src/3rdparty/libjpeg/jidctint.c
changeset 0 1918ee327afb
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /*
       
     2  * jidctint.c
       
     3  *
       
     4  * Copyright (C) 1991-1998, Thomas G. Lane.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This file contains a slow-but-accurate integer implementation of the
       
     9  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
       
    10  * must also perform dequantization of the input coefficients.
       
    11  *
       
    12  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
       
    13  * on each row (or vice versa, but it's more convenient to emit a row at
       
    14  * a time).  Direct algorithms are also available, but they are much more
       
    15  * complex and seem not to be any faster when reduced to code.
       
    16  *
       
    17  * This implementation is based on an algorithm described in
       
    18  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
       
    19  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
       
    20  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
       
    21  * The primary algorithm described there uses 11 multiplies and 29 adds.
       
    22  * We use their alternate method with 12 multiplies and 32 adds.
       
    23  * The advantage of this method is that no data path contains more than one
       
    24  * multiplication; this allows a very simple and accurate implementation in
       
    25  * scaled fixed-point arithmetic, with a minimal number of shifts.
       
    26  */
       
    27 
       
    28 #define JPEG_INTERNALS
       
    29 #include "jinclude.h"
       
    30 #include "jpeglib.h"
       
    31 #include "jdct.h"		/* Private declarations for DCT subsystem */
       
    32 
       
    33 #ifdef DCT_ISLOW_SUPPORTED
       
    34 
       
    35 
       
    36 /*
       
    37  * This module is specialized to the case DCTSIZE = 8.
       
    38  */
       
    39 
       
    40 #if DCTSIZE != 8
       
    41   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
       
    42 #endif
       
    43 
       
    44 
       
    45 /*
       
    46  * The poop on this scaling stuff is as follows:
       
    47  *
       
    48  * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
       
    49  * larger than the true IDCT outputs.  The final outputs are therefore
       
    50  * a factor of N larger than desired; since N=8 this can be cured by
       
    51  * a simple right shift at the end of the algorithm.  The advantage of
       
    52  * this arrangement is that we save two multiplications per 1-D IDCT,
       
    53  * because the y0 and y4 inputs need not be divided by sqrt(N).
       
    54  *
       
    55  * We have to do addition and subtraction of the integer inputs, which
       
    56  * is no problem, and multiplication by fractional constants, which is
       
    57  * a problem to do in integer arithmetic.  We multiply all the constants
       
    58  * by CONST_SCALE and convert them to integer constants (thus retaining
       
    59  * CONST_BITS bits of precision in the constants).  After doing a
       
    60  * multiplication we have to divide the product by CONST_SCALE, with proper
       
    61  * rounding, to produce the correct output.  This division can be done
       
    62  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
       
    63  * as long as possible so that partial sums can be added together with
       
    64  * full fractional precision.
       
    65  *
       
    66  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
       
    67  * they are represented to better-than-integral precision.  These outputs
       
    68  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
       
    69  * with the recommended scaling.  (To scale up 12-bit sample data further, an
       
    70  * intermediate INT32 array would be needed.)
       
    71  *
       
    72  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
       
    73  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
       
    74  * shows that the values given below are the most effective.
       
    75  */
       
    76 
       
    77 #if BITS_IN_JSAMPLE == 8
       
    78 #define CONST_BITS  13
       
    79 #define PASS1_BITS  2
       
    80 #else
       
    81 #define CONST_BITS  13
       
    82 #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
       
    83 #endif
       
    84 
       
    85 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
       
    86  * causing a lot of useless floating-point operations at run time.
       
    87  * To get around this we use the following pre-calculated constants.
       
    88  * If you change CONST_BITS you may want to add appropriate values.
       
    89  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
       
    90  */
       
    91 
       
    92 #if CONST_BITS == 13
       
    93 #define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
       
    94 #define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
       
    95 #define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
       
    96 #define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
       
    97 #define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
       
    98 #define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
       
    99 #define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
       
   100 #define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
       
   101 #define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
       
   102 #define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
       
   103 #define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
       
   104 #define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
       
   105 #else
       
   106 #define FIX_0_298631336  FIX(0.298631336)
       
   107 #define FIX_0_390180644  FIX(0.390180644)
       
   108 #define FIX_0_541196100  FIX(0.541196100)
       
   109 #define FIX_0_765366865  FIX(0.765366865)
       
   110 #define FIX_0_899976223  FIX(0.899976223)
       
   111 #define FIX_1_175875602  FIX(1.175875602)
       
   112 #define FIX_1_501321110  FIX(1.501321110)
       
   113 #define FIX_1_847759065  FIX(1.847759065)
       
   114 #define FIX_1_961570560  FIX(1.961570560)
       
   115 #define FIX_2_053119869  FIX(2.053119869)
       
   116 #define FIX_2_562915447  FIX(2.562915447)
       
   117 #define FIX_3_072711026  FIX(3.072711026)
       
   118 #endif
       
   119 
       
   120 
       
   121 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
       
   122  * For 8-bit samples with the recommended scaling, all the variable
       
   123  * and constant values involved are no more than 16 bits wide, so a
       
   124  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
       
   125  * For 12-bit samples, a full 32-bit multiplication will be needed.
       
