src/3rdparty/libjpeg/jdhuff.c
changeset 0 1918ee327afb
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /*
       
     2  * jdhuff.c
       
     3  *
       
     4  * Copyright (C) 1991-1997, Thomas G. Lane.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This file contains Huffman entropy decoding routines.
       
     9  *
       
    10  * Much of the complexity here has to do with supporting input suspension.
       
    11  * If the data source module demands suspension, we want to be able to back
       
    12  * up to the start of the current MCU.  To do this, we copy state variables
       
    13  * into local working storage, and update them back to the permanent
       
    14  * storage only upon successful completion of an MCU.
       
    15  */
       
    16 
       
    17 #define JPEG_INTERNALS
       
    18 #include "jinclude.h"
       
    19 #include "jpeglib.h"
       
    20 #include "jdhuff.h"		/* Declarations shared with jdphuff.c */
       
    21 
       
    22 
       
    23 /*
       
    24  * Expanded entropy decoder object for Huffman decoding.
       
    25  *
       
    26  * The savable_state subrecord contains fields that change within an MCU,
       
    27  * but must not be updated permanently until we complete the MCU.
       
    28  */
       
    29 
       
    30 typedef struct {
       
    31   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
       
    32 } savable_state;
       
    33 
       
    34 /* This macro is to work around compilers with missing or broken
       
    35  * structure assignment.  You'll need to fix this code if you have
       
    36  * such a compiler and you change MAX_COMPS_IN_SCAN.
       
    37  */
       
    38 
       
    39 #ifndef NO_STRUCT_ASSIGN
       
    40 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
       
    41 #else
       
    42 #if MAX_COMPS_IN_SCAN == 4
       
    43 #define ASSIGN_STATE(dest,src)  \
       
    44 	((dest).last_dc_val[0] = (src).last_dc_val[0], \
       
    45 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
       
    46 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
       
    47 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
       
    48 #endif
       
    49 #endif
       
    50 
       
    51 
       
    52 typedef struct {
       
    53   struct jpeg_entropy_decoder pub; /* public fields */
       
    54 
       
    55   /* These fields are loaded into local variables at start of each MCU.
       
    56    * In case of suspension, we exit WITHOUT updating them.
       
    57    */
       
    58   bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
       
    59   savable_state saved;		/* Other state at start of MCU */
       
    60 
       
    61   /* These fields are NOT loaded into local working state. */
       
    62   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
       
    63 
       
    64   /* Pointers to derived tables (these workspaces have image lifespan) */
       
    65   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
       
    66   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
       
    67 
       
    68   /* Precalculated info set up by start_pass for use in decode_mcu: */
       
    69 
       
    70   /* Pointers to derived tables to be used for each block within an MCU */
       
    71   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
       
    72   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
       
    73   /* Whether we care about the DC and AC coefficient values for each block */
       
    74   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
       
    75   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
       
    76 } huff_entropy_decoder;
       
    77 
       
    78 typedef huff_entropy_decoder * huff_entropy_ptr;
       
    79 
       
    80 
       
    81 /*
       
    82  * Initialize for a Huffman-compressed scan.
       
    83  */
       
    84 
       
    85 METHODDEF(void)
       
    86 start_pass_huff_decoder (j_decompress_ptr cinfo)
       
    87 {
       
    88   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
       
    89   int ci, blkn, dctbl, actbl;
       
    90   jpeg_component_info * compptr;
       
    91 
       
    92   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
       
    93    * This ought to be an error condition, but we make it a warning because
       
    94    * there are some baseline files out there with all zeroes in these bytes.
       
    95    */
       
    96   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
       
    97       cinfo->Ah != 0 || cinfo->Al != 0)
       
    98     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
       
    99 
       
   100   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
       
   101     compptr = cinfo->cur_comp_info[ci];
       
   102     dctbl = compptr->dc_tbl_no;
       
   103     actbl = compptr->ac_tbl_no;
       
   104     /* Compute derived values for Huffman tables */
       
   105     /* We may do this more than once for a table, but it's not expensive */
       
   106     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
       
   107 			    & entropy->dc_derived_tbls[dctbl]);
       
   108     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
       
   109 			    & entropy->ac_derived_tbls[actbl]);
       
