|
1 /**************************************************************************** |
|
2 ** |
|
3 ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). |
|
4 ** All rights reserved. |
|
5 ** Contact: Nokia Corporation (qt-info@nokia.com) |
|
6 ** |
|
7 ** This file is part of the QtGui module of the Qt Toolkit. |
|
8 ** |
|
9 ** $QT_BEGIN_LICENSE:LGPL$ |
|
10 ** No Commercial Usage |
|
11 ** This file contains pre-release code and may not be distributed. |
|
12 ** You may use this file in accordance with the terms and conditions |
|
13 ** contained in the Technology Preview License Agreement accompanying |
|
14 ** this package. |
|
15 ** |
|
16 ** GNU Lesser General Public License Usage |
|
17 ** Alternatively, this file may be used under the terms of the GNU Lesser |
|
18 ** General Public License version 2.1 as published by the Free Software |
|
19 ** Foundation and appearing in the file LICENSE.LGPL included in the |
|
20 ** packaging of this file. Please review the following information to |
|
21 ** ensure the GNU Lesser General Public License version 2.1 requirements |
|
22 ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. |
|
23 ** |
|
24 ** In addition, as a special exception, Nokia gives you certain additional |
|
25 ** rights. These rights are described in the Nokia Qt LGPL Exception |
|
26 ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. |
|
27 ** |
|
28 ** If you have questions regarding the use of this file, please contact |
|
29 ** Nokia at qt-info@nokia.com. |
|
30 ** |
|
31 ** |
|
32 ** |
|
33 ** |
|
34 ** |
|
35 ** |
|
36 ** |
|
37 ** |
|
38 ** $QT_END_LICENSE$ |
|
39 ** |
|
40 ****************************************************************************/ |
|
41 |
|
42 #include "private/qstroker_p.h" |
|
43 #include "private/qbezier_p.h" |
|
44 #include "private/qmath_p.h" |
|
45 #include "qline.h" |
|
46 #include "qtransform.h" |
|
47 #include <qmath.h> |
|
48 |
|
49 QT_BEGIN_NAMESPACE |
|
50 |
|
51 // #define QPP_STROKE_DEBUG |
|
52 |
|
53 class QSubpathForwardIterator |
|
54 { |
|
55 public: |
|
56 QSubpathForwardIterator(const QDataBuffer<QStrokerOps::Element> *path) |
|
57 : m_path(path), m_pos(0) { } |
|
58 inline int position() const { return m_pos; } |
|
59 inline bool hasNext() const { return m_pos < m_path->size(); } |
|
60 inline QStrokerOps::Element next() { Q_ASSERT(hasNext()); return m_path->at(m_pos++); } |
|
61 |
|
62 private: |
|
63 const QDataBuffer<QStrokerOps::Element> *m_path; |
|
64 int m_pos; |
|
65 }; |
|
66 |
|
67 class QSubpathBackwardIterator |
|
68 { |
|
69 public: |
|
70 QSubpathBackwardIterator(const QDataBuffer<QStrokerOps::Element> *path) |
|
71 : m_path(path), m_pos(path->size() - 1) { } |
|
72 |
|
73 inline int position() const { return m_pos; } |
|
74 |
|
75 inline bool hasNext() const { return m_pos >= 0; } |
|
76 |
|
77 inline QStrokerOps::Element next() |
|
78 { |
|
79 Q_ASSERT(hasNext()); |
|
80 |
|
81 QStrokerOps::Element ce = m_path->at(m_pos); // current element |
|
82 |
|
83 if (m_pos == m_path->size() - 1) { |
|
84 --m_pos; |
|
85 ce.type = QPainterPath::MoveToElement; |
|
86 return ce; |
|
87 } |
|
88 |
|
89 const QStrokerOps::Element &pe = m_path->at(m_pos + 1); // previous element |
|
90 |
|
91 switch (pe.type) { |
|
92 case QPainterPath::LineToElement: |
|
93 ce.type = QPainterPath::LineToElement; |
|
94 break; |
|
95 case QPainterPath::CurveToDataElement: |
|
96 // First control point? |
|
97 if (ce.type == QPainterPath::CurveToElement) { |
|
98 ce.type = QPainterPath::CurveToDataElement; |
|
99 } else { // Second control point then |
|
100 ce.type = QPainterPath::CurveToElement; |
|
101 } |
|
102 break; |
|
103 case QPainterPath::CurveToElement: |
|
104 ce.type = QPainterPath::CurveToDataElement; |
|
105 break; |
|
106 default: |
|
107 qWarning("QSubpathReverseIterator::next: Case %d unhandled", ce.type); |
|
108 break; |
|
109 } |
|
110 --m_pos; |
|
111 |
|
112 return ce; |
|
113 } |
|
114 |
|
115 private: |
|
116 const QDataBuffer<QStrokerOps::Element> *m_path; |
|
117 int m_pos; |
|
118 }; |
|
119 |
|
120 class QSubpathFlatIterator |
|
121 { |
|
122 public: |
|
123 QSubpathFlatIterator(const QDataBuffer<QStrokerOps::Element> *path) |
|
124 : m_path(path), m_pos(0), m_curve_index(-1) { } |
|
125 |
|
126 inline bool hasNext() const { return m_curve_index >= 0 || m_pos < m_path->size(); } |
|
127 |
|
128 QStrokerOps::Element next() |
|
129 { |
|
130 Q_ASSERT(hasNext()); |
|
131 |
|
132 if (m_curve_index >= 0) { |
|
133 QStrokerOps::Element e = { QPainterPath::LineToElement, |
|
134 qt_real_to_fixed(m_curve.at(m_curve_index).x()), |
|
135 qt_real_to_fixed(m_curve.at(m_curve_index).y()) |
|
136 }; |
|
137 ++m_curve_index; |
|
138 if (m_curve_index >= m_curve.size()) |
|
139 m_curve_index = -1; |
|
140 return e; |
|
141 } |
|
142 |
|
143 QStrokerOps::Element e = m_path->at(m_pos); |
|
144 if (e.isCurveTo()) { |
|
145 Q_ASSERT(m_pos > 0); |
|
146 Q_ASSERT(m_pos < m_path->size()); |
|
147 |
|
148 m_curve = QBezier::fromPoints(QPointF(qt_fixed_to_real(m_path->at(m_pos-1).x), |
|
