|
1 /* crc32.c -- compute the CRC-32 of a data stream |
|
2 * Copyright (C) 1995-2005 Mark Adler |
|
3 * For conditions of distribution and use, see copyright notice in zlib.h |
|
4 * |
|
5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster |
|
6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing |
|
7 * tables for updating the shift register in one step with three exclusive-ors |
|
8 * instead of four steps with four exclusive-ors. This results in about a |
|
9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. |
|
10 */ |
|
11 |
|
12 /* @(#) $Id$ */ |
|
13 |
|
14 /* |
|
15 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore |
|
16 protection on the static variables used to control the first-use generation |
|
17 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
|
18 first call get_crc_table() to initialize the tables before allowing more than |
|
19 one thread to use crc32(). |
|
20 */ |
|
21 |
|
22 #ifdef MAKECRCH |
|
23 # include <stdio.h> |
|
24 # ifndef DYNAMIC_CRC_TABLE |
|
25 # define DYNAMIC_CRC_TABLE |
|
26 # endif /* !DYNAMIC_CRC_TABLE */ |
|
27 #endif /* MAKECRCH */ |
|
28 |
|
29 #include "zutil.h" /* for STDC and FAR definitions */ |
|
30 |
|
31 #define local static |
|
32 |
|
33 /* Find a four-byte integer type for crc32_little() and crc32_big(). */ |
|
34 #ifndef NOBYFOUR |
|
35 # ifdef STDC /* need ANSI C limits.h to determine sizes */ |
|
36 # include <limits.h> |
|
37 # define BYFOUR |
|
38 # if (UINT_MAX == 0xffffffffUL) |
|
39 typedef unsigned int u4; |
|
40 # else |
|
41 # if (ULONG_MAX == 0xffffffffUL) |
|
42 typedef unsigned long u4; |
|
43 # else |
|
44 # if (USHRT_MAX == 0xffffffffUL) |
|
45 typedef unsigned short u4; |
|
46 # else |
|
47 # undef BYFOUR /* can't find a four-byte integer type! */ |
|
48 # endif |
|
49 # endif |
|
50 # endif |
|
51 # endif /* STDC */ |
|
52 #endif /* !NOBYFOUR */ |
|
53 |
|
54 /* Definitions for doing the crc four data bytes at a time. */ |
|
55 #ifdef BYFOUR |
|
56 # define REV(w) (((w)>>24)+(((w)>>8)&0xff00)+ \ |
|
57 (((w)&0xff00)<<8)+(((w)&0xff)<<24)) |
|
58 local unsigned long crc32_little OF((unsigned long, |
|
59 const unsigned char FAR *, unsigned)); |
|
60 local unsigned long crc32_big OF((unsigned long, |
|
61 const unsigned char FAR *, unsigned)); |
|
62 # define TBLS 8 |
|
63 #else |
|
64 # define TBLS 1 |
|
65 #endif /* BYFOUR */ |
|
66 |
|
67 /* Local functions for crc concatenation */ |
|
68 local unsigned long gf2_matrix_times OF((unsigned long *mat, |
|
69 unsigned long vec)); |
|
70 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); |
|
71 |
|
72 #ifdef DYNAMIC_CRC_TABLE |
|
73 |
|
74 local volatile int crc_table_empty = 1; |
|
75 local unsigned long FAR crc_table[TBLS][256]; |
|
76 local void make_crc_table OF((void)); |
|
77 #ifdef MAKECRCH |
|
78 local void write_table OF((FILE *, const unsigned long FAR *)); |
|
79 #endif /* MAKECRCH */ |
|
80 /* |
|
81 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: |
|
82 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. |
|
83 |
|
84 Polynomials over GF(2) are represented in binary, one bit per coefficient, |
|
85 with the lowest powers in the most significant bit. Then adding polynomials |
|
86 is just exclusive-or, and multiplying a polynomial by x is a right shift by |
|
87 one. If we call the above polynomial p, and represent a byte as the |
|
88 polynomial q, also with the lowest power in the most significant bit (so the |
|
89 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, |
|
90 where a mod b means the remainder after dividing a by b. |
|
91 |
|