   110     /* Initialize DC predictions to 0 */
       
   111     entropy->saved.last_dc_val[ci] = 0;
       
   112   }
       
   113 
       
   114   /* Precalculate decoding info for each block in an MCU of this scan */
       
   115   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
       
   116     ci = cinfo->MCU_membership[blkn];
       
   117     compptr = cinfo->cur_comp_info[ci];
       
   118     /* Precalculate which table to use for each block */
       
   119     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
       
   120     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
       
   121     /* Decide whether we really care about the coefficient values */
       
   122     if (compptr->component_needed) {
       
   123       entropy->dc_needed[blkn] = TRUE;
       
   124       /* we don't need the ACs if producing a 1/8th-size image */
       
   125       entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
       
   126     } else {
       
   127       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
       
   128     }
       
   129   }
       
   130 
       
   131   /* Initialize bitread state variables */
       
   132   entropy->bitstate.bits_left = 0;
       
   133   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
       
   134   entropy->pub.insufficient_data = FALSE;
       
   135 
       
   136   /* Initialize restart counter */
       
   137   entropy->restarts_to_go = cinfo->restart_interval;
       
   138 }
       
   139 
       
   140 
       
   141 /*
       
   142  * Compute the derived values for a Huffman table.
       
   143  * This routine also performs some validation checks on the table.
       
   144  *
       
   145  * Note this is also used by jdphuff.c.
       
   146  */
       
   147 
       
   148 GLOBAL(void)
       
   149 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
       
   150 			 d_derived_tbl ** pdtbl)
       
   151 {
       
   152   JHUFF_TBL *htbl;
       
   153   d_derived_tbl *dtbl;
       
   154   int p, i, l, si, numsymbols;
       
   155   int lookbits, ctr;
       
   156   char huffsize[257];
       
   157   unsigned int huffcode[257];
       
   158   unsigned int code;
       
   159 
       
   160   /* Note that huffsize[] and huffcode[] are filled in code-length order,
       
   161    * paralleling the order of the symbols themselves in htbl->huffval[].
       
   162    */
       
   163 
       
   164   /* Find the input Huffman table */
       
   165   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
       
   166     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
       
   167   htbl =
       
   168     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
       
   169   if (htbl == NULL)
       
   170     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
       
   171 
       
   172   /* Allocate a workspace if we haven't already done so. */
       
   173   if (*pdtbl == NULL)
       
   174     *pdtbl = (d_derived_tbl *)
       
   175       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   176 				  SIZEOF(d_derived_tbl));
       
   177   dtbl = *pdtbl;
       
   178   dtbl->pub = htbl;		/* fill in back link */
       
   179   
       
   180   /* Figure C.1: make table of Huffman code length for each symbol */
       
   181 
       
   182   p = 0;
       
   183   for (l = 1; l <= 16; l++) {
       
   184     i = (int) htbl->bits[l];
       
   185     if (i < 0 || p + i > 256)	/* protect against table overrun */
       
   186       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
       
   187     while (i--)
       
   188       huffsize[p++] = (char) l;
       
   189   }
       
   190   huffsize[p] = 0;
       
   191   numsymbols = p;
       
   192   
       
   193   /* Figure C.2: generate the codes themselves */
       
   194   /* We also validate that the counts represent a legal Huffman code tree. */
       
   195   
       
   196   code = 0;
       
   197   si = huffsize[0];
       
   198   p = 0;
       
   199   while (huffsize[p]) {
       
   200     while (((int) huffsize[p]) == si) {
       
   201       huffcode[p++] = code;
       
   202       code++;
       
   203     }
       
   204     /* code is now 1 more than the last code used for codelength si; but
       
   205      * it must still fit in si bits, since no code is allowed to be all ones.
       
   206      */
       
   207     if (((INT32) code) >= (((INT32) 1) << si))
       
   208       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
       
   209     code <<= 1;
       
   210     si++;
       
   211   }
       
   212 
       
   213   /* Figure F.15: generate decoding tables for bit-sequential decoding */
       
   214 
       
   215   p = 0;
       
   216   for (l = 1; l <= 16; l++) {
       
   217     if (htbl->bits[l]) {
       
   218       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
       
   219        * minus the minimum code of length l
       
   220        */
       
   221       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
       
   222       p += htbl->bits[l];
       
   223       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
       
   224     } else {
       
   225       dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
       
   226     }
       
   227   }
       
   228   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
       
   229 
       
   230   /* Compute lookahead tables to speed up decoding.
       