149 qt_fixed_to_real(m_path->at(m_pos-1).y)), |
|
150 QPointF(qt_fixed_to_real(e.x), |
|
151 qt_fixed_to_real(e.y)), |
|
152 QPointF(qt_fixed_to_real(m_path->at(m_pos+1).x), |
|
153 qt_fixed_to_real(m_path->at(m_pos+1).y)), |
|
154 QPointF(qt_fixed_to_real(m_path->at(m_pos+2).x), |
|
155 qt_fixed_to_real(m_path->at(m_pos+2).y))).toPolygon(); |
|
156 m_curve_index = 1; |
|
157 e.type = QPainterPath::LineToElement; |
|
158 e.x = m_curve.at(0).x(); |
|
159 e.y = m_curve.at(0).y(); |
|
160 m_pos += 2; |
|
161 } |
|
162 Q_ASSERT(e.isLineTo() || e.isMoveTo()); |
|
163 ++m_pos; |
|
164 return e; |
|
165 } |
|
166 |
|
167 private: |
|
168 const QDataBuffer<QStrokerOps::Element> *m_path; |
|
169 int m_pos; |
|
170 QPolygonF m_curve; |
|
171 int m_curve_index; |
|
172 }; |
|
173 |
|
174 template <class Iterator> bool qt_stroke_side(Iterator *it, QStroker *stroker, |
|
175 bool capFirst, QLineF *startTangent); |
|
176 |
|
177 /******************************************************************************* |
|
178 * QLineF::angle gives us the smalles angle between two lines. Here we |
|
179 * want to identify the line's angle direction on the unit circle. |
|
180 */ |
|
181 static inline qreal adapted_angle_on_x(const QLineF &line) |
|
182 { |
|
183 qreal angle = line.angle(QLineF(0, 0, 1, 0)); |
|
184 if (line.dy() > 0) |
|
185 angle = 360 - angle; |
|
186 return angle; |
|
187 } |
|
188 |
|
189 QStrokerOps::QStrokerOps() |
|
190 : m_customData(0), m_moveTo(0), m_lineTo(0), m_cubicTo(0) |
|
191 { |
|
192 } |
|
193 |
|
194 QStrokerOps::~QStrokerOps() |
|
195 { |
|
196 } |
|
197 |
|
198 |
|
199 /*! |
|
200 Prepares the stroker. Call this function once before starting a |
|
201 stroke by calling moveTo, lineTo or cubicTo. |
|
202 |
|
203 The \a customData is passed back through that callback functions |
|
204 and can be used by the user to for instance maintain state |
|
205 information. |
|
206 */ |
|
207 void QStrokerOps::begin(void *customData) |
|
208 { |
|
209 m_customData = customData; |
|
210 m_elements.reset(); |
|
211 } |
|
212 |
|
213 |
|
214 /*! |
|
215 Finishes the stroke. Call this function once when an entire |
|
216 primitive has been stroked. |
|
217 */ |
|
218 void QStrokerOps::end() |
|
219 { |
|
220 if (m_elements.size() > 1) |
|
221 processCurrentSubpath(); |
|
222 m_customData = 0; |
|
223 } |
|
224 |
|
225 /*! |
|
226 Convenience function that decomposes \a path into begin(), |
|
227 moveTo(), lineTo(), curevTo() and end() calls. |
|
228 |
|
229 The \a customData parameter is used in the callback functions |
|
230 |
|
231 The \a matrix is used to transform the points before input to the |
|
232 stroker. |
|
233 |
|
234 \sa begin() |
|
235 */ |
|
236 void QStrokerOps::strokePath(const QPainterPath &path, void *customData, const QTransform &matrix) |
|
237 { |
|
238 if (path.isEmpty()) |
|
239 return; |
|
240 |
|
241 begin(customData); |
|
242 int count = path.elementCount(); |
|
243 if (matrix.isIdentity()) { |
|
244 for (int i=0; i<count; ++i) { |
|
245 const QPainterPath::Element &e = path.elementAt(i); |
|
246 switch (e.type) { |
|
247 case QPainterPath::MoveToElement: |
|
248 moveTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y)); |
|
249 break; |
|
250 case QPainterPath::LineToElement: |
|
251 lineTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y)); |
|
252 break; |
|
253 case QPainterPath::CurveToElement: |
|
254 { |
|
255 const QPainterPath::Element &cp2 = path.elementAt(++i); |
|
256 const QPainterPath::Element &ep = path.elementAt(++i); |
|
257 cubicTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y), |
|
258 qt_real_to_fixed(cp2.x), qt_real_to_fixed(cp2.y), |
|
259 qt_real_to_fixed(ep.x), qt_real_to_fixed(ep.y)); |
|
260 } |
|
261 break; |
|
262 default: |
|
263 break; |
|
264 } |
|
265 } |
|
266 } else { |
|
267 for (int i=0; i<count; ++i) { |
|
268 const QPainterPath::Element &e = path.elementAt(i); |
|
269 QPointF pt = QPointF(e.x, e.y) * matrix; |
|
270 switch (e.type) { |
|
271 case QPainterPath::MoveToElement: |
|
272 moveTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); |
|
273 break; |
|
274 case QPainterPath::LineToElement: |
|
275 lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); |
|
276 break; |
|
277 case QPainterPath::CurveToElement: |
|
278 { |
|
279 QPointF cp2 = ((QPointF) path.elementAt(++i)) * matrix; |
|
280 QPointF ep = ((QPointF) path.elementAt(++i)) * matrix; |
|
281 cubicTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y()), |
|
282 qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()), |
|
283 qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y())); |
|
284 } |
|
285 break; |
|
286 default: |
|
287 break; |
|
288 } |
|
289 } |
|
290 } |
|
291 end(); |
|
292 } |
|
293 |
|
294 /*! |
|
295 Convenience function for stroking a polygon of the \a pointCount |
|
296 first points in \a points. If \a implicit_close is set to true a |
|
297 line is implictly drawn between the first and last point in the |
|
298 polygon. Typically true for polygons and false for polylines. |
|
299 |
|
