src/3rdparty/libjpeg/jquant1.c
changeset 0 1918ee327afb
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /*
       
     2  * jquant1.c
       
     3  *
       
     4  * Copyright (C) 1991-1996, Thomas G. Lane.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This file contains 1-pass color quantization (color mapping) routines.
       
     9  * These routines provide mapping to a fixed color map using equally spaced
       
    10  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
       
    11  */
       
    12 
       
    13 #define JPEG_INTERNALS
       
    14 #include "jinclude.h"
       
    15 #include "jpeglib.h"
       
    16 
       
    17 #ifdef QUANT_1PASS_SUPPORTED
       
    18 
       
    19 
       
    20 /*
       
    21  * The main purpose of 1-pass quantization is to provide a fast, if not very
       
    22  * high quality, colormapped output capability.  A 2-pass quantizer usually
       
    23  * gives better visual quality; however, for quantized grayscale output this
       
    24  * quantizer is perfectly adequate.  Dithering is highly recommended with this
       
    25  * quantizer, though you can turn it off if you really want to.
       
    26  *
       
    27  * In 1-pass quantization the colormap must be chosen in advance of seeing the
       
    28  * image.  We use a map consisting of all combinations of Ncolors[i] color
       
    29  * values for the i'th component.  The Ncolors[] values are chosen so that
       
    30  * their product, the total number of colors, is no more than that requested.
       
    31  * (In most cases, the product will be somewhat less.)
       
    32  *
       
    33  * Since the colormap is orthogonal, the representative value for each color
       
    34  * component can be determined without considering the other components;
       
    35  * then these indexes can be combined into a colormap index by a standard
       
    36  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
       
    37  * can be precalculated and stored in the lookup table colorindex[].
       
    38  * colorindex[i][j] maps pixel value j in component i to the nearest
       
    39  * representative value (grid plane) for that component; this index is
       
    40  * multiplied by the array stride for component i, so that the
       
    41  * index of the colormap entry closest to a given pixel value is just
       
    42  *    sum( colorindex[component-number][pixel-component-value] )
       
    43  * Aside from being fast, this scheme allows for variable spacing between
       
    44  * representative values with no additional lookup cost.
       
    45  *
       
    46  * If gamma correction has been applied in color conversion, it might be wise
       
    47  * to adjust the color grid spacing so that the representative colors are
       
    48  * equidistant in linear space.  At this writing, gamma correction is not
       
    49  * implemented by jdcolor, so nothing is done here.
       
    50  */
       
    51 
       
    52 
       
    53 /* Declarations for ordered dithering.
       
    54  *
       
    55  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
       
    56  * dithering is described in many references, for instance Dale Schumacher's
       
    57  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
       
    58  * In place of Schumacher's comparisons against a "threshold" value, we add a
       
    59  * "dither" value to the input pixel and then round the result to the nearest
       
    60  * output value.  The dither value is equivalent to (0.5 - threshold) times
       
    61  * the distance between output values.  For ordered dithering, we assume that
       
    62  * the output colors are equally spaced; if not, results will probably be
       
    63  * worse, since the dither may be too much or too little at a given point.
       
    64  *
       
    65  * The normal calculation would be to form pixel value + dither, range-limit
       
    66  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
       
    67  * We can skip the separate range-limiting step by extending the colorindex
       
    68  * table in both directions.
       
    69  */
       
    70 
       
    71 #define ODITHER_SIZE  16	/* dimension of dither matrix */
       
    72 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
       
    73 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */
       
    74 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
       
    75 
       
    76 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
       
    77 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
       
    78 
       
    79 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
       
    80   /* Bayer's order-4 dither array.  Generated by the code given in
       
    81    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
       
    82    * The values in this array must range from 0 to ODITHER_CELLS-1.
       
    83    */
       
    84   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
       
    85   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
       
    86   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
       
    87   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
       
    88   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
       
    89   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
       
    90   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
       
    91   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
       
    92   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
       
    93   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
       
    94   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
       
    95   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
       
    96   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
       
    97   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
       
    98   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
       
    99   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
       
   100 };
       
   101 
       
   102 
       
   103 /* Declarations for Floyd-Steinberg dithering.
       
   104  *
       
   105  * Errors are accumulated into the array fserrors[], at a resolution of
       
   106  * 1/16th of a pixel count.  The error at a given pixel is propagated
       
   107  * to its not-yet-processed neighbors using the standard F-S fractions,
       
   108  *		...	(here)	7/16
       
   109  *		3/16	5/16	1/16
       
   110  * We work left-to-right on even rows, right-to-left on odd rows.
       
