src/3rdparty/libjpeg/jquant2.c
changeset 0 1918ee327afb
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /*
       
     2  * jquant2.c
       
     3  *
       
     4  * Copyright (C) 1991-1996, Thomas G. Lane.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This file contains 2-pass color quantization (color mapping) routines.
       
     9  * These routines provide selection of a custom color map for an image,
       
    10  * followed by mapping of the image to that color map, with optional
       
    11  * Floyd-Steinberg dithering.
       
    12  * It is also possible to use just the second pass to map to an arbitrary
       
    13  * externally-given color map.
       
    14  *
       
    15  * Note: ordered dithering is not supported, since there isn't any fast
       
    16  * way to compute intercolor distances; it's unclear that ordered dither's
       
    17  * fundamental assumptions even hold with an irregularly spaced color map.
       
    18  */
       
    19 
       
    20 #define JPEG_INTERNALS
       
    21 #include "jinclude.h"
       
    22 #include "jpeglib.h"
       
    23 
       
    24 #ifdef QUANT_2PASS_SUPPORTED
       
    25 
       
    26 
       
    27 /*
       
    28  * This module implements the well-known Heckbert paradigm for color
       
    29  * quantization.  Most of the ideas used here can be traced back to
       
    30  * Heckbert's seminal paper
       
    31  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
       
    32  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
       
    33  *
       
    34  * In the first pass over the image, we accumulate a histogram showing the
       
    35  * usage count of each possible color.  To keep the histogram to a reasonable
       
    36  * size, we reduce the precision of the input; typical practice is to retain
       
    37  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
       
    38  * in the same histogram cell.
       
    39  *
       
    40  * Next, the color-selection step begins with a box representing the whole
       
    41  * color space, and repeatedly splits the "largest" remaining box until we
       
    42  * have as many boxes as desired colors.  Then the mean color in each
       
    43  * remaining box becomes one of the possible output colors.
       
    44  * 
       
    45  * The second pass over the image maps each input pixel to the closest output
       
    46  * color (optionally after applying a Floyd-Steinberg dithering correction).
       
    47  * This mapping is logically trivial, but making it go fast enough requires
       
    48  * considerable care.
       
    49  *
       
    50  * Heckbert-style quantizers vary a good deal in their policies for choosing
       
    51  * the "largest" box and deciding where to cut it.  The particular policies
       
    52  * used here have proved out well in experimental comparisons, but better ones
       
    53  * may yet be found.
       
    54  *
       
    55  * In earlier versions of the IJG code, this module quantized in YCbCr color
       
    56  * space, processing the raw upsampled data without a color conversion step.
       
    57  * This allowed the color conversion math to be done only once per colormap
       
    58  * entry, not once per pixel.  However, that optimization precluded other
       
    59  * useful optimizations (such as merging color conversion with upsampling)
       
    60  * and it also interfered with desired capabilities such as quantizing to an
       
    61  * externally-supplied colormap.  We have therefore abandoned that approach.
       
    62  * The present code works in the post-conversion color space, typically RGB.
       
    63  *
       
    64  * To improve the visual quality of the results, we actually work in scaled
       
    65  * RGB space, giving G distances more weight than R, and R in turn more than
       
    66  * B.  To do everything in integer math, we must use integer scale factors.
       
    67  * The 2/3/1 scale factors used here correspond loosely to the relative
       
    68  * weights of the colors in the NTSC grayscale equation.
       
    69  * If you want to use this code to quantize a non-RGB color space, you'll
       
    70  * probably need to change these scale factors.
       
    71  */
       
    72 
       
    73 #define R_SCALE 2		/* scale R distances by this much */
       
    74 #define G_SCALE 3		/* scale G distances by this much */
       
    75 #define B_SCALE 1		/* and B by this much */
       
    76 
       
    77 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
       
    78  * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
       
    79  * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
       
    80  * you'll get compile errors until you extend this logic.  In that case
       
    81  * you'll probably want to tweak the histogram sizes too.
       
    82  */
       
    83 
       
    84 #if RGB_RED == 0
       
    85 #define C0_SCALE R_SCALE
       
    86 #endif
       
    87 #if RGB_BLUE == 0
       
    88 #define C0_SCALE B_SCALE
       
    89 #endif
       
    90 #if RGB_GREEN == 1
       
    91 #define C1_SCALE G_SCALE
       
    92 #endif
       
    93 #if RGB_RED == 2
       
    94 #define C2_SCALE R_SCALE
       
    95 #endif
       
    96 #if RGB_BLUE == 2
       
    97 #define C2_SCALE B_SCALE
       
    98 #endif
       
    99 
       
   100 
       
   101 /*
       
   102  * First we have the histogram data structure and routines for creating it.
       
   103  *
       
   104  * The number of bits of precision can be adjusted by changing these symbols.
       
   105  * We recommend keeping 6 bits for G and 5 each for R and B.
       
   106  * If you have plenty of memory and cycles, 6 bits all around gives marginally
       
   107  * better results; if you are short of memory, 5 bits all around will save
       
   108  * some space but degrade the results.
       
   109  * To maintain a fully accurate histogram, we'd need to allocate a "long"
       
   110  * (preferably unsigned long) for each cell.  In practice this is overkill;
       
   111  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
       
   112  * and clamping those that do overflow to the maximum value will give close-
       
   113  * enough results.  This reduces the recommended histogram size from 256Kb
       
   114  * to 128Kb, which is a useful savings on PC-class machines.
       
   115  * (In the second pass the histogram space is re-used for pixel mapping data;
       
   116  * in that capacity, each cell must be able to store zero to the number of
       
   117  * desired colors.  16 bits/cell is plenty for that too.)
       
   118  * Since the JPEG code is intended to run in small memory model on 80x86
       
   119  * machines, we can't just allocate the histogram in one chunk.  Instead
       
   120  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
       
   121  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
       
   122  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
       
   123  * on 80x86 machines, the pointer row is in near memory but the actual
       
   124  * arrays are in far memory (same arrangement as we use for image arrays).
       
   125  */
       
   126 
       
   127 #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
       
   128 
       
   129 /* These will do the right thing for either R,G,B or B,G,R color order,
       
   130  * but you may not like the results for other color orders.
       
   131  */
       
   132 #define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
       
   133 #define HIST_C1_BITS  6		/* bits of precision in G histogram */
       
   134 #define HIST_C2_BITS  5		/* bits of precision in B/R histogram */
       
   135 
       
   136 /* Number of elements along histogram axes. */
       
   137 #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
       
   138 #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
       
   139 #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
       
   140 
       
   141 /* These are the amounts to shift an input value to get a histogram index. */
       
   142 #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
       
   143 #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
       
   144 #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
       
   145 
       
   146 
       
   147 typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */
       
   148 
       
   149 typedef histcell FAR * histptr;	/* for pointers to histogram cells */
       
   150 
       
   151 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
       
   152 typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */
       
   153 typedef hist2d * hist3d;	/* type for top-level pointer */
       
   154 
       
   155 
       
   156 /* Declarations for Floyd-Steinberg dithering.
       