   231    * First we set all the table entries to 0, indicating "too long";
       
   232    * then we iterate through the Huffman codes that are short enough and
       
   233    * fill in all the entries that correspond to bit sequences starting
       
   234    * with that code.
       
   235    */
       
   236 
       
   237   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
       
   238 
       
   239   p = 0;
       
   240   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
       
   241     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
       
   242       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
       
   243       /* Generate left-justified code followed by all possible bit sequences */
       
   244       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
       
   245       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
       
   246 	dtbl->look_nbits[lookbits] = l;
       
   247 	dtbl->look_sym[lookbits] = htbl->huffval[p];
       
   248 	lookbits++;
       
   249       }
       
   250     }
       
   251   }
       
   252 
       
   253   /* Validate symbols as being reasonable.
       
   254    * For AC tables, we make no check, but accept all byte values 0..255.
       
   255    * For DC tables, we require the symbols to be in range 0..15.
       
   256    * (Tighter bounds could be applied depending on the data depth and mode,
       
   257    * but this is sufficient to ensure safe decoding.)
       
   258    */
       
   259   if (isDC) {
       
   260     for (i = 0; i < numsymbols; i++) {
       
   261       int sym = htbl->huffval[i];
       
   262       if (sym < 0 || sym > 15)
       
   263 	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
       
   264     }
       
   265   }
       
   266 }
       
   267 
       
   268 
       
   269 /*
       
   270  * Out-of-line code for bit fetching (shared with jdphuff.c).
       
   271  * See jdhuff.h for info about usage.
       
   272  * Note: current values of get_buffer and bits_left are passed as parameters,
       
   273  * but are returned in the corresponding fields of the state struct.
       
   274  *
       
   275  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
       
   276  * of get_buffer to be used.  (On machines with wider words, an even larger
       
   277  * buffer could be used.)  However, on some machines 32-bit shifts are
       
   278  * quite slow and take time proportional to the number of places shifted.
       
   279  * (This is true with most PC compilers, for instance.)  In this case it may
       
   280  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
       
   281  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
       
   282  */
       
   283 
       
   284 #ifdef SLOW_SHIFT_32
       
   285 #define MIN_GET_BITS  15	/* minimum allowable value */
       
   286 #else
       
   287 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
       
   288 #endif
       
   289 
       
   290 
       
   291 GLOBAL(boolean)
       
   292 jpeg_fill_bit_buffer (bitread_working_state * state,
       
   293 		      register bit_buf_type get_buffer, register int bits_left,
       
   294 		      int nbits)
       
   295 /* Load up the bit buffer to a depth of at least nbits */
       
   296 {
       
   297   /* Copy heavily used state fields into locals (hopefully registers) */
       
   298   register const JOCTET * next_input_byte = state->next_input_byte;
       
   299   register size_t bytes_in_buffer = state->bytes_in_buffer;
       
   300   j_decompress_ptr cinfo = state->cinfo;
       
   301 
       
   302   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
       
   303   /* (It is assumed that no request will be for more than that many bits.) */
       
   304   /* We fail to do so only if we hit a marker or are forced to suspend. */
       
   305 
       
   306   if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
       
   307     while (bits_left < MIN_GET_BITS) {
       
   308       register int c;
       
   309 
       
   310       /* Attempt to read a byte */
       
   311       if (bytes_in_buffer == 0) {
       
   312 	if (! (*cinfo->src->fill_input_buffer) (cinfo))
       
   313 	  return FALSE;
       
   314 	next_input_byte = cinfo->src->next_input_byte;
       
   315 	bytes_in_buffer = cinfo->src->bytes_in_buffer;
       
   316       }
       
   317       bytes_in_buffer--;
       
   318       c = GETJOCTET(*next_input_byte++);
       
   319 
       
   320       /* If it's 0xFF, check and discard stuffed zero byte */
       
   321       if (c == 0xFF) {
       
   322 	/* Loop here to discard any padding FF's on terminating marker,
       
   323 	 * so that we can save a valid unread_marker value.  NOTE: we will
       
   324 	 * accept multiple FF's followed by a 0 as meaning a single FF data
       
   325 	 * byte.  This data pattern is not valid according to the standard.
       