300 The \a matrix is used to transform the points before they enter the |
|
301 stroker. |
|
302 |
|
303 \sa begin() |
|
304 */ |
|
305 |
|
306 void QStrokerOps::strokePolygon(const QPointF *points, int pointCount, bool implicit_close, |
|
307 void *data, const QTransform &matrix) |
|
308 { |
|
309 if (!pointCount) |
|
310 return; |
|
311 begin(data); |
|
312 if (matrix.isIdentity()) { |
|
313 moveTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y())); |
|
314 for (int i=1; i<pointCount; ++i) |
|
315 lineTo(qt_real_to_fixed(points[i].x()), |
|
316 qt_real_to_fixed(points[i].y())); |
|
317 if (implicit_close) |
|
318 lineTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y())); |
|
319 } else { |
|
320 QPointF start = points[0] * matrix; |
|
321 moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); |
|
322 for (int i=1; i<pointCount; ++i) { |
|
323 QPointF pt = points[i] * matrix; |
|
324 lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); |
|
325 } |
|
326 if (implicit_close) |
|
327 lineTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); |
|
328 } |
|
329 end(); |
|
330 } |
|
331 |
|
332 /*! |
|
333 Convenience function for stroking an ellipse with bounding rect \a |
|
334 rect. The \a matrix is used to transform the coordinates before |
|
335 they enter the stroker. |
|
336 */ |
|
337 void QStrokerOps::strokeEllipse(const QRectF &rect, void *data, const QTransform &matrix) |
|
338 { |
|
339 int count = 0; |
|
340 QPointF pts[12]; |
|
341 QPointF start = qt_curves_for_arc(rect, 0, -360, pts, &count); |
|
342 Q_ASSERT(count == 12); // a perfect circle.. |
|
343 |
|
344 if (!matrix.isIdentity()) { |
|
345 start = start * matrix; |
|
346 for (int i=0; i<12; ++i) { |
|
347 pts[i] = pts[i] * matrix; |
|
348 } |
|
349 } |
|
350 |
|
351 begin(data); |
|
352 moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); |
|
353 for (int i=0; i<12; i+=3) { |
|
354 cubicTo(qt_real_to_fixed(pts[i].x()), qt_real_to_fixed(pts[i].y()), |
|
355 qt_real_to_fixed(pts[i+1].x()), qt_real_to_fixed(pts[i+1].y()), |
|
356 qt_real_to_fixed(pts[i+2].x()), qt_real_to_fixed(pts[i+2].y())); |
|
357 } |
|
358 end(); |
|
359 } |
|
360 |
|
361 |
|
362 QStroker::QStroker() |
|
363 : m_capStyle(SquareJoin), m_joinStyle(FlatJoin), |
|
364 m_back1X(0), m_back1Y(0), |
|
365 m_back2X(0), m_back2Y(0) |
|
366 { |
|
367 m_strokeWidth = qt_real_to_fixed(1); |
|
368 m_miterLimit = qt_real_to_fixed(2); |
|
369 m_curveThreshold = qt_real_to_fixed(0.25); |
|
370 } |
|
371 |
|
372 QStroker::~QStroker() |
|
373 { |
|
374 |
|
375 } |
|
376 |
|
377 Qt::PenCapStyle QStroker::capForJoinMode(LineJoinMode mode) |
|
378 { |
|
379 if (mode == FlatJoin) return Qt::FlatCap; |
|
380 else if (mode == SquareJoin) return Qt::SquareCap; |
|
381 else return Qt::RoundCap; |
|
382 } |
|
383 |
|
384 QStroker::LineJoinMode QStroker::joinModeForCap(Qt::PenCapStyle style) |
|
385 { |
|
386 if (style == Qt::FlatCap) return FlatJoin; |
|
387 else if (style == Qt::SquareCap) return SquareJoin; |
|
388 else return RoundCap; |
|
389 } |
|
390 |
|
391 Qt::PenJoinStyle QStroker::joinForJoinMode(LineJoinMode mode) |
|
392 { |
|
393 if (mode == FlatJoin) return Qt::BevelJoin; |
|
394 else if (mode == MiterJoin) return Qt::MiterJoin; |
|
395 else if (mode == SvgMiterJoin) return Qt::SvgMiterJoin; |
|
396 else return Qt::RoundJoin; |
|
397 } |
|
398 |
|
399 QStroker::LineJoinMode QStroker::joinModeForJoin(Qt::PenJoinStyle joinStyle) |
|
400 { |
|
401 if (joinStyle == Qt::BevelJoin) return FlatJoin; |
|
402 else if (joinStyle == Qt::MiterJoin) return MiterJoin; |
|
403 else if (joinStyle == Qt::SvgMiterJoin) return SvgMiterJoin; |
|
404 else return RoundJoin; |
|
405 } |
|
406 |
|
407 |
|
408 /*! |
|
409 This function is called to stroke the currently built up |
|
410 subpath. The subpath is cleared when the function completes. |
|
411 */ |
|
412 void QStroker::processCurrentSubpath() |
|
413 { |
|
414 Q_ASSERT(!m_elements.isEmpty()); |
|
415 Q_ASSERT(m_elements.first().type == QPainterPath::MoveToElement); |
|
416 Q_ASSERT(m_elements.size() > 1); |
|
417 |
|
418 QSubpathForwardIterator fwit(&m_elements); |
|
419 QSubpathBackwardIterator bwit(&m_elements); |
|
420 |
|
421 QLineF fwStartTangent, bwStartTangent; |
|
422 |
|
423 bool fwclosed = qt_stroke_side(&fwit, this, false, &fwStartTangent); |
|
424 bool bwclosed = qt_stroke_side(&bwit, this, !fwclosed, &bwStartTangent); |
|
425 |
|
426 if (!bwclosed) |
|
427 joinPoints(m_elements.at(0).x, m_elements.at(0).y, fwStartTangent, m_capStyle); |
|
428 } |
|
429 |
|
430 |
|
431 /*! |
|
432 \internal |
|
433 */ |
|
434 void QStroker::joinPoints(qfixed focal_x, qfixed focal_y, const QLineF &nextLine, LineJoinMode join) |
|
435 { |
|
436 #ifdef QPP_STROKE_DEBUG |
|
437 printf(" -----> joinPoints: around=(%.0f, %.0f), next_p1=(%.0f, %.f) next_p2=(%.0f, %.f)\n", |
|
438 qt_fixed_to_real(focal_x), |
|
439 qt_fixed_to_real(focal_y), |
|
440 nextLine.x1(), nextLine.y1(), nextLine.x2(), nextLine.y2()); |
|
441 #endif |
|
442 // points connected already, don't join |
|
443 |
|