   126  */
       
   127 
       
   128 #if BITS_IN_JSAMPLE == 8
       
   129 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
       
   130 #else
       
   131 #define MULTIPLY(var,const)  ((var) * (const))
       
   132 #endif
       
   133 
       
   134 
       
   135 /* Dequantize a coefficient by multiplying it by the multiplier-table
       
   136  * entry; produce an int result.  In this module, both inputs and result
       
   137  * are 16 bits or less, so either int or short multiply will work.
       
   138  */
       
   139 
       
   140 #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
       
   141 
       
   142 
       
   143 /*
       
   144  * Perform dequantization and inverse DCT on one block of coefficients.
       
   145  */
       
   146 
       
   147 GLOBAL(void)
       
   148 jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
       
   149 		 JCOEFPTR coef_block,
       
   150 		 JSAMPARRAY output_buf, JDIMENSION output_col)
       
   151 {
       
   152   INT32 tmp0, tmp1, tmp2, tmp3;
       
   153   INT32 tmp10, tmp11, tmp12, tmp13;
       
   154   INT32 z1, z2, z3, z4, z5;
       
   155   JCOEFPTR inptr;
       
   156   ISLOW_MULT_TYPE * quantptr;
       
   157   int * wsptr;
       
   158   JSAMPROW outptr;
       
   159   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
       
   160   int ctr;
       
   161   int workspace[DCTSIZE2];	/* buffers data between passes */
       
   162   SHIFT_TEMPS
       
   163 
       
   164   /* Pass 1: process columns from input, store into work array. */
       
   165   /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
       
   166   /* furthermore, we scale the results by 2**PASS1_BITS. */
       
   167 
       
   168   inptr = coef_block;
       
   169   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
       
   170   wsptr = workspace;
       
   171   for (ctr = DCTSIZE; ctr > 0; ctr--) {
       
   172     /* Due to quantization, we will usually find that many of the input
       
   173      * coefficients are zero, especially the AC terms.  We can exploit this
       
   174      * by short-circuiting the IDCT calculation for any column in which all
       
   175      * the AC terms are zero.  In that case each output is equal to the
       
   176      * DC coefficient (with scale factor as needed).
       
   177      * With typical images and quantization tables, half or more of the
       
   178      * column DCT calculations can be simplified this way.
       
   179      */
       
   180     
       
   181     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
       
   182 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
       
   183 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
       
   184 	inptr[DCTSIZE*7] == 0) {
       
   185       /* AC terms all zero */
       
   186       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
       
   187       
       
   188       wsptr[DCTSIZE*0] = dcval;
       
   189       wsptr[DCTSIZE*1] = dcval;
       
   190       wsptr[DCTSIZE*2] = dcval;
       
   191       wsptr[DCTSIZE*3] = dcval;
       
   192       wsptr[DCTSIZE*4] = dcval;
       
   193       wsptr[DCTSIZE*5] = dcval;
       
   194       wsptr[DCTSIZE*6] = dcval;
       
   195       wsptr[DCTSIZE*7] = dcval;
       
   196       
       
   197       inptr++;			/* advance pointers to next column */
       
   198       quantptr++;
       
   199       wsptr++;
       
   200       continue;
       
   201     }
       
   202     
       
   203     /* Even part: reverse the even part of the forward DCT. */
       
   204     /* The rotator is sqrt(2)*c(-6). */
       
   205     
       
   206     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
       
   207     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
       
   208     
       
   209     z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
       
   210     tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
       
   211     tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
       
   212     
       
   213     z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
       
   214     z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
       
   215 
       
   216     tmp0 = (z2 + z3) << CONST_BITS;
       
   217     tmp1 = (z2 - z3) << CONST_BITS;
       
   218     
       
   219     tmp10 = tmp0 + tmp3;
       
   220     tmp13 = tmp0 - tmp3;
       
   221     tmp11 = tmp1 + tmp2;
       
   222     tmp12 = tmp1 - tmp2;
       
   223     
       
   224     /* Odd part per figure 8; the matrix is unitary and hence its
       
   225      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
       
   226      */
       
   227     
       
   228     tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
       
   229     tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
       
   230     tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
       
   231     tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
       
   232     
       
   233     z1 = tmp0 + tmp3;
       
   234     z2 = tmp1 + tmp2;
       
   235     z3 = tmp0 + tmp2;
       
   236     z4 = tmp1 + tmp3;
       
   237     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
       
   238     
       
   239     tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
       
   240     tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
       
   241     tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
       
   242     tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
       
   243     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
       
   244     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
       
   245     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
       
   246     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
       
   247     
       
   248     z3 += z5;
       
   249     z4 += z5;
       
   250     
       
   251     tmp0 += z1 + z3;
       
   252     tmp1 += z2 + z4;
       
   253     tmp2 += z2 + z3;
       
