src/3rdparty/libjpeg/jidctflt.c
changeset 0 1918ee327afb
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /*
       
     2  * jidctflt.c
       
     3  *
       
     4  * Copyright (C) 1994-1998, Thomas G. Lane.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This file contains a floating-point implementation of the
       
     9  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
       
    10  * must also perform dequantization of the input coefficients.
       
    11  *
       
    12  * This implementation should be more accurate than either of the integer
       
    13  * IDCT implementations.  However, it may not give the same results on all
       
    14  * machines because of differences in roundoff behavior.  Speed will depend
       
    15  * on the hardware's floating point capacity.
       
    16  *
       
    17  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
       
    18  * on each row (or vice versa, but it's more convenient to emit a row at
       
    19  * a time).  Direct algorithms are also available, but they are much more
       
    20  * complex and seem not to be any faster when reduced to code.
       
    21  *
       
    22  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
       
    23  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
       
    24  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
       
    25  * JPEG textbook (see REFERENCES section in file README).  The following code
       
    26  * is based directly on figure 4-8 in P&M.
       
    27  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
       
    28  * possible to arrange the computation so that many of the multiplies are
       
    29  * simple scalings of the final outputs.  These multiplies can then be
       
    30  * folded into the multiplications or divisions by the JPEG quantization
       
    31  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
       
    32  * to be done in the DCT itself.
       
    33  * The primary disadvantage of this method is that with a fixed-point
       
    34  * implementation, accuracy is lost due to imprecise representation of the
       
    35  * scaled quantization values.  However, that problem does not arise if
       
    36  * we use floating point arithmetic.
       
    37  */
       
    38 
       
    39 #define JPEG_INTERNALS
       
    40 #include "jinclude.h"
       
    41 #include "jpeglib.h"
       
    42 #include "jdct.h"		/* Private declarations for DCT subsystem */
       
    43 
       
    44 #ifdef DCT_FLOAT_SUPPORTED
       
    45 
       
    46 
       
    47 /*
       
    48  * This module is specialized to the case DCTSIZE = 8.
       
    49  */
       
    50 
       
    51 #if DCTSIZE != 8
       
    52   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
       
    53 #endif
       
    54 
       
    55 
       
    56 /* Dequantize a coefficient by multiplying it by the multiplier-table
       
    57  * entry; produce a float result.
       
    58  */
       
    59 
       
    60 #define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
       
    61 
       
    62 
       
    63 /*
       
    64  * Perform dequantization and inverse DCT on one block of coefficients.
       
    65  */
       
    66 
       
    67 GLOBAL(void)
       
    68 jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
       
    69 		 JCOEFPTR coef_block,
       
    70 		 JSAMPARRAY output_buf, JDIMENSION output_col)
       
    71 {
       
    72   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
       
    73   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
       
    74   FAST_FLOAT z5, z10, z11, z12, z13;
       
    75   JCOEFPTR inptr;
       
    76   FLOAT_MULT_TYPE * quantptr;
       
    77   FAST_FLOAT * wsptr;
       
    78   JSAMPROW outptr;
       
    79   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
       
    80   int ctr;
       
    81   FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
       
    82   SHIFT_TEMPS
       
    83 
       
    84   /* Pass 1: process columns from input, store into work array. */
       
    85 
       
    86   inptr = coef_block;
       
    87   quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
       
    88   wsptr = workspace;
       
    89   for (ctr = DCTSIZE; ctr > 0; ctr--) {
       
    90     /* Due to quantization, we will usually find that many of the input
       
    91      * coefficients are zero, especially the AC terms.  We can exploit this
       
    92      * by short-circuiting the IDCT calculation for any column in which all
       
    93      * the AC terms are zero.  In that case each output is equal to the
       
    94      * DC coefficient (with scale factor as needed).
       
    95      * With typical images and quantization tables, half or more of the
       
    96      * column DCT calculations can be simplified this way.
       
    97      */
       
    98     
       
    99     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
       
   100 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
       
   101 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
       
   102 	inptr[DCTSIZE*7] == 0) {
       
   103       /* AC terms all zero */
       
   104       FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
       
   105       
       
   106       wsptr[DCTSIZE*0] = dcval;
       
   107       wsptr[DCTSIZE*1] = dcval;
       
   108       wsptr[DCTSIZE*2] = dcval;
       
   109       wsptr[DCTSIZE*3] = dcval;
       
   110       wsptr[DCTSIZE*4] = dcval;
       
   111       wsptr[DCTSIZE*5] = dcval;
       
   112       wsptr[DCTSIZE*6] = dcval;
       
   113       wsptr[DCTSIZE*7] = dcval;
       
   114       
       
   115       inptr++;			/* advance pointers to next column */
       
   116       quantptr++;
       
   117       wsptr++;
       
   118       continue;
       