444 #if !defined (QFIXED_26_6) && !defined (Q_FIXED_32_32) |
|
445 if (qFuzzyCompare(m_back1X, nextLine.x1()) && qFuzzyCompare(m_back1Y, nextLine.y1())) |
|
446 return; |
|
447 #else |
|
448 if (m_back1X == qt_real_to_fixed(nextLine.x1()) |
|
449 && m_back1Y == qt_real_to_fixed(nextLine.y1())) { |
|
450 return; |
|
451 } |
|
452 #endif |
|
453 |
|
454 if (join == FlatJoin) { |
|
455 emitLineTo(qt_real_to_fixed(nextLine.x1()), |
|
456 qt_real_to_fixed(nextLine.y1())); |
|
457 |
|
458 } else { |
|
459 QLineF prevLine(qt_fixed_to_real(m_back2X), qt_fixed_to_real(m_back2Y), |
|
460 qt_fixed_to_real(m_back1X), qt_fixed_to_real(m_back1Y)); |
|
461 |
|
462 QPointF isect; |
|
463 QLineF::IntersectType type = prevLine.intersect(nextLine, &isect); |
|
464 |
|
465 if (join == MiterJoin) { |
|
466 qreal appliedMiterLimit = qt_fixed_to_real(m_strokeWidth * m_miterLimit); |
|
467 |
|
468 // If we are on the inside, do the short cut... |
|
469 QLineF shortCut(prevLine.p2(), nextLine.p1()); |
|
470 qreal angle = shortCut.angleTo(prevLine); |
|
471 |
|
472 if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) { |
|
473 emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
|
474 return; |
|
475 } |
|
476 QLineF miterLine(QPointF(qt_fixed_to_real(m_back1X), |
|
477 qt_fixed_to_real(m_back1Y)), isect); |
|
478 if (type == QLineF::NoIntersection || miterLine.length() > appliedMiterLimit) { |
|
479 QLineF l1(prevLine); |
|
480 l1.setLength(appliedMiterLimit); |
|
481 l1.translate(prevLine.dx(), prevLine.dy()); |
|
482 |
|
483 QLineF l2(nextLine); |
|
484 l2.setLength(appliedMiterLimit); |
|
485 l2.translate(-l2.dx(), -l2.dy()); |
|
486 |
|
487 emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2())); |
|
488 emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1())); |
|
489 emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
|
490 } else { |
|
491 emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y())); |
|
492 emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
|
493 } |
|
494 |
|
495 } else if (join == SquareJoin) { |
|
496 qfixed offset = m_strokeWidth / 2; |
|
497 |
|
498 QLineF l1(prevLine); |
|
499 l1.translate(l1.dx(), l1.dy()); |
|
500 l1.setLength(qt_fixed_to_real(offset)); |
|
501 QLineF l2(nextLine.p2(), nextLine.p1()); |
|
502 l2.translate(l2.dx(), l2.dy()); |
|
503 l2.setLength(qt_fixed_to_real(offset)); |
|
504 emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2())); |
|
505 emitLineTo(qt_real_to_fixed(l2.x2()), qt_real_to_fixed(l2.y2())); |
|
506 emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1())); |
|
507 |
|
508 } else if (join == RoundJoin) { |
|
509 qfixed offset = m_strokeWidth / 2; |
|
510 |
|
511 QLineF shortCut(prevLine.p2(), nextLine.p1()); |
|
512 qreal angle = prevLine.angle(shortCut); |
|
513 if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) { |
|
514 emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
|
515 return; |
|
516 } |
|
517 qreal l1_on_x = adapted_angle_on_x(prevLine); |
|
518 qreal l2_on_x = adapted_angle_on_x(nextLine); |
|
519 |
|
520 qreal sweepLength = qAbs(l2_on_x - l1_on_x); |
|
521 |
|
522 int point_count; |
|
523 QPointF curves[15]; |
|
524 |
|
525 QPointF curve_start = |
|
526 qt_curves_for_arc(QRectF(qt_fixed_to_real(focal_x - offset), |
|
527 qt_fixed_to_real(focal_y - offset), |
|
528 qt_fixed_to_real(offset * 2), |
|
529 qt_fixed_to_real(offset * 2)), |
|
530 l1_on_x + 90, -sweepLength, |
|
531 curves, &point_count); |
|
532 |
|
533 // // line to the beginning of the arc segment, (should not be needed). |
|
534 // emitLineTo(qt_real_to_fixed(curve_start.x()), qt_real_to_fixed(curve_start.y())); |
|
535 |
|
536 for (int i=0; i<point_count; i+=3) { |
|
537 emitCubicTo(qt_real_to_fixed(curves[i].x()), |
|
538 qt_real_to_fixed(curves[i].y()), |
|
539 qt_real_to_fixed(curves[i+1].x()), |
|
540 qt_real_to_fixed(curves[i+1].y()), |
|
541 qt_real_to_fixed(curves[i+2].x()), |
|
542 qt_real_to_fixed(curves[i+2].y())); |
|
543 } |
|
544 |
|
545 // line to the end of the arc segment, (should also not be needed). |
|
546 emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
|
547 |
|
548 // Same as round join except we know its 180 degrees. Can also optimize this |
|
549 // later based on the addEllipse logic |
|
550 } else if (join == RoundCap) { |
|
551 qfixed offset = m_strokeWidth / 2; |
|
552 |
|
553 // first control line |
|
554 QLineF l1 = prevLine; |
|
555 l1.translate(l1.dx(), l1.dy()); |
|
556 l1.setLength(QT_PATH_KAPPA * offset); |
|
557 |
|
558 // second control line, find through normal between prevLine and focal. |
|
559 QLineF l2(qt_fixed_to_real(focal_x), qt_fixed_to_real(focal_y), |
|
560 prevLine.x2(), prevLine.y2()); |
|
561 l2.translate(-l2.dy(), l2.dx()); |
|
562 l2.setLength(QT_PATH_KAPPA * offset); |
|
563 |
|
564 emitCubicTo(qt_real_to_fixed(l1.x2()), |
|
565 qt_real_to_fixed(l1.y2()), |
|
566 qt_real_to_fixed(l2.x2()), |
|
567 qt_real_to_fixed(l2.y2()), |
|
568 qt_real_to_fixed(l2.x1()), |
|
569 qt_real_to_fixed(l2.y1())); |
|
570 |
|
571 // move so that it matches |
|
