src/3rdparty/libjpeg/jfdctflt.c
changeset 0 1918ee327afb
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /*
       
     2  * jfdctflt.c
       
     3  *
       
     4  * Copyright (C) 1994-1996, Thomas G. Lane.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This file contains a floating-point implementation of the
       
     9  * forward DCT (Discrete Cosine Transform).
       
    10  *
       
    11  * This implementation should be more accurate than either of the integer
       
    12  * DCT implementations.  However, it may not give the same results on all
       
    13  * machines because of differences in roundoff behavior.  Speed will depend
       
    14  * on the hardware's floating point capacity.
       
    15  *
       
    16  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
       
    17  * on each column.  Direct algorithms are also available, but they are
       
    18  * much more complex and seem not to be any faster when reduced to code.
       
    19  *
       
    20  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
       
    21  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
       
    22  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
       
    23  * JPEG textbook (see REFERENCES section in file README).  The following code
       
    24  * is based directly on figure 4-8 in P&M.
       
    25  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
       
    26  * possible to arrange the computation so that many of the multiplies are
       
    27  * simple scalings of the final outputs.  These multiplies can then be
       
    28  * folded into the multiplications or divisions by the JPEG quantization
       
    29  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
       
    30  * to be done in the DCT itself.
       
    31  * The primary disadvantage of this method is that with a fixed-point
       
    32  * implementation, accuracy is lost due to imprecise representation of the
       
    33  * scaled quantization values.  However, that problem does not arise if
       
    34  * we use floating point arithmetic.
       
    35  */
       
    36 
       
    37 #define JPEG_INTERNALS
       
    38 #include "jinclude.h"
       
    39 #include "jpeglib.h"
       
    40 #include "jdct.h"		/* Private declarations for DCT subsystem */
       
    41 
       
    42 #ifdef DCT_FLOAT_SUPPORTED
       
    43 
       
    44 
       
    45 /*
       
    46  * This module is specialized to the case DCTSIZE = 8.
       
    47  */
       
    48 
       
    49 #if DCTSIZE != 8
       
    50   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
       
    51 #endif
       
    52 
       
    53 
       
    54 /*
       
    55  * Perform the forward DCT on one block of samples.
       
    56  */
       
    57 
       
    58 GLOBAL(void)
       
    59 jpeg_fdct_float (FAST_FLOAT * data)
       
    60 {
       
    61   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
       
    62   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
       
    63   FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
       
    64   FAST_FLOAT *dataptr;
       
    65   int ctr;
       
    66 
       
    67   /* Pass 1: process rows. */
       
    68 
       
    69   dataptr = data;
       
    70   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
       
    71     tmp0 = dataptr[0] + dataptr[7];
       
    72     tmp7 = dataptr[0] - dataptr[7];
       
    73     tmp1 = dataptr[1] + dataptr[6];
       
    74     tmp6 = dataptr[1] - dataptr[6];
       
    75     tmp2 = dataptr[2] + dataptr[5];
       
    76     tmp5 = dataptr[2] - dataptr[5];
       
    77     tmp3 = dataptr[3] + dataptr[4];
       
    78     tmp4 = dataptr[3] - dataptr[4];
       
    79     
       
    80     /* Even part */
       
    81     
       
    82     tmp10 = tmp0 + tmp3;	/* phase 2 */
       
    83     tmp13 = tmp0 - tmp3;
       
    84     tmp11 = tmp1 + tmp2;
       
    85     tmp12 = tmp1 - tmp2;
       
    86     
       
    87     dataptr[0] = tmp10 + tmp11; /* phase 3 */
       
    88     dataptr[4] = tmp10 - tmp11;
       
    89     
       
    90     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
       
    91     dataptr[2] = tmp13 + z1;	/* phase 5 */
       
    92     dataptr[6] = tmp13 - z1;
       
    93     
       
    94     /* Odd part */
       
    95 
       
    96     tmp10 = tmp4 + tmp5;	/* phase 2 */
       
    97     tmp11 = tmp5 + tmp6;
       
    98     tmp12 = tmp6 + tmp7;
       
    99 
       
   100     /* The rotator is modified from fig 4-8 to avoid extra negations. */
       
   101     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
       
   102     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
       
   103     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
       
   104     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
       
   105 
       
   106     z11 = tmp7 + z3;		/* phase 5 */
       
   107     z13 = tmp7 - z3;
       
   108 
       
   109     dataptr[5] = z13 + z2;	/* phase 6 */
       
   110     dataptr[3] = z13 - z2;
       
   111     dataptr[1] = z11 + z4;
       
   112     dataptr[7] = z11 - z4;
       
   113 
       
   114     dataptr += DCTSIZE;		/* advance pointer to next row */
       
   115   }
       
   116 
       
   117   /* Pass 2: process columns. */
       
   118 
       
   119   dataptr = data;
       
   120   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
       
   121     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
       
   122     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
       
   123     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
       
   124     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
       
   125     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
       
   126     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
       
   127     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
       
   128     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
       
   129     
       
   130     /* Even part */
       
   131     
       
   132     tmp10 = tmp0 + tmp3;	/* phase 2 */
       
   133     tmp13 = tmp0 - tmp3;
       
   134     tmp11 = tmp1 + tmp2;
       
   135     tmp12 = tmp1 - tmp2;
       
   136     
       
   137     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
       
   138     dataptr[DCTSIZE*4] = tmp10 - tmp11;
       
   139     
       
   140     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
       
   141     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
       
   142     dataptr[DCTSIZE*6] = tmp13 - z1;
       
   143     
       
   144     /* Odd part */
       
   145 
       
   146     tmp10 = tmp4 + tmp5;	/* phase 2 */
       
   147     tmp11 = tmp5 + tmp6;
       
   148     tmp12 = tmp6 + tmp7;
       
   149 
       
   150     /* The rotator is modified from fig 4-8 to avoid extra negations. */
       
   151     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
       
   152     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
       
   153     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
       
   154     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
       
   155 
       
   156     z11 = tmp7 + z3;		/* phase 5 */
       
   157     z13 = tmp7 - z3;
       
   158 
       
   159     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
       
   160     dataptr[DCTSIZE*3] = z13 - z2;
       
   161     dataptr[DCTSIZE*1] = z11 + z4;
       
   162     dataptr[DCTSIZE*7] = z11 - z4;
       
   163 
       
   164     dataptr++;			/* advance pointer to next column */
       
   165   }
       
   166 }
       
   167 
       
   168 #endif /* DCT_FLOAT_SUPPORTED */