   157  *
       
   158  * Errors are accumulated into the array fserrors[], at a resolution of
       
   159  * 1/16th of a pixel count.  The error at a given pixel is propagated
       
   160  * to its not-yet-processed neighbors using the standard F-S fractions,
       
   161  *		...	(here)	7/16
       
   162  *		3/16	5/16	1/16
       
   163  * We work left-to-right on even rows, right-to-left on odd rows.
       
   164  *
       
   165  * We can get away with a single array (holding one row's worth of errors)
       
   166  * by using it to store the current row's errors at pixel columns not yet
       
   167  * processed, but the next row's errors at columns already processed.  We
       
   168  * need only a few extra variables to hold the errors immediately around the
       
   169  * current column.  (If we are lucky, those variables are in registers, but
       
   170  * even if not, they're probably cheaper to access than array elements are.)
       
   171  *
       
   172  * The fserrors[] array has (#columns + 2) entries; the extra entry at
       
   173  * each end saves us from special-casing the first and last pixels.
       
   174  * Each entry is three values long, one value for each color component.
       
   175  *
       
   176  * Note: on a wide image, we might not have enough room in a PC's near data
       
   177  * segment to hold the error array; so it is allocated with alloc_large.
       
   178  */
       
   179 
       
   180 #if BITS_IN_JSAMPLE == 8
       
   181 typedef INT16 FSERROR;		/* 16 bits should be enough */
       
   182 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
       
   183 #else
       
   184 typedef INT32 FSERROR;		/* may need more than 16 bits */
       
   185 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
       
   186 #endif
       
   187 
       
   188 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
       
   189 
       
   190 
       
   191 /* Private subobject */
       
   192 
       
   193 typedef struct {
       
   194   struct jpeg_color_quantizer pub; /* public fields */
       
   195 
       
   196   /* Space for the eventually created colormap is stashed here */
       
   197   JSAMPARRAY sv_colormap;	/* colormap allocated at init time */
       
   198   int desired;			/* desired # of colors = size of colormap */
       
   199 
       
   200   /* Variables for accumulating image statistics */
       
   201   hist3d histogram;		/* pointer to the histogram */
       
   202 
       
   203   boolean needs_zeroed;		/* TRUE if next pass must zero histogram */
       
   204 
       
   205   /* Variables for Floyd-Steinberg dithering */
       
   206   FSERRPTR fserrors;		/* accumulated errors */
       
   207   boolean on_odd_row;		/* flag to remember which row we are on */
       
   208   int * error_limiter;		/* table for clamping the applied error */
       
   209 } my_cquantizer;
       
   210 
       
   211 typedef my_cquantizer * my_cquantize_ptr;
       
   212 
       
   213 
       
   214 /*
       
   215  * Prescan some rows of pixels.
       
   216  * In this module the prescan simply updates the histogram, which has been
       
   217  * initialized to zeroes by start_pass.
       
   218  * An output_buf parameter is required by the method signature, but no data
       
   219  * is actually output (in fact the buffer controller is probably passing a
       
   220  * NULL pointer).
       
   221  */
       
   222 
       
   223 METHODDEF(void)
       
   224 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
       
   225 		  JSAMPARRAY output_buf, int num_rows)
       
   226 {
       
   227   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   228   register JSAMPROW ptr;
       
   229   register histptr histp;
       
   230   register hist3d histogram = cquantize->histogram;
       
   231   int row;
       
   232   JDIMENSION col;
       
   233   JDIMENSION width = cinfo->output_width;
       
   234 
       
   235   for (row = 0; row < num_rows; row++) {
       
   236     ptr = input_buf[row];
       
   237     for (col = width; col > 0; col--) {
       
   238       /* get pixel value and index into the histogram */
       
   239       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
       
   240 			 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
       
   241 			 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
       
   242       /* increment, check for overflow and undo increment if so. */
       
   243       if (++(*histp) <= 0)
       
   244 	(*histp)--;
       
   245       ptr += 3;
       
   246     }
       
   247   }
       
   248 }
       
   249 
       
   250 
       
   251 /*
       
   252  * Next we have the really interesting routines: selection of a colormap
       
   253  * given the completed histogram.
       
   254  * These routines work with a list of "boxes", each representing a rectangular
       
   255  * subset of the input color space (to histogram precision).
       
   256  */
       
   257 
       
   258 typedef struct {
       
   259   /* The bounds of the box (inclusive); expressed as histogram indexes */
       
   260   int c0min, c0max;
       
   261   int c1min, c1max;
       
   262   int c2min, c2max;
       
   263   /* The volume (actually 2-norm) of the box */
       
   264   INT32 volume;
       
   265   /* The number of nonzero histogram cells within this box */
       
   266   long colorcount;
       
   267 } box;
       
   268 
       
   269 typedef box * boxptr;
       
   270 
       
   271 
       
   272 LOCAL(boxptr)
       
   273 find_biggest_color_pop (boxptr boxlist, int numboxes)
       
   274 /* Find the splittable box with the largest color population */
       
   275 /* Returns NULL if no splittable boxes remain */
       
   276 {
       
   277   register boxptr boxp;
       
   278   register int i;
       
   279   register long maxc = 0;
       
   280   boxptr which = NULL;
       
   281   
       
   282   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
       
   283     if (boxp->colorcount > maxc && boxp->volume > 0) {
       
   284       which = boxp;
       
   285       maxc = boxp->colorcount;
       
   286     }
       
   287   }
       
   288   return which;
       
   289 }
       
   290 
       
   291 
       
   292 LOCAL(boxptr)
       
   293 find_biggest_volume (boxptr boxlist, int numboxes)
       
   294 /* Find the splittable box with the largest (scaled) volume */
       
   295 /* Returns NULL if no splittable boxes remain */
       
   296 {
       
   297   register boxptr boxp;
       
   298   register int i;
       
   299   register INT32 maxv = 0;
       
   300   boxptr which = NULL;
       
   301   
       
   302   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
       
   303     if (boxp->volume > maxv) {
       
   304       which = boxp;
       
   305       maxv = boxp->volume;
       
   306     }
       
   307   }
       
   308   return which;
       
   309 }
       
   310 
       
   311 
       
   312 LOCAL(void)
       
   313 update_box (j_decompress_ptr cinfo, boxptr boxp)
       
   314 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
       
   315 /* and recompute its volume and population */
       
   316 {
       
   317   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   318   hist3d histogram = cquantize->histogram;
       
   319   histptr histp;
       
   320   int c0,c1,c2;
       
   321   int c0min,c0max,c1min,c1max,c2min,c2max;
       
   322   INT32 dist0,dist1,dist2;
       
   323   long ccount;
       
   324   
       
   325   c0min = boxp->c0min;  c0max = boxp->c0max;
       
   326   c1min = boxp->c1min;  c1max = boxp->c1max;
       
   327   c2min = boxp->c2min;  c2max = boxp->c2max;
       
   328   
       
   329   if (c0max > c0min)
       
   330     for (c0 = c0min; c0 <= c0max; c0++)
       
   331       for (c1 = c1min; c1 <= c1max; c1++) {
       
   332 	histp = & histogram[c0][c1][c2min];
       
   333 	for (c2 = c2min; c2 <= c2max; c2++)
       
   334 	  if (*histp++ != 0) {
       
   335 	    boxp->c0min = c0min = c0;
       