572 l2 = QLineF(l2.x1(), l2.y1(), l2.x1()-l2.dx(), l2.y1()-l2.dy()); |
|
573 |
|
574 // last line is parallel to l1 so just shift it down. |
|
575 l1.translate(nextLine.x1() - l1.x1(), nextLine.y1() - l1.y1()); |
|
576 |
|
577 emitCubicTo(qt_real_to_fixed(l2.x2()), |
|
578 qt_real_to_fixed(l2.y2()), |
|
579 qt_real_to_fixed(l1.x2()), |
|
580 qt_real_to_fixed(l1.y2()), |
|
581 qt_real_to_fixed(l1.x1()), |
|
582 qt_real_to_fixed(l1.y1())); |
|
583 } else if (join == SvgMiterJoin) { |
|
584 QLineF miterLine(QPointF(qt_fixed_to_real(focal_x), |
|
585 qt_fixed_to_real(focal_y)), isect); |
|
586 if (miterLine.length() > qt_fixed_to_real(m_strokeWidth * m_miterLimit) / 2) { |
|
587 emitLineTo(qt_real_to_fixed(nextLine.x1()), |
|
588 qt_real_to_fixed(nextLine.y1())); |
|
589 } else { |
|
590 emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y())); |
|
591 emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
|
592 } |
|
593 } else { |
|
594 Q_ASSERT(!"QStroker::joinPoints(), bad join style..."); |
|
595 } |
|
596 } |
|
597 } |
|
598 |
|
599 |
|
600 /* |
|
601 Strokes a subpath side using the \a it as source. Results are put into |
|
602 \a stroke. The function returns true if the subpath side was closed. |
|
603 If \a capFirst is true, we will use capPoints instead of joinPoints to |
|
604 connect the first segment, other segments will be joined using joinPoints. |
|
605 This is to put capping in order... |
|
606 */ |
|
607 template <class Iterator> bool qt_stroke_side(Iterator *it, |
|
608 QStroker *stroker, |
|
609 bool capFirst, |
|
610 QLineF *startTangent) |
|
611 { |
|
612 // Used in CurveToElement section below. |
|
613 const int MAX_OFFSET = 16; |
|
614 QBezier offsetCurves[MAX_OFFSET]; |
|
615 |
|
616 Q_ASSERT(it->hasNext()); // The initaial move to |
|
617 QStrokerOps::Element first_element = it->next(); |
|
618 Q_ASSERT(first_element.isMoveTo()); |
|
619 |
|
620 qfixed2d start = first_element; |
|
621 |
|
622 #ifdef QPP_STROKE_DEBUG |
|
623 qDebug(" -> (side) [%.2f, %.2f], startPos=%d", |
|
624 qt_fixed_to_real(start.x), |
|
625 qt_fixed_to_real(start.y)); |
|
626 #endif |
|
627 |
|
628 qfixed2d prev = start; |
|
629 |
|
630 bool first = true; |
|
631 |
|
632 qfixed offset = stroker->strokeWidth() / 2; |
|
633 |
|
634 while (it->hasNext()) { |
|
635 QStrokerOps::Element e = it->next(); |
|
636 |
|
637 // LineToElement |
|
638 if (e.isLineTo()) { |
|
639 #ifdef QPP_STROKE_DEBUG |
|
640 qDebug("\n ---> (side) lineto [%.2f, %.2f]", e.x, e.y); |
|
641 #endif |
|
642 QLineF line(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y), |
|
643 qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)); |
|
644 QLineF normal = line.normalVector(); |
|
645 normal.setLength(offset); |
|
646 line.translate(normal.dx(), normal.dy()); |
|
647 |
|
648 // If we are starting a new subpath, move to correct starting point. |
|
649 if (first) { |
|
650 if (capFirst) |
|
651 stroker->joinPoints(prev.x, prev.y, line, stroker->capStyleMode()); |
|
652 else |
|
653 stroker->emitMoveTo(qt_real_to_fixed(line.x1()), qt_real_to_fixed(line.y1())); |
|
654 *startTangent = line; |
|
655 first = false; |
|
656 } else { |
|
657 stroker->joinPoints(prev.x, prev.y, line, stroker->joinStyleMode()); |
|
658 } |
|
659 |
|
660 // Add the stroke for this line. |
|
661 stroker->emitLineTo(qt_real_to_fixed(line.x2()), |
|
662 qt_real_to_fixed(line.y2())); |
|
663 prev = e; |
|
664 |
|
665 // CurveToElement |
|
666 } else if (e.isCurveTo()) { |
|
667 QStrokerOps::Element cp2 = it->next(); // control point 2 |
|
668 QStrokerOps::Element ep = it->next(); // end point |
|
669 |
|
670 #ifdef QPP_STROKE_DEBUG |
|
671 qDebug("\n ---> (side) cubicTo [%.2f, %.2f]", |
|
672 qt_fixed_to_real(ep.x), |
|
673 qt_fixed_to_real(ep.y)); |
|
674 #endif |
|
675 |
|
676 QBezier bezier = |
|
677 QBezier::fromPoints(QPointF(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y)), |
|
678 QPointF(qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)), |
|
679 QPointF(qt_fixed_to_real(cp2.x), qt_fixed_to_real(cp2.y)), |
|
680 QPointF(qt_fixed_to_real(ep.x), qt_fixed_to_real(ep.y))); |
|
681 |
|
682 int count = bezier.shifted(offsetCurves, |
|
683 MAX_OFFSET, |
|
684 offset, |
|
685 stroker->curveThreshold()); |
|
686 |
|
687 if (count) { |
|
688 // If we are starting a new subpath, move to correct starting point |
|
689 QLineF tangent = bezier.startTangent(); |
|
690 tangent.translate(offsetCurves[0].pt1() - bezier.pt1()); |
|
691 if (first) { |
|
692 QPointF pt = offsetCurves[0].pt1(); |
|
693 if (capFirst) { |
|
694 stroker->joinPoints(prev.x, prev.y, |
|
695 tangent, |
|
696 stroker->capStyleMode()); |
|
697 } else { |
|
698 stroker->emitMoveTo(qt_real_to_fixed(pt.x()), |
|
699 qt_real_to_fixed(pt.y())); |
|
700 } |
|
701 *startTangent = tangent; |
|
702 first = false; |
|
703 } else { |
|
704 stroker->joinPoints(prev.x, prev.y, |
|
705 tangent, |
|
706 stroker->joinStyleMode()); |
|
707 } |
|
708 |
|
709 // Add these beziers |
|
710 for (int i=0; i<count; ++i) { |
|
711 QPointF cp1 = offsetCurves[i].pt2(); |
|