   111  *
       
   112  * We can get away with a single array (holding one row's worth of errors)
       
   113  * by using it to store the current row's errors at pixel columns not yet
       
   114  * processed, but the next row's errors at columns already processed.  We
       
   115  * need only a few extra variables to hold the errors immediately around the
       
   116  * current column.  (If we are lucky, those variables are in registers, but
       
   117  * even if not, they're probably cheaper to access than array elements are.)
       
   118  *
       
   119  * The fserrors[] array is indexed [component#][position].
       
   120  * We provide (#columns + 2) entries per component; the extra entry at each
       
   121  * end saves us from special-casing the first and last pixels.
       
   122  *
       
   123  * Note: on a wide image, we might not have enough room in a PC's near data
       
   124  * segment to hold the error array; so it is allocated with alloc_large.
       
   125  */
       
   126 
       
   127 #if BITS_IN_JSAMPLE == 8
       
   128 typedef INT16 FSERROR;		/* 16 bits should be enough */
       
   129 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
       
   130 #else
       
   131 typedef INT32 FSERROR;		/* may need more than 16 bits */
       
   132 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
       
   133 #endif
       
   134 
       
   135 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
       
   136 
       
   137 
       
   138 /* Private subobject */
       
   139 
       
   140 #define MAX_Q_COMPS 4		/* max components I can handle */
       
   141 
       
   142 typedef struct {
       
   143   struct jpeg_color_quantizer pub; /* public fields */
       
   144 
       
   145   /* Initially allocated colormap is saved here */
       
   146   JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */
       
   147   int sv_actual;		/* number of entries in use */
       
   148 
       
   149   JSAMPARRAY colorindex;	/* Precomputed mapping for speed */
       
   150   /* colorindex[i][j] = index of color closest to pixel value j in component i,
       
   151    * premultiplied as described above.  Since colormap indexes must fit into
       
   152    * JSAMPLEs, the entries of this array will too.
       
   153    */
       
   154   boolean is_padded;		/* is the colorindex padded for odither? */
       
   155 
       
   156   int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */
       
   157 
       
   158   /* Variables for ordered dithering */
       
   159   int row_index;		/* cur row's vertical index in dither matrix */
       
   160   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
       
   161 
       
   162   /* Variables for Floyd-Steinberg dithering */
       
   163   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
       
   164   boolean on_odd_row;		/* flag to remember which row we are on */
       
   165 } my_cquantizer;
       
   166 
       
   167 typedef my_cquantizer * my_cquantize_ptr;
       
   168 
       
   169 
       
   170 /*
       
   171  * Policy-making subroutines for create_colormap and create_colorindex.
       
   172  * These routines determine the colormap to be used.  The rest of the module
       
   173  * only assumes that the colormap is orthogonal.
       
   174  *
       
   175  *  * select_ncolors decides how to divvy up the available colors
       
   176  *    among the components.
       
   177  *  * output_value defines the set of representative values for a component.
       
   178  *  * largest_input_value defines the mapping from input values to
       
   179  *    representative values for a component.
       
   180  * Note that the latter two routines may impose different policies for
       
   181  * different components, though this is not currently done.
       
   182  */
       
   183 
       
   184 
       
   185 LOCAL(int)
       
   186 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
       
   187 /* Determine allocation of desired colors to components, */
       
   188 /* and fill in Ncolors[] array to indicate choice. */
       
   189 /* Return value is total number of colors (product of Ncolors[] values). */
       
   190 {
       
   191   int nc = cinfo->out_color_components; /* number of color components */
       
   192   int max_colors = cinfo->desired_number_of_colors;
       
   193   int total_colors, iroot, i, j;
       
   194   boolean changed;
       
   195   long temp;
       
   196   static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
       
   197 
       
   198   /* We can allocate at least the nc'th root of max_colors per component. */
       
   199   /* Compute floor(nc'th root of max_colors). */
       
   200   iroot = 1;
       
   201   do {
       
   202     iroot++;
       
   203     temp = iroot;		/* set temp = iroot ** nc */
       
   204     for (i = 1; i < nc; i++)
       
   205       temp *= iroot;
       
   206   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
       
   207   iroot--;			/* now iroot = floor(root) */
       
   208 
       
   209   /* Must have at least 2 color values per component */
       
   210   if (iroot < 2)
       
   211     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
       
   212 
       
   213   /* Initialize to iroot color values for each component */
       
   214   total_colors = 1;
       
   215   for (i = 0; i < nc; i++) {
       
   216     Ncolors[i] = iroot;
       
   217     total_colors *= iroot;
       
   218   }
       
   219   /* We may be able to increment the count for one or more components without
       
   220    * exceeding max_colors, though we know not all can be incremented.
       