   336 	    goto have_c0min;
       
   337 	  }
       
   338       }
       
   339  have_c0min:
       
   340   if (c0max > c0min)
       
   341     for (c0 = c0max; c0 >= c0min; c0--)
       
   342       for (c1 = c1min; c1 <= c1max; c1++) {
       
   343 	histp = & histogram[c0][c1][c2min];
       
   344 	for (c2 = c2min; c2 <= c2max; c2++)
       
   345 	  if (*histp++ != 0) {
       
   346 	    boxp->c0max = c0max = c0;
       
   347 	    goto have_c0max;
       
   348 	  }
       
   349       }
       
   350  have_c0max:
       
   351   if (c1max > c1min)
       
   352     for (c1 = c1min; c1 <= c1max; c1++)
       
   353       for (c0 = c0min; c0 <= c0max; c0++) {
       
   354 	histp = & histogram[c0][c1][c2min];
       
   355 	for (c2 = c2min; c2 <= c2max; c2++)
       
   356 	  if (*histp++ != 0) {
       
   357 	    boxp->c1min = c1min = c1;
       
   358 	    goto have_c1min;
       
   359 	  }
       
   360       }
       
   361  have_c1min:
       
   362   if (c1max > c1min)
       
   363     for (c1 = c1max; c1 >= c1min; c1--)
       
   364       for (c0 = c0min; c0 <= c0max; c0++) {
       
   365 	histp = & histogram[c0][c1][c2min];
       
   366 	for (c2 = c2min; c2 <= c2max; c2++)
       
   367 	  if (*histp++ != 0) {
       
   368 	    boxp->c1max = c1max = c1;
       
   369 	    goto have_c1max;
       
   370 	  }
       
   371       }
       
   372  have_c1max:
       
   373   if (c2max > c2min)
       
   374     for (c2 = c2min; c2 <= c2max; c2++)
       
   375       for (c0 = c0min; c0 <= c0max; c0++) {
       
   376 	histp = & histogram[c0][c1min][c2];
       
   377 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
       
   378 	  if (*histp != 0) {
       
   379 	    boxp->c2min = c2min = c2;
       
   380 	    goto have_c2min;
       
   381 	  }
       
   382       }
       
   383  have_c2min:
       
   384   if (c2max > c2min)
       
   385     for (c2 = c2max; c2 >= c2min; c2--)
       
   386       for (c0 = c0min; c0 <= c0max; c0++) {
       
   387 	histp = & histogram[c0][c1min][c2];
       
   388 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
       
   389 	  if (*histp != 0) {
       
   390 	    boxp->c2max = c2max = c2;
       
   391 	    goto have_c2max;
       
   392 	  }
       
   393       }
       
   394  have_c2max:
       
   395 
       
   396   /* Update box volume.
       
   397    * We use 2-norm rather than real volume here; this biases the method
       
   398    * against making long narrow boxes, and it has the side benefit that
       
   399    * a box is splittable iff norm > 0.
       
   400    * Since the differences are expressed in histogram-cell units,
       
   401    * we have to shift back to JSAMPLE units to get consistent distances;
       
   402    * after which, we scale according to the selected distance scale factors.
       
   403    */
       
   404   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
       
   405   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
       
   406   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
       
   407   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
       
   408   
       
   409   /* Now scan remaining volume of box and compute population */
       
   410   ccount = 0;
       
   411   for (c0 = c0min; c0 <= c0max; c0++)
       
   412     for (c1 = c1min; c1 <= c1max; c1++) {
       
   413       histp = & histogram[c0][c1][c2min];
       
   414       for (c2 = c2min; c2 <= c2max; c2++, histp++)
       
   415 	if (*histp != 0) {
       
   416 	  ccount++;
       
   417 	}
       
   418     }
       
   419   boxp->colorcount = ccount;
       
   420 }
       
   421 
       
   422 
       
   423 LOCAL(int)
       
   424 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
       
   425 	    int desired_colors)
       
   426 /* Repeatedly select and split the largest box until we have enough boxes */
       
   427 {
       
   428   int n,lb;
       
   429   int c0,c1,c2,cmax;
       
   430   register boxptr b1,b2;
       
   431 
       
   432   while (numboxes < desired_colors) {
       
   433     /* Select box to split.
       
   434      * Current algorithm: by population for first half, then by volume.
       
   435      */
       
   436     if (numboxes*2 <= desired_colors) {
       
   437       b1 = find_biggest_color_pop(boxlist, numboxes);
       
   438     } else {
       
   439       b1 = find_biggest_volume(boxlist, numboxes);
       
   440     }
       
   441     if (b1 == NULL)		/* no splittable boxes left! */
       
   442       break;
       
   443     b2 = &boxlist[numboxes];	/* where new box will go */
       
   444     /* Copy the color bounds to the new box. */
       
   445     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
       
   446     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
       
   447     /* Choose which axis to split the box on.
       
   448      * Current algorithm: longest scaled axis.
       
   449      * See notes in update_box about scaling distances.
       
   450      */
       
   451     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
       
   452     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
       
   453     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
       
   454     /* We want to break any ties in favor of green, then red, blue last.
       
   455      * This code does the right thing for R,G,B or B,G,R color orders only.
       
   456      */
       
   457 #if RGB_RED == 0
       
   458     cmax = c1; n = 1;
       
   459     if (c0 > cmax) { cmax = c0; n = 0; }
       
   460     if (c2 > cmax) { n = 2; }
       
   461 #else
       
   462     cmax = c1; n = 1;
       
   463     if (c2 > cmax) { cmax = c2; n = 2; }
       
   464     if (c0 > cmax) { n = 0; }
       
   465 #endif
       
   466     /* Choose split point along selected axis, and update box bounds.
       
   467      * Current algorithm: split at halfway point.
       
   468      * (Since the box has been shrunk to minimum volume,
       
   469      * any split will produce two nonempty subboxes.)
       
   470      * Note that lb value is max for lower box, so must be < old max.
       
   471      */
       
   472     switch (n) {
       
   473     case 0:
       
   474       lb = (b1->c0max + b1->c0min) / 2;
       
   475       b1->c0max = lb;
       
   476       b2->c0min = lb+1;
       
   477       break;
       
   478     case 1:
       
   479       lb = (b1->c1max + b1->c1min) / 2;
       
   480       b1->c1max = lb;
       
   481       b2->c1min = lb+1;
       
   482       break;
       
   483     case 2:
       
   484       lb = (b1->c2max + b1->c2min) / 2;
       
   485       b1->c2max = lb;
       
   486       b2->c2min = lb+1;
       
   487       break;
       
   488     }
       
   489     /* Update stats for boxes */
       
   490     update_box(cinfo, b1);
       
   491     update_box(cinfo, b2);
       
   492     numboxes++;
       
   493   }
       
   494   return numboxes;
       
   495 }
       
   496 
       
   497 
       
   498 LOCAL(void)
       
   499 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
       
   500 /* Compute representative color for a box, put it in colormap[icolor] */
       
   501 {
       
   502   /* Current algorithm: mean weighted by pixels (not colors) */
       
   503   /* Note it is important to get the rounding correct! */
       
   504   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   505   hist3d histogram = cquantize->histogram;
       