   254     tmp3 += z1 + z4;
       
   255     
       
   256     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
       
   257     
       
   258     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
       
   259     wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
       
   260     wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
       
   261     wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
       
   262     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
       
   263     wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
       
   264     wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
       
   265     wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
       
   266     
       
   267     inptr++;			/* advance pointers to next column */
       
   268     quantptr++;
       
   269     wsptr++;
       
   270   }
       
   271   
       
   272   /* Pass 2: process rows from work array, store into output array. */
       
   273   /* Note that we must descale the results by a factor of 8 == 2**3, */
       
   274   /* and also undo the PASS1_BITS scaling. */
       
   275 
       
   276   wsptr = workspace;
       
   277   for (ctr = 0; ctr < DCTSIZE; ctr++) {
       
   278     outptr = output_buf[ctr] + output_col;
       
   279     /* Rows of zeroes can be exploited in the same way as we did with columns.
       
   280      * However, the column calculation has created many nonzero AC terms, so
       
   281      * the simplification applies less often (typically 5% to 10% of the time).
       
   282      * On machines with very fast multiplication, it's possible that the
       
   283      * test takes more time than it's worth.  In that case this section
       
   284      * may be commented out.
       
   285      */
       
   286     
       
   287 #ifndef NO_ZERO_ROW_TEST
       
   288     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
       
   289 	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
       
   290       /* AC terms all zero */
       
   291       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
       
   292 				  & RANGE_MASK];
       
   293       
       
   294       outptr[0] = dcval;
       
   295       outptr[1] = dcval;
       
   296       outptr[2] = dcval;
       
   297       outptr[3] = dcval;
       
   298       outptr[4] = dcval;
       
   299       outptr[5] = dcval;
       
   300       outptr[6] = dcval;
       
   301       outptr[7] = dcval;
       
   302 
       
   303       wsptr += DCTSIZE;		/* advance pointer to next row */
       
   304       continue;
       
   305     }
       
   306 #endif
       
   307     
       
   308     /* Even part: reverse the even part of the forward DCT. */
       
   309     /* The rotator is sqrt(2)*c(-6). */
       
   310     
       
   311     z2 = (INT32) wsptr[2];
       
   312     z3 = (INT32) wsptr[6];
       
   313     
       
   314     z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
       
   315     tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
       
   316     tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
       
   317     
       
   318     tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
       
   319     tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
       
   320     
       
   321     tmp10 = tmp0 + tmp3;
       
   322     tmp13 = tmp0 - tmp3;
       
   323     tmp11 = tmp1 + tmp2;
       
   324     tmp12 = tmp1 - tmp2;
       
   325     
       
   326     /* Odd part per figure 8; the matrix is unitary and hence its
       
   327      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
       
   328      */
       
   329     
       
   330     tmp0 = (INT32) wsptr[7];
       
   331     tmp1 = (INT32) wsptr[5];
       
   332     tmp2 = (INT32) wsptr[3];
       
   333     tmp3 = (INT32) wsptr[1];
       
   334     
       
   335     z1 = tmp0 + tmp3;
       
   336     z2 = tmp1 + tmp2;
       
   337     z3 = tmp0 + tmp2;
       
   338     z4 = tmp1 + tmp3;
       
   339     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
       
   340     
       
   341     tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
       
   342     tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
       
   343     tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
       
   344     tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
       
   345     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
       
   346     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
       
   347     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
       
   348     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
       
   349     
       
   350     z3 += z5;
       
   351     z4 += z5;
       
   352     
       
   353     tmp0 += z1 + z3;
       
   354     tmp1 += z2 + z4;
       
   355     tmp2 += z2 + z3;
       
   356     tmp3 += z1 + z4;
       
   357     
       
   358     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
       
   359     
       
   360     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
       
   361 					  CONST_BITS+PASS1_BITS+3)
       
   362 			    & RANGE_MASK];
       
   363     outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
       
   364 					  CONST_BITS+PASS1_BITS+3)
       
   365 			    & RANGE_MASK];
       
   366     outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
       
   367 					  CONST_BITS+PASS1_BITS+3)
       
   368 			    & RANGE_MASK];
       
   369     outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
       
   370 					  CONST_BITS+PASS1_BITS+3)
       
   371 			    & RANGE_MASK];
       
   372     outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
       
   373 					  CONST_BITS+PASS1_BITS+3)
       
   374 			    & RANGE_MASK];
       
   375     outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
       
   376 					  CONST_BITS+PASS1_BITS+3)
       
   377 			    & RANGE_MASK];
       
   378     outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
       
   379 					  CONST_BITS+PASS1_BITS+3)
       
   380 			    & RANGE_MASK];
       
   381     outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
       
   382 					  CONST_BITS+PASS1_BITS+3)
       
   383 			    & RANGE_MASK];
       
   384     
       
   385     wsptr += DCTSIZE;		/* advance pointer to next row */
       
   386   }
       
   387 }
       
   388 
       
   389 #endif /* DCT_ISLOW_SUPPORTED */