   221    * Sometimes, the first component can be incremented more than once!
       
   222    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
       
   223    * In RGB colorspace, try to increment G first, then R, then B.
       
   224    */
       
   225   do {
       
   226     changed = FALSE;
       
   227     for (i = 0; i < nc; i++) {
       
   228       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
       
   229       /* calculate new total_colors if Ncolors[j] is incremented */
       
   230       temp = total_colors / Ncolors[j];
       
   231       temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */
       
   232       if (temp > (long) max_colors)
       
   233 	break;			/* won't fit, done with this pass */
       
   234       Ncolors[j]++;		/* OK, apply the increment */
       
   235       total_colors = (int) temp;
       
   236       changed = TRUE;
       
   237     }
       
   238   } while (changed);
       
   239 
       
   240   return total_colors;
       
   241 }
       
   242 
       
   243 
       
   244 LOCAL(int)
       
   245 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
       
   246 /* Return j'th output value, where j will range from 0 to maxj */
       
   247 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
       
   248 {
       
   249   /* We always provide values 0 and MAXJSAMPLE for each component;
       
   250    * any additional values are equally spaced between these limits.
       
   251    * (Forcing the upper and lower values to the limits ensures that
       
   252    * dithering can't produce a color outside the selected gamut.)
       
   253    */
       
   254   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
       
   255 }
       
   256 
       
   257 
       
   258 LOCAL(int)
       
   259 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
       
   260 /* Return largest input value that should map to j'th output value */
       
   261 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
       
   262 {
       
   263   /* Breakpoints are halfway between values returned by output_value */
       
   264   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
       
   265 }
       
   266 
       
   267 
       
   268 /*
       
   269  * Create the colormap.
       
   270  */
       
   271 
       
   272 LOCAL(void)
       
   273 create_colormap (j_decompress_ptr cinfo)
       
   274 {
       
   275   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   276   JSAMPARRAY colormap;		/* Created colormap */
       
   277   int total_colors;		/* Number of distinct output colors */
       
   278   int i,j,k, nci, blksize, blkdist, ptr, val;
       
   279 
       
   280   /* Select number of colors for each component */
       
   281   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
       
   282 
       
   283   /* Report selected color counts */
       
   284   if (cinfo->out_color_components == 3)
       
   285     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
       
   286 	     total_colors, cquantize->Ncolors[0],
       
   287 	     cquantize->Ncolors[1], cquantize->Ncolors[2]);
       
   288   else
       
   289     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
       
   290 
       
   291   /* Allocate and fill in the colormap. */
       
   292   /* The colors are ordered in the map in standard row-major order, */
       
   293   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
       
   294 
       
   295   colormap = (*cinfo->mem->alloc_sarray)
       
   296     ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   297      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
       
   298 
       
   299   /* blksize is number of adjacent repeated entries for a component */
       
   300   /* blkdist is distance between groups of identical entries for a component */
       
   301   blkdist = total_colors;
       
   302 
       
   303   for (i = 0; i < cinfo->out_color_components; i++) {
       
   304     /* fill in colormap entries for i'th color component */
       
   305     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
       
   306     blksize = blkdist / nci;
       
   307     for (j = 0; j < nci; j++) {
       
   308       /* Compute j'th output value (out of nci) for component */
       
   309       val = output_value(cinfo, i, j, nci-1);
       
   310       /* Fill in all colormap entries that have this value of this component */
       
   311       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
       
   312 	/* fill in blksize entries beginning at ptr */
       
   313 	for (k = 0; k < blksize; k++)
       
   314 	  colormap[i][ptr+k] = (JSAMPLE) val;
       
   315       }
       
   316     }
       
   317     blkdist = blksize;		/* blksize of this color is blkdist of next */
       
   318   }
       
   319 
       
   320   /* Save the colormap in private storage,
       
   321    * where it will survive color quantization mode changes.
       
   322    */
       
   323   cquantize->sv_colormap = colormap;
       
   324   cquantize->sv_actual = total_colors;
       
   325 }
       
   326 
       
   327 
       
   328 /*
       
   329  * Create the color index table.
       