   506   histptr histp;
       
   507   int c0,c1,c2;
       
   508   int c0min,c0max,c1min,c1max,c2min,c2max;
       
   509   long count;
       
   510   long total = 0;
       
   511   long c0total = 0;
       
   512   long c1total = 0;
       
   513   long c2total = 0;
       
   514   
       
   515   c0min = boxp->c0min;  c0max = boxp->c0max;
       
   516   c1min = boxp->c1min;  c1max = boxp->c1max;
       
   517   c2min = boxp->c2min;  c2max = boxp->c2max;
       
   518   
       
   519   for (c0 = c0min; c0 <= c0max; c0++)
       
   520     for (c1 = c1min; c1 <= c1max; c1++) {
       
   521       histp = & histogram[c0][c1][c2min];
       
   522       for (c2 = c2min; c2 <= c2max; c2++) {
       
   523 	if ((count = *histp++) != 0) {
       
   524 	  total += count;
       
   525 	  c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
       
   526 	  c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
       
   527 	  c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
       
   528 	}
       
   529       }
       
   530     }
       
   531   
       
   532   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
       
   533   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
       
   534   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
       
   535 }
       
   536 
       
   537 
       
   538 LOCAL(void)
       
   539 select_colors (j_decompress_ptr cinfo, int desired_colors)
       
   540 /* Master routine for color selection */
       
   541 {
       
   542   boxptr boxlist;
       
   543   int numboxes;
       
   544   int i;
       
   545 
       
   546   /* Allocate workspace for box list */
       
   547   boxlist = (boxptr) (*cinfo->mem->alloc_small)
       
   548     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
       
   549   /* Initialize one box containing whole space */
       
   550   numboxes = 1;
       
   551   boxlist[0].c0min = 0;
       
   552   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
       
   553   boxlist[0].c1min = 0;
       
   554   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
       
   555   boxlist[0].c2min = 0;
       
   556   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
       
   557   /* Shrink it to actually-used volume and set its statistics */
       
   558   update_box(cinfo, & boxlist[0]);
       
   559   /* Perform median-cut to produce final box list */
       
   560   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
       
   561   /* Compute the representative color for each box, fill colormap */
       
   562   for (i = 0; i < numboxes; i++)
       
   563     compute_color(cinfo, & boxlist[i], i);
       
   564   cinfo->actual_number_of_colors = numboxes;
       
   565   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
       
   566 }
       
   567 
       
   568 
       
   569 /*
       
   570  * These routines are concerned with the time-critical task of mapping input
       
   571  * colors to the nearest color in the selected colormap.
       
   572  *
       
   573  * We re-use the histogram space as an "inverse color map", essentially a
       
   574  * cache for the results of nearest-color searches.  All colors within a
       
   575  * histogram cell will be mapped to the same colormap entry, namely the one
       
   576  * closest to the cell's center.  This may not be quite the closest entry to
       
   577  * the actual input color, but it's almost as good.  A zero in the cache
       
   578  * indicates we haven't found the nearest color for that cell yet; the array
       
   579  * is cleared to zeroes before starting the mapping pass.  When we find the
       
   580  * nearest color for a cell, its colormap index plus one is recorded in the
       
   581  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
       
   582  * when they need to use an unfilled entry in the cache.
       
   583  *
       
   584  * Our method of efficiently finding nearest colors is based on the "locally
       
   585  * sorted search" idea described by Heckbert and on the incremental distance
       
   586  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
       
   587  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
       
   588  * the distances from a given colormap entry to each cell of the histogram can
       
   589  * be computed quickly using an incremental method: the differences between
       
   590  * distances to adjacent cells themselves differ by a constant.  This allows a
       
   591  * fairly fast implementation of the "brute force" approach of computing the
       
   592  * distance from every colormap entry to every histogram cell.  Unfortunately,
       
   593  * it needs a work array to hold the best-distance-so-far for each histogram
       
   594  * cell (because the inner loop has to be over cells, not colormap entries).
       
   595  * The work array elements have to be INT32s, so the work array would need
       
   596  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
       
   597  *
       
   598  * To get around these problems, we apply Thomas' method to compute the
       
   599  * nearest colors for only the cells within a small subbox of the histogram.
       
   600  * The work array need be only as big as the subbox, so the memory usage
       
   601  * problem is solved.  Furthermore, we need not fill subboxes that are never
       
   602  * referenced in pass2; many images use only part of the color gamut, so a
       
   603  * fair amount of work is saved.  An additional advantage of this
       
   604  * approach is that we can apply Heckbert's locality criterion to quickly
       
   605  * eliminate colormap entries that are far away from the subbox; typically
       
   606  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
       
   607  * and we need not compute their distances to individual cells in the subbox.
       
   608  * The speed of this approach is heavily influenced by the subbox size: too
       
   609  * small means too much overhead, too big loses because Heckbert's criterion
       
   610  * can't eliminate as many colormap entries.  Empirically the best subbox
       
   611  * size seems to be about 1/512th of the histogram (1/8th in each direction).
       
   612  *
       
   613  * Thomas' article also describes a refined method which is asymptotically
       
   614  * faster than the brute-force method, but it is also far more complex and
       
   615  * cannot efficiently be applied to small subboxes.  It is therefore not
       
   616  * useful for programs intended to be portable to DOS machines.  On machines
       
   617  * with plenty of memory, filling the whole histogram in one shot with Thomas'
       
   618  * refined method might be faster than the present code --- but then again,
       
   619  * it might not be any faster, and it's certainly more complicated.
       
   620  */
       
   621 
       
   622 
       
   623 /* log2(histogram cells in update box) for each axis; this can be adjusted */
       
   624 #define BOX_C0_LOG  (HIST_C0_BITS-3)
       
   625 #define BOX_C1_LOG  (HIST_C1_BITS-3)
       
   626 #define BOX_C2_LOG  (HIST_C2_BITS-3)
       
   627 
       
   628 #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
       
   629 #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
       
   630 #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
       
   631 
       
   632 #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
       
   633 #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
       
   634 #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
       
   635 
       
   636 
       
   637 /*
       
   638  * The next three routines implement inverse colormap filling.  They could
       
   639  * all be folded into one big routine, but splitting them up this way saves
       
   640  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
       
   641  * and may allow some compilers to produce better code by registerizing more
       
   642  * inner-loop variables.
       
   643  */
       
   644 
       
   645 LOCAL(int)
       
   646 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
       
   647 		    JSAMPLE colorlist[])
       
   648 /* Locate the colormap entries close enough to an update box to be candidates
       
   649  * for the nearest entry to some cell(s) in the update box.  The update box
       
   650  * is specified by the center coordinates of its first cell.  The number of
       
   651  * candidate colormap entries is returned, and their colormap indexes are
       
   652  * placed in colorlist[].
       
   653  * This routine uses Heckbert's "locally sorted search" criterion to select
       
   654  * the colors that need further consideration.
       
   655  */
       
   656 {
       
   657   int numcolors = cinfo->actual_number_of_colors;
       
   658   int maxc0, maxc1, maxc2;
       
   659   int centerc0, centerc1, centerc2;
       
   660   int i, x, ncolors;
       
   661   INT32 minmaxdist, min_dist, max_dist, tdist;
       
   662   INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */
       
   663 
       
   664   /* Compute true coordinates of update box's upper corner and center.
       