712 QPointF cp2 = offsetCurves[i].pt3(); |
|
713 QPointF ep = offsetCurves[i].pt4(); |
|
714 stroker->emitCubicTo(qt_real_to_fixed(cp1.x()), qt_real_to_fixed(cp1.y()), |
|
715 qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()), |
|
716 qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y())); |
|
717 } |
|
718 } |
|
719 |
|
720 prev = ep; |
|
721 } |
|
722 } |
|
723 |
|
724 if (start == prev) { |
|
725 // closed subpath, join first and last point |
|
726 #ifdef QPP_STROKE_DEBUG |
|
727 qDebug("\n ---> (side) closed subpath"); |
|
728 #endif |
|
729 stroker->joinPoints(prev.x, prev.y, *startTangent, stroker->joinStyleMode()); |
|
730 return true; |
|
731 } else { |
|
732 #ifdef QPP_STROKE_DEBUG |
|
733 qDebug("\n ---> (side) open subpath"); |
|
734 #endif |
|
735 return false; |
|
736 } |
|
737 } |
|
738 |
|
739 /*! |
|
740 \internal |
|
741 |
|
742 For a given angle in the range [0 .. 90], finds the corresponding parameter t |
|
743 of the prototype cubic bezier arc segment |
|
744 b = fromPoints(QPointF(1, 0), QPointF(1, KAPPA), QPointF(KAPPA, 1), QPointF(0, 1)); |
|
745 |
|
746 From the bezier equation: |
|
747 b.pointAt(t).x() = (1-t)^3 + t*(1-t)^2 + t^2*(1-t)*KAPPA |
|
748 b.pointAt(t).y() = t*(1-t)^2 * KAPPA + t^2*(1-t) + t^3 |
|
749 |
|
750 Third degree coefficients: |
|
751 b.pointAt(t).x() = at^3 + bt^2 + ct + d |
|
752 where a = 2-3*KAPPA, b = 3*(KAPPA-1), c = 0, d = 1 |
|
753 |
|
754 b.pointAt(t).y() = at^3 + bt^2 + ct + d |
|
755 where a = 3*KAPPA-2, b = 6*KAPPA+3, c = 3*KAPPA, d = 0 |
|
756 |
|
757 Newton's method to find the zero of a function: |
|
758 given a function f(x) and initial guess x_0 |
|
759 x_1 = f(x_0) / f'(x_0) |
|
760 x_2 = f(x_1) / f'(x_1) |
|
761 etc... |
|
762 */ |
|
763 |
|
764 qreal qt_t_for_arc_angle(qreal angle) |
|
765 { |
|
766 if (qFuzzyIsNull(angle)) |
|
767 return 0; |
|
768 |
|
769 if (qFuzzyCompare(angle, qreal(90))) |
|
770 return 1; |
|
771 |
|
772 qreal radians = Q_PI * angle / 180; |
|
773 qreal cosAngle = qCos(radians); |
|
774 qreal sinAngle = qSin(radians); |
|
775 |
|
776 // initial guess |
|
777 qreal tc = angle / 90; |
|
778 // do some iterations of newton's method to approximate cosAngle |
|
779 // finds the zero of the function b.pointAt(tc).x() - cosAngle |
|
780 tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value |
|
781 / (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative |
|
782 tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value |
|
783 / (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative |
|
784 |
|
785 // initial guess |
|
786 qreal ts = tc; |
|
787 // do some iterations of newton's method to approximate sinAngle |
|
788 // finds the zero of the function b.pointAt(tc).y() - sinAngle |
|
789 ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle) |
|
790 / (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA); |
|
791 ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle) |
|
792 / (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA); |
|
793 |
|
794 // use the average of the t that best approximates cosAngle |
|
795 // and the t that best approximates sinAngle |
|
796 qreal t = 0.5 * (tc + ts); |
|
797 |
|
798 #if 0 |
|
799 printf("angle: %f, t: %f\n", angle, t); |
|
800 qreal a, b, c, d; |
|
801 bezierCoefficients(t, a, b, c, d); |
|
802 printf("cosAngle: %.10f, value: %.10f\n", cosAngle, a + b + c * QT_PATH_KAPPA); |
|
803 printf("sinAngle: %.10f, value: %.10f\n", sinAngle, b * QT_PATH_KAPPA + c + d); |
|
804 #endif |
|
805 |
|
806 return t; |
|
807 } |
|
808 |
|
809 void qt_find_ellipse_coords(const QRectF &r, qreal angle, qreal length, |
|
810 QPointF* startPoint, QPointF *endPoint); |
|
811 |
|
812 /*! |
|
813 \internal |
|
814 |
|
815 Creates a number of curves for a given arc definition. The arc is |
|
816 defined an arc along the ellipses that fits into \a rect starting |
|
817 at \a startAngle and an arc length of \a sweepLength. |
|
818 |
|
819 The function has three out parameters. The return value is the |
|
820 starting point of the arc. The \a curves array represents the list |
|
821 of cubicTo elements up to a maximum of \a point_count. There are of course |
|
822 3 points pr curve. |
|
823 */ |
|
824 QPointF qt_curves_for_arc(const QRectF &rect, qreal startAngle, qreal sweepLength, |
|
825 QPointF *curves, int *point_count) |
|
826 { |
|
827 Q_ASSERT(point_count); |
|
828 Q_ASSERT(curves); |
|
829 |
|
830 *point_count = 0; |
|
831 if (qt_is_nan(rect.x()) || qt_is_nan(rect.y()) || qt_is_nan(rect.width()) || qt_is_nan(rect.height()) |
|
832 || qt_is_nan(startAngle) || qt_is_nan(sweepLength)) { |
|
833 qWarning("QPainterPath::arcTo: Adding arc where a parameter is NaN, results are undefined"); |
|
834 return QPointF(); |
|
835 } |
|
836 |
|
837 if (rect.isNull()) { |
|
838 return QPointF(); |
|
839 } |
|
840 |
|
841 qreal x = rect.x(); |
|
842 qreal y = rect.y(); |
|
843 |
|
844 qreal w = rect.width(); |
|
845 qreal w2 = rect.width() / 2; |
|
846 qreal w2k = w2 * QT_PATH_KAPPA; |
|
847 |
|
848 qreal h = rect.height(); |
|
849 qreal h2 = rect.height() / 2; |