   326 	 */
       
   327 	do {
       
   328 	  if (bytes_in_buffer == 0) {
       
   329 	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
       
   330 	      return FALSE;
       
   331 	    next_input_byte = cinfo->src->next_input_byte;
       
   332 	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
       
   333 	  }
       
   334 	  bytes_in_buffer--;
       
   335 	  c = GETJOCTET(*next_input_byte++);
       
   336 	} while (c == 0xFF);
       
   337 
       
   338 	if (c == 0) {
       
   339 	  /* Found FF/00, which represents an FF data byte */
       
   340 	  c = 0xFF;
       
   341 	} else {
       
   342 	  /* Oops, it's actually a marker indicating end of compressed data.
       
   343 	   * Save the marker code for later use.
       
   344 	   * Fine point: it might appear that we should save the marker into
       
   345 	   * bitread working state, not straight into permanent state.  But
       
   346 	   * once we have hit a marker, we cannot need to suspend within the
       
   347 	   * current MCU, because we will read no more bytes from the data
       
   348 	   * source.  So it is OK to update permanent state right away.
       
   349 	   */
       
   350 	  cinfo->unread_marker = c;
       
   351 	  /* See if we need to insert some fake zero bits. */
       
   352 	  goto no_more_bytes;
       
   353 	}
       
   354       }
       
   355 
       
   356       /* OK, load c into get_buffer */
       
   357       get_buffer = (get_buffer << 8) | c;
       
   358       bits_left += 8;
       
   359     } /* end while */
       
   360   } else {
       
   361   no_more_bytes:
       
   362     /* We get here if we've read the marker that terminates the compressed
       
   363      * data segment.  There should be enough bits in the buffer register
       
   364      * to satisfy the request; if so, no problem.
       
   365      */
       
   366     if (nbits > bits_left) {
       
   367       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
       
   368        * the data stream, so that we can produce some kind of image.
       
   369        * We use a nonvolatile flag to ensure that only one warning message
       
   370        * appears per data segment.
       
   371        */
       
   372       if (! cinfo->entropy->insufficient_data) {
       
   373 	WARNMS(cinfo, JWRN_HIT_MARKER);
       
   374 	cinfo->entropy->insufficient_data = TRUE;
       
   375       }
       
   376       /* Fill the buffer with zero bits */
       
   377       get_buffer <<= MIN_GET_BITS - bits_left;
       
   378       bits_left = MIN_GET_BITS;
       
   379     }
       
   380   }
       
   381 
       
   382   /* Unload the local registers */
       
   383   state->next_input_byte = next_input_byte;
       
   384   state->bytes_in_buffer = bytes_in_buffer;
       
   385   state->get_buffer = get_buffer;
       
   386   state->bits_left = bits_left;
       
   387 
       
   388   return TRUE;
       
   389 }
       
   390 
       
   391 
       
   392 /*
       
   393  * Out-of-line code for Huffman code decoding.
       
   394  * See jdhuff.h for info about usage.
       
   395  */
       
   396 
       
   397 GLOBAL(int)
       
   398 jpeg_huff_decode (bitread_working_state * state,
       
   399 		  register bit_buf_type get_buffer, register int bits_left,
       
   400 		  d_derived_tbl * htbl, int min_bits)
       
   401 {
       
   402   register int l = min_bits;
       
   403   register INT32 code;
       
   404 
       
   405   /* HUFF_DECODE has determined that the code is at least min_bits */
       
   406   /* bits long, so fetch that many bits in one swoop. */
       
   407 
       
   408   CHECK_BIT_BUFFER(*state, l, return -1);
       
   409   code = GET_BITS(l);
       
   410 
       
   411   /* Collect the rest of the Huffman code one bit at a time. */
       
   412   /* This is per Figure F.16 in the JPEG spec. */
       
   413 
       
   414   while (code > htbl->maxcode[l]) {
       
   415     code <<= 1;
       
   416     CHECK_BIT_BUFFER(*state, 1, return -1);
       
   417     code |= GET_BITS(1);
       
   418     l++;
       
   419   }
       
   420 
       
   421   /* Unload the local registers */
       
   422   state->get_buffer = get_buffer;
       
   423   state->bits_left = bits_left;
       
   424 
       
   425   /* With garbage input we may reach the sentinel value l = 17. */
       
   426 
       
   427   if (l > 16) {
       
   428     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
       
   429     return 0;			/* fake a zero as the safest result */
       
   430   }
       
   431 
       
   432   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
       
   433 }
       
   434 
       
   435 
       
   436 /*
       
   437  * Figure F.12: extend sign bit.
       