   665    * Actually we compute the coordinates of the center of the upper-corner
       
   666    * histogram cell, which are the upper bounds of the volume we care about.
       
   667    * Note that since ">>" rounds down, the "center" values may be closer to
       
   668    * min than to max; hence comparisons to them must be "<=", not "<".
       
   669    */
       
   670   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
       
   671   centerc0 = (minc0 + maxc0) >> 1;
       
   672   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
       
   673   centerc1 = (minc1 + maxc1) >> 1;
       
   674   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
       
   675   centerc2 = (minc2 + maxc2) >> 1;
       
   676 
       
   677   /* For each color in colormap, find:
       
   678    *  1. its minimum squared-distance to any point in the update box
       
   679    *     (zero if color is within update box);
       
   680    *  2. its maximum squared-distance to any point in the update box.
       
   681    * Both of these can be found by considering only the corners of the box.
       
   682    * We save the minimum distance for each color in mindist[];
       
   683    * only the smallest maximum distance is of interest.
       
   684    */
       
   685   minmaxdist = 0x7FFFFFFFL;
       
   686 
       
   687   for (i = 0; i < numcolors; i++) {
       
   688     /* We compute the squared-c0-distance term, then add in the other two. */
       
   689     x = GETJSAMPLE(cinfo->colormap[0][i]);
       
   690     if (x < minc0) {
       
   691       tdist = (x - minc0) * C0_SCALE;
       
   692       min_dist = tdist*tdist;
       
   693       tdist = (x - maxc0) * C0_SCALE;
       
   694       max_dist = tdist*tdist;
       
   695     } else if (x > maxc0) {
       
   696       tdist = (x - maxc0) * C0_SCALE;
       
   697       min_dist = tdist*tdist;
       
   698       tdist = (x - minc0) * C0_SCALE;
       
   699       max_dist = tdist*tdist;
       
   700     } else {
       
   701       /* within cell range so no contribution to min_dist */
       
   702       min_dist = 0;
       
   703       if (x <= centerc0) {
       
   704 	tdist = (x - maxc0) * C0_SCALE;
       
   705 	max_dist = tdist*tdist;
       
   706       } else {
       
   707 	tdist = (x - minc0) * C0_SCALE;
       
   708 	max_dist = tdist*tdist;
       
   709       }
       
   710     }
       
   711 
       
   712     x = GETJSAMPLE(cinfo->colormap[1][i]);
       
   713     if (x < minc1) {
       
   714       tdist = (x - minc1) * C1_SCALE;
       
   715       min_dist += tdist*tdist;
       
   716       tdist = (x - maxc1) * C1_SCALE;
       
   717       max_dist += tdist*tdist;
       
   718     } else if (x > maxc1) {
       
   719       tdist = (x - maxc1) * C1_SCALE;
       
   720       min_dist += tdist*tdist;
       
   721       tdist = (x - minc1) * C1_SCALE;
       
   722       max_dist += tdist*tdist;
       
   723     } else {
       
   724       /* within cell range so no contribution to min_dist */
       
   725       if (x <= centerc1) {
       
   726 	tdist = (x - maxc1) * C1_SCALE;
       
   727 	max_dist += tdist*tdist;
       
   728       } else {
       
   729 	tdist = (x - minc1) * C1_SCALE;
       
   730 	max_dist += tdist*tdist;
       
   731       }
       
   732     }
       
   733 
       
   734     x = GETJSAMPLE(cinfo->colormap[2][i]);
       
   735     if (x < minc2) {
       
   736       tdist = (x - minc2) * C2_SCALE;
       
   737       min_dist += tdist*tdist;
       
   738       tdist = (x - maxc2) * C2_SCALE;
       
   739       max_dist += tdist*tdist;
       
   740     } else if (x > maxc2) {
       
   741       tdist = (x - maxc2) * C2_SCALE;
       
   742       min_dist += tdist*tdist;
       
   743       tdist = (x - minc2) * C2_SCALE;
       
   744       max_dist += tdist*tdist;
       
   745     } else {
       
   746       /* within cell range so no contribution to min_dist */
       
   747       if (x <= centerc2) {
       
   748 	tdist = (x - maxc2) * C2_SCALE;
       
   749 	max_dist += tdist*tdist;
       
   750       } else {
       
   751 	tdist = (x - minc2) * C2_SCALE;
       
   752 	max_dist += tdist*tdist;
       
   753       }
       
   754     }
       
   755 
       
   756     mindist[i] = min_dist;	/* save away the results */
       
   757     if (max_dist < minmaxdist)
       
   758       minmaxdist = max_dist;
       
   759   }
       
   760 
       
   761   /* Now we know that no cell in the update box is more than minmaxdist
       
   762    * away from some colormap entry.  Therefore, only colors that are
       
   763    * within minmaxdist of some part of the box need be considered.
       
   764    */
       
   765   ncolors = 0;
       
   766   for (i = 0; i < numcolors; i++) {
       
   767     if (mindist[i] <= minmaxdist)
       
   768       colorlist[ncolors++] = (JSAMPLE) i;
       
   769   }
       
   770   return ncolors;
       
   771 }
       
   772 
       
   773 
       
   774 LOCAL(void)
       
   775 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
       
   776 		  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
       
   777 /* Find the closest colormap entry for each cell in the update box,
       
   778  * given the list of candidate colors prepared by find_nearby_colors.
       
   779  * Return the indexes of the closest entries in the bestcolor[] array.
       
   780  * This routine uses Thomas' incremental distance calculation method to
       
   781  * find the distance from a colormap entry to successive cells in the box.
       
   782  */
       
   783 {
       
   784   int ic0, ic1, ic2;
       
   785   int i, icolor;
       
   786   register INT32 * bptr;	/* pointer into bestdist[] array */
       
   787   JSAMPLE * cptr;		/* pointer into bestcolor[] array */
       
   788   INT32 dist0, dist1;		/* initial distance values */
       
   789   register INT32 dist2;		/* current distance in inner loop */
       
   790   INT32 xx0, xx1;		/* distance increments */
       
   791   register INT32 xx2;
       
   792   INT32 inc0, inc1, inc2;	/* initial values for increments */
       
   793   /* This array holds the distance to the nearest-so-far color for each cell */
       
   794   INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
       
   795 
       
   796   /* Initialize best-distance for each cell of the update box */
       
   797   bptr = bestdist;
       
   798   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
       
   799     *bptr++ = 0x7FFFFFFFL;
       
   800   
       
   801   /* For each color selected by find_nearby_colors,
       
   802    * compute its distance to the center of each cell in the box.
       
   803    * If that's less than best-so-far, update best distance and color number.
       