   119     }
       
   120     
       
   121     /* Even part */
       
   122 
       
   123     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
       
   124     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
       
   125     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
       
   126     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
       
   127 
       
   128     tmp10 = tmp0 + tmp2;	/* phase 3 */
       
   129     tmp11 = tmp0 - tmp2;
       
   130 
       
   131     tmp13 = tmp1 + tmp3;	/* phases 5-3 */
       
   132     tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
       
   133 
       
   134     tmp0 = tmp10 + tmp13;	/* phase 2 */
       
   135     tmp3 = tmp10 - tmp13;
       
   136     tmp1 = tmp11 + tmp12;
       
   137     tmp2 = tmp11 - tmp12;
       
   138     
       
   139     /* Odd part */
       
   140 
       
   141     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
       
   142     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
       
   143     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
       
   144     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
       
   145 
       
   146     z13 = tmp6 + tmp5;		/* phase 6 */
       
   147     z10 = tmp6 - tmp5;
       
   148     z11 = tmp4 + tmp7;
       
   149     z12 = tmp4 - tmp7;
       
   150 
       
   151     tmp7 = z11 + z13;		/* phase 5 */
       
   152     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
       
   153 
       
   154     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
       
   155     tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
       
   156     tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
       
   157 
       
   158     tmp6 = tmp12 - tmp7;	/* phase 2 */
       
   159     tmp5 = tmp11 - tmp6;
       
   160     tmp4 = tmp10 + tmp5;
       
   161 
       
   162     wsptr[DCTSIZE*0] = tmp0 + tmp7;
       
   163     wsptr[DCTSIZE*7] = tmp0 - tmp7;
       
   164     wsptr[DCTSIZE*1] = tmp1 + tmp6;
       
   165     wsptr[DCTSIZE*6] = tmp1 - tmp6;
       
   166     wsptr[DCTSIZE*2] = tmp2 + tmp5;
       
   167     wsptr[DCTSIZE*5] = tmp2 - tmp5;
       
   168     wsptr[DCTSIZE*4] = tmp3 + tmp4;
       
   169     wsptr[DCTSIZE*3] = tmp3 - tmp4;
       
   170 
       
   171     inptr++;			/* advance pointers to next column */
       
   172     quantptr++;
       
   173     wsptr++;
       
   174   }
       
   175   
       
   176   /* Pass 2: process rows from work array, store into output array. */
       
   177   /* Note that we must descale the results by a factor of 8 == 2**3. */
       
   178 
       
   179   wsptr = workspace;
       
   180   for (ctr = 0; ctr < DCTSIZE; ctr++) {
       
   181     outptr = output_buf[ctr] + output_col;
       
   182     /* Rows of zeroes can be exploited in the same way as we did with columns.
       
   183      * However, the column calculation has created many nonzero AC terms, so
       
   184      * the simplification applies less often (typically 5% to 10% of the time).
       
   185      * And testing floats for zero is relatively expensive, so we don't bother.
       
   186      */
       
   187     
       
   188     /* Even part */
       
   189 
       
   190     tmp10 = wsptr[0] + wsptr[4];
       
   191     tmp11 = wsptr[0] - wsptr[4];
       
   192 
       
   193     tmp13 = wsptr[2] + wsptr[6];
       
   194     tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
       
   195 
       
   196     tmp0 = tmp10 + tmp13;
       
   197     tmp3 = tmp10 - tmp13;
       
   198     tmp1 = tmp11 + tmp12;
       
   199     tmp2 = tmp11 - tmp12;
       
   200 
       
   201     /* Odd part */
       
   202 
       
   203     z13 = wsptr[5] + wsptr[3];
       
   204     z10 = wsptr[5] - wsptr[3];
       
   205     z11 = wsptr[1] + wsptr[7];
       
   206     z12 = wsptr[1] - wsptr[7];
       
   207 
       
   208     tmp7 = z11 + z13;
       
   209     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
       
   210 
       
   211     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
       
   212     tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
       
   213     tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
       
   214 
       
   215     tmp6 = tmp12 - tmp7;
       
   216     tmp5 = tmp11 - tmp6;
       
   217     tmp4 = tmp10 + tmp5;
       
   218 
       
   219     /* Final output stage: scale down by a factor of 8 and range-limit */
       
   220 
       
   221     outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
       
   222 			    & RANGE_MASK];
       
   223     outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
       
   224 			    & RANGE_MASK];
       
   225     outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
       
   226 			    & RANGE_MASK];
       
   227     outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
       
   228 			    & RANGE_MASK];
       
   229     outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
       
   230 			    & RANGE_MASK];
       
   231     outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
       
   232 			    & RANGE_MASK];
       
   233     outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
       
   234 			    & RANGE_MASK];
       
   235     outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
       
   236 			    & RANGE_MASK];
       
   237     
       
   238     wsptr += DCTSIZE;		/* advance pointer to next row */
       
   239   }
       
   240 }
       
   241 
       
   242 #endif /* DCT_FLOAT_SUPPORTED */