92 This calculation is done using the shift-register method of multiplying and |
|
93 taking the remainder. The register is initialized to zero, and for each |
|
94 incoming bit, x^32 is added mod p to the register if the bit is a one (where |
|
95 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by |
|
96 x (which is shifting right by one and adding x^32 mod p if the bit shifted |
|
97 out is a one). We start with the highest power (least significant bit) of |
|
98 q and repeat for all eight bits of q. |
|
99 |
|
100 The first table is simply the CRC of all possible eight bit values. This is |
|
101 all the information needed to generate CRCs on data a byte at a time for all |
|
102 combinations of CRC register values and incoming bytes. The remaining tables |
|
103 allow for word-at-a-time CRC calculation for both big-endian and little- |
|
104 endian machines, where a word is four bytes. |
|
105 */ |
|
106 local void make_crc_table() |
|
107 { |
|
108 unsigned long c; |
|
109 int n, k; |
|
110 unsigned long poly; /* polynomial exclusive-or pattern */ |
|
111 /* terms of polynomial defining this crc (except x^32): */ |
|
112 static volatile int first = 1; /* flag to limit concurrent making */ |
|
113 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; |
|
114 |
|
115 /* See if another task is already doing this (not thread-safe, but better |
|
116 than nothing -- significantly reduces duration of vulnerability in |
|
117 case the advice about DYNAMIC_CRC_TABLE is ignored) */ |
|
118 if (first) { |
|
119 first = 0; |
|
120 |
|
121 /* make exclusive-or pattern from polynomial (0xedb88320UL) */ |
|
122 poly = 0UL; |
|
123 for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++) |
|
124 poly |= 1UL << (31 - p[n]); |
|
125 |
|
126 /* generate a crc for every 8-bit value */ |
|
127 for (n = 0; n < 256; n++) { |
|
128 c = (unsigned long)n; |
|
129 for (k = 0; k < 8; k++) |
|
130 c = c & 1 ? poly ^ (c >> 1) : c >> 1; |
|
131 crc_table[0][n] = c; |
|
132 } |
|
133 |
|
134 #ifdef BYFOUR |
|
135 /* generate crc for each value followed by one, two, and three zeros, |
|
136 and then the byte reversal of those as well as the first table */ |
|
137 for (n = 0; n < 256; n++) { |
|
138 c = crc_table[0][n]; |
|
139 crc_table[4][n] = REV(c); |
|
140 for (k = 1; k < 4; k++) { |
|
141 c = crc_table[0][c & 0xff] ^ (c >> 8); |
|
142 crc_table[k][n] = c; |
|
143 crc_table[k + 4][n] = REV(c); |
|
144 } |
|
145 } |
|
146 #endif /* BYFOUR */ |
|
147 |
|
148 crc_table_empty = 0; |
|
149 } |
|
150 else { /* not first */ |
|
151 /* wait for the other guy to finish (not efficient, but rare) */ |
|
152 while (crc_table_empty) |
|
153 ; |
|
154 } |
|
155 |
|
156 #ifdef MAKECRCH |
|
157 /* write out CRC tables to crc32.h */ |
|
158 { |
|
159 FILE *out; |
|
160 |
|
161 out = fopen("crc32.h", "w"); |
|
162 if (out == NULL) return; |
|
163 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); |
|
164 fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); |
|
165 fprintf(out, "local const unsigned long FAR "); |
|
166 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); |
|
167 write_table(out, crc_table[0]); |
|
168 # ifdef BYFOUR |
|
169 fprintf(out, "#ifdef BYFOUR\n"); |
|
170 for (k = 1; k < 8; k++) { |
|
171 fprintf(out, " },\n {\n"); |
|
172 write_table(out, crc_table[k]); |
|
173 } |
|
174 fprintf(out, "#endif\n"); |
|
175 # endif /* BYFOUR */ |
|
176 fprintf(out, " }\n};\n"); |
|
177 fclose(out); |
|
178 } |
|
179 #endif /* MAKECRCH */ |
|
180 } |
|
181 |
|
182 #ifdef MAKECRCH |
|
183 local void write_table(out, table) |
|
184 FILE *out; |
|
185 const unsigned long FAR *table; |