   330  */
       
   331 
       
   332 LOCAL(void)
       
   333 create_colorindex (j_decompress_ptr cinfo)
       
   334 {
       
   335   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   336   JSAMPROW indexptr;
       
   337   int i,j,k, nci, blksize, val, pad;
       
   338 
       
   339   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
       
   340    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
       
   341    * This is not necessary in the other dithering modes.  However, we
       
   342    * flag whether it was done in case user changes dithering mode.
       
   343    */
       
   344   if (cinfo->dither_mode == JDITHER_ORDERED) {
       
   345     pad = MAXJSAMPLE*2;
       
   346     cquantize->is_padded = TRUE;
       
   347   } else {
       
   348     pad = 0;
       
   349     cquantize->is_padded = FALSE;
       
   350   }
       
   351 
       
   352   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
       
   353     ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   354      (JDIMENSION) (MAXJSAMPLE+1 + pad),
       
   355      (JDIMENSION) cinfo->out_color_components);
       
   356 
       
   357   /* blksize is number of adjacent repeated entries for a component */
       
   358   blksize = cquantize->sv_actual;
       
   359 
       
   360   for (i = 0; i < cinfo->out_color_components; i++) {
       
   361     /* fill in colorindex entries for i'th color component */
       
   362     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
       
   363     blksize = blksize / nci;
       
   364 
       
   365     /* adjust colorindex pointers to provide padding at negative indexes. */
       
   366     if (pad)
       
   367       cquantize->colorindex[i] += MAXJSAMPLE;
       
   368 
       
   369     /* in loop, val = index of current output value, */
       
   370     /* and k = largest j that maps to current val */
       
   371     indexptr = cquantize->colorindex[i];
       
   372     val = 0;
       
   373     k = largest_input_value(cinfo, i, 0, nci-1);
       
   374     for (j = 0; j <= MAXJSAMPLE; j++) {
       
   375       while (j > k)		/* advance val if past boundary */
       
   376 	k = largest_input_value(cinfo, i, ++val, nci-1);
       
   377       /* premultiply so that no multiplication needed in main processing */
       
   378       indexptr[j] = (JSAMPLE) (val * blksize);
       
   379     }
       
   380     /* Pad at both ends if necessary */
       
   381     if (pad)
       
   382       for (j = 1; j <= MAXJSAMPLE; j++) {
       
   383 	indexptr[-j] = indexptr[0];
       
   384 	indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
       
   385       }
       
   386   }
       
   387 }
       
   388 
       
   389 
       
   390 /*
       
   391  * Create an ordered-dither array for a component having ncolors
       
   392  * distinct output values.
       
   393  */
       
   394 
       
   395 LOCAL(ODITHER_MATRIX_PTR)
       
   396 make_odither_array (j_decompress_ptr cinfo, int ncolors)
       
   397 {
       
   398   ODITHER_MATRIX_PTR odither;
       
   399   int j,k;
       
   400   INT32 num,den;
       
   401 
       
   402   odither = (ODITHER_MATRIX_PTR)
       
   403     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   404 				SIZEOF(ODITHER_MATRIX));
       
   405   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
       
   406    * Hence the dither value for the matrix cell with fill order f
       
   407    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
       
   408    * On 16-bit-int machine, be careful to avoid overflow.
       
   409    */
       
   410   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
       
   411   for (j = 0; j < ODITHER_SIZE; j++) {
       
   412     for (k = 0; k < ODITHER_SIZE; k++) {
       
   413       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
       
   414 	    * MAXJSAMPLE;
       
   415       /* Ensure round towards zero despite C's lack of consistency
       
   416        * about rounding negative values in integer division...
       
   417        */
       
   418       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
       
   419     }
       
   420   }
       
   421   return odither;
       
   422 }
       
   423 
       
   424 
       
   425 /*
       
   426  * Create the ordered-dither tables.
       
   427  * Components having the same number of representative colors may 
       
   428  * share a dither table.
       
