-bit data, +-128K for 12-bit data.  This
       
    24  * convention improves accuracy in integer implementations and saves some
       
    25  * work in floating-point ones.
       
    26  * Quantization of the output coefficients is done by jcdctmgr.c.
       
    27  */
       
    28 
       
    29 #if BITS_IN_JSAMPLE == 8
       
    30 typedef int DCTELEM;		/* 16 or 32 bits is fine */
       
    31 #else
       
    32 typedef INT32 DCTELEM;		/* must have 32 bits */
       
    33 #endif
       
    34 
       
    35 typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
       
    36 typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
       
    37 
       
    38 
       
    39 /*
       
    40  * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
       
    41  * to an output sample array.  The routine must dequantize the input data as
       
    42  * well as perform the IDCT; for dequantization, it uses the multiplier table
       
    43  * pointed to by compptr->dct_table.  The output data is to be placed into the
       
    44  * sample array starting at a specified column.  (Any row offset needed will
       
    45  * be applied to the array pointer before it is passed to the IDCT code.)
       
    46  * Note that the number of samples emitted by the IDCT routine is
       
    47  * DCT_scaled_size * DCT_scaled_size.
       
    48  */
       
    49 
       
    50 /* typedef inverse_DCT_method_ptr is declared in jpegint.h */
       
    51 
       
    52 /*
       
    53  * Each IDCT routine has its own ideas about the best dct_table element type.
       
    54  */
       
    55 
       
    56 typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
       
    57 #if BITS_IN_JSAMPLE == 8
       
    58 typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
       
    59 #define IFAST_SCALE_BITS  2	/* fractional bits in scale factors */
       
    60 #else
       
    61 typedef INT32 IFAST_MULT_TYPE;	/* need 32 bits for scaled quantizers */
       
    62 #define IFAST_SCALE_BITS  13	/* fractional bits in scale factors */
       
    63 #endif
       
    64 typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
       
    65 
       
    66 
       
    67 /*
       
    68  * Each IDCT routine is responsible for range-limiting its results and
       
    69  * converting them to unsigned form (0..MAXJSAMPLE).  The raw outputs could
       
    70  * be quite far out of range if the input data is corrupt, so a bulletproof
       
    71  * range-limiting step is required.  We use a mask-and-table-lookup method
       
    72  * to do the combined operations quickly.  See the comments with
       
    73  * prepare_range_limit_table (in jdmaster.c) for more info.
       
    74  */
       
    75 
       
    76 #define IDCT_range_limit(cinfo)  ((cinfo)->sample_range_limit + CENTERJSAMPLE)
       
    77 
       
    78 #define RANGE_MASK  (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
       
    79 
       
    80 
       
    81 /* Short forms of external names for systems with brain-damaged linkers. */
       
    82 
       
    83 #ifdef NEED_SHORT_EXTERNAL_NAMES
       
    84 #define jpeg_fdct_islow		jFDislow
       
    85 #define jpeg_fdct_ifast		jFDifast
       
    86 #define jpeg_fdct_float		jFDfloat
       
    87 #define jpeg_idct_islow		jRDislow
       
    88 #define jpeg_idct_ifast		jRDifast
       
    89 #define jpeg_idct_float		jRDfloat
       
    90 #define jpeg_idct_4x4		jRD4x4
       
    91 #define jpeg_idct_2x2		jRD2x2
       
    92 #define jpeg_idct_1x1		jRD1x1
       
    93 #endif /* NEED_SHORT_EXTERNAL_NAMES */
       
    94 
       
    95 /* Extern declarations for the forward and inverse DCT routines. */
       
    96 
       
    97 EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
       
    98 EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
       
    99 EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
       
   100 
       
   101 EXTERN(void) jpeg_idct_islow
       
   102     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
       
   103 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
       
   104 EXTERN(void) jpeg_idct_ifast
       
   105     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
       
   106 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
       
   107 EXTERN(void) jpeg_idct_float
       
   108     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
       
   109 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
       
   110 EXTERN(void) jpeg_idct_4x4
       
   111     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
       
   112 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
       
   113 EXTERN(void) jpeg_idct_2x2
       
   114     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
       
   115 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
       
   116 EXTERN(void) jpeg_idct_1x1
       
   117     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
       
   118 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
       
   119 
       
   120 
       
   121 /*
       
   122  * Macros for handling fixed-point arithmetic; these are used by many
       
   123  * but not all of the DCT/IDCT modules.
       
   124  *
       
   125  * All values are expected to be of type INT32.
       
   126  * Fractional constants are scaled left by CONST_BITS bits.
       
   127  * CONST_BITS is defined within each module using these macros,
       
   128  * and may differ from one module to the next.
       
   129  */
       
   130 
       
   131 #define ONE	((INT32) 1)
       
   132 #define CONST_SCALE (ONE << CONST_BITS)
       
   133 
       
   134 /* Convert a positive real constant to an integer scaled by CONST_SCALE.
       
   135  * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
       
   136  * thus causing a lot of useless floating-point operations at run time.
       
   137  */
       
   138 
       
   139 #define FIX(x)	((INT32) ((x) * CONST_SCALE + 0.5))
       
   140 
       
   141 /* Descale and correctly round an INT32 value that's scaled by N bits.
       
   142  * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
       
   143  * the fudge factor is correct for either sign of X.
       
   144  */
       
   145 
       
   146 #define DESCALE(x,n)  RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
       
   147 
       
   148 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
       
   149  * This macro is used only when the two inputs will actually be no more than
       
   150  * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
       
   151  * full 32x32 multiply.  This provides a useful speedup on many machines.
       
   152  * Unfortunately there is no way to specify a 16x16->32 multiply portably
       
   153  * in C, but some C compilers will do the right thing if you provide the
       
   154  * correct combination of casts.
       
   155  */
       
   156 
       
   157 #ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */
       
   158 #define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT16) (const)))
       
   159 #endif
       
   160 #ifdef SHORTxLCONST_32		/* known to work with Microsoft C 6.0 */
       
   161 #define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT32) (const)))
       
   162 #endif
       
   163 
       
   164 #ifndef MULTIPLY16C16		/* default definition */
       
   165 #define MULTIPLY16C16(var,const)  ((var) * (const))
       
   166 #endif
       
   167 
       
   168 /* Same except both inputs are variables. */
       
   169 
       
   170 #ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */
       
   171 #define MULTIPLY16V16(var1,var2)  (((INT16) (var1)) * ((INT16) (var2)))
       
   172 #endif
       
   173 
       
   174 #ifndef MULTIPLY16V16		/* default definition */
       
   175 #define MULTIPLY16V16(var1,var2)  ((var1) * (var2))
       
   176 #endif