|
186 { |
|
187 int n; |
|
188 |
|
189 for (n = 0; n < 256; n++) |
|
190 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", table[n], |
|
191 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); |
|
192 } |
|
193 #endif /* MAKECRCH */ |
|
194 |
|
195 #else /* !DYNAMIC_CRC_TABLE */ |
|
196 /* ======================================================================== |
|
197 * Tables of CRC-32s of all single-byte values, made by make_crc_table(). |
|
198 */ |
|
199 #include "crc32.h" |
|
200 #endif /* DYNAMIC_CRC_TABLE */ |
|
201 |
|
202 /* ========================================================================= |
|
203 * This function can be used by asm versions of crc32() |
|
204 */ |
|
205 const unsigned long FAR * ZEXPORT get_crc_table() |
|
206 { |
|
207 #ifdef DYNAMIC_CRC_TABLE |
|
208 if (crc_table_empty) |
|
209 make_crc_table(); |
|
210 #endif /* DYNAMIC_CRC_TABLE */ |
|
211 return (const unsigned long FAR *)crc_table; |
|
212 } |
|
213 |
|
214 /* ========================================================================= */ |
|
215 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) |
|
216 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 |
|
217 |
|
218 /* ========================================================================= */ |
|
219 unsigned long ZEXPORT crc32(crc, buf, len) |
|
220 unsigned long crc; |
|
221 const unsigned char FAR *buf; |
|
222 unsigned len; |
|
223 { |
|
224 if (buf == Z_NULL) return 0UL; |
|
225 |
|
226 #ifdef DYNAMIC_CRC_TABLE |
|
227 if (crc_table_empty) |
|
228 make_crc_table(); |
|
229 #endif /* DYNAMIC_CRC_TABLE */ |
|
230 |
|
231 #ifdef BYFOUR |
|
232 if (sizeof(void *) == sizeof(ptrdiff_t)) { |
|
233 u4 endian; |
|
234 |
|
235 endian = 1; |
|
236 if (*((unsigned char *)(&endian))) |
|
237 return crc32_little(crc, buf, len); |
|
238 else |
|
239 return crc32_big(crc, buf, len); |
|
240 } |
|
241 #endif /* BYFOUR */ |
|
242 crc = crc ^ 0xffffffffUL; |
|
243 while (len >= 8) { |
|
244 DO8; |
|
245 len -= 8; |
|
246 } |
|
247 if (len) do { |
|
248 DO1; |
|
249 } while (--len); |
|
250 return crc ^ 0xffffffffUL; |
|
251 } |
|
252 |
|
253 #ifdef BYFOUR |
|
254 |
|
255 /* ========================================================================= */ |
|
256 #define DOLIT4 c ^= *buf4++; \ |
|
257 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ |
|
258 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] |
|
259 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 |
|
260 |
|
261 /* ========================================================================= */ |
|
262 local unsigned long crc32_little(crc, buf, len) |
|
263 unsigned long crc; |
|
264 const unsigned char FAR *buf; |
|
265 unsigned len; |
|
266 { |
|
267 register u4 c; |
|
268 register const u4 FAR *buf4; |
|
269 |
|
270 c = (u4)crc; |
|
271 c = ~c; |
|
272 while (len && ((ptrdiff_t)buf & 3)) { |
|
273 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
|
274 len--; |
|
275 } |
|
276 |
|
277 buf4 = (const u4 FAR *)(const void FAR *)buf; |
|
278 while (len >= 32) { |
|
279 DOLIT32; |
|
280 len -= 32; |
|
281 } |
|
282 while (len >= 4) { |
|
283 DOLIT4; |
|
284 len -= 4; |
|
285 } |
|
286 buf = (const unsigned char FAR *)buf4; |
|
287 |
|
288 if (len) do { |
|
289 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
|
290 } while (--len); |
|
291 c = ~c; |
|
292 return (unsigned long)c; |
|
293 } |
|
294 |
|
295 /* ========================================================================= */ |
|
296 #define DOBIG4 c ^= *++buf4; \ |
|
297 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ |
|