   429  */
       
   430 
       
   431 LOCAL(void)
       
   432 create_odither_tables (j_decompress_ptr cinfo)
       
   433 {
       
   434   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   435   ODITHER_MATRIX_PTR odither;
       
   436   int i, j, nci;
       
   437 
       
   438   for (i = 0; i < cinfo->out_color_components; i++) {
       
   439     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
       
   440     odither = NULL;		/* search for matching prior component */
       
   441     for (j = 0; j < i; j++) {
       
   442       if (nci == cquantize->Ncolors[j]) {
       
   443 	odither = cquantize->odither[j];
       
   444 	break;
       
   445       }
       
   446     }
       
   447     if (odither == NULL)	/* need a new table? */
       
   448       odither = make_odither_array(cinfo, nci);
       
   449     cquantize->odither[i] = odither;
       
   450   }
       
   451 }
       
   452 
       
   453 
       
   454 /*
       
   455  * Map some rows of pixels to the output colormapped representation.
       
   456  */
       
   457 
       
   458 METHODDEF(void)
       
   459 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
       
   460 		JSAMPARRAY output_buf, int num_rows)
       
   461 /* General case, no dithering */
       
   462 {
       
   463   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   464   JSAMPARRAY colorindex = cquantize->colorindex;
       
   465   register int pixcode, ci;
       
   466   register JSAMPROW ptrin, ptrout;
       
   467   int row;
       
   468   JDIMENSION col;
       
   469   JDIMENSION width = cinfo->output_width;
       
   470   register int nc = cinfo->out_color_components;
       
   471 
       
   472   for (row = 0; row < num_rows; row++) {
       
   473     ptrin = input_buf[row];
       
   474     ptrout = output_buf[row];
       
   475     for (col = width; col > 0; col--) {
       
   476       pixcode = 0;
       
   477       for (ci = 0; ci < nc; ci++) {
       
   478 	pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
       
   479       }
       
   480       *ptrout++ = (JSAMPLE) pixcode;
       
   481     }
       
   482   }
       
   483 }
       
   484 
       
   485 
       
   486 METHODDEF(void)
       
   487 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
       
   488 		 JSAMPARRAY output_buf, int num_rows)
       
   489 /* Fast path for out_color_components==3, no dithering */
       
   490 {
       
   491   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   492   register int pixcode;
       
   493   register JSAMPROW ptrin, ptrout;
       
   494   JSAMPROW colorindex0 = cquantize->colorindex[0];
       
   495   JSAMPROW colorindex1 = cquantize->colorindex[1];
       
   496   JSAMPROW colorindex2 = cquantize->colorindex[2];
       
   497   int row;
       
   498   JDIMENSION col;
       
   499   JDIMENSION width = cinfo->output_width;
       
   500 
       
   501   for (row = 0; row < num_rows; row++) {
       
   502     ptrin = input_buf[row];
       
   503     ptrout = output_buf[row];
       
   504     for (col = width; col > 0; col--) {
       
   505       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
       
   506       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
       
   507       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
       
   508       *ptrout++ = (JSAMPLE) pixcode;
       
   509     }
       
   510   }
       
   511 }
       
   512 
       
   513 
       
   514 METHODDEF(void)
       
   515 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
       
   516 		     JSAMPARRAY output_buf, int num_rows)
       
   517 /* General case, with ordered dithering */
       
   518 {
       
   519   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   520   register JSAMPROW input_ptr;
       
   521   register JSAMPROW output_ptr;
       
   522   JSAMPROW colorindex_ci;
       
   523   int * dither;			/* points to active row of dither matrix */
       
   524   int row_index, col_index;	/* current indexes into dither matrix */
       
   525   int nc = cinfo->out_color_components;
       
   526   int ci;
       
   527   int row;
       
   528   JDIMENSION col;
       
   529   JDIMENSION width = cinfo->output_width;
       
   530 
       
   531   for (row = 0; row < num_rows; row++) {
       
   532     /* Initialize output values to 0 so can process components separately */
       
   533     jzero_far((void FAR *) output_buf[row],
       
   534 	      (size_t) (width * SIZEOF(JSAMPLE)));
       
   535     row_index = cquantize->row_index;
       
   536     for (ci = 0; ci < nc; ci++) {
       
   537       input_ptr = input_buf[row] + ci;
       
   538       output_ptr = output_buf[row];
       
   539       colorindex_ci = cquantize->colorindex[ci];
       
   540       dither = cquantize->odither[ci][row_index];
       
   541       col_index = 0;
       
   542 
       
   543       for (col = width; col > 0; col--) {
       
   544 	/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
       
   545 	 * select output value, accumulate into output code for this pixel.
       
   546 	 * Range-limiting need not be done explicitly, as we have extended
       
   547 	 * the colorindex table to produce the right answers for out-of-range
       
   548 	 * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
       
   549 	 * required amount of padding.
       