   438  * On some machines, a shift and add will be faster than a table lookup.
       
   439  */
       
   440 
       
   441 #ifdef AVOID_TABLES
       
   442 
       
   443 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
       
   444 
       
   445 #else
       
   446 
       
   447 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
       
   448 
       
   449 static const int extend_test[16] =   /* entry n is 2**(n-1) */
       
   450   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
       
   451     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
       
   452 
       
   453 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
       
   454   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
       
   455     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
       
   456     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
       
   457     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
       
   458 
       
   459 #endif /* AVOID_TABLES */
       
   460 
       
   461 
       
   462 /*
       
   463  * Check for a restart marker & resynchronize decoder.
       
   464  * Returns FALSE if must suspend.
       
   465  */
       
   466 
       
   467 LOCAL(boolean)
       
   468 process_restart (j_decompress_ptr cinfo)
       
   469 {
       
   470   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
       
   471   int ci;
       
   472 
       
   473   /* Throw away any unused bits remaining in bit buffer; */
       
   474   /* include any full bytes in next_marker's count of discarded bytes */
       
   475   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
       
   476   entropy->bitstate.bits_left = 0;
       
   477 
       
   478   /* Advance past the RSTn marker */
       
   479   if (! (*cinfo->marker->read_restart_marker) (cinfo))
       
   480     return FALSE;
       
   481 
       
   482   /* Re-initialize DC predictions to 0 */
       
   483   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
       
   484     entropy->saved.last_dc_val[ci] = 0;
       
   485 
       
   486   /* Reset restart counter */
       
   487   entropy->restarts_to_go = cinfo->restart_interval;
       
   488 
       
   489   /* Reset out-of-data flag, unless read_restart_marker left us smack up
       
   490    * against a marker.  In that case we will end up treating the next data
       
   491    * segment as empty, and we can avoid producing bogus output pixels by
       
   492    * leaving the flag set.
       
   493    */
       
   494   if (cinfo->unread_marker == 0)
       
   495     entropy->pub.insufficient_data = FALSE;
       
   496 
       
   497   return TRUE;
       
   498 }
       
   499 
       
   500 
       
   501 /*
       
   502  * Decode and return one MCU's worth of Huffman-compressed coefficients.
       
   503  * The coefficients are reordered from zigzag order into natural array order,
       
   504  * but are not dequantized.
       
   505  *
       
   506  * The i'th block of the MCU is stored into the block pointed to by
       
   507  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
       
   508  * (Wholesale zeroing is usually a little faster than retail...)
       
   509  *
       
   510  * Returns FALSE if data source requested suspension.  In that case no
       
   511  * changes have been made to permanent state.  (Exception: some output
       
   512  * coefficients may already have been assigned.  This is harmless for
       
   513  * this module, since we'll just re-assign them on the next call.)
       
   514  */
       
   515 
       
   516 METHODDEF(boolean)
       
   517 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
       
   518 {
       
   519   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
       
   520   int blkn;
       
   521   BITREAD_STATE_VARS;
       
   522   savable_state state;
       
   523 
       
   524   /* Process restart marker if needed; may have to suspend */
       
   525   if (cinfo->restart_interval) {
       
   526     if (entropy->restarts_to_go == 0)
       
   527       if (! process_restart(cinfo))
       
   528 	return FALSE;
       
   529   }
       
   530 
       
   531   /* If we've run out of data, just leave the MCU set to zeroes.
       
   532    * This way, we return uniform gray for the remainder of the segment.
       