|
850 qreal h2k = h2 * QT_PATH_KAPPA; |
|
851 |
|
852 QPointF points[16] = |
|
853 { |
|
854 // start point |
|
855 QPointF(x + w, y + h2), |
|
856 |
|
857 // 0 -> 270 degrees |
|
858 QPointF(x + w, y + h2 + h2k), |
|
859 QPointF(x + w2 + w2k, y + h), |
|
860 QPointF(x + w2, y + h), |
|
861 |
|
862 // 270 -> 180 degrees |
|
863 QPointF(x + w2 - w2k, y + h), |
|
864 QPointF(x, y + h2 + h2k), |
|
865 QPointF(x, y + h2), |
|
866 |
|
867 // 180 -> 90 degrees |
|
868 QPointF(x, y + h2 - h2k), |
|
869 QPointF(x + w2 - w2k, y), |
|
870 QPointF(x + w2, y), |
|
871 |
|
872 // 90 -> 0 degrees |
|
873 QPointF(x + w2 + w2k, y), |
|
874 QPointF(x + w, y + h2 - h2k), |
|
875 QPointF(x + w, y + h2) |
|
876 }; |
|
877 |
|
878 if (sweepLength > 360) sweepLength = 360; |
|
879 else if (sweepLength < -360) sweepLength = -360; |
|
880 |
|
881 // Special case fast paths |
|
882 if (startAngle == 0.0) { |
|
883 if (sweepLength == 360.0) { |
|
884 for (int i = 11; i >= 0; --i) |
|
885 curves[(*point_count)++] = points[i]; |
|
886 return points[12]; |
|
887 } else if (sweepLength == -360.0) { |
|
888 for (int i = 1; i <= 12; ++i) |
|
889 curves[(*point_count)++] = points[i]; |
|
890 return points[0]; |
|
891 } |
|
892 } |
|
893 |
|
894 int startSegment = int(floor(startAngle / 90)); |
|
895 int endSegment = int(floor((startAngle + sweepLength) / 90)); |
|
896 |
|
897 qreal startT = (startAngle - startSegment * 90) / 90; |
|
898 qreal endT = (startAngle + sweepLength - endSegment * 90) / 90; |
|
899 |
|
900 int delta = sweepLength > 0 ? 1 : -1; |
|
901 if (delta < 0) { |
|
902 startT = 1 - startT; |
|
903 endT = 1 - endT; |
|
904 } |
|
905 |
|
906 // avoid empty start segment |
|
907 if (qFuzzyIsNull(startT - qreal(1))) { |
|
908 startT = 0; |
|
909 startSegment += delta; |
|
910 } |
|
911 |
|
912 // avoid empty end segment |
|
913 if (qFuzzyIsNull(endT)) { |
|
914 endT = 1; |
|
915 endSegment -= delta; |
|
916 } |
|
917 |
|
918 startT = qt_t_for_arc_angle(startT * 90); |
|
919 endT = qt_t_for_arc_angle(endT * 90); |
|
920 |
|
921 const bool splitAtStart = !qFuzzyIsNull(startT); |
|
922 const bool splitAtEnd = !qFuzzyIsNull(endT - qreal(1)); |
|
923 |
|
924 const int end = endSegment + delta; |
|
925 |
|
926 // empty arc? |
|
927 if (startSegment == end) { |
|
928 const int quadrant = 3 - ((startSegment % 4) + 4) % 4; |
|
929 const int j = 3 * quadrant; |
|
930 return delta > 0 ? points[j + 3] : points[j]; |
|
931 } |
|
932 |
|
933 QPointF startPoint, endPoint; |
|
934 qt_find_ellipse_coords(rect, startAngle, sweepLength, &startPoint, &endPoint); |
|
935 |
|
936 for (int i = startSegment; i != end; i += delta) { |
|
937 const int quadrant = 3 - ((i % 4) + 4) % 4; |
|
938 const int j = 3 * quadrant; |
|
939 |
|
940 QBezier b; |
|
941 if (delta > 0) |
|
942 b = QBezier::fromPoints(points[j + 3], points[j + 2], points[j + 1], points[j]); |
|
943 else |
|
944 b = QBezier::fromPoints(points[j], points[j + 1], points[j + 2], points[j + 3]); |
|
945 |
|
946 // empty arc? |
|
947 if (startSegment == endSegment && qFuzzyCompare(startT, endT)) |
|
948 return startPoint; |
|
949 |
|
950 if (i == startSegment) { |
|
951 if (i == endSegment && splitAtEnd) |
|
952 b = b.bezierOnInterval(startT, endT); |
|
953 else if (splitAtStart) |
|
954 b = b.bezierOnInterval(startT, 1); |
|
955 } else if (i == endSegment && splitAtEnd) { |
|
956 b = b.bezierOnInterval(0, endT); |
|
957 } |
|
958 |
|
959 // push control points |
|
960 curves[(*point_count)++] = b.pt2(); |
|
961 curves[(*point_count)++] = b.pt3(); |
|
962 curves[(*point_count)++] = b.pt4(); |
|
963 } |
|
964 |
|
965 Q_ASSERT(*point_count > 0); |
|
966 curves[*(point_count)-1] = endPoint; |
|
967 |
|
968 return startPoint; |
|
969 } |
|
970 |
|
971 |
|
972 static inline void qdashstroker_moveTo(qfixed x, qfixed y, void *data) { |
|
973 ((QStroker *) data)->moveTo(x, y); |
|
974 } |
|
975 |
|
976 static inline void qdashstroker_lineTo(qfixed x, qfixed y, void *data) { |
|
977 ((QStroker *) data)->lineTo(x, y); |
|
978 } |
|
979 |
|
980 static inline void qdashstroker_cubicTo(qfixed, qfixed, qfixed, qfixed, qfixed, qfixed, void *) { |
|
981 Q_ASSERT(0); |
|
982 // ((QStroker *) data)->cubicTo(c1x, c1y, c2x, c2y, ex, ey); |
|
983 } |
|
984 |
|
985 |
|
986 /******************************************************************************* |
|
987 * QDashStroker members |
|
988 */ |
|
989 QDashStroker::QDashStroker(QStroker *stroker) |
|
990 : m_stroker(stroker), m_dashOffset(0), m_stroke_width(1), m_miter_limit(1) |
|
991 { |
|
992 if (m_stroker) { |
|
993 setMoveToHook(qdashstroker_moveTo); |
|
994 setLineToHook(qdashstroker_lineTo); |
|
995 setCubicToHook(qdashstroker_cubicTo); |
|
996 } |
|
997 } |
|
998 |
|
999 QVector<qfixed> QDashStroker::patternForStyle(Qt::PenStyle style) |
|
1000 { |
|
1001 const qfixed space = 2; |
|
1002 const qfixed dot = 1; |
|
1003 const qfixed dash = 4; |
|
1004 |
|
1005 QVector<qfixed> pattern; |
|
1006 |
|
1007 switch (style) { |
|
1008 case Qt::DashLine: |
|
1009 pattern << dash << space; |
|
1010 break; |