   550 	 */
       
   551 	*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
       
   552 	input_ptr += nc;
       
   553 	output_ptr++;
       
   554 	col_index = (col_index + 1) & ODITHER_MASK;
       
   555       }
       
   556     }
       
   557     /* Advance row index for next row */
       
   558     row_index = (row_index + 1) & ODITHER_MASK;
       
   559     cquantize->row_index = row_index;
       
   560   }
       
   561 }
       
   562 
       
   563 
       
   564 METHODDEF(void)
       
   565 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
       
   566 		      JSAMPARRAY output_buf, int num_rows)
       
   567 /* Fast path for out_color_components==3, with ordered dithering */
       
   568 {
       
   569   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   570   register int pixcode;
       
   571   register JSAMPROW input_ptr;
       
   572   register JSAMPROW output_ptr;
       
   573   JSAMPROW colorindex0 = cquantize->colorindex[0];
       
   574   JSAMPROW colorindex1 = cquantize->colorindex[1];
       
   575   JSAMPROW colorindex2 = cquantize->colorindex[2];
       
   576   int * dither0;		/* points to active row of dither matrix */
       
   577   int * dither1;
       
   578   int * dither2;
       
   579   int row_index, col_index;	/* current indexes into dither matrix */
       
   580   int row;
       
   581   JDIMENSION col;
       
   582   JDIMENSION width = cinfo->output_width;
       
   583 
       
   584   for (row = 0; row < num_rows; row++) {
       
   585     row_index = cquantize->row_index;
       
   586     input_ptr = input_buf[row];
       
   587     output_ptr = output_buf[row];
       
   588     dither0 = cquantize->odither[0][row_index];
       
   589     dither1 = cquantize->odither[1][row_index];
       
   590     dither2 = cquantize->odither[2][row_index];
       
   591     col_index = 0;
       
   592 
       
   593     for (col = width; col > 0; col--) {
       
   594       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
       
   595 					dither0[col_index]]);
       
   596       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
       
   597 					dither1[col_index]]);
       
   598       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
       
   599 					dither2[col_index]]);
       
   600       *output_ptr++ = (JSAMPLE) pixcode;
       
   601       col_index = (col_index + 1) & ODITHER_MASK;
       
   602     }
       
   603     row_index = (row_index + 1) & ODITHER_MASK;
       
   604     cquantize->row_index = row_index;
       
   605   }
       
   606 }
       
   607 
       
   608 
       
   609 METHODDEF(void)
       
   610 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
       
   611 		    JSAMPARRAY output_buf, int num_rows)
       
   612 /* General case, with Floyd-Steinberg dithering */
       
   613 {
       
   614   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   615   register LOCFSERROR cur;	/* current error or pixel value */
       
   616   LOCFSERROR belowerr;		/* error for pixel below cur */
       
   617   LOCFSERROR bpreverr;		/* error for below/prev col */
       
   618   LOCFSERROR bnexterr;		/* error for below/next col */
       
   619   LOCFSERROR delta;
       
   620   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
       
   621   register JSAMPROW input_ptr;
       
   622   register JSAMPROW output_ptr;
       
   623   JSAMPROW colorindex_ci;
       
   624   JSAMPROW colormap_ci;
       
   625   int pixcode;
       
   626   int nc = cinfo->out_color_components;
       
   627   int dir;			/* 1 for left-to-right, -1 for right-to-left */
       
   628   int dirnc;			/* dir * nc */
       
   629   int ci;
       
   630   int row;
       
   631   JDIMENSION col;
       
   632   JDIMENSION width = cinfo->output_width;
       
   633   JSAMPLE *range_limit = cinfo->sample_range_limit;
       
   634   SHIFT_TEMPS
       
   635 
       
   636   for (row = 0; row < num_rows; row++) {
       
   637     /* Initialize output values to 0 so can process components separately */
       
   638     jzero_far((void FAR *) output_buf[row],
       
   639 	      (size_t) (width * SIZEOF(JSAMPLE)));
       
   640     for (ci = 0; ci < nc; ci++) {
       
   641       input_ptr = input_buf[row] + ci;
       
   642       output_ptr = output_buf[row];
       
   643       if (cquantize->on_odd_row) {
       
   644 	/* work right to left in this row */
       
   645 	input_ptr += (width-1) * nc; /* so point to rightmost pixel */
       
   646 	output_ptr += width-1;
       
   647 	dir = -1;
       
   648 	dirnc = -nc;
       