   804    */
       
   805   
       
   806   /* Nominal steps between cell centers ("x" in Thomas article) */
       
   807 #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
       
   808 #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
       
   809 #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
       
   810   
       
   811   for (i = 0; i < numcolors; i++) {
       
   812     icolor = GETJSAMPLE(colorlist[i]);
       
   813     /* Compute (square of) distance from minc0/c1/c2 to this color */
       
   814     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
       
   815     dist0 = inc0*inc0;
       
   816     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
       
   817     dist0 += inc1*inc1;
       
   818     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
       
   819     dist0 += inc2*inc2;
       
   820     /* Form the initial difference increments */
       
   821     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
       
   822     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
       
   823     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
       
   824     /* Now loop over all cells in box, updating distance per Thomas method */
       
   825     bptr = bestdist;
       
   826     cptr = bestcolor;
       
   827     xx0 = inc0;
       
   828     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
       
   829       dist1 = dist0;
       
   830       xx1 = inc1;
       
   831       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
       
   832 	dist2 = dist1;
       
   833 	xx2 = inc2;
       
   834 	for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
       
   835 	  if (dist2 < *bptr) {
       
   836 	    *bptr = dist2;
       
   837 	    *cptr = (JSAMPLE) icolor;
       
   838 	  }
       
   839 	  dist2 += xx2;
       
   840 	  xx2 += 2 * STEP_C2 * STEP_C2;
       
   841 	  bptr++;
       
   842 	  cptr++;
       
   843 	}
       
   844 	dist1 += xx1;
       
   845 	xx1 += 2 * STEP_C1 * STEP_C1;
       
   846       }
       
   847       dist0 += xx0;
       
   848       xx0 += 2 * STEP_C0 * STEP_C0;
       
   849     }
       
   850   }
       
   851 }
       
   852 
       
   853 
       
   854 LOCAL(void)
       
   855 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
       
   856 /* Fill the inverse-colormap entries in the update box that contains */
       
   857 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
       
   858 /* we can fill as many others as we wish.) */
       
   859 {
       
   860   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   861   hist3d histogram = cquantize->histogram;
       
   862   int minc0, minc1, minc2;	/* lower left corner of update box */
       
   863   int ic0, ic1, ic2;
       
   864   register JSAMPLE * cptr;	/* pointer into bestcolor[] array */
       
   865   register histptr cachep;	/* pointer into main cache array */
       
   866   /* This array lists the candidate colormap indexes. */
       
   867   JSAMPLE colorlist[MAXNUMCOLORS];
       
   868   int numcolors;		/* number of candidate colors */
       
   869   /* This array holds the actually closest colormap index for each cell. */
       
   870   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
       
   871 
       
   872   /* Convert cell coordinates to update box ID */
       
   873   c0 >>= BOX_C0_LOG;
       
   874   c1 >>= BOX_C1_LOG;
       
   875   c2 >>= BOX_C2_LOG;
       
   876 
       
   877   /* Compute true coordinates of update box's origin corner.
       
   878    * Actually we compute the coordinates of the center of the corner
       
   879    * histogram cell, which are the lower bounds of the volume we care about.
       
   880    */
       
   881   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
       
   882   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
       
   883   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
       
   884   
       
   885   /* Determine which colormap entries are close enough to be candidates
       
   886    * for the nearest entry to some cell in the update box.
       
   887    */
       
   888   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
       
   889 
       
   890   /* Determine the actually nearest colors. */
       
   891   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
       
   892 		   bestcolor);
       
   893 
       
   894   /* Save the best color numbers (plus 1) in the main cache array */
       
   895   c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
       
   896   c1 <<= BOX_C1_LOG;
       
   897   c2 <<= BOX_C2_LOG;
       
   898   cptr = bestcolor;
       
   899   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
       
   900     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
       
   901       cachep = & histogram[c0+ic0][c1+ic1][c2];
       
   902       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
       
   903 	*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
       
   904       }
       
   905     }
       
   906   }
       
   907 }
       
   908 
       
   909 
       
   910 /*
       
   911  * Map some rows of pixels to the output colormapped representation.
       
   912  */
       
   913 
       
   914 METHODDEF(void)
       
   915 pass2_no_dither (j_decompress_ptr cinfo,
       
   916 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
       
   917 /* This version performs no dithering */
       
   918 {
       
   919   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   920   hist3d histogram = cquantize->histogram;
       
   921   register JSAMPROW inptr, outptr;
       
   922   register histptr cachep;
       
   923   register int c0, c1, c2;
       
   924   int row;
       
   925   JDIMENSION col;
       
   926   JDIMENSION width = cinfo->output_width;
       
   927 
       
   928   for (row = 0; row < num_rows; row++) {
       
   929     inptr = input_buf[row];
       
   930     outptr = output_buf[row];
       
   931     for (col = width; col > 0; col--) {
       
   932       /* get pixel value and index into the cache */
       
   933       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
       
   934       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
       
   935       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
       
   936       cachep = & histogram[c0][c1][c2];
       
   937       /* If we have not seen this color before, find nearest colormap entry */
       
   938       /* and update the cache */
       
   939       if (*cachep == 0)
       
   940 	fill_inverse_cmap(cinfo, c0,c1,c2);
       
   941       /* Now emit the colormap index for this cell */
       
   942       *outptr++ = (JSAMPLE) (*cachep - 1);
       
   943     }
       
   944   }
       
   945 }
       
   946 
       
   947 
       
   948 METHODDEF(void)
       
   949 pass2_fs_dither (j_decompress_ptr cinfo,
       
   950 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
       
   951 /* This version performs Floyd-Steinberg dithering */
       
   952 {
       
   953   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
   954   hist3d histogram = cquantize->histogram;
       
   955   register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
       
   956   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
       
   957   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
       
   958   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
       
   959   JSAMPROW inptr;		/* => current input pixel */
       
   960   JSAMPROW outptr;		/* => current output pixel */
       
   961   histptr cachep;
       
   962   int dir;			/* +1 or -1 depending on direction */
       
   963   int dir3;			/* 3*dir, for advancing inptr & errorptr */
       
   964   int row;
       
   965   JDIMENSION col;
       
   966   JDIMENSION width = cinfo->output_width;
       
   967   JSAMPLE *range_limit = cinfo->sample_range_limit;
       
   968   int *error_limit = cquantize->error_limiter;
       
   969   JSAMPROW colormap0 = cinfo->colormap[0];
       
   970   JSAMPROW colormap1 = cinfo->colormap[1];
       
   971   JSAMPROW colormap2 = cinfo->colormap[2];
       
   972   SHIFT_TEMPS
       
   973 
       
   974   for (row = 0; row < num_rows; row++) {
       
   975     inptr = input_buf[row];
       
   976     outptr = output_buf[row];
       
   977     if (cquantize->on_odd_row) {
       
   978       /* work right to left in this row */
       
   979       inptr += (width-1) * 3;	/* so point to rightmost pixel */
       
   980       outptr += width-1;
       
   981       dir = -1;
       
   982       dir3 = -3;
       
   983       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
       
   984       cquantize->on_odd_row = FALSE; /* flip for next time */
       
   985     } else {
       
   986       /* work left to right in this row */
       
   987       dir = 1;
       
   988       dir3 = 3;
       
   989       errorptr = cquantize->fserrors; /* => entry before first real column */
       
   990       cquantize->on_odd_row = TRUE; /* flip for next time */
       
   991     }
       
   992     /* Preset error values: no error propagated to first pixel from left */
       
   993     cur0 = cur1 = cur2 = 0;
       
   994     /* and no error propagated to row below yet */
       
   995     belowerr0 = belowerr1 = belowerr2 = 0;
       
   996     bpreverr0 = bpreverr1 = bpreverr2 = 0;
       
   997 
       
   998     for (col = width; col > 0; col--) {
       
   999       /* curN holds the error propagated from the previous pixel on the
       
  1000        * current line.  Add the error propagated from the previous line
       
  1001        * to form the complete error correction term for this pixel, and
       
  1002        * round the error term (which is expressed * 16) to an integer.
       