   533    */
       
   534   if (! entropy->pub.insufficient_data) {
       
   535 
       
   536     /* Load up working state */
       
   537     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
       
   538     ASSIGN_STATE(state, entropy->saved);
       
   539 
       
   540     /* Outer loop handles each block in the MCU */
       
   541 
       
   542     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
       
   543       JBLOCKROW block = MCU_data[blkn];
       
   544       d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
       
   545       d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
       
   546       register int s, k, r;
       
   547 
       
   548       /* Decode a single block's worth of coefficients */
       
   549 
       
   550       /* Section F.2.2.1: decode the DC coefficient difference */
       
   551       HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
       
   552       if (s) {
       
   553 	CHECK_BIT_BUFFER(br_state, s, return FALSE);
       
   554 	r = GET_BITS(s);
       
   555 	s = HUFF_EXTEND(r, s);
       
   556       }
       
   557 
       
   558       if (entropy->dc_needed[blkn]) {
       
   559 	/* Convert DC difference to actual value, update last_dc_val */
       
   560 	int ci = cinfo->MCU_membership[blkn];
       
   561 	s += state.last_dc_val[ci];
       
   562 	state.last_dc_val[ci] = s;
       
   563 	/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
       
   564 	(*block)[0] = (JCOEF) s;
       
   565       }
       
   566 
       
   567       if (entropy->ac_needed[blkn]) {
       
   568 
       
   569 	/* Section F.2.2.2: decode the AC coefficients */
       
   570 	/* Since zeroes are skipped, output area must be cleared beforehand */
       
   571 	for (k = 1; k < DCTSIZE2; k++) {
       
   572 	  HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
       
   573       
       
   574 	  r = s >> 4;
       
   575 	  s &= 15;
       
   576       
       
   577 	  if (s) {
       
   578 	    k += r;
       
   579 	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
       
   580 	    r = GET_BITS(s);
       
   581 	    s = HUFF_EXTEND(r, s);
       
   582 	    /* Output coefficient in natural (dezigzagged) order.
       
   583 	     * Note: the extra entries in jpeg_natural_order[] will save us
       
   584 	     * if k >= DCTSIZE2, which could happen if the data is corrupted.
       
   585 	     */
       
   586 	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
       
   587 	  } else {
       
   588 	    if (r != 15)
       
   589 	      break;
       
   590 	    k += 15;
       
   591 	  }
       
   592 	}
       
   593 
       
   594       } else {
       
   595 
       
   596 	/* Section F.2.2.2: decode the AC coefficients */
       
   597 	/* In this path we just discard the values */
       
   598 	for (k = 1; k < DCTSIZE2; k++) {
       
   599 	  HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
       
   600       
       
   601 	  r = s >> 4;
       
   602 	  s &= 15;
       
   603       
       
   604 	  if (s) {
       
   605 	    k += r;
       
   606 	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
       
   607 	    DROP_BITS(s);
       
   608 	  } else {
       
   609 	    if (r != 15)
       
   610 	      break;
       
   611 	    k += 15;
       
   612 	  }
       
   613 	}
       
   614 
       
   615       }
       
   616     }
       
   617 
       
   618     /* Completed MCU, so update state */
       
   619     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
       
   620     ASSIGN_STATE(entropy->saved, state);
       
   621   }
       
   622 
       
   623   /* Account for restart interval (no-op if not using restarts) */
       
   624   entropy->restarts_to_go--;
       
   625 
       
   626   return TRUE;
       
   627 }
       
   628 
       
   629 
       
   630 /*
       
   631  * Module initialization routine for Huffman entropy decoding.
       
   632  */
       
   633 
       
   634 GLOBAL(void)
       
   635 jinit_huff_decoder (j_decompress_ptr cinfo)
       
   636 {
       
   637   huff_entropy_ptr entropy;
       
   638   int i;
       
   639 
       
   640   entropy = (huff_entropy_ptr)
       
   641     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   642 				SIZEOF(huff_entropy_decoder));
       
   643   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
       
   644   entropy->pub.start_pass = start_pass_huff_decoder;
       
   645   entropy->pub.decode_mcu = decode_mcu;
       
   646 
       
   647   /* Mark tables unallocated */
       
   648   for (i = 0; i < NUM_HUFF_TBLS; i++) {
       
   649     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
       
   650   }
       
   651 }