|
1011 case Qt::DotLine: |
|
1012 pattern << dot << space; |
|
1013 break; |
|
1014 case Qt::DashDotLine: |
|
1015 pattern << dash << space << dot << space; |
|
1016 break; |
|
1017 case Qt::DashDotDotLine: |
|
1018 pattern << dash << space << dot << space << dot << space; |
|
1019 break; |
|
1020 default: |
|
1021 break; |
|
1022 } |
|
1023 |
|
1024 return pattern; |
|
1025 } |
|
1026 |
|
1027 |
|
1028 void QDashStroker::processCurrentSubpath() |
|
1029 { |
|
1030 int dashCount = qMin(m_dashPattern.size(), 32); |
|
1031 qfixed dashes[32]; |
|
1032 |
|
1033 if (m_stroker) { |
|
1034 m_customData = m_stroker; |
|
1035 m_stroke_width = m_stroker->strokeWidth(); |
|
1036 m_miter_limit = m_stroker->miterLimit(); |
|
1037 } |
|
1038 |
|
1039 qreal longestLength = 0; |
|
1040 qreal sumLength = 0; |
|
1041 for (int i=0; i<dashCount; ++i) { |
|
1042 dashes[i] = qMax(m_dashPattern.at(i), qreal(0)) * m_stroke_width; |
|
1043 sumLength += dashes[i]; |
|
1044 if (dashes[i] > longestLength) |
|
1045 longestLength = dashes[i]; |
|
1046 } |
|
1047 |
|
1048 if (qFuzzyIsNull(sumLength)) |
|
1049 return; |
|
1050 |
|
1051 Q_ASSERT(dashCount > 0); |
|
1052 |
|
1053 dashCount = (dashCount / 2) * 2; // Round down to even number |
|
1054 |
|
1055 int idash = 0; // Index to current dash |
|
1056 qreal pos = 0; // The position on the curve, 0 <= pos <= path.length |
|
1057 qreal elen = 0; // element length |
|
1058 qreal doffset = m_dashOffset * m_stroke_width; |
|
1059 |
|
1060 // make sure doffset is in range [0..sumLength) |
|
1061 doffset -= qFloor(doffset / sumLength) * sumLength; |
|
1062 |
|
1063 while (doffset >= dashes[idash]) { |
|
1064 doffset -= dashes[idash]; |
|
1065 idash = (idash + 1) % dashCount; |
|
1066 } |
|
1067 |
|
1068 qreal estart = 0; // The elements starting position |
|
1069 qreal estop = 0; // The element stop position |
|
1070 |
|
1071 QLineF cline; |
|
1072 |
|
1073 QPainterPath dashPath; |
|
1074 |
|
1075 QSubpathFlatIterator it(&m_elements); |
|
1076 qfixed2d prev = it.next(); |
|
1077 |
|
1078 bool clipping = !m_clip_rect.isEmpty(); |
|
1079 qfixed2d move_to_pos = prev; |
|
1080 qfixed2d line_to_pos; |
|
1081 |
|
1082 // Pad to avoid clipping the borders of thick pens. |
|
1083 qfixed padding = qt_real_to_fixed(qMax(m_stroke_width, m_miter_limit) * longestLength); |
|
1084 qfixed2d clip_tl = { qt_real_to_fixed(m_clip_rect.left()) - padding, |
|
1085 qt_real_to_fixed(m_clip_rect.top()) - padding }; |
|
1086 qfixed2d clip_br = { qt_real_to_fixed(m_clip_rect.right()) + padding , |
|
1087 qt_real_to_fixed(m_clip_rect.bottom()) + padding }; |
|
1088 |
|
1089 bool hasMoveTo = false; |
|
1090 while (it.hasNext()) { |
|
1091 QStrokerOps::Element e = it.next(); |
|
1092 |
|
1093 Q_ASSERT(e.isLineTo()); |
|
1094 cline = QLineF(qt_fixed_to_real(prev.x), |
|
1095 qt_fixed_to_real(prev.y), |
|
1096 qt_fixed_to_real(e.x), |
|
1097 qt_fixed_to_real(e.y)); |
|
1098 elen = cline.length(); |
|
1099 |
|
1100 estop = estart + elen; |
|
1101 |
|
1102 bool done = pos >= estop; |
|
1103 // Dash away... |
|
1104 while (!done) { |
|
1105 QPointF p2; |
|
1106 |
|
1107 int idash_incr = 0; |
|
1108 bool has_offset = doffset > 0; |
|
1109 qreal dpos = pos + dashes[idash] - doffset - estart; |
|
1110 |
|
1111 Q_ASSERT(dpos >= 0); |
|
1112 |
|
1113 if (dpos > elen) { // dash extends this line |
|
1114 doffset = dashes[idash] - (dpos - elen); // subtract the part already used |
|
1115 pos = estop; // move pos to next path element |
|
1116 done = true; |
|
1117 p2 = cline.p2(); |
|
1118 } else { // Dash is on this line |
|
1119 p2 = cline.pointAt(dpos/elen); |
|
1120 pos = dpos + estart; |
|
1121 done = pos >= estop; |
|
1122 idash_incr = 1; |
|
1123 doffset = 0; // full segment so no offset on next. |
|
1124 } |
|
1125 |
|
1126 if (idash % 2 == 0) { |
|
1127 line_to_pos.x = qt_real_to_fixed(p2.x()); |
|
1128 line_to_pos.y = qt_real_to_fixed(p2.y()); |
|
1129 |
|
1130 // If we have an offset, we're continuing a dash |
|
1131 // from a previous element and should only |
|
1132 // continue the current dash, without starting a |
|
1133 // new subpath. |
|
1134 if (!has_offset || !hasMoveTo) { |
|
1135 emitMoveTo(move_to_pos.x, move_to_pos.y); |
|
1136 hasMoveTo = true; |
|
1137 } |
|
1138 |
|
1139 if (!clipping |
|
1140 // if move_to is inside... |
|
1141 || (move_to_pos.x > clip_tl.x && move_to_pos.x < clip_br.x |
|
1142 && move_to_pos.y > clip_tl.y && move_to_pos.y < clip_br.y) |
|
1143 // Or if line_to is inside... |
|
1144 || (line_to_pos.x > clip_tl.x && line_to_pos.x < clip_br.x |
|
1145 && line_to_pos.y > clip_tl.y && line_to_pos.y < clip_br.y)) |
|
1146 { |
|
1147 emitLineTo(line_to_pos.x, line_to_pos.y); |
|
1148 } |
|
1149 } else { |
|
1150 move_to_pos.x = qt_real_to_fixed(p2.x()); |
|
1151 move_to_pos.y = qt_real_to_fixed(p2.y()); |
|
1152 } |
|
1153 |
|
1154 idash = (idash + idash_incr) % dashCount; |
|
1155 } |
|
1156 |
|
1157 // Shuffle to the next cycle... |
|
1158 estart = estop; |
|
1159 prev = e; |
|
1160 } |
|
1161 |
|
1162 } |
|
1163 |
|
1164 QT_END_NAMESPACE |