  1003        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
       
  1004        * for either sign of the error value.
       
  1005        * Note: errorptr points to *previous* column's array entry.
       
  1006        */
       
  1007       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
       
  1008       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
       
  1009       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
       
  1010       /* Limit the error using transfer function set by init_error_limit.
       
  1011        * See comments with init_error_limit for rationale.
       
  1012        */
       
  1013       cur0 = error_limit[cur0];
       
  1014       cur1 = error_limit[cur1];
       
  1015       cur2 = error_limit[cur2];
       
  1016       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
       
  1017        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
       
  1018        * this sets the required size of the range_limit array.
       
  1019        */
       
  1020       cur0 += GETJSAMPLE(inptr[0]);
       
  1021       cur1 += GETJSAMPLE(inptr[1]);
       
  1022       cur2 += GETJSAMPLE(inptr[2]);
       
  1023       cur0 = GETJSAMPLE(range_limit[cur0]);
       
  1024       cur1 = GETJSAMPLE(range_limit[cur1]);
       
  1025       cur2 = GETJSAMPLE(range_limit[cur2]);
       
  1026       /* Index into the cache with adjusted pixel value */
       
  1027       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
       
  1028       /* If we have not seen this color before, find nearest colormap */
       
  1029       /* entry and update the cache */
       
  1030       if (*cachep == 0)
       
  1031 	fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
       
  1032       /* Now emit the colormap index for this cell */
       
  1033       { register int pixcode = *cachep - 1;
       
  1034 	*outptr = (JSAMPLE) pixcode;
       
  1035 	/* Compute representation error for this pixel */
       
  1036 	cur0 -= GETJSAMPLE(colormap0[pixcode]);
       
  1037 	cur1 -= GETJSAMPLE(colormap1[pixcode]);
       
  1038 	cur2 -= GETJSAMPLE(colormap2[pixcode]);
       
  1039       }
       
  1040       /* Compute error fractions to be propagated to adjacent pixels.
       
  1041        * Add these into the running sums, and simultaneously shift the
       
  1042        * next-line error sums left by 1 column.
       
  1043        */
       
  1044       { register LOCFSERROR bnexterr, delta;
       
  1045 
       
  1046 	bnexterr = cur0;	/* Process component 0 */
       
  1047 	delta = cur0 * 2;
       
  1048 	cur0 += delta;		/* form error * 3 */
       
  1049 	errorptr[0] = (FSERROR) (bpreverr0 + cur0);
       
  1050 	cur0 += delta;		/* form error * 5 */
       
  1051 	bpreverr0 = belowerr0 + cur0;
       
  1052 	belowerr0 = bnexterr;
       
  1053 	cur0 += delta;		/* form error * 7 */
       
  1054 	bnexterr = cur1;	/* Process component 1 */
       
  1055 	delta = cur1 * 2;
       
  1056 	cur1 += delta;		/* form error * 3 */
       
  1057 	errorptr[1] = (FSERROR) (bpreverr1 + cur1);
       
  1058 	cur1 += delta;		/* form error * 5 */
       
  1059 	bpreverr1 = belowerr1 + cur1;
       
  1060 	belowerr1 = bnexterr;
       
  1061 	cur1 += delta;		/* form error * 7 */
       
  1062 	bnexterr = cur2;	/* Process component 2 */
       
  1063 	delta = cur2 * 2;
       
  1064 	cur2 += delta;		/* form error * 3 */
       
  1065 	errorptr[2] = (FSERROR) (bpreverr2 + cur2);
       
  1066 	cur2 += delta;		/* form error * 5 */
       
  1067 	bpreverr2 = belowerr2 + cur2;
       
  1068 	belowerr2 = bnexterr;
       
  1069 	cur2 += delta;		/* form error * 7 */
       
  1070       }
       
  1071       /* At this point curN contains the 7/16 error value to be propagated
       
  1072        * to the next pixel on the current line, and all the errors for the
       
  1073        * next line have been shifted over.  We are therefore ready to move on.
       
  1074        */
       
  1075       inptr += dir3;		/* Advance pixel pointers to next column */
       
  1076       outptr += dir;
       
  1077       errorptr += dir3;		/* advance errorptr to current column */
       
  1078     }
       
  1079     /* Post-loop cleanup: we must unload the final error values into the
       
  1080      * final fserrors[] entry.  Note we need not unload belowerrN because
       
  1081      * it is for the dummy column before or after the actual array.
       
  1082      */
       
  1083     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
       
  1084     errorptr[1] = (FSERROR) bpreverr1;
       
  1085     errorptr[2] = (FSERROR) bpreverr2;
       
  1086   }
       
  1087 }
       
  1088 
       
  1089 
       
  1090 /*
       
  1091  * Initialize the error-limiting transfer function (lookup table).
       
  1092  * The raw F-S error computation can potentially compute error values of up to
       
  1093  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
       
  1094  * much less, otherwise obviously wrong pixels will be created.  (Typical
       
  1095  * effects include weird fringes at color-area boundaries, isolated bright
       
  1096  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
       
  1097  * is to ensure that the "corners" of the color cube are allocated as output
       
  1098  * colors; then repeated errors in the same direction cannot cause cascading
       
  1099  * error buildup.  However, that only prevents the error from getting
       
  1100  * completely out of hand; Aaron Giles reports that error limiting improves
       
  1101  * the results even with corner colors allocated.
       
  1102  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
       
  1103  * well, but the smoother transfer function used below is even better.  Thanks
       
  1104  * to Aaron Giles for this idea.
       
  1105  */
       
  1106 
       
  1107 LOCAL(void)
       
  1108 init_error_limit (j_decompress_ptr cinfo)
       
  1109 /* Allocate and fill in the error_limiter table */
       
  1110 {
       
  1111   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
  1112   int * table;
       
  1113   int in, out;
       
  1114 
       
  1115   table = (int *) (*cinfo->mem->alloc_small)
       
  1116     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
       
  1117   table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
       
  1118   cquantize->error_limiter = table;
       
  1119 
       
  1120 #define STEPSIZE ((MAXJSAMPLE+1)/16)
       
  1121   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
       
  1122   out = 0;
       
  1123   for (in = 0; in < STEPSIZE; in++, out++) {
       
  1124     table[in] = out; table[-in] = -out;
       
  1125   }
       
  1126   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
       
  1127   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
       
  1128     table[in] = out; table[-in] = -out;
       
  1129   }
       
  1130   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
       
  1131   for (; in <= MAXJSAMPLE; in++) {
       
  1132     table[in] = out; table[-in] = -out;
       
  1133   }
       
  1134 #undef STEPSIZE
       
  1135 }
       
  1136 
       
  1137 
       
  1138 /*
       
  1139  * Finish up at the end of each pass.
       