   649 	errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
       
   650       } else {
       
   651 	/* work left to right in this row */
       
   652 	dir = 1;
       
   653 	dirnc = nc;
       
   654 	errorptr = cquantize->fserrors[ci]; /* => entry before first column */
       
   655       }
       
   656       colorindex_ci = cquantize->colorindex[ci];
       
   657       colormap_ci = cquantize->sv_colormap[ci];
       
   658       /* Preset error values: no error propagated to first pixel from left */
       
   659       cur = 0;
       
   660       /* and no error propagated to row below yet */
       
   661       belowerr = bpreverr = 0;
       
   662 
       
   663       for (col = width; col > 0; col--) {
       
   664 	/* cur holds the error propagated from the previous pixel on the
       
   665 	 * current line.  Add the error propagated from the previous line
       
   666 	 * to form the complete error correction term for this pixel, and
       
   667 	 * round the error term (which is expressed * 16) to an integer.
       
   668 	 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
       
   669 	 * for either sign of the error value.
       
   670 	 * Note: errorptr points to *previous* column's array entry.
       
   671 	 */
       
   672 	cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
       
   673 	/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
       
   674 	 * The maximum error is +- MAXJSAMPLE; this sets the required size
       
   675 	 * of the range_limit array.
       
   676 	 */
       
   677 	cur += GETJSAMPLE(*input_ptr);
       
   678 	cur = GETJSAMPLE(range_limit[cur]);
       
   679 	/* Select output value, accumulate into output code for this pixel */
       
   680 	pixcode = GETJSAMPLE(colorindex_ci[cur]);
       
   681 	*output_ptr += (JSAMPLE) pixcode;
       
   682 	/* Compute actual representation error at this pixel */
       
   683 	/* Note: we can do this even though we don't have the final */
       
   684 	/* pixel code, because the colormap is orthogonal. */
       
   685 	cur -= GETJSAMPLE(colormap_ci[pixcode]);
       
   686 	/* Compute error fractions to be propagated to adjacent pixels.
       
   687 	 * Add these into the running sums, and simultaneously shift the
       
   688 	 * next-line error sums left by 1 column.
       
   689 	 */
       
   690 	bnexterr = cur;
       
   691 	delta = cur * 2;
       
   692 	cur += delta;		/* form error * 3 */
       
   693 	errorptr[0] = (FSERROR) (bpreverr + cur);
       
   694 	cur += delta;		/* form error * 5 */
       
   695 	bpreverr = belowerr + cur;
       
   696 	belowerr = bnexterr;
       
   697 	cur += delta;		/* form error * 7 */
       
   698 	/* At this point cur contains the 7/16 error value to be propagated
       
   699 	 * to the next pixel on the current line, and all the errors for the
       
   700 	 * next line have been shifted over. We are therefore ready to move on.
       
   701 	 */
       
   702 	input_ptr += dirnc;	/* advance input ptr to next column */
       
   703 	output_ptr += dir;	/* advance output ptr to next column */
       
   704 	errorptr += dir;	/* advance errorptr to current column */
       
   705       }
       
   706       /* Post-loop cleanup: we must unload the final error value into the
       
   707        * final fserrors[] entry.  Note we need not unload belowerr because
       
   708        * it is for the dummy column before or after the actual array.
       
   709        */
       
   710       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
       
   711     }
       
   712     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
       
   713   }
       
   714 }
       
   715 
       
   716 
       
   717 /*
       
   718  * Allocate workspace for Floyd-Steinberg errors.
       
   719  */
       
   720 
       
   721 LOCAL(void)
       
   722 alloc_fs_workspace (j_decompress_ptr cinfo)
       
   723 {
       
   724   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   725   size_t arraysize;
       
   726   int i;
       
   727 
       
   728   arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
       
   729   for (i = 0; i < cinfo->out_color_components; i++) {
       
   730     cquantize->fserrors[i] = (FSERRPTR)
       
   731       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
       
   732   }
       
   733 }
       
   734 
       
   735 
       
   736 /*
       
   737  * Initialize for one-pass color quantization.
       