298 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] |
|
299 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 |
|
300 |
|
301 /* ========================================================================= */ |
|
302 local unsigned long crc32_big(crc, buf, len) |
|
303 unsigned long crc; |
|
304 const unsigned char FAR *buf; |
|
305 unsigned len; |
|
306 { |
|
307 register u4 c; |
|
308 register const u4 FAR *buf4; |
|
309 |
|
310 c = REV((u4)crc); |
|
311 c = ~c; |
|
312 while (len && ((ptrdiff_t)buf & 3)) { |
|
313 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
|
314 len--; |
|
315 } |
|
316 |
|
317 buf4 = (const u4 FAR *)(const void FAR *)buf; |
|
318 buf4--; |
|
319 while (len >= 32) { |
|
320 DOBIG32; |
|
321 len -= 32; |
|
322 } |
|
323 while (len >= 4) { |
|
324 DOBIG4; |
|
325 len -= 4; |
|
326 } |
|
327 buf4++; |
|
328 buf = (const unsigned char FAR *)buf4; |
|
329 |
|
330 if (len) do { |
|
331 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
|
332 } while (--len); |
|
333 c = ~c; |
|
334 return (unsigned long)(REV(c)); |
|
335 } |
|
336 |
|
337 #endif /* BYFOUR */ |
|
338 |
|
339 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ |
|
340 |
|
341 /* ========================================================================= */ |
|
342 local unsigned long gf2_matrix_times(mat, vec) |
|
343 unsigned long *mat; |
|
344 unsigned long vec; |
|
345 { |
|
346 unsigned long sum; |
|
347 |
|
348 sum = 0; |
|
349 while (vec) { |
|
350 if (vec & 1) |
|
351 sum ^= *mat; |
|
352 vec >>= 1; |
|
353 mat++; |
|
354 } |
|
355 return sum; |
|
356 } |
|
357 |
|
358 /* ========================================================================= */ |
|
359 local void gf2_matrix_square(square, mat) |
|
360 unsigned long *square; |
|
361 unsigned long *mat; |
|
362 { |
|
363 int n; |
|
364 |
|
365 for (n = 0; n < GF2_DIM; n++) |
|
366 square[n] = gf2_matrix_times(mat, mat[n]); |
|
367 } |
|
368 |
|
369 /* ========================================================================= */ |
|
370 uLong ZEXPORT crc32_combine(crc1, crc2, len2) |
|
371 uLong crc1; |
|
372 uLong crc2; |
|
373 z_off_t len2; |
|
374 { |
|
375 int n; |
|
376 unsigned long row; |
|
377 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ |
|
378 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ |
|
379 |
|
380 /* degenerate case */ |
|
381 if (len2 == 0) |
|
382 return crc1; |
|
383 |
|
384 /* put operator for one zero bit in odd */ |
|
385 odd[0] = 0xedb88320L; /* CRC-32 polynomial */ |
|
386 row = 1; |
|
387 for (n = 1; n < GF2_DIM; n++) { |
|
388 odd[n] = row; |
|
389 row <<= 1; |
|
390 } |
|
391 |
|
392 /* put operator for two zero bits in even */ |
|
393 gf2_matrix_square(even, odd); |
|
394 |
|
395 /* put operator for four zero bits in odd */ |
|
396 gf2_matrix_square(odd, even); |
|
397 |
|
398 /* apply len2 zeros to crc1 (first square will put the operator for one |
|
399 zero byte, eight zero bits, in even) */ |
|
400 do { |
|
401 /* apply zeros operator for this bit of len2 */ |
|
402 gf2_matrix_square(even, odd); |
|
403 if (len2 & 1) |
|
404 crc1 = gf2_matrix_times(even, crc1); |
|
405 len2 >>= 1; |
|
406 |
|
407 /* if no more bits set, then done */ |
|
408 if (len2 == 0) |
|
409 break; |
|
410 |
|
411 /* another iteration of the loop with odd and even swapped */ |
|
412 gf2_matrix_square(odd, even); |
|
413 if (len2 & 1) |
|
414 crc1 = gf2_matrix_times(odd, crc1); |
|
415 len2 >>= 1; |
|
416 |
|
417 /* if no more bits set, then done */ |
|
418 } while (len2 != 0); |
|
419 |
|
420 /* return combined crc */ |
|
421 crc1 ^= crc2; |
|
422 return crc1; |
|
423 } |