  1140  */
       
  1141 
       
  1142 METHODDEF(void)
       
  1143 finish_pass1 (j_decompress_ptr cinfo)
       
  1144 {
       
  1145   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
  1146 
       
  1147   /* Select the representative colors and fill in cinfo->colormap */
       
  1148   cinfo->colormap = cquantize->sv_colormap;
       
  1149   select_colors(cinfo, cquantize->desired);
       
  1150   /* Force next pass to zero the color index table */
       
  1151   cquantize->needs_zeroed = TRUE;
       
  1152 }
       
  1153 
       
  1154 
       
  1155 METHODDEF(void)
       
  1156 finish_pass2 (j_decompress_ptr cinfo)
       
  1157 {
       
  1158   /* no work */
       
  1159 }
       
  1160 
       
  1161 
       
  1162 /*
       
  1163  * Initialize for each processing pass.
       
  1164  */
       
  1165 
       
  1166 METHODDEF(void)
       
  1167 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
       
  1168 {
       
  1169   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
  1170   hist3d histogram = cquantize->histogram;
       
  1171   int i;
       
  1172 
       
  1173   /* Only F-S dithering or no dithering is supported. */
       
  1174   /* If user asks for ordered dither, give him F-S. */
       
  1175   if (cinfo->dither_mode != JDITHER_NONE)
       
  1176     cinfo->dither_mode = JDITHER_FS;
       
  1177 
       
  1178   if (is_pre_scan) {
       
  1179     /* Set up method pointers */
       
  1180     cquantize->pub.color_quantize = prescan_quantize;
       
  1181     cquantize->pub.finish_pass = finish_pass1;
       
  1182     cquantize->needs_zeroed = TRUE; /* Always zero histogram */
       
  1183   } else {
       
  1184     /* Set up method pointers */
       
  1185     if (cinfo->dither_mode == JDITHER_FS)
       
  1186       cquantize->pub.color_quantize = pass2_fs_dither;
       
  1187     else
       
  1188       cquantize->pub.color_quantize = pass2_no_dither;
       
  1189     cquantize->pub.finish_pass = finish_pass2;
       
  1190 
       
  1191     /* Make sure color count is acceptable */
       
  1192     i = cinfo->actual_number_of_colors;
       
  1193     if (i < 1)
       
  1194       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
       
  1195     if (i > MAXNUMCOLORS)
       
  1196       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
       
  1197 
       
  1198     if (cinfo->dither_mode == JDITHER_FS) {
       
  1199       size_t arraysize = (size_t) ((cinfo->output_width + 2) *
       
  1200 				   (3 * SIZEOF(FSERROR)));
       
  1201       /* Allocate Floyd-Steinberg workspace if we didn't already. */
       
  1202       if (cquantize->fserrors == NULL)
       
  1203 	cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
       
  1204 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
       
  1205       /* Initialize the propagated errors to zero. */
       
  1206       jzero_far((void FAR *) cquantize->fserrors, arraysize);
       
  1207       /* Make the error-limit table if we didn't already. */
       
  1208       if (cquantize->error_limiter == NULL)
       
  1209 	init_error_limit(cinfo);
       
  1210       cquantize->on_odd_row = FALSE;
       
  1211     }
       
  1212 
       
  1213   }
       
  1214   /* Zero the histogram or inverse color map, if necessary */
       
  1215   if (cquantize->needs_zeroed) {
       
  1216     for (i = 0; i < HIST_C0_ELEMS; i++) {
       
  1217       jzero_far((void FAR *) histogram[i],
       
  1218 		HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
       
  1219     }
       
  1220     cquantize->needs_zeroed = FALSE;
       
  1221   }
       
  1222 }
       
  1223 
       
  1224 
       
  1225 /*
       
  1226  * Switch to a new external colormap between output passes.
       
  1227  */
       
  1228 
       
  1229 METHODDEF(void)
       
  1230 new_color_map_2_quant (j_decompress_ptr cinfo)
       
  1231 {
       
  1232   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
       
  1233 
       
  1234   /* Reset the inverse color map */
       
  1235   cquantize->needs_zeroed = TRUE;
       
  1236 }
       
  1237 
       
  1238 
       
  1239 /*
       
  1240  * Module initialization routine for 2-pass color quantization.
       
  1241  */
       
  1242 
       
  1243 GLOBAL(void)
       
  1244 jinit_2pass_quantizer (j_decompress_ptr cinfo)
       
  1245 {
       
  1246   my_cquantize_ptr cquantize;
       
  1247   int i;
       
  1248 
       
  1249   cquantize = (my_cquantize_ptr)
       
  1250     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
  1251 				SIZEOF(my_cquantizer));
       
  1252   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
       
  1253   cquantize->pub.start_pass = start_pass_2_quant;
       
  1254   cquantize->pub.new_color_map = new_color_map_2_quant;
       
  1255   cquantize->fserrors = NULL;	/* flag optional arrays not allocated */
       
  1256   cquantize->error_limiter = NULL;
       
  1257 
       
  1258   /* Make sure jdmaster didn't give me a case I can't handle */
       
  1259   if (cinfo->out_color_components != 3)
       
  1260     ERREXIT(cinfo, JERR_NOTIMPL);
       
  1261 
       
  1262   /* Allocate the histogram/inverse colormap storage */
       
  1263   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
       
  1264     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
       
  1265   for (i = 0; i < HIST_C0_ELEMS; i++) {
       
  1266     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
       
  1267       ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
  1268        HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
       
  1269   }
       
  1270   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
       
  1271 
       
  1272   /* Allocate storage for the completed colormap, if required.
       
  1273    * We do this now since it is FAR storage and may affect
       
  1274    * the memory manager's space calculations.
       
  1275    */
       
  1276   if (cinfo->enable_2pass_quant) {
       
  1277     /* Make sure color count is acceptable */
       
  1278     int desired = cinfo->desired_number_of_colors;
       
  1279     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
       
  1280     if (desired < 8)
       
  1281       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
       
  1282     /* Make sure colormap indexes can be represented by JSAMPLEs */
       
  1283     if (desired > MAXNUMCOLORS)
       
  1284       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
       
  1285     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
       
  1286       ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
       
  1287     cquantize->desired = desired;
       
  1288   } else
       
  1289     cquantize->sv_colormap = NULL;
       
  1290 
       
  1291   /* Only F-S dithering or no dithering is supported. */
       
  1292   /* If user asks for ordered dither, give him F-S. */
       
  1293   if (cinfo->dither_mode != JDITHER_NONE)
       
  1294     cinfo->dither_mode = JDITHER_FS;
       
  1295 
       
  1296   /* Allocate Floyd-Steinberg workspace if necessary.
       
  1297    * This isn't really needed until pass 2, but again it is FAR storage.
       
  1298    * Although we will cope with a later change in dither_mode,
       
  1299    * we do not promise to honor max_memory_to_use if dither_mode changes.
       
  1300    */
       
  1301   if (cinfo->dither_mode == JDITHER_FS) {
       
  1302     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
       
  1303       ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
  1304        (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
       
  1305     /* Might as well create the error-limiting table too. */
       
  1306     init_error_limit(cinfo);
       
  1307   }
       
  1308 }
       
  1309 
       
  1310 #endif /* QUANT_2PASS_SUPPORTED */