   738  */
       
   739 
       
   740 METHODDEF(void)
       
   741 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
       
   742 {
       
   743   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   744   size_t arraysize;
       
   745   int i;
       
   746 
       
   747   /* Install my colormap. */
       
   748   cinfo->colormap = cquantize->sv_colormap;
       
   749   cinfo->actual_number_of_colors = cquantize->sv_actual;
       
   750 
       
   751   /* Initialize for desired dithering mode. */
       
   752   switch (cinfo->dither_mode) {
       
   753   case JDITHER_NONE:
       
   754     if (cinfo->out_color_components == 3)
       
   755       cquantize->pub.color_quantize = color_quantize3;
       
   756     else
       
   757       cquantize->pub.color_quantize = color_quantize;
       
   758     break;
       
   759   case JDITHER_ORDERED:
       
   760     if (cinfo->out_color_components == 3)
       
   761       cquantize->pub.color_quantize = quantize3_ord_dither;
       
   762     else
       
   763       cquantize->pub.color_quantize = quantize_ord_dither;
       
   764     cquantize->row_index = 0;	/* initialize state for ordered dither */
       
   765     /* If user changed to ordered dither from another mode,
       
   766      * we must recreate the color index table with padding.
       
   767      * This will cost extra space, but probably isn't very likely.
       
   768      */
       
   769     if (! cquantize->is_padded)
       
   770       create_colorindex(cinfo);
       
   771     /* Create ordered-dither tables if we didn't already. */
       
   772     if (cquantize->odither[0] == NULL)
       
   773       create_odither_tables(cinfo);
       
   774     break;
       
   775   case JDITHER_FS:
       
   776     cquantize->pub.color_quantize = quantize_fs_dither;
       
   777     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
       
   778     /* Allocate Floyd-Steinberg workspace if didn't already. */
       
   779     if (cquantize->fserrors[0] == NULL)
       
   780       alloc_fs_workspace(cinfo);
       
   781     /* Initialize the propagated errors to zero. */
       
   782     arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
       
   783     for (i = 0; i < cinfo->out_color_components; i++)
       
   784       jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
       
   785     break;
       
   786   default:
       
   787     ERREXIT(cinfo, JERR_NOT_COMPILED);
       
   788     break;
       
   789   }
       
   790 }
       
   791 
       
   792 
       
   793 /*
       
   794  * Finish up at the end of the pass.
       
   795  */
       
   796 
       
   797 METHODDEF(void)
       
   798 finish_pass_1_quant (j_decompress_ptr cinfo)
       
   799 {
       
   800   /* no work in 1-pass case */
       
   801 }
       
   802 
       
   803 
       
   804 /*
       
   805  * Switch to a new external colormap between output passes.
       
   806  * Shouldn't get to this module!
       
   807  */
       
   808 
       
   809 METHODDEF(void)
       
   810 new_color_map_1_quant (j_decompress_ptr cinfo)
       
   811 {
       
   812   ERREXIT(cinfo, JERR_MODE_CHANGE);
       
   813 }
       
   814 
       
   815 
       
   816 /*
       
   817  * Module initialization routine for 1-pass color quantization.
       
   818  */
       
   819 
       
   820 GLOBAL(void)
       
   821 jinit_1pass_quantizer (j_decompress_ptr cinfo)
       
   822 {
       
   823   my_cquantize_ptr cquantize;
       
   824 
       
   825   cquantize = (my_cquantize_ptr)
       
   826     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   827 				SIZEOF(my_cquantizer));
       
   828   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
       
   829   cquantize->pub.start_pass = start_pass_1_quant;
       
   830   cquantize->pub.finish_pass = finish_pass_1_quant;
       
   831   cquantize->pub.new_color_map = new_color_map_1_quant;
       
   832   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
       
   833   cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */
       
   834 
       
   835   /* Make sure my internal arrays won't overflow */
       
   836   if (cinfo->out_color_components > MAX_Q_COMPS)
       
   837     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
       
   838   /* Make sure colormap indexes can be represented by JSAMPLEs */
       
   839   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
       
   840     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
       
   841 
       
   842   /* Create the colormap and color index table. */
       
   843   create_colormap(cinfo);
       
   844   create_colorindex(cinfo);
       
   845 
       
   846   /* Allocate Floyd-Steinberg workspace now if requested.
       
   847    * We do this now since it is FAR storage and may affect the memory
       
   848    * manager's space calculations.  If the user changes to FS dither
       
   849    * mode in a later pass, we will allocate the space then, and will
       
   850    * possibly overrun the max_memory_to_use setting.
       
   851    */
       
   852   if (cinfo->dither_mode == JDITHER_FS)
       
   853     alloc_fs_workspace(cinfo);
       
   854 }
       
   855 
       
   856 #endif /* QUANT_1PASS_SUPPORTED */